
ORIGINAL PAPER

A Segmentation Method of Lung Cavities Using Region
Aided Geometric Snakes

Alireza Osareh & Bita Shadgar

Received: 24 August 2008 /Accepted: 14 January 2009 /Published online: 6 February 2009
# Springer Science + Business Media, LLC 2009

Abstract Segmenting the lungs in medical images is a
challenging and important task for many applications. In
particular, automatic segmentation of lung cavities from
multiple magnetic resonance (MR) images is very useful for
oncological applications such as radiotherapy treatment
planning. Largely changing lung shapes, low contrast and
poorly defined boundaries make the lung cavities hard to be
distinguished, even in the absence of prominent neighbor-
ing structures. In this paper, we utilized a modified
geometric-based snake model which could greatly improve
the model’s segmentation efficiency in capturing complex
geometries and dealing with difficult initialization and
weak edges. This model integrates the gradient flow forces
with region constraints provided by fuzzy c-means cluster-
ing. The proposed model has been tested on a database of
30 MR images with 80 slices in each image. The obtained
results are compared to manual segmentations of the lung
provided by an expert radiologist and with those of
previous works, showing encouraging results and high
robustness of our approach.
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Introduction

A Cochrane review of trials conducted over the last 40 years
showed that radiotherapy treatment lowers the risk of the

breast cancer coming back either in the remaining breast
tissue or in lymph nodes that are treated [1]. The aim of
radiotherapy treatment is to eradicate a tumor without
causing severe damage to healthy tissue. It is through the
use of radiotherapy treatment planning systems that specific
treatment procedures are developed for individual patients.
Such procedures include the specification of beam energy,
beam direction; beam shaping and other specifications
associated with developing an optimized treatment procedure
that maximizes the dose to target volumes and minimizes the
probability of normal tissue complications [2].

Standard radiotherapy after surgery for breast cancer is a
challenging process because of the complex geometry of
the target volume, which includes the breast, the adjacent
lymph nodes, and the presence of critical organs such as the
lungs [1]. In recent years, great advances have been made
in the delivery of breast cancer radiotherapy planning, with
intensity modulated radiation therapy (IMRT) being among
the most promising new techniques [3, 4]. Advanced
radiotherapy treatments with IMRT can deliver dose
distributions that are more conformal to the tumor targets
and that simultaneously minimize radiation damage to the
surrounding normal tissues [5].

An essential part of a successful IMRT system for breast
cancer treatment is the accurate segmentation of target
volumes and organs at risk such as lungs in all images. There
are different challenges as the objects of interest are
commonly irregular, structures often overlap one another,
and pathological abnormalities (e.g. cancerous tissues) often
skew the normal characteristics of the objects of interest.
Indeed, manual slice-by-slice segmentation of organs needing
to be irradiated (cancerous tumors) or protected (e.g. lungs)
during radiotherapy is time-consuming and can take several
hours of physician time for a single plan [6]. Furthermore, it is
not a trivial task to accurately define structures of interest on
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the images by visual inspection alone without using
dedicated systems to complement visual diagnosis.

Instead, an automated segmentation process allows the
planner to take critical anatomical structures explicitly into
account through volume rendering, and therefore shape the
blocks such that the critical organs are avoided as far as possible,
while ensuring adequate coverage of the target structures.

Automatic segmentation of anatomical structures such
as lungs in pulmonary magnetic resonance (MR) images
is a fundamental but complicated task due to both the
tremendous variability of object shapes and the variation
in image quality. Acquisition artifacts, low contrast and
poorly defined boundaries, especially weak edge effect,
in these images make automated lung segmentation very
challenging [7]. Further difficulties arise as the size, shape
and texture of lungs vary considerably between patients,
and among the images of a single patient, which is due to
the possible presence of various diseases and the change
of the anatomy with vertical position.

Several methods have been proposed for the segmen-
tation of lungs from computed tomography (CT)
images. Most algorithms utilize grey level thresholding
operation followed by model-based active contour
segmentation [8, 9]. In [8] a method for segmenting the
lung regions in CT images based on a combination of
thresholding and active contours was proposed. The initial
active contour points were initialized by a threshold-based
global segmentation algorithm. A lung segmentation
technique in thoracic CT images was introduced in [9]
that used multiple active contours. As with other methods,
this approach was initiated by grey level thresholding of
the images followed by edge detection. The obtained edge
points were organized in strokes and a set of weights was
assigned to each stroke. These weights then represented
the soft assignment of the stroke to each of the active
contour models. In [10] a knowledge-based, automatic
method to segment CT images was presented. In this
method, anatomic knowledge stored in a semantic network
was utilized to guide low-level image processing routines.

Previous works have shown that MR images cannot be
segmented as accurately as CT images due to different
reasons such as non-uniform nature of the data [11]. Indeed
in these images, optimal segmentation may not be achieved
by using grey level information alone and a priori
knowledge has to be incorporated in the process. Few
investigations in the past have segmented the lung cavities
from pulmonary MR images. Middleton and Damper [7]
addressed MR image lung segmentation by using a
combination of supervised neural network classifiers and
parametric active contour models to delineate the lungs
from multiple MR slices. The method was mainly com-
prised of two steps. Each individual image pixel was first
classified as either a lung boundary or non-boundary point

based on a neural network classifier. Then, the obtained
edge-point image was processed by a deformable model to
obtain the final lung boundaries.

Ray et al. [12] tackled the same problem by using a
parametric active contour which could merge multiple
contours for segmenting the total lung air. This method
utilized an external force field based on partial differential
equations with boundary condition which was defined by
the initial positions of the evolving contours.

The work presented here is part of a larger effort to develop
automated organ segmentation methods that speed up,
optimize and improve the accuracy of the breast cancer
treatment planning process. In this way, it is crucially
important to accurately segment different organs such as
lungs to facilitate the quantitative analysis and visualization of
the clinically significant features toward the diagnosis,
treatment planning and follow-up evaluation. Among several
different segmentation methods, those that are deformation-
based are especially appealing for our application because
they can provide smooth boundary and accurately capture the
high-curvature features of the lung regions of different
patients. This is due to the active contour models’ ability to
segment anatomical structures by exploiting mixed image
data constraints together with a priori knowledge about the
location, size, and shape of the structures.

On the other hand, the energy function used by classical
active contours (snakes) is normally based on the intensity
gradients in the image so the snake will lock onto strong
edges. Our MR images, however, are often too complex for
gradient information alone to be reliable. Intensities often
vary non-uniformly throughout a single structure and the
boundary between neighboring structures may be noisy.
Thus, the appropriate active contour model has to be very
carefully chosen and initialized to avoid it getting trapped at
non-target boundaries. This is where a less local-based
(edge-based) snake i.e. moving toward a global-based
(region-based) approach is of great benefit.

Geometric-based active contours [13] have shown
several advantages over parametric-based models [14, 7,
12], such as computational simplicity and the ability to
change curve topology during deformation. Indeed, geo-
metric-based models avoid the need to reparameterize the
curves and are based on the theory of curve evolution in
time according to intrinsic geometric measures of the
image. Moreover, these models can have much larger
capture areas than parametric snakes and their implemen-
tation by level-set methods provides accuracy and stability.
Nevertheless, geometric-based models still suffer from two
shortcomings. First, they allow leakage into neighboring
image regions when confronted with weak edges, and
second, they may rest at local maximums in noisy images.

To take advantage of geometric-based model capabilities
and also handle both these problems, here, we utilize a robust
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region-aided geometric snake (RAGS) which introduces a
new diffused region force into the standard geometric model
definition [15]. This extra region force gives the snake a
global complementary view of the lung boundary informa-
tion within the image. However, as the RAGS performance
depends on the quality of the region produced, here, we
utilized the RAGS in conjunction with Fuzzy C-Means
(FCM) segmentation algorithm instead of Comaniciu and
Meer [16] technique which was used in [15] to cope with
difficulties such as lung weak edges, fuzzy boundaries and
noisy regions in our MR images. To examine the effective-
ness of the proposed segmentation algorithm and show
improvements over the standard RAGS, we demonstrate our
results on region maps obtained from both the FCM and
Comaniciu and Meer segmentation algorithms.

To obtain a region of interest for lung segmentation, the
heart is first located. Then, this located region and the
anatomical knowledge are both exploited to automatically
initialize active contours. Following a Gaussian image
smoothing, the snake’s forces are then computed to evolve
the initial snakes toward desired lung boundaries. At the end
of snake evolution, the obtained contours are used to initialize
both the contiguous previous and next slices. This step is
successively repeated by moving forward and backward until
all MR slices can be segmented.

In the next sections, details of our method are explained
and then we compare our geometric-based method’s
efficiency with some of the previous approaches [7, 12]
which used parametric-based models.

Materials and methods

Our automated lung segmentation algorithm has been
developed using 30 MR images obtained from a 0.35_T

open MR imaging system at Bristol Hematology and
Oncology Centre. Each image consists of 80 grey-scale
slices, each with resolution 256 × 256, taken in the
transverse plane using T1_weighted spin echo [17]. The
slices are numbered from slice 1 upwards, i.e. slice 1 is the
lowermost slice. Figure 1 shows three slices from one of
our images which correspond to the three pulmonary regions,
i.e. lower, medium and upper. As the lung is essentially a bag
of air in the body, it shows up as a low-intensity region in MR
images. The lungs are clearly visible in Fig. 1b and (c) as two
large, low-intensity regions.

Figure 2 demonstrates another MR image where 6
typical alternate medium lung region slices are selected
to be shown. As is evident from Figs. 1 and 2, there are
different challenges that an automated segmentation
algorithm has to deal with. The lung boundaries can be
either poorly defined or obscured by surrounding tissues
with almost similar grey values. In these cases, there is a
possibility to compensate missing or occluded lung
boundaries by extracting the relevant information from
the adjacent slices. Indeed, as is usually the case in
medical imaging applications, the large variability of lung
shapes and sizes across MR slices itself and different MR
images make the boundaries difficult to be readily
distinguished even in the absence of strong edges from
neighboring structures. Another challenge is that most
lung boundaries have weak edges. Thus, the segmentation
algorithm requires having the ability to cope with weak
edge leakage problem as well.

Therefore, low-level image processing algorithms
have to be applied together with higher-level techniques
such as deformable models in order to achieve an
efficient segmentation technique. In fact, the deformable
nature of most internal structures such as lungs suggests
that an active contour based segmentation will be an
appropriate technique for identification of lung outlines.

Fig. 1 Typical MR slices: (a) lower lung region slice, (b) middle lung region slice, and (c) upper lung region slice
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To assess the accuracy of our automatic segmentation
technique, we require some indication of ground truth in the
form of already segmented images. Thus, an experienced
radiologist manually segmented the left and right lung borders
on every slice of our 30 MR images in the dataset. Figure 3
illustrates two typical slices (slice numbers 40 and 72) from
one of our MR images and their corresponding manually
segmented results.

Image segmentation based on geometric active contours

The active contour is an energy-minimizing spline guided
by external constraint forces and influenced by image
forces, which pull it toward features such as edges and lines
[14]. The energy is composed by terms that control its
smoothness and attract it to the object edges, such as lung
boundary. This work uses the framework of geometric
active contours (geodesic snake) as in [18].

Let C(x,t) be a two dimensional active contour. The
Euclidean curve shortening flow is given by:

Ct ¼ k~N ð1Þ
where t denotes the time, κ is the Euclidean curvature, and
~N is the inward unit normal of the contour. Now, let I :
0; a½ � � 0; b½ � ! Rþ be an input image in which the task of

extracting an object contour is considered. The Euclidean
length of a curve C is then given by [15]:

L ¼
Z

C' qð Þj jdq ¼
Z

ds ð2Þ

where ds is the Euclidean arc-length. The standard
Euclidean Metric ds2 = dx2 + dy2 of the underlying space
over which the evolution takes place is modified to a
conformal metric ds2g ¼ g rI C qð Þð Þj jð Þ2 dx2 þ dy2ð Þ where
the term g(.) represents a decreasing function such that
g rð Þ ! 0 as r ! 1 . Using this metric, a new length
definition in Riemannian space is given by [15]:

LR ¼
Z1

0

g rI C qð Þð Þj jð Þ C' qð Þj jdq ð3Þ

The steady state of the active contour is then achieved
by searching for the minimum length curve in the modified
Euclidean metric:

min

Z1

0

g rI C qð Þð Þj jð Þ C' qð Þj jdq ð4Þ

The steady state is now reached by solving the following
equation, showing how each point in the active contour

Fig. 2 Typical MR slices: (a) lower lung region slice (slice number
5), (b) middle lung region slice (slice number 12), (c) middle lung
region slice (slice number 13), (d) middle lung region slice (slice

number 14), (e) middle lung region slice (slice number 15), and (f)
upper lung region slice (slice number 70)
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should move in order to decrease the length. The Euler-
Lagrange of (4) gives the right-hand side of (5):

Ct ¼ g rIj jð Þk~N � rg rIj jð Þ:~N� �
~N ð5Þ

Equation (5) has two terms. The first is the curvature
term multiplied by the weighting function g(.). In applica-
tion to shape modeling, the weighting factor could be an
edge indication function that has larger values in homoge-
neous regions and very small values on the edges. Since (5)
is slow, [19] added a constant inflation term to speed up the
convergence. The constant flow is given by Ct ¼ ~N
showing each point on the contour moves in the direction
of its normal at a constant speed and on its own can cause a
smooth curve to evolve to a singular one. However,
integrating this constant term into the geometric snake
model lets the curvature flow remain regular as follows:

Ct ¼ g rIj jð Þðk þ cÞ~N � rg rIj jð Þ:~N� �
~N ð6Þ

where c is a real constant making the contour shrink or
expand to the object boundaries at a constant speed in the
normal direction. The second term of (6) depends on the
gradient of the conformal factor g(.) and acts like a doublet,
which attracts the active contour closer to the feature of
interest since the vectors of -∇g point toward the valleys of
g(.), the middle of the boundaries. This -∇g increases the

attraction of the active contour toward these boundaries.
For an ideal edge, g(.) tends to zero. Thus, it tries to force
the curve to stop at the edge, but the convergence quality
still highly depends on this stopping term.

Despite their significant advantages, geometric snakes
only use local features and suffer from sensitivity to local
minimums. Thus, they can be affected by noisy pixels and
also fail to recognize weaker edges for lack of a better
global view of the image. The constant flow term can speed
up convergence and push the snake into concavities easily
when gradient values at object boundaries are large. But
when the object boundary is indistinct or has gaps, it can
also force the snake to pass through the boundary. As it was
mentioned above, the second term in Eq. (5) attracts the
contour closer to the object boundary and also pulls back
the contour if it leaks through, yet the force may just not be
strong enough since it still depends on the gradient values.
It can not always prevent weak edge leakage.

Region-aided geometric active contours

According to our prior knowledge of the data, to make the
geometric snake much more tolerant toward lung weak edges
and MR image noise, we have been inspired by [15] to
accurately segment our MR images based on the region-

Fig. 3 Manual image segmen-
tation of 2 MR slices: (a) a
middle lung region slice, (b)
manually segmented lung out-
lines, (c) an upper lung region
slice, and (d) manually seg-
mented lung outlines
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aided geometric snake model. This model integrates gradient
flow forces with region constraints, composed of image
region vector flow forces obtained through the diffusion of
the region segmentation map. The extra region force gives
the snake a global complementary view of the boundary
information within the image which, along with the local
gradient flow, helps detect fuzzy lung boundaries and
overcome noisy regions. The resulting partial differential
equation evolves the initial contour toward final boundaries
under the influence of both internal forces and boundary-
regional image forces, and is implemented via level sets.

Here, the gradient flow force is acquired as in other
active contour formulations, e.g. [20, 21, 22, 23]. The
region force can be generated by an image segmentation
technique, e.g. [24, 25, 26]. In fact, the segmentation splits
the image into several regions and the gradient of this
segmentation map gives region constraints in the vicinity of
the region boundary map R. The magnitude of this region
boundary map is then proportional to the distance between
any two adjacent regions. Then, we compute the gradient of
the region boundary map ∇R, giving region constraints in
the vicinity of the region boundaries.

While the snake evolves in a homogeneous region, it
does so mainly base on the gradient flow force. If the snake
tries to step from one region into another, it must concur
with the region force since it breaks the region criteria,
which probably indicates a leakage. The capture area of the
pure region force is quite small. A gradient vector diffusion
method was proposed in [26] to extend the gradient map
further away from the edges for a larger capture field. We
use this same concept to diffuse the region boundary
gradient map resulting in region forces with a larger capture
area along the region boundaries. Thus, we obtain a two
dimensional vector field eR zð Þ ¼ u zð Þ; v zð Þð Þ; z ¼ x; yð Þ

h i
by

solving the equilibrium state of the following equations:

p rRj jð Þr2u� q rRj jð Þ u�rRuð Þ ¼ 0
p rRj jð Þr2v� q rRj jð Þ v�rRvð Þ ¼ 0

�
ð7Þ

where ∇2 is the Laplacian operator with dimensions u and v,
and p(.) and q(.) are weighting functions that control the
amount of diffusion, and ∇Ru are ∇Rv the components of
vector field ∇R along the u and v directions. These are
selected so that p(.) gets smaller as q(.) becomes larger with
the desirable property of little smoothing in the proximity of
large gradients and the vector field will be nearly equal to the
gradient of region map. The following functions are used for
diffusing the region gradient vectors:

p rRj jð Þ ¼ e�
rR
Mj jð Þ

q rRj jð Þ ¼ 1� p rRj jð Þ

�
ð8Þ

where M is a constant which acts as a tradeoff between
field smoothness and gradient conformity. The RAGS

definition is obtained by considering the diffused region
force as an extra external force of the snake [15]. In this
way, the original internal and external forces of Eq. (6) can
be defined as:

Fin ¼ g rIj jð Þk~N
Fex ¼ g rIj jð Þc~N �rg rIj jð Þ

�
ð9Þ

where g(.) is the stopping function as before. Now, we can
add the diffused region force eR obtained in Eq. (7) to the
external term as follows:

Fex ¼ ag rIj jð Þ~N þ beR�rg rIj jð Þ ð10Þ
where α is a new constant incorporating c and causes
behavior that is similar to c in [21]. Constants α and β
control a tradeoff between gradient and region forces. As
only the forces in the normal direction deform the curve,
the evolving curve is represented as follows:

Ct ¼ Fin þ Fexð Þ:~N� �
~N ð11Þ

Therefore, the final RAGS formulation becomes:

Ct ¼ g rIj jð Þ k þ að Þ � rg rIj jð Þ:~N þ beR:~Nh i
~N ð12Þ

Here, we utilize the level set implementation of RAGS.
Level sets explain a moving front and are the basis for the
numerical algorithm for curve evolution according to
functions of curvature [27, 28]. Let C be a level set of a
function of: ϕ: 0; a½ � � 0; b½ � ! R; i.e. C is embedded into
the zero level set with ϕ an implicit, intrinsic, and
parameter-free representation of curve C. Given a planar
curve that evolves as follows:

Ct ¼ f ~N ð13Þ

where f is computed on the level sets. By embedding the
evolution of C in that of ϕ, topological changes of C are
handled automatically and accuracy and stability are
achieved using the proper numerical algorithm. The internal
curvature and external pressure terms of the RAGS
formulation in Eq. (12) can be easily transferred to a level
set representation:

ϕt ¼ g rIj jð Þk rϕj j
ϕt ¼ g rIj jð Þc rϕj j

�
ð14Þ

The external forces in Eq. (12) are static vector fields
derived from image data which do not change as the active
contour deforms. Static force fields are defined on the
spatial positions rather than the active contour itself. Since
~N is the inward normal, the level set representation of the
inward unit normal is given by N ¼ � rϕ

rϕj j. Then we have:

f :~N ¼ � 1

rϕj j f :rϕð Þ ð15Þ
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This leads to the level set representation of RAGS as:

ϕt ¼ g rIj jð Þ k þ að Þ rϕj j þ rg rIj jð Þ:rϕ

� beR:rϕ ð16Þ

where g(.) is the stopping function as before. We should
point out that, the theory of boundary detection by the
geometric or geodesic snake can be applied to any general
edge detector function, with a stopping function g tending
to zero when reaching edges. Let f be an edge detector.
Then, the decreasing function g can be any decreasing
function of f such that g ! 0 as f ! 1: In this work, as
our images are gray level images, f and g are defined as:

f ¼ r Gauss�Ið Þj j and g ¼ 1þ fð Þ�1 ð17Þ

where Gauss represents a Gaussian smoothing filter.

Fuzzy C-Means image segmentation

The ideal segmentation of an image is usually application-
dependent. Unlike hard segmentation methods, which force
pixels to belong exclusively to one class, soft segmenta-
tions such FCM allow pixels to belong to multiple classes
with varying degrees of membership [25, 27]. FCM has
been used with some success in the soft or fuzzy
segmentation of MR images [28, 29]. It clusters data by
computing a measure of membership, called the fuzzy
membership at each pixel for a specified number of classes.
The fuzzy membership function reflects the degree of
similarity between the data value at that location and the
prototypical data value or centroid of its class.

FCM is formulated as the minimization of the following
objective function with respect to the membership functions
u and the centroids v [30]:

JFCM ¼
X
j2Ω

XC
k¼1

mq
jk yj � vk
�� ��2 ð18Þ

Here, Ω is the set of pixel locations in the image domain,
q is a parameter that is constrained to be greater than one,
ujk is the membership value at pixel location j for class k.
The observed image intensity at location j is shown by yj, vk
is the centroid of the class k, and the total number of classes
is represented by C. The parameter q is the weighting
exponent which controls the fuzziness of the resulting
clusters. For q = 1, JFCM reduces to the classical within-
group sum of the squared errors objective function and
FCM becomes equivalent to the K-means clustering
algorithm [31]. A commonly used value is q = 2.

The FCM objective function in Eq. (18) is minimized
when high membership values are assigned to pixels whose
intensities are close to the centroid for its particular class

and low membership values are assigned when the pixel
intensity is far from the centroid.

Template matching-based snake initialization

The deformable nature of most human internal structures
such as lungs might suggest that a carefully chosen active
contour model, i.e. the RAGS, would be more appropriate
for identification of lung boundaries. However, as there are
many non-target boundaries in a typical MR slice, a careful
initialization is necessary to avoid snakes getting trapped at
non-target boundaries. Generally, the initial contours should
be defined so that they are close enough to the desired
outlines to avoid having snakes trapped in local minima of
the energy that do not correspond to the actual boundaries
of the lungs.

Here, the snake’s performance is optimal when the initial
contour is placed inside the lung region. This is due to the
fact that much less distinct features exist in the more
homogeneous inner region of the lungs than in the outside
region. In fact, the initial contours must be large enough so
that they are not too far from the desired boundaries and
small enough so that they have more freedom to move
inside homogeneous regions toward the desired outlines.

As lung contours are often similar from one slice to the
next, we can alleviate the difficult task of separate
initialization of each slice by using the final obtained
contours in one slice as the initial snakes of the adjacent
one. However, prior to the segmentation algorithm, a
matching process is employed to choose a middle lung
region slice named best matched slice with clear lung
regions and the heart. Having found this slice, suitable
initial (starting) contours can be adjusted and refined using
active contour model to rapidly find the lungs cavities.

Template Matching is a technique used to isolate certain
features in an image [32]. This can be implemented as a
correlation of the original image and a suitable template.
The best match is located based on some criterion of
optimality. According to the size of the heart region in our
MR images, we generated a 70 × 70 pixel template image
by averaging the heart region in 80 middle lung region
slices selected from our image dataset. To have a robust
method against the changes in image amplitude such as
those caused by changing lighting conditions, the normal-
ized correlation coefficient (CC) is utilized:

g ¼

P
x;y

f x; yð Þ � f
� �

g x; yð Þ � g½ �

P
x;y

f x; yð Þ � f
� �2P

x;y
g x; yð Þ � g½ �2

( )0:5 ð19Þ

where f and g represent the original slice and the template
respectively, f denotes the slice pixels mean value in the
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region which is defined by the template location and
similarly t is the template pixels mean value. We measured
the normalized correlation coefficients for each MR slice to
present an indication of the match between the template
image and each individual pixel in the slice under
consideration.

Figure 4a illustrates the best matched slice of one of our
MR images (shown in Figs. 2 and 3) where the point with
the highest CC value is also marked. Here, we consider this
point’s coordinate as potential location of the heart centre.
Fig. 4c shows the obtained CC values on all 80 slices of the
processed MR image. As is evident, the best match
occurred between the template image and the slice number
26.

Having found the best matched slice for each MR image,
the initial snakes can be defined as arbitrary oval contours
within the lung regions using the obtained heart location
and our prior anatomical knowledge of the lungs. Fig. 4b
shows the initial snakes placed inside the lung cavities for
the best matched slice illustrates in Fig. 4a.

Finally, an outline of our proposed algorithm can be
summarized in the following four steps:

1. The MR image’s best matching slice, i.e. a middle lung
region slice with clearly detectable heart and the lungs
regions is first located using template matching.

2. Initial snakes are then automatically placed inside the
matched slice’s lung regions that are to be segmented.

3. Following a Gaussian image smoothing, the snake’s
forces are computed to evolve the initial snakes toward
desired lung boundaries.

4. At the end of snakes’ evolution, the obtained contours
are used to initialize both the contiguous previous and
next slices. This step is successively repeated by
moving forward and backward until all MR slices can
be segmented.

It is worth nothing that, during first iteration the final
obtained contours from segmenting the best matched slice
are used to initialize both previous and next MR slices
while from second iteration onward, each new slice is

Fig. 4 Snake initialization based
on template matching: (a) the
best matched slice along with the
highest CC point marked in
white, (b) initial snakes defined
by the highest CC point, and
(c) CC values for all the slices of
a typical MR image
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initialized solely based on its either previous or next slice’s
identified contours.

Results

We have applied the proposed segmentation algorithm to
capture lung cavities in each slice of our 30 MR images. As
it was mentioned in “Image segmentation based on
geometric active contours”, each MR image consists of 80
two-dimensional (2D) grey level slices. Having found the
best matched slice for each MR image, the same initial
contours were automatically defined within the lungs. The
RAGS propagate under the influence of one internal and
three external forces, i.e. the internal curvature flow force,
the pressure force generated by the constant gradient flow,
the gradient of the edge stopping force and the diffused
region vector force derived from region constraints. These
latter constraints are derived from any region segmentation
approaches.

Following a Gaussian smoothing pre-processing step,
the map of stopping function g(.) and gradient magnitude
map of this stopping function ∇g are obtained. The term ∇g
attracts the contours further to the boundary and also

presents a backward force when the contours step through
the edge.

Now we need to compute the region forces, which are
generated from segmented images. The segmentation algo-
rithm provides an extra region force which gives the snake a
global complementary view of the lung boundary information
within the image. In fact, the segmentation algorithm define a
region map to help the snake speed up the convergence while
evolving in a homogenous area, or pull back the snake while it
attempts to step across lung boundaries. In this work, we
exploited FCM segmentation algorithm with fixed q =
2 parameter for all experiments. The reasonable value of
this parameter was tuned experimentally and according to
our prior knowledge of MR image characteristics. The pixels
of the input MR images were divided into four clusters. The
first cluster includes pixels in the background and inside lung
cavities, whereas the remaining three clusters represent the
other existent structures in each image.

Figure 5(a–c) illustrate a typical medium MR slice, its
Gaussian smoothed image (σ=1) and the FCM segmenta-
tion result, respectively. Having segmented this slice into a
set of regions, a region identification technique was
followed to assign a unique label to each segmented region.
Here, we used an 8-neighborhood connected component

Fig. 5 Region-aided segmentation results for a typical middle lung
region slice: (a) original slice, (b) Gaussian-smoothed result, (c) FCM
segmentation result, (d) post-processing stage using connected

component labeling, (e) the obtained region map, and (f) final
extracted lung boundaries
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labeling region identification technique [31]. The connected
component labeling provides the ability to assign a unique
label to each segmented region and thus measure various
features for each individual region. To avoid potential
interference from non-target small minor segmented
regions, i.e. the isolated regions which were obtained due
to the noise and other artifacts, a cleaning operator was
used. This cleaning filter was implemented as an experi-
mentally adjusted connected region size threshold of 1000
pixels which removed all regions with a size under this
threshold value. Figure 5d shows the segmented image
(Fig. 5c) after this post-processing stage was applied, and
the correspondent region map is illustrated in Fig. 5e.

After generating all the external forces, we could build
up the initial level set function based on the initial contours
and evolve the level set according the underlying forces till
the zero level set reach the steady state. Figure 5f displays
the final identified lung boundaries using the RAGS snake.
Similarly, Figs. 6(a–f) show different intermediate and final
results for a typical upper MR slice.

The excellent performance and versatility of our proposed
method is shown in Figs. 7 and 8, which display typical
examples of the segmentation that can be achieved. In all

cases, the algorithm could successfully detect lung bound-
aries without user interaction and parameter modification
with fixed initial contours used for the best matched slice.
Most segmentations required approximately 200 iterations
for convergence, dependent primarily on the size of the lungs
in the image.

Figure 7a illustrates the selected best matched slice,
initial contours and the extracted lung boundaries super-
imposed on the original image. Figure 7(b–h) show the
segmented slices when moving forward from the best
matched slice (Fig. 7a) toward upper lung regions. As was
already mentioned, the final converged snakes in each slice
are used as the initial snakes of the next slice. Similarly,
Fig. 8(b–h) illustrate the final segmented slices when
moving backward from the best matched slice (Fig. 8a)
toward lower lung regions.

As it can be seen from Figs. 7 and 8, the proposed
method achieved a good segmentation in the lower, middle
and upper pulmonary regions. However in a few instances,
in slices from the middle lung region, where lung
superposition or visual merging of the lungs occurred
(Fig. 8e), the method failed to distinguish the two separate
lungs and a global contour was obtained. This erroneous

Fig. 6 Region-aided segmentation results for a typical upper lung
region slice: (a) original slice, (b) Gaussian-smoothed result, (c) FCM
segmentation result, (d) post-processing stage using connected

component labeling, (e) the obtained region map, and (f) final
extracted lung boundaries

428 J Med Syst (2010) 34:419–433



result did not however interfere with segmentation of the
subsequent slices and the desired boundaries were accu-
rately located in the following slices (Fig. 8f). On the other
hand, there were a couple of lower lung region slices at the
bottom of lungs that could not be segmented as accurate as
the other slices (Fig. 7(h, i)). This problem was mainly due
to the fact that the lung cavities tend to be poorly
represented in these more extreme slices.

Overall, as is evident from Figs 5, 6, 7 and 8, the proposed
segmentation method is robust enough to efficiently deal
with pronounced cavities and different shapes for each lung.

Thus the segmentation results can be rendered together to
show the total segmentation of the lungs.

To emphasize the effectiveness of the proposed
technique and to perform a quantitative evaluation, the
well known Pratt’s Figure of Merit (FOM) [32] was
utilized. The FOM is a dimensionless number between
zero and one which attempts to balance three types of
errors that can produce erroneous edge maps, i.e. missing
valid edge points, failure to localize edge points and
classification of noise fluctuations as edge points. Here,
the edge means the boundary of segmented lung regions.

Fig. 7 Experimental results of automatic lung segmentation for
8 medium and lower lung region slices, with final identified
boundaries shown in white: (a) initial snakes overlaid on the best
matched slice (slice no. 23), (b) final boundaries (slice no. 23), (c)

final boundaries (slice no. 20), (d) final boundaries (slice no. 17), (e) final
boundaries (slice no. 14), (f) final boundaries (slice no. 11), (g) final
boundaries (slice no. 8), and (h) final boundaries (slice no. 5), and (i),
final boundaries (slice no. 2)
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In fact, FOM quantifies the comparison between ideal
edges and detected edges of an image, and its maximum
attainable value will be one for an ideal segmentation. The
FOM is defined as follows:

R ¼ 1

IMax

XIArea
i¼1

1

1þ ad2
ð20Þ

where IMax is the maximum of IArea and IIdeal. IArea represents
the total number of actual edge pixels, i.e. those edge pixels

that were found. IIdeal denotes the total number of ideal
pixels in the image, i.e. the number of edge pixels in the
reference image. The parameter a is a scaling constant while
d is the distance from an actual edge point to the nearest
ideal edge point (in this paper a=0.9). The scaling factor is
used to penalize edges that are localized but offset from the
true position. The FOM is normalized with the maximum of
the actual IIdeal < IArea and ideal number of edge pixels in
order to ensure a penalty for smeared (i.e. IIdeal < IArea) or
fragmented edges (i.e IArea < IIdeal).

Fig. 8 Experimental results of automatic lung segmentation for
8 medium and upper lung region slices, with final identified
boundaries shown in white: (a) initial snakes overlaid on the best
matched slice (slice no. 23), (b) final boundaries (slice no. 29), (c)

final boundaries (slice no. 35), (d) final boundaries (slice no. 41), (e) final
boundaries (slice no. 47), (f) final boundaries (slice no. 53), (g) final
boundaries (slice no. 59), and (h) final boundaries (slice no. 65), and (i),
final boundaries (slice no. 72)
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The FOM of the proposed segmentation method was
measured based on the provided ground truth set (“Image
segmentation based on geometric active contours”) and the
automated segmentation results of our 30 MR images.
Figure 9 shows the FOMs obtained for all MR images. As
is evident, the similarity between our proposed lung
segmentation method and the manual lung outlines was
very high, best on middle and upper slices, and dropping on
the beginning lower slices. The mean FOM was obtained
on each MR image separately where the maximum and
minimum FOM values were acquired equal to 0.950 and
0.787 for MR images 13 and 23, respectively.

Another potential quantitative measure of performance
would be to use the rates of the two possible types of
classification errors. Taking a positive example to be a lung
boundary pixel and a negative example as a non lung
boundary pixel, these two measures can be defined as the
ratio of false positives/negatives to the total number of
negative/positive examples. There was, however, a problem
with these measures in this work as there were usually
many fewer lung boundary pixels than non lung boundary
pixels in each image slice. Thus the sensitivity of these two
measures is incommensurate and a small change in the false
positive error rate is relatively more important than a
comparable change in the false negative error rate.

To cope with this problem, we have used precision and
recall [33] as other performance measures to assess the
quality of our proposed segmentation method. These
measures are defined as:

Precision ¼True Positives=True PositivesþFalse Positives

ð21Þ

Recall ¼True Positives True PositivesþFalse Negatives=

ð22Þ
Recall measures the proportion of the positive examples

that are correctly identified, while precision evaluates the
proportion of the nominated positive examples that are

correct. Thus unlike, the false positive rate, it is not
dominated by the large number of non lung boundary
pixels. Table 2 shows the accuracy of the segmentation
achieved using the proposed method for each of the 30 MR
images in terms of mean precision and recall values. The
precision and recall values are calculated from the region
enclosed by the snake. That is, in Eqs. (21) and (22), a pixel
which is inside the contour for both the automated proposed
method and the ground truth is counted as a true positive.
False positive pixels are inside the lung boundary found by
the snake but outside the ground truth boundary. False
negative pixels are outside the lung boundary found be the
snake but inside the ground truth boundary.

This method of quantifying the results can be regarded
as the complement of the FOM measure and seems to be a
fair indication of performance as sometimes a snake could
give a very good segmentation of the lungs without being
located precisely along the boundary indicated by the
ground truth segmentation (it could miss by one pixel at
all points). Table 1 summarizes the individual measured
performance values for each MR image.

Discussion

In this paper, a new approach, for fully automatic segmenta-
tion of lung regions in pulmonary MR images is proposed.
MR image segmentation is an important but inherently
difficult problem in medical image processing and usually it
can not be solved using conventional techniques. The solution
proposed here is to use a modified geometric-based snake for
simultaneously segmentation of both lungs.

Our proposed method starts by choosing the MR image’s
best matched slice using template matching approach fol-
lowed by snake initialization. No user intervention is required
to initialize the contours since the initialization is fully
automatic. Following a Gaussian image pre-processing, the
snakes’ forces are computed to evolve the initial snakes
toward desired lung boundaries. At the end of snakes’
evolution, the obtained contours are used to initialize the both
contiguous previous and next slices. This step is successively
repeated by moving forward and backward until all MR slices
can be segmented.

To evaluate the effectiveness of our proposed technique
and compare the results with those of the standard RAGS and
most related previous works, two set of quantitative measures,
i.e. precision-recall and FOM values were calculated. We
applied the standard RAGS algorithm on region maps
obtained from both the under-segmentation and over-segmen-
tation options of the Comaniciu and Meer algorithm [16].

The method proposed by Middleton and Damper [7] was
mainly comprised of two steps i.e. a supervised pixel
classification using neural networks and a parametric-based
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active contour model to outline the lung regions. In this
way, a set of images was used as training set to build and
tune the classification algorithm. To be truly effective,
supervised training algorithms require a representative
samples covering most of the cases (ideally all) in order
to perform well in practice.

Table 2 illustrates an overall perspective of the Middleton
and Damper [7] results which were reported in terms of
precision and recall criteria for 13 MR images. Each of these
MR images was composed of approximately 35 slices. This
table also summarizes maximum, minimum and average
values of precision and recall criteria against our MR dataset
and the corresponding values reported in [7]. It is evident
that in terms of precision all three methods represent almost
similar results, although our method significantly outper-
forms both the Middleton and Damper and standard RAGS
approaches in terms of recall criterion. It should be noted that
in contrast to Middleton and Damper’s work, the standard
RAGS and our method were assessed against a larger MR
image dataset comprising 30 images with 80 slices in each
image and they do not require any training.

To segment the lung cavities, Ray et al. [12] exploited
another parametric-based model which could merge multi-
ple contours for segmenting the total lung air. This method
utilized an external force field based on partial differential
equations with boundary condition which was defined by
the initial positions of the evolving contours. This work was
validated in terms of FOM values against an image dataset
of 10 MR images with 118 slices in each image and the
author reported a mean FOM value of 0.691 against their
10 MR images. On the other hand, the standard RAGS and
our method could achieve mean FOM values of 0.754 and
0.880 respectively which are highly superior to the reported
value in [12].

The lung cavities can be obscured by surrounding tissue
of similar gray value, and some neighboring structures may
induce strong edges in close proximity to the lung
boundaries. Indeed, largely changing lung shapes and the
lung’s weak or fuzzy edges make the boundaries hard to be
distinguished, even in the absence of prominent neighbor-
ing structures. Although, some correct boundary informa-
tion can be partially extracted from the adjacent slices, but
the segmentation algorithm must be selected carefully to
prevent the weak-edge leakage problem.

Therefore, in contrast to both previous methods i.e. [7]
and [12] which used parametric active contours, our
proposed algorithm exploited a geometric based active
contour model. Geometric active contours have shown
several advantages over parametric active contours, such as
computational simplicity and the ability to change curve
topology during deformation. On the other hand, although,
geometric based deformable models had brought tremen-
dous impacts on shape representation and analysis in
medical image analysis, some problems remain including
the handling of boundary leakage and the lack of global
understanding of boundaries.

Thus, in this paper, we utilized a robust geometric-based
active contour which could significantly improve the active
contour performance in capturing complex geometries and
dealing with difficult initialization, weak edges and broken
boundaries. This model integrates the gradient flow forces
with region constraints provided by FCM region generation
algorithm. The FCM approach was straightforward to
implement and had fixed parameters, but most importantly
it allowed us to segment the images.

Experimental results show that the proposed model not
only is much more robust toward the lung weak edges, but
also has better convergence quality. This can be clearly seen
from our results, which are superior to those of previous
works [7] and [12]. There were, however, a couple of lower
lung region slices being at the bottom of lungs that could
not be segmented as accurately as could be the other slices.
This problem was mainly due to the fact that the lung

Table 2 Comparison of our lung segmentation results with those of
Middleton and Damper [7] method and the standard RAGS

Method Precision Recall

Min Max Average Min Max Average

Middleton
and
Damper

0.838 0.987 0.916 0.598 0.906 0.804

Standard
RAGS

0.844 0.953 0.920 0.710 0.927 0.865

Our
method

0.883 0.962 0.928 0.843 0.976 0.912

Table 1 Comparison of manual and automated lung segmentation in
terms of precision and recall measures for each MR image

MR image Precision Recall MR image Precision Recall

1 0.937 0.922 16 0.893 0.843
2 0.901 0.893 17 0.960 0.945
3 0.923 0.896 18 0.934 0.947
4 0.960 0.903 19 0.899 0.880
5 0.914 0.891 20 0.945 0.922
6 0.943 0.933 21 0.937 0.918
7 0.925 0.917 22 0.896 0.927
8 0.883 0.860 23 0.938 0.900
9 0.940 0.925 24 0.934 0.923
10 0.929 0.851 25 0.947 0.936
11 0.947 0.920 26 0.940 0.923
12 0.891 0.873 27 0.898 0.937
13 0.955 0.941 28 0.953 0.950
14 0.932 0.917 29 0.891 0.884
15 0.949 0.921 30 0.962 0.976

432 J Med Syst (2010) 34:419–433



cavities tend to be poorly represented in these extreme
slices. Overall, as is evident from Figs. 5, 6, 7 and 8, the
proposed method is robust enough to efficiently deal with
pronounced lung cavities and different shapes for each
lung.

We consider our proposed method’s results to be highly
encouraging. Efforts were made to reduce the amount of a
priori knowledge used, so as to keep the method as generic as
possible. This makes our method worth serious consideration
for further development as an automated tool for image
segmentation in medicine. Since, after the segmentation step,
several 2D shapes representing the lung regions at different
levels (slices) are available, the future work will include the
extension of the proposed method to 3D for the analysis of the
complete MR data set toward a more efficient treatment
planning system.
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