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Abstract In this study, FFT analysis is applied to the EEG
signals of the normal and patient subjects and the obtained
FFT coefficients are used as inputs in Artificial Neural
Network (ANN). The differences shown by the non-
stationary random signals such as EEG signals in cases of
health and sickness (epilepsy) were evaluated and tried to be
analyzed under computer-supported conditions by using
artificial neural networks. Multi-Layer Perceptron (MLP)
architecture is used Levenberg-Marquardt (LM), Quickprop
(QP), Delta-bar delta (DBD), Momentum and Conjugate
gradient (CG) learning algorithms, and the best performance
was tried to be attained by ensuring the optimization with the
use of genetic algorithms of the weights, learning rates,
neuron numbers of hidden layer in the training process. This
study shows that the artificial neural network increases the
classification performance using genetic algorithm.

Keywords EEG .Multilayer perceptron (MLP) . Genetic
algorithm (GA)

Introduction

The EEG is still one of the most main tools to access to one
of the most unknown and complex system is nature. There
is no doubt that due to its complexity and ability to reflect
underlying processes in the brain the EEG signal is
theoretically the best physiological signal for extraction
and comprehension of human behaviour. EEG involves the

recording and analysis of electrical signals generated by the
brain [1].

EEG is an important clinical tool for diagnosing and
monitoring neurological disorders related to epilepsy.
Epilepsy is characterized by sudden recurrent and transient
disturbances of mental functions and/or movements of the
body that result from excessive discharging of groups of brain
cells. The term epilepsy does not refer to a specific disease but
rather to a group of symptoms that have many causes. The
characteristic activities observed in the scalp EEG of subjects
with epilepsy are sharp transient waveforms. Such transient
waveforms include spikes and sharp waves [2].

Epilepsy diagnosis is a more complicated problem due to
overlapping symptomatology with other neurological dis-
orders, low understanding of the exact mechanism respon-
sible for epilepsy, and lack of knowledge about the possible
manners of seizure progression. Usually, confirmation of
the diagnosis involves a combination of the medical history
of the patient and EEG interpretation by an expert
neurologist. The development of accurate and reliable
EEG-based automated tools is still in its infancy due to
the lack of detectable markers. Although visible EEG
markers such as interictal spikes are commonly employed
by neurologists to identify epileptic/interictal EEG, they
have a subtly variable shape which is not detected
consistently by spike detection algorithms reported in the
literature [3].

Neurologists usually diagnose the disease of EEG
signals based on time domains. EEG signals, however,
need to be reviewed in the frequency domain in order to
make them more stationary and clear. Recent feature of the
computers to record these signals and the development of
spectral analysis methods have made it possible to benefit
from the frequency elements during the finding of these
pathological signals [4].
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Learning methods such as artificial neural networks are
based on learning from examples. The main philosophy of
learning from examples is to learn the relationships between
the inputs and outputs of the event by using the examples
that occurred about the event, and to determine the outputs
of new examples to occur depending on these relationships.
It is considered here that the relationship between the inputs
and the outputs of examples about a particular event
contains information that will represent the entirety of the
event. It is assumed that different examples represent the
events from different perspectives. Thus the event is
learned from different perspectives by using different
examples. Only the examples are shown to the computer.
No other preliminary information are given. The system,
which will perform the learning (the artificial neural
network in this study) discovers the relationship by using
its own algorithm [5–7].

Artificial neural networks (ANNs) have been used as
computational tools for pattern classification including
diagnosis of diseases because of the belief that they have
greater predictive power than signal analysis techniques [8].
Artificial neural Networks (ANN) have been widely used
for spike recognition [9–15].

Several neurological disorders are routinely examined by
EEG analysis and the differentiation between physiological
and pathological alterations requires the flexibility and
excellent capability and recognition of various EEG-
complexes. In this context, Schetinin has developed an
algorithm to classify artifacts and normal segments in
clinical EEGs. This method involves evolving cascade
neural networks, ensuring a nearly minimal number of
input and hidden neurons as well as connections. The
algorithm was successfully applied, classifying correctly
96.69% of the testing segments [16].

In this study, different learning methods which is
Levenberg-Marquardt (LM), Quickprop (QP), Delta-bar
delta (DBD), Momentum and Conjugate gradient (CG)
were used on multilayer perceptrons (MLP) architecture in
the training of artificial neural networks; these methods
were optimized with genetic algorithm; and their perform-
ances were compared.

The aim of using different learning algorithms is to
achieve faster and more accurate results and to test
different learning methods and networks for such
applications.

Genetic algorithms can be used in the solution of
complex optimization problems. Genetic optimization can
also be used for determining the best parameters of ANN. It
is known that especially the weights in ANN can vary
depending on several parameters. It was observed that the
genetic optimization of different learning algorithms and
their parameters affects the network performance and
increases the classification performance.

Material and method

Experimental protocol

The evaluation of several proposed EEG classification or
recognition schemes was carried out on the basis of some
signals experimentally acquired from human volunteers/
samples. In some cases, the researchers acquired these
signals from human volunteers, by setting up their own
experimental set up. In many other cases, the researchers
demonstrated the efficiacy of their proposed algorithms on
the basis of popular benchmark EEG signals, freely
available for downloading in the internet. In case of several
research works regarding epilepsy recognition, the bench-
mark EEG signal database is available from the Department
of Epileptology, University of Bonn, [17, 18]. This
complete database contains five sets of 100 single-channel
EEG signals, obtained with a sampling rate of 173.61 Hz
and digitized with 12 bit resolution. The same amplifier
system was employed for acquiring all EEG signals from
human volunteers. The EEG signals were extracted for
those portions which were devoid of any artifact e.g., due to
eye movements or muscle activities [19]. The spectral
bandwidth of the acquisition system was 0.5–85 Hz and the
first step for processing of such EEG signals requires low
pass filtering with a cut-off frequency of 40 Hz. Out of five
sets of data, two sets were obtained from five healthy
volunteers, relaxing in awake condition, with their eyes
open and eyes closed and the EEG surface recordings were
acquired using standard 10–20 international system of
electrode placement.

In this research, the clinically significant epilepsy and
seizure detection problem is modeled as a two-group
classification problem. Epilepsy diagnosis is modeled as
the classification of normal EEGs and interictal EEGs.
Seizure detection is modeled as the classification of
interictal and ictal EEGs. In order to improve the statistical
significance, a large number of EEG data sets belonging to
two subject groups are used: 1) healthy subjects (normal
EEG), 2) epileptic subjects during a seizurefree interval
(interictal EEG), and epileptic subjects during a seizure
(ictal EEG).

EEG signals contain many concealed information about
the brain functions. In order to use this information in
research and patient diagnosis, the spectral analysis should
be performed in real time with modern parametric methods,
and automation should be initiated. Signal analysis is
performed by the transfer of the signal itself or its display
to other dimensions (time, frequency, time-scale, etc.). The
purpose is to reach meaningful detail information, which
can not be acquired from raw data, by transforming the
signal without any information losses into one of these
dimensions.
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Parametric features used in the EEG signals

Using EEG signals as the control source are achieved by
discriminating their patterns in specified epilepsy disorders.
Basically, the entire task in EEG pattern classifications
could be divided into three essential parts: data acquisition,
feature extraction, and classification algorithm. Several
features have been applied to the classifications of EEG
signals. Our idea is to extract real EEG signals from the
measured signals, so that we can expect two advantages
[20].

& It can reduce the amount of data so that less memory is
required for EEG signal storage.

& It can result in the improved performance in pattern
recognition due to no possible confusion from useless
data.

Spectral estimation by FFT-based methods

In order to make meaningful of EEG signal, spectral analysis
should be applied to EEG signal. For this reason, FFT
method can be applied to the EEG signal which is
nonstationary since the algorithm of FFT is not complex.
In order to take the FFT of a finite EEG signal, it must be
framed with the powers of 2, such as 64, 128, and 256.
Windowing technique is used to evaluate the frequency
spectrum for the corresponding frame. By using windowing,
the non-existing frequency components appearing in the
spectrum are presented. In addition, zero padding is
applied to the same signal after windowing process. This
entails overhead on the process although it increases the
readability of spectrum [20]. Fourier analysis is extremely
useful for data analysis, as it breaks down a signal into
constituent sinusoids of different frequencies. For sampled
vector data, Fourier analysis is performed using the
Discrete Fourier Transform (DFT). The Fast Fourier
Transform (FFT) is an efficient algorithm for computing
the DFT of a sequence; it is not a separate transform. It is
particularly useful in areas such as signal and image
processing, where it uses range from filtering, convolution,
and frequency analysis to power spectrum estimation. Fast
Fourier transforms:

X kð Þ ¼ PN

n¼1
x nð Þe�j2x k�1ð Þ n�1

Nð Þ 1 � k � N

x kð Þ ¼ 1
N

PN

k¼1
X nð Þej2x k�1ð Þ n�1

Nð Þ 1 � n � N
ð1Þ

where x is a length N discrete signal sampled at times t with
spacing.

The number of signal samples required to form a frame
depends heavily on how stationary the signal is. In general,

the EEG signal is non-stationary. When amplitude of EEG
signal is very low, ANN is used to test diagnosed spectral
curve which are estimated from the result of FFT analysis.
On the other hand, very short frame lengths may yield
statistically poor spectral resolution. Therefore, selection of
frame length is an important factor in EEG spectral
analysis. The frame length used in this study is 64. FFT
coefficients of EEG signals are required to generate ANN
as training and testing inputs.

ANN based classification algorithms

Artificial intelligence is an instrument, which can be used in
medical field for decision-making support systems. Artifi-
cial neural networks are extensively used in the modeling of
non-linear system [21, 22].

The MLP (Multilayer Perceptron) comprises an input
layer, where all the input signals are lconnected to input
nodes, followed by one or more hidden layers where
several hidden layer nodes are connected to accommodate
more nonlinearity which can, hopefully, help in determin-
ing an efficient multidimensional nonlinear mapping be-
tween input and output exemplars and this is followed by
an output layer which produces the output of the neural
network. Figure 1 shows the schematic form of the
architecture of a typical m-input–noutput MLP, with a
single hidden layer comprising neurons. The general form
of an MLP is a fully connected one where each node or
neuron in a given layer is connected to all nodes or neurons
in the previous layer through some connecting weights.
Each node, in its most general form, comprises two
functions: integration function and activation function.

The integration function integrates or summates all the
weighted inputs at the given node to produce an aggregated
input for the activation function. Then the activation
function applies nonlinearity on its aggregated input by
employing a continuous nonlinear function. These non-

Fig. 1 MLP architecture
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linearities can be popularly employed in terms of tanh
functions, which are known as smooth functions that are
differentiable everywhere. However, in case of some
neurons, both the integration and activation function may
not be present and, in those situations, in all probability,
only the integration function will be present.

This network is trained in a supervised manner, in
presence of ideal input–output exemplars, utilized in form
of a training data set, which determines the suitable weights
and biases of the network. In such cases, the most popular
training algorithm is known as the error backpropagation
algorithm, where the synaptic weights and biases are
adjusted by backpropagating the error signal through
different layers of the network in a chain form, with an
objective of adjusting the free parameters of the network so
that the actual response of the network approaches the ideal
response in a statistical sense. This learning algorithm can be
employed either in pattern mode, i.e., the weights and biases
are adjusted every time an input exemplar is presented to the
system, or in batch mode, (i.e., the weights and biases are
adjusted every time all the input exemplars present in the
training data set are presented once to the system) [21, 22].

Backpropagation with momentum (BPM)

It is a gradient descent method and the most commonly
adopted ANN training algorithm [23]. It has local minima
and slow convergence problems. It is an extended version
of the BP algorithm. The weights and biases are updated
according to gradient descent momentum and an adaptive
learning rate [24].

Levenberg-Marquardt (LM)

This is a least-squares estimation method based on the
maximum neighbourhood idea [25, 26]. The LM combines
the best features of the Gauss–Newton technique and the
steepest-descent method, but avoids many of their limita-
tions. In particular, it generally does not suffer from the
problem of slow convergence.

Scaled conjugate gradient (SCG)

This was developed by Moller, and designed to avoid the
time consuming line search [27]. The basic idea is to
combine the model-trust region approach and the conjugate
gradient approach.

Delta bar delta

Delta-Bar-Delta learning rule was developed in 1988 by
Jacobs in order to improve the convergence speed of the
classical Delta rule [28].

Quickprop

The Quickprop implements Fahlman’s quickprop algo-
rithm. It is a gradient search procedure that has been shown
to be very fast in a multitude of problems [29].

Cross-validation

Periodically the network is tested using the cross-
validation, using other set of data than the one used for
training and the performance must increase from test to test,
if it doesn’t the training is stopped. The cross-validation is a
recommended criterion to stop training at the right moment
[30].

Genetic algorithms (GA)

Holland (1975) described a technique, now known as the
GA, which used concepts taken from the naturally occur-
ring evolutionary process to solve problems by performing
a highly parallel search. The GA begins by randomly
generating an initial set or population of candidate
solutions. Every population member is allocated a value
that is a measure of its performance, known as the
individual’s fitness. A new population is then generated
by applying the Darwinian principle of survival and
reproduction of the fittest, making use of operators that
are analogous to naturally occurring genetic operators such
as sexual recombination (crossover) and mutation. The
process is repeated over a number of iterations or
generations in an attempt to evolve increasingly accurate
solutions. As the individuals in the GA population are
typically stored as fixed length character strings, a suitable
encoding scheme must be devised before the algorithm can
be applied to a problem [31].

GAs are algorithms used to find approximate solutions
to difficult problems through application of the principles of
evolutionary biology to computer science. They use
biologically derived techniques such as inheritance, muta-
tion, natural selection, and recombination to approximate an
optimal solution to difficult problems. Genetic algorithms
view learning as a competition among a population of
evolving candidate problem solutions. A fitness function
evaluates each solution to decide whether it will contribute
to the next generation of solutions. Through operations
analogous to gene transfer in sexual reproduction, the
algorithm creates a new population of candidate solutions
[32].

In manufacturing there are certain processes that are not
possible to describe using analytical models for GA
optimization. It has been hard to establish models that
accurately correlate the process variables and performance
of Levenberg-Marquardt (LM), Quickprop (QP), Delta-bar
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delta (DBD), Momentum and Conjugate gradient (CG)
learning algorithms. The present work describes the
development and application of a hybrid MLP and GA
methodology to model and optimize one or more parame-
ters within the neural network. The most common param-
eters to optimize are the weights, the neuron number of
hidden layers, and the learning rates. Many other network
parameters are available for optimization.

If the search space consists of two or more dimensions,
the gradient-dissent strategy may get caught in repeated
cycles, where the local minima solution is found repeatedly.
Use of MLP models for prediction of wide range of data is
a difficult task. Large differential amplitudes of the
solutions targeted at each and every output cause the error
surface to be discontinuous and flat in certain regions. GA
is a global search method that does not require the gradient
data and locates globally optimum solution. The use of GA
based learning methods is justified for learning tasks that
require MLPs with hidden neurons for a non-linear data,
which is the case in the present study.

The task of neural network training in MLP is a
complicated process, in which a pattern set made up of
pairs of inputs plus expected outputs is known beforehand,
and used to compute the set of weights that makes the MLP
to learn it. The architecture of the network and the weights
are evolved by using error back propagation. The optimi-
zation of these weights improves the efficiency of the MLP
model. In MLP-GA Hybrid model the concepts of GA are
used for optimization of weights resulting to the minimiza-
tion of error between actual output and MLP predicted
output [33].

Receiver operating characteristic (ROC)

For comparison of the diagnostic accuracy of the different
classification methods and groups, the concept of Receiver
Operating Characteristic (ROC) analysis was used. ROC
analysis is an appropriate means to display sensitivity and
specificity relationships when a predictive output for two
possibilities is continuous. In its tabular form the ROC
analysis display true and false positive and negative totals
and sensitivity and specificity for each listed cutoff value
between 0 and 1. The ROC curves are a more complete
representation of the classification performance than the
report of a single pair of sensitivity and specificity values.
In order to analyze the output data that are obtained from
the application, sensitivity (true positive ratio) and
specificity (true negative ratio) are calculated by using
confusion matrix. Sensitivity value (true positive, same
positive result with the diagnosis of expert physicians) is
calculated by dividing the total of diagnosis numbers to
total diagnosis numbers that are stated by the expert
physicians [34].

Results and discussion

The actual purpose of our study is to classify the EEG
signals for diagnosis purposes. For this purpose EEG
signals of the patients and healthy person were recorded.
EEG data was obtained from the database of Bonn
University. The sampling frequency of the signals is
173.61 Hz. Spectral analysis was applied to each EEG
segment of the data set using Welch Method. Welch method
for evaluating the power spectrum divides the data in
several segments, possibly overlapping, performs an FFT
on each segment, computes the magnitude squared then
averages these spectra.

Artificial neural networks (ANN) create complex and
non-linear models, which create a relationship between the
entries (independent variables of the system) and the
outputs (dependent predictive variables). With the increase
of the number of studies in this field, different network
structures and learning algorithms were studied. Neurons
are usually divided into layers in a feed-forward network.
Feed-forward networks include multi layer perceptron
(MLP) architecture [35].

In this study, 300 input data sets from healthy individ-
uals and 200 input data sets from patients with epileptic
disorders were used. Signals were sampled at 173.61 Hz
and applied to a band-pass filter of 0.53–40 Hz. Signals
were recorded for 23.6 s [17, 36].

Time-scale domain analysis of the mark can also be
obtained practically with FFT, and thus some detail
information, which can not be healthily selected from the
row data in the signal, can be found without any signal
information losses whatsoever. This is a method, which can
be helpful in the solution of various problems. The benefits
of the use of this method can be appreciated even more,
when one thinks about the importance in terms of signal
processing of the fact that the changeability feature of the
signal’s screening interval is quite effective for resolving
the situations, where especially sharp bounces and dis-
continuities occur [7].

In Fig. 2, raw (unprocessed) EEG signals of healthy
individuals as well as signals that are formed after the
application of Fast Fourier Transform (FFT) are shown. In
Fig. 3, however, raw (unprocessed) EEG signals of patients
with epileptic disorders and spectral curve after the FFT
analysis are shown.

A review of the FFT results reveals the connection between
the deviations that occur in healthy individuals and the
frequency levels that correspond to these deviations. As
explained earlier with the information provided with regard
to the EEG signals, the alpha signals are seen in the frequency
of 8–12 Hz in normal individuals, and their amplitudes are not
so large. This result is supportive of the FFT signal results.
Similarly when the FFT results of sick individuals (epilepsy)
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are reviewed, instant deviations occur in their amplitudes.
Instant deviations that correspond to the same frequency
compared to healthy individuals points out the difference of
EEG mark. While no changes occur in the frequency of the
signal in epilepsy, instant increases occur in the amplitude [37].

In order to ensure faster and more accurate diagnosis,
FFT coefficients of these spectral curves will be used as the
input vector to ANN. Of the EEG data, which were applied
to the artificial neural network, 60% was used as training
set, 25% was as test set and the rest was used as cross
validation (CV) set. A neural network, which has MLP
architecture with standard back propagation algorithm, was
used in this study. The learning algorithms of Levenberg-
Marquardt (LM), Quickprop (QP), Delta-bar delta (DBD),
Momentum and Conjugate gradient (CG) were applied in
the MLP architecture. The input vectors derived from the
EEG data were selected randomly as training, test and CV
sets. In all calculations regarding ANN, tangent hyperbolic
was selected as the transfer function during application.

Recent developments in the theory of learning and the
traditional information of data modeling have shown that
while training after a critical point enable the results to get
better, they also cause the test results to get worse.

Especially the data are trained more than intended. The
training stops at the point, where maximum generalization
is made in order to resolve this problem. This method is
called the cross-validation method.

In order to achieve this; (1) a set that contains both the
training set and the test set shall be created; (2) number of
mistakes per each group shall be evaluated in the verification
set after every 50 epochs; and the training set shall be trained;
(3) the training shall be stopped if the error during the training
in the verification set turn out to be higher than the last
checked error value; and (4) the weights in the network are
used, which the training had during the phase before the work.

Accordingly EEG data were trained by selecting 1,000
epochs; and an MSE and epoch value, where error is
minimum, is achieved by using CV (cross-validation).

It is seen in Table 1 that the highest epoch value was
achieved in QP (Quick prob) and the lowest epoch values
in DBD (Delta bar delta) learning algorithms. After a
review of the MSE values it is revealed that the highest
MSE value was achieved in QP and the lowest MSE value
in LM learning algorithms.

Genetic algorithms can be combined with neural net-
works to enhance their performance by taking some of the
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Fig. 2 Raw EEG signal (a) and
spectral curve (b) belonging to
normal person
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guesswork out of optimally choosing neural network
parameters, inputs etc. They can be used to choose the best
inputs to the neural network optimize the neural network
parameters (such as the learning rates, neuron number of
hidden layer, etc.), train the actual network weights.

Multi layer backpropagation network was used for
training; and tangent hyperbolic function was used as the
activation function. The weights were updated by using
the back-propagation network and the genetic algorithm. The
network training was completed with the achievement of
acceptable error value. Optimization was performed with each
standard of ANN architecture belonging to individual learning
methods and with the genetic algorithm. The comparison
table for performance values was given in Table 2.

After the review of Table 2, average highest success of
90% was achieved with CG and LM algorithms during the
test phase before the application of genetic algorithm.
Weight values of the input layer and concealed layers as
well as the coefficients of each layer were optimized with
GA after each cycle; and it was ensured that these
optimized values are used for the next cycle. As can be
seen in Table 2, it was observed that the classification
periods of all learning algorithms increased. The highest
success rate here (96.5% in average) was seen in LM
algorithm. It is, however, determined that no significant
changes were present in CG learning rule. The lowest MSE
value of 0.048 here was achieved in LM algorithm. It is
considered that the approach of value r caused the network

-a-

-b-

A
m

p
l
i
t
u
d
e
 

Frequency (Hz) 

Fig. 3 Raw EEG signal (a) and
spectral curve (b) belonging to
patient person

Learning method LM CG QP DBD Momentum

Epoch # 276 536 971 72 187

Minimum MSE 0.08694004 0.07322647 0.44228187 0.38088033 0.31518395

Final MSE 0.08769681 0.11812871 0.69000029 0.74861335 0.38535204

Table 1 The epoch and MSE
values of learning methods
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to access the training better. Similarly the highest success
here was achieved with the LM learning rule.

Receiver Operation Characteristics (ROC) analysis
was performed for all networks in order to verify the
diagnosis performances of artificial neural networks.
ROC analysis is used in order to determine the actual
precision of medical diagnosis results. ROC analysis is a
standard approach that is used in order to determine the
sensitivity and the certainty of the diagnosis procedure.
ROC curves are used for this purpose, which will define
the relationship between the sensitivity and the certainty
of the diagnosis.

In a Receiver Operating Characteristic (ROC) curve
the true positive rate (Sensitivity) is plotted in function
of the false positive rate (100-Specificity) for different
cut-off points. Each point on the ROC plot represents a

sensitivity/specificity pair corresponding to a particular
decision threshold. A test with perfect discrimination (no
overlap in the two distributions) has a ROC plot that
passes through the upper left corner (100% sensitivity,
100% specificity). Therefore the closer the ROC plot is
to the upper left corner, the higher the overall accuracy
of the test.

For this purpose ROC curves were shown to each
learning algorithm in Fig. 4. Area under the Curve
(AUC), Standard Error (SE) and Confidence interval (CI)
values for these curves were summarized in Table 3.
According to Table 3, the highest AUC value (0.930) was
achieved in CG learning rule, followed by Momentum,
LM, QP and DBD learning period. After the review of the
classification percentages in previous Table 2, it was
observed that both LM and CG have same classification
percentages.

Genetic algorithms (GAs) have been successfully
implemented for optimizing ANN architectures [38–40].
In order to reduce the MSE at training and error for
production data sets, it is proposed to train the developed
network using genetic algorithms (GA). The advantage of
ANN model with GA is that it optimizes the network
weights to minimize the MSE during training of the
network.

Table 2 Comparison performance values for standard MLP algorithm and MLP algorithm using genetic algorithm optimization

Learning
method

QP CG LM DBD Momentum

Performance Normal Patient Normal Patient Normal Patient Normal Patient Normal Patient

Standard MLP
algorithm

MSE 0.198 0.195 0.085 0.085 0.085 0.085 0.244 0.240 0.214 0.216

r 0.532 0.582 0.809 0.809 0.809 0.809 0.041 0.035 0.548 0.442

Percent
correct

14 97 88 92 88 92 10 100 24 97

MLP algorithm
using genetic
optimization

MSE 0.176 0.176 0.082 0.082 0.048 0.048 0.165 0.163 0.121 0.120

r 0.570 0.570 0.817 0.817 0.907 0.907 0.585 0.593 0.730 0.732

Percent
correct

52 98 89 92 95 98 80 91 94 79
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Fig. 4 ROC curves belonging to standard MLP algorithm

Table 3 Area under the curve (AUC), standard error (SE) vs.
confidence interval (CI) for the ROC curves belonging to standard
MLP algorithm

AUC SE 95% CI

MLP_CG 0.930 0.0263 0.870 to 0.968

MLP_DBD 0.863 0.036 0.790 to 0.918

MLP_LM 0.910 0.0321 0.856 to 0.962

MLP_QP 0.894 0.032 0.827 to 0.942

MLP_Momentum 0.924 0.0274 0.863 to 0.964
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Optimization was carried out by using genetic algorithm
in order to increase the classification performances of
Levenberg-Marquardt (LM), Quickprop (QP), Delta-bar
delta (DBD), and Momentum and Conjugate gradient
(CG) learning algorithms. The performance increase with
GA can be seen in ROC curves of each learning algorithm
(Fig. 5). Area Under the Curve (AUC), Standard Error (SE)
and Confidence Interval (CI) values for these curves were
summarized in Table 4.

It is evident from the Table 4 that the highest AUC value
was achieved in the LM learning rule, which is followed by
CG, DBD, QP and Momentum learning algorithms,
respectively. The AUC value (0.972), which was achieved
with the LM learning algorithm here, is higher than the
AUC value (0.930), which was achieved in CG, shown in
Table 3. Classification performance and lowest ME value
are also achieved with the LM algorithm.

Conclusion

Classification process is, at its most common sense, a
decision-making mechanism. In this study, the differences
shown by the non-stationary random EEG signals in cases
of health and sickness (epilepsy) were evaluated and
analyzed under computer-supported conditions by using
artificial neural networks.

It is seen that the most efficient results in the study
was achieved with the use of LM (Levenberg-Marquardt
back-propagation) algorithm, which is optimized with the
genetic algorithm. The general success here was 96.5%.
In a separate evaluation for sick and healthy data, it is
evident that the healthy data are superior. The success
rate of healthy data is 95%, while the rate of sick data is
98%.

One of the major problems of patient diagnosis is
being able to diagnose sick individuals as sick, and
healthy individuals as healthy. A mistake in such a
diagnosis is a situation, which is never wanted, since it
involves risks for human health. For this purpose, EEG
data set was evaluated with ANN structures in this
study; ROC analysis was performed for all network
structures that were used; sensitivity and clearance
values were calculated; and the authenticity of the tests
were controlled. ROC analysis results showed that the
highest AUC value of 0.972. In this case it is safe to say
that the most efficient result is achieved in the LM
algorithm in terms of both the lowest MSE value and
the success.

Appropriate ANN architectures can be selected by
creating various ANN architectures in classification
systems that are based on artificial neural networks. It
was seen that the system performance changed depend-
ing on these MLP architectures. The weights in the
architecture that was used were optimized during the
training with genetic algorithm, and a major increase was
observed in the system performance. A performance
increase is also possible with the activation functions and
parameters that are being used.

The numbers of neurons in hidden layer, the momentum
and the learning rates have been determined using GA
algorithm to minimize the time and effort required to find
the optimal architecture and parameters of the back
propagation based on MLP architectures. These values
were optimized by using a generic algorithm, and an
increase was observed in the classification performance.

Comparison of the results of GA-MLPs with the trial and
error method indicates that GA approach is more efficient.
In the other words, GA is found to be a good alternative
over the trial and error approach to determine the optimal
MLP architecture and internal parameters quickly and
efficiently.

0 20 40 60 80 100

100

80

60

40

20

0

100-Specificity

S
en

si
tiv

ity

MLP_CG

MLP_DBD

MLP_LM

MLP_Momentum

MLP_QP

Fig. 5 ROC curves belonging to MLP algorithm using genetic
algorithm optimization

Table 4 Area under the curve (AUC), standard error (SE) vs.
confidence interval (CI) for the ROC curves belonging to MLP
algorithm using genetic algorithm optimization

AUC SE 95% CI

MLP_CG 0.934 0.0255 0.876 to 0.971

MLP_DBD 0.947 0.0229 0.892 to 0.979

MLP_LM 0.972 0.0168 0.926 to 0.993

MLP_Momentum 0.922 0.0277 0.860 to 0.962

MLP_QP 0.928 0.0267 0.867 to 0.966
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