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Abstract We present a new method for detection and
classification of QRS complexes in ECG signals using
continuous wavelets and neural networks. Our wavelet
method consists of four wavelet basis functions that are
suitable in detection of QRS complexes within different
QRS morphologies in the signal and thresholding technique
for denoising and feature extraction. The results demon-
strate that the proposed method is not only efficient for
normal ECG signal analysis but also for various types of
arrhythmic cardiac signals embedded in noise. For the
classification stage, a feedforward neural network was
trained with standard backpropagation algorithm. The
classifier input features consisted of compact wavelet
coefficients of QRS complexes that resulted in higher
classification rates. We demonstrate the efficiency of our
method with the average accuracy 97.2% in classification
of normal and abnormal QRS complexes.
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Introduction

The electrocardiogram (ECG) is an indirect measure of the
electrical activity of the heart. The activity can be measured
by placing leads on the surface of the skin. Cardiologists

can use features of measures to obtain important data about
their patients’ clinical condition. The features are reflected
by the morphology and duration of the individual waves
of the ECG (P, QRS complex, and T waves). The
detection of every component of the ECG can be an extra
clinical sign and very informative with respect to the
manifestation of the ECG waveform. In fact, waveform
detection is necessary to determine the heart rate, and
several related arrhythmias such as Tachycardia, Brady-
cardia and Heart Rate Variation. It is also necessary for
further processing of the ECG signal in order to detect
abnormal beats [1]. Particularly, the detection and classi-
fication of QRS complexes between normal and abnormal
waveforms are very important clinical criteria for diagnos-
ing of patients.

Producing an algorithm for the detection of ECG
waveforms is a difficult problem due to the time-varying
morphology of the signal subject to physiological con-
ditions and with a presence of noise. Over the last decades
there have been a number of techniques proposed to detect
these waveforms. For instance early attempts of Senhadji et
al who compared the ability of wavelet transform based on
three different wavelets (Daubechies, Spline, and Morlet) to
recognize and describe isolated cardiac beats [2]. Sahambi
et al used a first-order derivative of the Gaussian function
as a wavelet for the characterization of the ECG wave-
forms, where they used modulus maxima-based wavelet
analysis to detect and measure various parts of signal,
especially the location of the onset and offset of the QRS
complex and P and Twaves [3]. The other algorithms have
been developed based on spectral [4, 5] or wavelet features
[6, 7], amplitude relative to background activity [8, 9] and
spatial context [10, 11] to characterize the ECG signal.
These features was used to classify the ECG signal using
statistical methods [12], ANNs [13], or support vector
machines (SVMs) [14] in order to identify the occurrence
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of QRS complexes. It is crucial for ECG QRS detection
systems to result in high sensitivity, even if this results in a
large number of false detections. Such systems can be used
to reduce considerably the amount of data that need to be
reviewed then cardiologists can easily discard false
detections. Since the application of wavelet transforms
in electro-cardiology is a relatively new field of research,
many methodological aspects of the wavelet technique is
being applied and will require further investigations in
order to improve the clinical usefulness of this novel
signal processing technique.

In our previous work we examined ECG signals with
complex valued CWT which produced desirable results,
however it lacked with high computational cost [15]. In
this study we develop a simple and computationally fast
algorithm that provides reliable accuracy in detection and
classification of heart abnormalities. Here, we analyzed
the ECG data with proposed four wavelet functions which
are Daubechies family of wavelets db5, symlets sym4 and
from biorthogonal family of wavelets bior1.3, bior6.8.
Following, we employ adaptive wavelet threshold method
for detection and extraction of QRS complexes. In the
final stage, we train and test the neural network with
backpropagation learning algorithm. The detail proce-
dures of our methodology are explained in the next
section.

Material and methods

We used data from the MIT-BIH arrhythmia database to test
the performance of our methodology [16]. All ECG data
used here are sampled at 360 Hz, and the resolution of each
sample is 11 bits/sample, therefore the bit rate of these data
is 3,960 bps. We did the simulation on 100 different ECG
obtained from various ECG systems of 30 patients. We also
evaluated our algorithm using arrhythmic ECG data from
the American Heart Association (AHA) database [17]. The
data includes 80 two channel excerpts of analog ambulatory
ECG recordings, digitized at 250 Hz per channel with
12 bit resolution over a 20 mV range. These recordings
represent a wide variety of QRS morphologies according to
level of arrhythmia. All of the tests were conducted both on
normal and abnormal ECG for the robustness of the
proposed method.

Wavelet analysis

The wavelet analysis procedure consists of adopting a
wavelet function, also called an analyzing wavelet or
mother wavelet. Temporal analysis is performed by
contracting and dilating of the same analyzing wavelet
function. In wavelet transform, the original signal is

In fact, the wavelet function should have a certain
shape that we would like to localize in the original
signal. Then, one criterion for choosing the wavelet
function is it looks similar to the patterns of the original
QRS waveform. Therefore our choice is based on the
shape of the QRS waveforms to be detected in the signal.
As a result we can obtain only intrinsic signal structures
across the wavelet subbands with properly selected
wavelet functions. In the presence of noise, the successful
separation of QRS complexes from noise can then be
achieved.

The following process is done in wavelet analysis:

1. Perform multiscale decomposition of the signal using
wavelet functions

2. Perform wavelet thresholding to extract QRS from
noise at each subbands

3. Locate the arrival times of QRS complexes at across
the subbands

4. Combine the QRS feature vectors at different subbands

In multiscale wavelet decompositions, the higher scales
correspond to the more "stretched" wavelets that capture
the low frequency contents of the signal. The more
stretched the wavelet, the longer the portion of the signal
is covered, and thus the sparser the signal features are
measured by the wavelet coefficients. It was observed that
QRS complexes are best represented at higher scales of
the wavelet transforms, which our decision was made
accordingly.

We propose four wavelet functions that are suitable in
our study for detecting of QRS complexes. These
functions are bior1.3, bior6.8, sym4 and db5 as illustrated
in Fig. 1. It was found two biorthogonal wavelets match the
intrinsic structure of QRS waveforms better than Daube-
chies wavelets, as their biphasic shape is reminiscent of
QRS. It is therefore, expected that the biorthogonal wave-
lets provide a sparser representation of ECG signal than db2
and db5.

Let us consider in brief, the representation of continuous-
time functions in terms of two variables—scale and shift. The
representation is called continuous wavelet transform [18].
Although the CWT is redundant, it is worth of use because
of its interesting features. Consider a family of functions
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represented in terms of a wavelet expansion with respect
to the analyzing mother wavelet. Therefore, we can perform
the data operations using the corresponding wavelet
coefficients. Because wavelet transforms measures the
similarity between the wavelet basis function and the
analyzed signal, it is important to find the appropriate
wavelet basis functions that are suitable for the signal of
interest that provides the strong resemblance index. Then
the strong resemblance index will be the compact wavelet
coefficients of the signal.



obtained by shifting and scaling a wavelet function = (t)
such as

ya;b tð Þ ¼ 1
ffiffiffi

a
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where a, b ∈ R, a > 0, and a star denotes complex conjugate.
The normalization ensures that ya;b tð Þ�

�

�

� ¼ y tð Þj j. The
wavelet function has to oscillate. This, together with the decay
property, has given = (t) the name wavelet or “small wave”.

The continuous wavelet transform of a signal s(t) is
defined as

CWT a; bð Þ ¼
Z

1

�1
ya;b tð Þs tð Þdt ð2Þ

The CWT possesses properties similar to properties of
other linear transformations: linearity, shift property, local-
ization property, energy conservation, and scaling property.

Because of high redundancy in CWT, it is inefficient for
algorithmic implementation; however it is possible to
discretize the transform parameters. Thus one can choose
dyadic scales and translations from a discrete set
a ¼ 2j; b ¼ k2j; j; k 2 Zf g, so that the corresponding

wavelets = a,b an orthonormal basis of L2(R). As the result
the set of translations of CWT operates in discrete time
vector. In this way we set dyadic scales of CWT to reduce
the redundancy. It practically filters out a significant
amount of noise and also appreciably reduces the real-
time computation requirements. Conventional methods in
QRS detection are based on discrete time wavelet trans-
forms which are efficient but have some limitations. Our
main idea was to mathematically improve the CWT

performance over conventional methods and make it
suitable for our purposes.

QRS detection by thresholding

Here we explain the threshold process for detecting of QRS
waveforms. First, the CWT decomposition is applied to the
ECG signal by using the proposed mother wavelets. As a
result we obtain wavelet coefficients of the signal to further
perform our analysis and operation on it. Following, we
used an adaptive wavelet threshold method which was
proposed by Donoho and Jonstone [19]. Their proposed
wavelet threshold method performs reasonably accurate in
the analysis of non-stationary signal such as ECG. For
example, with an ECG free of artifact, a reasonable accurate
detection of QRS waveforms is possible. Even so, the
difficulty arises with artifacts, particularly the combination
of various noise and signal types in the analyzed ECG signal.
This problem increases the number of false detections, which
commonly challenges all automatic systems.

The proposed wavelet threshold method is formulated as
follows; Let s(t) be the noise free signal and x(t) the
corrupted signal with white noise b(t) as in Eq. 1,

x tð Þ i ¼ s tð Þ i þ b tð Þ ii ¼ 1; . . . ; n ð3Þ
The thresholding function is defined in Eq. 2 which was

proposed by Donoho and Johnstone.

Ts l;wkð Þ ¼ x wkð Þ if wkj j > l
0 if wkj j < l

�

ð4Þ

where wk represents the wavelet coefficients of corrupted
signal x(t).The thresholding acts on the wavelet coefficients
wk at different scales k ¼ 2j; j 2 Zf g. The authors pro-
posed a universal threshold l ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log Nð Þp

where N is
the number of samples of the analyzed time series. Here σis
the noise level of the wavelet coefficients defined by σ=
MAD/0.6745. The MAD represents the absolute median
estimated on each scale. We can obtain thresholded wavelet
coefficients from the interested wavelet scale. Thus, for
example if we want to get thresholded wavelet coefficients
from the scale {a2} we define the σ—noise level of that scale
and set λ—threshold value and make our decision based Eq. 4
Ts(λ,w2). The overall detailed algorithm is illustrated in Fig. 2.

Neural network classification

In classification stage three layer feedforward networks
employing the backpropagation (BP) learning algorithm [20]
were trained and tested using CWT coefficients obtained as
described previously. Each network had a three nput nodes,
variable numbers of hidden layer neurons (from 3 to 12), and
one output neuron. Normal and abnormal QRS events were
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Fig. 1 Four different mother wavelet functions, a bior1.3, b bior6.8,
c sym4 and d db.5
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represented as 1 and 0 respectively. The sigmoid function was
used as the activation function. We trained and tested each
network at least twice, and took the best result as the accurate
classification rate of that particular network. Classification
performance of ANNs was measured using conventional
criteria where a true positive (TP) outcome was registered
when both ANN and ECG readers classified a QRS complex
as abnormal. False positive (FP), true negative (TP) and false
negative (FN) outcomes were similarly defined. Using these
definitions, sensitivity specifity and selectivity values were
calculated using formulas (Eqs. 5–7) below respectively.

Sensitivity ¼ TP

TP þ FN
� 100 %ð Þ ð5Þ

Specificity ¼ TP

TN þ FP
� 100 %ð Þ ð6Þ

ADR ¼ Sensitivity þ Specificity

2
� 100 %ð Þ ð7Þ

The average detection rate was used to calculate the
overall classification accuracy of the proposed system.

Experimental results

The wavelet decompositions were applied at five levels
from {a2, a4, a6, a8, a10}.We have selected wavelet
coefficients from each scales and compared the number of
QRS detections. We found that the best representation of
the QRS presence at scales {a6, a8}.Although, the presence
of QRS complexes are also detected in other scales,
however it makes difficult to discriminate the QRS from
Twave. The Fig. 3 illustrates the wavelet decomposition of
the noisy ECG signal. Without needing any preprocessing
filtering technique, our method can extract pure QRS waves
from the analyzed signal. The decompositions are obtained
from {a2, a4, a8, a10} scales. One can notice the clear
detection of QRS complexes throughout the five
corresponding scales; however the {a6, a8} scales represent
the clear ECG QRS components.
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Another example is shown in Fig. 4, from full length
ECG signal corresponding to abnormal heart activity. The
detection of QRS complexes is obtained from scale {a8}.
The results show us estimation of the signal QRS waveform
much clearly that none of the signal is missed.

The main problems in detection of ECG points are the
separation from the contaminated noise in the signal.
Therefore most of the current algorithms face difficulties
in extraction of QRS points in preprocessing stage. As a
result it may increase misclassification performance of the
classifier. Next, the detail of ECG signal segment and the
denoised wavelet coefficients are shown in Fig. 5. This is
the result when we calculate the σ noise level and extract it
from the analyzed scale. It demonstrates the ability of our
method to eliminate noises in ECG by capturing the most
relevant and correlated coefficients between the signal
segment and mother wavelets. Again, the clear detection
of QRS and T waveforms are obtained.

Following we tested our method for cardiac arrhythmia
ECG with abnormal QRS wave. The results are depicted in
Fig. 6 and detail segment is shown in Fig. 7. We found the
algorithm is not sensitive to the change of QRS waveforms
during abnormal heart activity.

Let’s consider the case ECG with premature ventricular
contraction (PVC), also known as a premature ventricular
complex. The detection of PVC plays an important role in
the diagnosis of the patients. It can be understood as a
"skipped beat" or perceived as palpitations in the chest. In
PVC, the ventricles contract first, which means that
circulation is inefficient. Multiple beat PVC arrhythmias

may pose a danger and single PVC beats can be
asymptomatic in healthy individuals as well. The detection
of abnormal QRS is obtained at through decomposed scales
of wavelet functions as shown in Fig. 8. One can notice the
abrupt changes in its amplitude of PVC QRS complexes.
Thus the features extracted for normal and abnormal
cardiac activity are distinct, which may further be used in
automatic classification between two classes. The detail

Fig. 6 ECG arrhythmia signal (a) and b detection using db5 wavelet
function at scales {a2,…,a10}
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representation is shown in Fig. 9 where the R peak is
identified using db5 wavelet function. The Twaves are also
detected in small wavelet coefficients however T wave
features will be different from that of QRS complexes in
classification stage.

We have evaluated our method in detecting of various
arrhythmias relevant QRS waveforms that has normal and
time varying irregular rhythms. Each beat detection were
compared and confirmed with the recommendation of
American National Standard for ambulatory ECG analyzers
[21]. Although the ECG QRS complexes appear in variable
shapes duration (width, morphology) depending on the
arrhythmia type we confirmed that the proposed wavelet
functions localize the important cardiac events accurately.
Even those negative going waveforms can be detected,
which is usually found in supraventricular arrhythmias. For
instance, Fig. 10 illustrates the ECG segment from patient
diagnosed with supraventricular arrhythmias. Rectangular
in the Fig. 10 (a) shows the locations of one cycle QRS
complex onset R wave and offset points. Wavelet localiza-
tion of these waveforms regardless of the QRS morphology
is obtained as shown in Fig. 10 (b) where the important
diagnostic events such as onset offset and negative R wave
are estimated. The locations of other QRS waveforms can
be visually confirmed in the time series.

The overall classification of our method is discussed
next. Input features to the neural network consisted of
positive wavelet amplitude (PWA) and negative wavelet
amplitude (NWA) crossings and the wavelet wave duration
(WWD) of the QRS complex. Thus we defined three
compact input feature vectors as shown in Fig. 11.

Here the PWA and NWA feature values are set from the
universal threshold l ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log Nð Þp

which is automati-

cally set for normal and arrhythmic QRS complex in
wavelet stage. Since we are using a binary classification
and because we have a good wavelet denoising method it is
possible to consider the only arrhythmic QRS complex
features vectors. Then the any other input feature vector
will be considered as a normal QRS waveform.

Once the defining feature vectors are completed, a set of
N input/output pairs as cn ¼ xn; dnjn ¼ 1; 2; . . . ;Nf g is
obtained, where cn represents the classes of ECG signal and
xn, dn represents input feature vector and the desired output.
We divided data into two subsets, training set and test set.

1. ECGtrain ¼ xn; dnjn ¼ 1; 2; . . .Nf g is used to train
ANN for adjusting and determining the networks’
running parameters weights and biases.

2. ECGtest ¼ xn; dnjn ¼ 1; 2; . . . ;Nf g is used to validate
off-line classification performance of the neural net-
works once the network has converged.

Total number of 125 datasets corresponding to normal
and arrhythmia ECG signal wavelet coefficients was
collected. For training set ECGtrain 95 data samples have
been used and the remaining ECGtest was used for offline
validation.

The validation was performed over the ECG signal class
which was indicated by the index of highest output of the
classifier. We repeated this procedure for several times,
each time using a different test set chosen from the two
class of the data, until all possible choices for the test set
have been used. In addition, this type of training and testing
process was done 10 times for each neural network model
with varying hidden neurons with each subset of ECGtrain

and received the average value.
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Fig. 8 PVC ECG signal, a QRS complex and b detection of QRS
waveform using db5 wavelet function
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For instance, the Table 1 provides the classification
results obtained by each wavelet function as an input
feature. The results are given in terms of sensitivity and
specificity and average detection rate. One can compare the
detection accuracy for each wavelet function, where

biorthogonal wavelets surpass the other two wavelet
functions in performance. Therefore the biorthogonal
wavelet functions are selected for feature extraction.

We compared the results for classification accuracy from
each wavelet scale ECG data set. For example, the
detection accuracy is illustrated in Fig. 12 for four wavelet
function at scales {a2, a4, a6, a8, a10} accordingly. Results
confirm that the choice of wavelet coefficient from scales
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{a6, a8} provides better accuracy than the other scales. The
details for overall highest classification accuracy was
obtained by using biorthogonal wavelet functions with
96–93% at scale {a6} and 97–98% at {a8}.

ECGtest data set contains various types of ECG signals
corresponding to normal and arrhythmia. Here we manually
divided the selected segment of ECGtest data set into five
classes (A, B, C, E, and F) to validate the offline
classification performance. Table 2 shows the classification
performance of the algorithm for selected ECG data set.
Here we used bior1.3 wavelet coefficients as an input to
neural network. First column of the table represents five
data set each contains 10 recordings sets.

Second column defines the belonging classes of each
dataset as normal, PVC, VT and SVT classes. Following
column shows the total number of test patterns corresponding
to normal and abnormal patterns in each class of dataset.

For two classes of dataset (A, B) there were few abnormal
QRS patterns detected. For PVC period several abnormal
QRSs were detected. Since occurrence of PVC contains the
periods with less abnormality so there’s actually abnormal
activity in the recordings. As to VTand SVT data we can see
that almost all events contain abnormal QRS but there were
only a few normal QRS segments detected.

We can conclude that the maximum detection rate
achieved 97.2% for off-line classification which is indeed
good accuracy rate for unseen data recognition. We tested
the neural networks several times and the accuracy was
within the range of 94% to 97%. The neural classifier
performance slightly changes at each trial however it still
achieves reliable accuracy rate which is comparable with
the currently available methods.

Discussion

In this work, we investigated the methodological aspects of
continuous wavelet transforms to provide new robust
method for detection of ECG QRS complexes. The efforts
have been done for improvements in the algorithm towards
more effective wavelet filtering and pre-processing stage as
well as a better threshold technique. The developed
methodology achieves higher detection rates using the
proposed wavelet scheme. In addition, we found that
designing a mother wavelet functions that matches the shape
or frequency characteristics of QRS events offer higher
accuracy of detection and classification. Besides we have
applied wavelet thresholding which also was used as the
denoising tool to reject various kinds of artefacts. Obtained
results are promising for fast real time detection system and
implementation of the algorithm. It also produces relatively
good results with comparing to the present available works.

The neural network classifier when provided with
reduced set of relevant features of QRS complexes (wavelet
coefficients) achieves desired classification rates. As a
result the classifier performance can be obtained without
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ECG data Class No. test patterns Abnormal QRS Normal QRS Total

A Norm. SR 432 – 424 424

B Norm. SR 394 4 370 374

C PVC 877 91 761 852

E VT 829 809 3 812

F SVT 798 779 – 779

Total – 3,330 17,17 1,577 3,251 (97.2%)

Table 2 The off-line validation
results for the proposed algo-
rithm applied to five data sets

Table 1 Detection results with four wavelets in terms of sensitivity,
specificity and accuracy

Wavelet
functions

Sensitivity (%) Specificity (%) Accuracy (%)

Bior1.3 97.12 98.52 97.82

Bior6.8 96.49 97.71 97.10

Sym4 94.16 93.35 93.75

Db5 95.50 93.44 94.47

Average 95.81 95.75 95.78
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decreasing the information content of the signal. The
classifier proved the robustness and speed of detection of
abnormalities of QRS complexes, which is not too sensitive
to the parameters of the wavelet coefficients. Another main
criteria of our methodology based on low complexity of the
algorithm hence low computational load, which can be
characterized as very satisfactory. We believe that, the
clinical use of the algorithm would be beneficial in the
analysis of various types of cardiac disorders.

Let’s consider some of the well known methods for
comparative case. First, Senhadji et al compared the ability
of wavelet transform based on three different wavelets
(Daubechies, Spline, and Morlet) to recognize and describe
isolated cardiac beats [2]. Their proposed method carries a
unique approach by using discrete wavelet transforms to
obtain ECG coefficients from detail representations. The
DWT is computationally fast but when applied to such
physiological signal it may reject some important informa-
tion of the signal content through filtering low, and high
frequency contents of the signal. For analysis of ECG signals
it is important to maintain the physiologically relevant
information by rejecting other noise patterns. We found that
this issue can be done using CWT. However CWT is
redundant and computationally costly but still maintains
most relevant information of the signal. We considered these
issues of CWT by dyadic scaling and wavelet threshold
method of Johnstone et al. as explained above.

Second, Sahambi et al used a first-order derivative of the
Gaussian function as a wavelet for the characterization of
the ECG waveforms [3]. Their method was motivated and
somewhat similar to Senhadji’s work. But they consider
different characteristics of wavelet transformations such as
modulus maxima points to detect various parts of signal,
especially the location of the onset and offset of the QRS
complexes. Their method was probably most promising
method at times. If compared with Sahambi’s method our
approach is fast, robust and can not only detect QRS
complexes, but also classify the normal, abnormal cardiac
events, which is crucial in clinical diagnostics.

Even if the ECG studies is not limited to the mentioned
algorithms, which are earlier attempts, and other recent
detectors, such as those recently proposed Romero et al.
[10] wavelet based and Li Gang [14] based on neural
networks as well as Zumray et. al. [13] worked upon
developing a novel method using hybrid neural networks.
Obviously, the implementation of all these kinds of
approaches depends on correct estimation (feature extrac-
tion) of the analyzed ECG signal context (noise and
expected QRS complexes), which is sometimes a difficult
task. In this study we attempted to develop a new approach
in the detection of QRS complexes. The results suggest the
reliability of our approach for QRS detection only and
comparability with the proposed methods to recent days.

This is part of our current work results which will lead us to
the development of a real time QRS detectors for real-time
monitoring in our further research.
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