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Abstract The paper proposes to develop a field program-
mable gate array (FPGA) based low cost, low power and
high speed novel diagnostic system that can detect in
absence of the physician the approaching critical condition
of a patient at an early stage and is thus suitable for
diagnosis of patients in the rural areas of developing
countries where availability of physicians and availability
of power is really scarce. The diagnostic system could be
installed in health care centres of rural areas where patients
can register themselves for periodic diagnoses and thereby
detect potential health hazards at an early stage. Multiple
pathophysiological parameters with different weights are
involved in diagnosing a particular disease. A novel
variation of particle swarm optimization called as adaptive
perceptive particle swarm optimization has been proposed
to determine the optimal weights of these pathophysiolog-
ical parameters for a more accurate diagnosis. The FPGA
based smart system has been applied for early detection of
renal criticality of patients. For renal diagnosis, body mass
index, glucose, urea, creatinine, systolic and diastolic blood
pressures have been considered as pathophysiological
parameters. The detection of approaching critical condition
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of a patient by the instrument has also been validated with
the standard Cockford Gault Equation to verify whether the
patient is really approaching a critical condition or not.
Using Bayesian analysis on the population of 80 patients
under study an accuracy of up to 97.5% in renal diagnosis
has been obtained.
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Introduction

Medical diagnosis is a complicated and judgmental process,
based not only on medical knowledge derived from books and
literatures and data obtained from various pathological tests,
but also depends largely on experience, judgment and
reasoning which essentially are the functions of human brain
[1]. But, in many situations, availability of human brain for
decision-making is scarce. Instruments, in those situations,
play a major role in helping to reduce human suffering.

In third world countries, doctors are scarcely available in
rural areas. A recent statistical data obtained from the
Technical Report of the Indian Medical Society shows that
75% of qualified consulting doctors reside in urban areas
and another 23% in semi-urban areas, and only about 2% of
doctors reside in rural areas, where, unfortunately, nearly
78% of Indians reside [2]. This has created an unwarranted
imbalance in patient-doctor ratio to more than 10,000
patients for one doctor in rural India [3].The need of an
inexpensive and portable equipment that can predict an
imminent health hazard and red-alert the patients in rural
sectors to contact doctor for necessary care, therefore,
becomes very pertinent.
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Over the past few decades, telecommunication has been
used to transmit health related data of patients to remote
locations [4-25]. The basic idea is to use some sort of e-
mailing or videoconferencing mechanism to enable the
rural patients communicate with the urban doctors at the
referral centres. However, medical diagnosis through
telecommunication facilities suffers from two fundamental
drawbacks. Firstly, videoconferencing is too costly a
technology to be implemented in the rural areas of third
world countries. Secondly, with the rural masses supporting
the bulk of the population and the overall patient to
physician ratio being so poor (approximately 8000:1 [3]),
the urban physicians find it almost impossible to cater the
huge population of rural patients.

However, in the backdrop of scarcity of physicians
especially in the rural areas, an instrument with some auto-
decision making support can be used as a preventive device
for early diagnosis of problems related to specified systems
of patients’ bodies. Moreover, as each doctor in these
countries have to handle large number of patients, it may
become handy for a doctor to keep track of the previous
data of a particular patient—especially when preservation
of data and documents, like investigation reports, is poor in
rural backdrop.

Recently, generation of huge amounts of medical data as
well as health care systems’ needed for making appropriate
medical decision from them easily and reliably have raised
the interest in medical information processing and diagnos-
tic systems. These systems can aid the physicians or the
health care professionals in absence of the physicians to
predict the pathophysiological state of a patient knowing
the past pathophysiological data and red alert the physician
or the health care professionals in case a critical condition
of the patient occurs. Although considerable progress has
been made in the field of medical information processing,
computer/instrument aided diagnostic systems have not
been developed as fast as other information systems due to
certain problems.

One of the most critical problems that impede the
development of diagnostic systems is the limited accep-
tance of these systems by the clinicians. Most of these
systems run knowledge discovery algorithms. However,
they do not satisfy the critical issues and limitations of
medical applications in general. The earliest algorithm
based on decision tree classifiers is found in packages like
C4.5 [26]. Classical reasoning structures such as Bayesian
Belief Networks lack flexibility and are weak in extracting
information from the raw data, i.c., data mining [27-29].

However recent innovations have introduced novel
algorithms that outperform the classical methods and are
more likely to be accepted in the medical community. In
particular Swarm Intelligence techniques such as particle
swarm optimization (PSO) and ant colony optimization [30]
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have recently been applied to rule extraction and data
mining problems. Swarm intelligence is a relatively new
category of stochastic, population-based optimization algo-
rithms. These algorithms are closely related to evolutionary
algorithms that are based on procedures that imitate natural
evolution [31, 32]. Swarm intelligence algorithms draw
inspiration from the collective behavior and emergent
intelligence that arise in socially organized populations.
Social and Swarm Intelligence algorithms can be used for
retrieving information from the raw data or partially
processed data [33]. Distributed Genetic Algorithm, Ant
Colony Optimization and Particle Swarm Optimization are
the most commonly used evolutionary algorithms that
provide for flexible rule extraction where we are facing
with incomplete and inaccurate datasets [34] In particular
PSO is a swarm intelligence algorithm that is used mainly
for numerical optimization tasks. PSO gained increasing
popularity in recent years due to its ability to solve
efficiently and effectively a plethora of problems in science
and engineering. PSO has been effectively used in a variety
of data mining and optimization problems from power
systems to composite beam structures and from medicine to
operation research problems [35-48]. Such problems are
characterized by discontinuities, lack of derivative infor-
mation, noisy function values and disjoint search spaces
[49, 50]. The dynamic essence of Swarm Intelligence
provides flexibility and robustness.

However, the conventional particle swarm optimization
suffers from some drawbacks. In a standard PSO, the
further the particle is from the best position based on its
own experience and its neighbor, the larger a change in
velocity is to be made in order to return to that best
position. The acceleration limits the trajectory of particle
oscillation. The smaller the acceleration, the smoother the
trajectory of the particle is. However, too small an
acceleration can lead to slow convergence, whereas too
large an acceleration drives the particles towards infinity.
The updated velocity is limited by the maximum velocity to
prevent particles from moving too fast in space [51].
Kaekawkamnerdpong and Bentley proposed a Perceptive
Particle Swarm Optimization (PPSO) algorithm in [51] with
the objective of further closely approaching the global
optimum in the search space. However, the perception
radius, number of sample points and the number of
sampling directions are kept constant in PPSO. This has a
serious drawback. If the number of sample points per
direction and the number of sampling directions are kept
sufficiently low, then the algorithm runs quite fast, but we
may miss the global optimum position. On the other hand,
increasing the number of sampling points per direction and
the number of sampling directions, we may reach the global
optimum very closely, but we shall have to pay consider-
ably for the computation time of the algorithm.
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With an intent of compromising between the two
extremes, the current work proposes a novel variation of
PPSO called adaptive PPSO (APPSO). In APPSO, depend-
ing upon the present position of a particle in the search
space, its perception radius, and/or number of sampling
directions and/or the number of sample points per direction
may be varied. Since, one or more of three parameters may
be varied, hence eight cases may arise. The perceptive
particle swarm optimization proposed by Kaekawkamnerd-
pong is a special case of adaptive perceptive particle swarm
optimization, in which all these three parameters are kept
constant. The APPSO algorithm has been proposed with an
objective of determining the optimum weights of patho-
physiological parameters in the example of renal diagnosis
problem. For diagnosis purposes, body mass index (BMI),
glucose, urea, creatinine, systolic and diastolic blood
pressures are considered as pathophysiological parameters.
Since different pathophysiological parameters contribute to
different degrees in different diseases, hence, weights of
different pathophysiological in medical diagnosis problems
should be found out instead of performing diagnosis by
giving equal weights to all parameters. The optimal weights
of these pathophysiological parameters in medical diagno-
sis have been determined using APPSO. Since, the final
position of the particles (i.e. the optimal weights of the
pathophysiological parameters) is not known in advance
and has to be determined using an optimization algorithm,
the calculation of the optimal weights of the pathophysio-
logical parameters has been done using the proposed
APPSO as an optimization tool. Moreover, swarm intelli-
gence techniques use a tracking memory that accelerates its
convergence to the best solution [52] and runs faster than
that of the genetic algorithms (GA) [53]. The authors in
their previous works have already established the prediction
of future pathophysiological state of a patient using past
pathophysiological data assuming equal weights for all
medical parameters [54]. However, APPSO has been
chosen as a tool to optimize the weights of the diagnosing
parameters so that with a fewer set of readings the system
becomes capable of predicting an approaching critical
condition of the patient.

The whole system is implemented on a field program-
mable gate array (FPGA). The implementation of the
diagnostic algorithm on a reconfigurable architecture makes
it suitable for further modification of functional logic of the
processor with minimum programming effort. The smart
diagnostic system implemented in our work, has been
applied to predict the approaching critical condition of a
patient with confidence. The system being simple and user
friendly could be operated by paramedical staff members
who need not have to be physicians. The diagnostic system
can be installed in health care centers and sub-centers of
rural areas where the patients need to register for periodic

diagnoses. The system can alert the user of a potential
health hazard at an early stage so that the patient can have
adequate time to contact the physician in the referral center
with the assistance of paramedical staff members. The
whole system implemented on board consumes as low as
70 mW power so that a 7 V 12A-h battery can operate the
system continuously for 50 days. Since a unit of the
proposed diagnostic system can store large number of
patient data, therefore it is not necessary to buy such units
on a one unit per patient basis. The cost of each unit of the
diagnostic system will be around 120 USD so that the
government can easily afford to buy and install them at
rural health care units. It is also possible for the paramedical
staff members who belong to the middle class to buy such
units and diagnose a large number of patients in rural areas
at a nominal service charge.

For diagnosis purposes body mass index, glucose, urea,
creatinine, systolic and diastolic blood pressure has been
used as pathophysiological parameters. The patient data has
been subjected to a process of fuzzification, inferencing and
defuzzification with the aid of the designed and imple-
mented fuzzy processor. The processor is capable of
predicting the future pathophysiological state of a patient
using the past pathophysiological data.

The paper is organized as follows. “Adaptive perceptive
particle swarm optimization” focuses on APPSO. Next,
APPSO and its application in medical diagnosis have been
discussed. The application of APPSO in medical diagnosis
has been discussed in “Methodology for medical diagnosis
using adaptive perceptive swarm organization”. The reali-
zation of the diagnostic system on an FPGA based
configurable hardware is discussed in “FPGA based
hardware are realization of the diagnostic system”. The
system has finally been tested with renal data of patients in
“Results and discussion”. The reliability of the developed
system has been tested by performing Bayesian analysis on
the population under study. The detection of approaching
critical condition of a patient by the developed system has
also been validated with the standard Cockford Gault
Equation to verify whether the patient is really approaching
a critical condition or not. “Results and discussion” focuses
on the different experiments being performed and the
results obtained.

Adaptive perceptive particle swarm optimization

The proposed adaptive perceptive particle swarm optimiza-
tion algorithm is relatively similar to the perceptive swarm
optimization algorithm and the conventional particle swarm
optimization algorithm. In conventional PSO, for an n-
dimensional optimization problem, an n dimensional search
space is considered. However, in PPSO and in the proposed
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APPSO, the algorithm operates in (n+1) dimensional
search space. The added dimension represents the underly-
ing performance of particles at their positions in n-
dimensional space. As in PPSO algorithm, in APPSO also,
the particles fly around (z+1) dimensional search space. In
effect, the particles fly over a physical fitness landscape
observing its crests and trough from a far. Particles observe
the search space within their perception ranges by sampling
a fixed number of directions to observe and sampling a
finite number of points along those directions. The particles
attempt to observe the search space for landscape at several
sampled distances from its position, in each direction. If the
sampled point is within the landscape, the particle perceives
the height of the landscape at that point. The particles can
observe neighboring particles in their perception range. The
particle randomly chooses the neighboring particles which
will influence the particle to move towards them. The
position of the chosen neighbor will be used as the local
best position of the particle. However, unlike the PPSO
algorithm, in APPSO algorithm, the perception radius and/
or the spacing between the sample points along any
direction within the perception radius and/or the number
of sampling directions may be varied at each iteration
depending upon whether the local best position of the
particle at the current iteration improves or deteriorates
the performance of the particle. If the local best position of the
particle at the current iteration does improve the perfor-
mance of the particle, not only is its personal best position
updated in the next iteration, but also the spacing between
the sample points along any direction within the perception
radius is minimized and/or the number of sampling
directions is increased and/or the perception radius is
minimized so as to encourage more social interaction of
the particles. Conversely, if the local best position of the
particle at the current iteration deteriorates the performance
of the particle, the spacing between the sample points along
any direction within the perception radius is minimized
and/or the number of sampling directions and/or perception
radius is increased. Since one or more of the three
parameters viz. perception radius, number of sample points
along any direction within the perception radius and the
number of sampling directions may be varied in APPSO,
therefore there can be eight different types of APPSO
algorithm numbered APPSO (1-8). The basic idea behind
such modification is to explore the landscape more
exhaustively near the local maxima so that the global
maximum is very closely reached which means that the
results will be more optimized in APPSO than in case of
PPSO. The presence of neighboring particles influences the
calculation of new velocity for the next iteration in the same
way as the local social interaction in the conventional
particle swarm optimization [51]. As in PPSO, in APPSO
also the fitness function is the average of the height of the
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landscape observed from all observation directions minus
distance between the particle and the point of observation
in the landscape. Figure 1 shows the difference between
conventional particle swarm optimization, perceptive par-
ticle swarm optimization and the proposed adaptive
perceptive particle swarm optimization.

Fig. 1 Comparison between conventional a PSO, b PPSO and ¢
APPSO
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In Fig. la, the particles move about in the surface using
the conventional PSO algorithm. In Fig. 1b and c, the
particles are allowed to fly about in the space to observe the
space and find out the optima of the landscape. However, in
Fig. 1b, at each position of the particle, there are six
directions of observation indicated by the arrows and two
sampling points per direction. But in Fig. lc, the particle
near the trough has six sampling directions and two sample
points per direction indicated by the blue dots on the
arrows. But the particle near the crest has ten sampling
directions and three sampling points per direction so as to
explore the search space more exhaustively in search of any
local optimum, which might possibly be missed out by
PPSO algorithm.

Description of the APPSO algorithm

The algorithm starts with randomly initialized position and
velocity of particles in an n+1 dimensional search space in
case of an n dimensional optimization problem. The
maximum and minimum values of perception radius, the
number of observing directions and number of sample
points along any observing direction and the maximum
velocity of a particle are to be given as input. If the
perception radius and/or the number of observing directions
and/or the number of sample points per direction are fixed,
then the fixed value has to be specified instead. The
personal best position of a particle is set as the initial
position of the particle. At each iteration, each particle
randomly chooses the position of the neighboring particle.
The local best position and velocity of the particles are
updated accordingly and the fitness function is evaluated. If
the present performance of any particle is better than its
performance at its personal best position, then the personal
best position of the particle is updated. If the perception
radius and/or the number of observing directions and/or the
number of sample points per direction are variable, then the
spacing between the sample points along any direction
within the perception radius is minimized and/or the
number of sampling directions is increased and/or the
perception radius is minimized so as to encourage more
social interaction of the particles. On the other hand, if the
local best position of the particle at the current iteration
deteriorates the performance of the particle, the spacing
between the sample points along any direction within the
perception radius is minimized and/or the number of
sampling directions and/or perception radius is increased.
The iterations go on until the terminating condition is
reached. The landscape under study in PPSO and APPSO
algorithms is same as the landscape under study in the PSO
algorithm. However, in PPSO and APPSO algorithms, the
fitness function is the average of the height of the landscape
observed from all observation directions minus distance

between the particle and point of observation in the
landscape.

Different types of APPSO algorithm

In APPSO, depending upon the present position of a
particle in the search space, its perception radius, and/or
number of sampling directions and/or the number of sample
points per direction may be varied. Since, one or more of
three parameters may be varied, hence eight cases may
arise. The eight variations are shown in Table 1.

As in evident from Table 1, the perceptive particle
swarm optimization proposed by Kaekawkamnerdpong is a
special case of APPSO1, in which all these three parameters
are kept constant.

From the description of the algorithm itself, it is clear
that there may be a slight degradation in performance with
respect to the PPSO. However, at the cost of marginal loss
in performance we can certainly gain in accurately reaching
the global optimum position, which is particularly impor-
tant in medical applications where accuracy is highly
needed.

Methodology for medical diagnosis using adaptive
perceptive particle swarm optimization

The present work proposes a methodology of medical
diagnosis in absence of physician. For diagnosis, multiple
pathophysiological parameters are involved. The present
work uses the proposed APPSO algorithm for determining
the weights of pathophysiological parameters in medical
diagnosis. As an example of medical diagnosis, the specific
case of renal diagnosis has been taken up. For renal
diagnosis purposes, BMI, glucose, urea, creatinine, systolic
blood pressure and diastolic blood pressure are chosen as
pathophysiological parameters. However, the data from the

Table 1 Different types of adaptive perceptive particle swarm
optimization algorithm

Algorithm  Perception radius ~ No. of directions ~ No. of sample
points
APPSO1 Fixed Fixed Fixed
APPSO2 Fixed Fixed Variable
APPSO3 Fixed Variable Fixed
APPSO4 Fixed Variable Variable
APPSO5 Variable Fixed Fixed
APPSO6 Variable Fixed Variable
APPSO7 Variable Variable Fixed
APPSO8 Variable Variable Variable
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patient cannot always be trusted as they are subjected to the
quality and accuracy of measuring units and the skill of the
technician. Moreover, based on a single data, it would be
highly uncertain to make an accurate decision about the
future pathophysiological state of the patient particularly in
a chronic case [34]. So the patient data has been fuzzified
with the objective of transformation of periodic measures
into likelihoods that the pathophysiological parameter of
the patient is high, low or moderate in comparison to a set
of reference values [34]. As an example study, the present
work comprises of analyzing the renal data of patient and
predicting the future physiological state of a patient. From
the height in feet and weight in kilograms, the BMI of a
patient is computed by the system as given in [55]. Since
doctors are more interested in knowing whether the
pathophysiological risk parameters of patients are high,
moderate or low, and also the trend of physiological
parameters of patients, it would be more useful, to represent
the pathophysiological risk parameters of patients as
linguistic variable rather than ordinary variable and use
fuzzy logic to build a predictive model, to predict the fuzzy
set (low, moderate or high) in which the particular risk
parameter of the patient, viz. B.M.I, glucose, urea,
creatinine and blood pressure is to lie in the next reading
of patient data. For this purpose, triangular and trapezoidal
fuzzy operators have been used [54].

Fuzzification of patient data

The membership function has been determined in accor-
dance with the ranges and tolerance limits set up by the
World Health Organization. The plot of the membership
functions is shown in Fig. 2 to illustrate the methodology.
Figure 2 depicts the membership functions used for fuzzy
modeling pathophysiological data of patients. The trapezium
to the extreme left correspond to the fuzzy set for low values
of creatinine. The middle one corresponds to the fuzzy set
for moderate values of creatinine and the trapezium to the
extreme right correspond to the fuzzy set for high values of
creatinine. It is obvious that all the low, moderate and high
risk parameter ranges (herein modeled as fuzzy sets) of
patient falls in the same universe of risk parameter values.

Algorithm for diagnosis

The algorithm for diagnosis accepts the patients’ data
periodically (e.g. at 10 days interval of time) and fuzzify
them using the membership functions shown in Fig. 2. Using
these membership function values, the algorithm computes
the time- weighted mean of the membership functions of the
patient’s pathophysiological data collected over a number of
time sequences which indicates the possibility that the next
pathophysiological data will be low, moderate or high. The
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possibility that the next pathophysiological data will be low
or moderate or high is computed as:

Pr(x) = =5 (1)

where the summation is done from the time sequence
number /=1 to n, n being the sequence number of the most
recently taken data. R e {low, moderate, high}. x € {b, g, u,
¢, s, d} accordingly as x represents BMI, glucose, urea,
creatinine, systolic blood pressure and diastolic blood
pressure respectively. pu(x) is pl(x), um(x) or ph(x) accord-
ingly as the membership function concerned refers to low,
moderate or high fuzzy set respectively. The value of P(x)
corresponding to max (Pg(x)) predicts the fuzzy set in which
the next state input of a certain pathophysiological parameter
is going to lie.

Inferencing

Inferencing involves giving a decision whether the patient is
in normal condition or heading towards a moderately critical
condition or a severely critical condition. Inferencing is done
by taking the possible next state output of the diagnostic
algorithm at different instants of time. For more precise
inferencing purposes in renal diagnosis, the weighted sum of
possibility values of low, moderate and high ranges of
different pathophysiological parameters of medical diagnosis
is taken. The diagnosing weights of the pathophysiological
parameters have been determined using APPSO. We have
determined the weights of diagnosis using all the eight
possible cases of APPSO and finally have chosen the one
that gives the best diagnostic accuracy. In order to compare the
performance of the proposed APPSO algorithm in respect of
accurately determining the optimal weights of the pathophys-
iological parameters, the weights of the pathophysiological
parameters have been determined using other evolutionary
algorithms like PSO and GA. Apart from the inferencing
regarding the renal state of a patient, inferencing also involves
giving specific decisions about specific diseases. Typical rules
for inferencing include:

R1: If (Weighted sum of possibility values of Body Mass
Index, Glucose, Urea, Creatinine, Systolic Blood
Pressure and Diastolic Blood Pressure in the high
range exceeds that in the moderate ranege) then the
(Renal condition of Patient is severe)

R2: If (Body Mass Index is High) or (Glucose is High) or
(Urea is High) or (Creatinine is High) or (Systolic
Blood Pressure is High) or (Diastolic Blood Pressure
is High) then the (Renal condition of Patient is
moderately critical)

R3: If (Glucose is High at time Ti) and (Glucose is Low at
time Tj) and (Ti#Tj) then the (Patient can be
suggested to go for Glycosylated Haemoglobin)

R4: If (Body Mass Index is Moderate) and (Glucose is
Moderate) and (Urea is Moderate) and (Creatinine is
Moderate) and (Systolic Blood Pressure is Moderate)
and (Diastolic Blood Pressure is Moderate) then the
(Renal condition of Patient is normal)

and so on.

Optimization of fuzzy inferences

The optimization of fuzzy inferences has been done based
on the consideration that only part of the antecedents has a
positive degree of truth and so only part of the rules have a
positive degree of activation. So it is more optimal to
identify the antecedents with a positive degree of truth.
Only these antecedents are processed and the degree of
truth is only calculated for active rules.

Optimization of the rule base

A typical fuzzy medical diagnostic application consists of
groups of rules that share the common antecedent. This
suggests not storing all the antecedents but only the terms
which vary; the constant terms for each group are stored
only once. In the actual implementation, two separate
address spaces are used. One memory contains constant
terms and the number of rules in the group. The other
contains the other antecedents in each rule. This leads to a
huge saving in memory space for rule storage.

The proposed methodology of medical diagnosis is
summarized in the flowchart shown in Fig. 3:

Defuzzification and decision making

Defuzzification involves taking a crisp action based on the
inference drawn. For defuzzification, the rule with the largest

Storage of
membership
function values in
database over time

l—I

Inferencing

Patient data Fuzification

Defuzification Rule Base

Output Decision

Fig. 3 Block diagram of the medical diagnosis process
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firing strength is selected. The decision given by the smart
agent can be implemented by glowing of an LED or by means
of some output data. In our scheme, the approaching criticality
of patients is indicated by the glowing of LEDs.

Determination of weights of pathophysiological parameters
using APPSO algorithm

To illustrate the approach, the example of renal diagnosis
problem is taken up. Our objective is to determine the
diagnosing weights of BMI, glucose, urea, creatinine, systolic

(x6P(b) + xgPi(g) + xuPi(1t) 4 xcPi(c) + x,Py(s) + xaPp(d))

blood pressure and diastolic blood pressure. Let xy,, Xg, Xy, Xc,
xs and x4 be the diagnosing weights of BMI, glucose, urea,
creatinine, systolic blood pressure and diastolic blood
pressure respectively which will be estimated using APPSO.
As stated in the algorithm, when the weighted average of the
possibility values of different pathophysiological parameters
in the high range exceed the weighted average of the
possibility values of different pathophysiological parameters
in the moderate range, the patient has a possibility of
attaining a critical condition. Hence, the patient attains a
critical condition when the inequality:

> (xpP(b) + xgPu(g) + XuP () + xcPr(c) + XPru(s) 4+ XaPn(d)) holds good, where Xy, X, Xy, Xe, Xy, Xg > 0 (2)

The basic idea is to make the diagnosing system predict
a condition of criticality at the proper time sequence if the
patient is really approaching a critical condition.

To determine the specific weights of the six diagnosing
parameters using APPSO, we can consider a seven dimen-
sional search space spanning over the set R, i.e. the position
vector of a particle will be a point in R”. The landscape in the
search space for our particular problem is defined by,

f(xbvxg;xmxcaxs;xd) :ij(Ph(])_PM(])) (3)

where j=b, g, ¢, u, s or d accordingly as the parameter
concerned is BMI, glucose, urea, creatinine, systolic blood
pressure or diastolic blood pressure respectively. The
weighted sum of the differences between high and moderate
values of the pathophysiological parameters determines the
function that is used to define the landscape in the search
space in the context of the present problem. As in PPSO
algorithm [51], the fitness function defined in APPSO
algorithm is the average of the height of the landscape
observed from all observation directions minus distance
between the particle and the point of observation in the
landscape. The proposed APPSO algorithm is used to
determine the weights of the pathophysiological parameters.
The experimental parameters taken are discussed in “Weights
of pathophysiological parameters”.

In order to determine the weights of the pathophysiological
parameters of diagnosis, the weights of diagnosing parameters
are determined at different instants of time and their average is
taken. The weights are determined using all the eight possible
cases of the APPSO algorithm as discussed in “Methodology
for medical diagnosis using adaptive perceptive particle
swarm optimization”. The weights of the diagnosing
parameters are determined with half of the total set of data
and testing the diagnosing property of the developed system
is done with remaining half of the total set of data.
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FPGA based hardware realization of the diagnostic
system

The proposed system has been implemented on board using
an Altera Cyclone family EP1C6Q240C8 FPGA chip for
realizing the logic functionality. The proposed system could
have also been implemented using software. But the main
disadvantage of the software solution is that a powerful
computer is to be used to run the software for achieving
reasonable speed and accuracy. However, employing a
powerful computer would be too costly a solution and would
require a steady supply of electricity in rural sectors. The
enormity of the cost of power could impede the implementa-
tion of the smart diagnostic system in the rural health care
centres in the third world countries. The whole system
implemented on board consumes as low as 70 mW power so
that a 7 V 12A-h battery can operate the system continuously
for 50 days. The main reason for a hardware based
implementation is the need for an inexpensive portable
diagnostic system. An ASIC based implementation could have
given better performance in terms of speed and power
dissipation. However, the main disadvantage of an ASIC based
hardware is the high development cost and the low reconfigur-
ability it allows for. The FPGA solution ensures that new
changes in the proposed diagnostic algorithm can be mapped
onto the hardware without having to make costly changes.

In order to realize the FPGA based diagnostic system, a
VHDL model of the proposed system has been developed
and finally mapped onto the EP1C6Q240C8 chip. The top
level entity of the system comprises of 13 input ports. Of
these ten input ports named as are used for reading input
data in binary form. Amongst the other four inputs one is
the clock input CLK, one is the reset input RST which is an
asynchronous input, the third one is the control input PB
which when on, the data is read from the input ports. There
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are 14 output ports. Seven output ports named as
DISP SEG (0 to 6) are used to output the binary code for
display on a LED 7 segment displays. DP is used for
displaying the decimal point. Since, there are four seven
segment displays for output in the final system; hence in order
to select the appropriate seven segment display using a single
7 bit port, a 4 bit output code called SCAN (0 to 3) is used that
selects the seven segment displays in the time shared mode.
The change over takes place so fast as to give the illusion of a
continuous display of four LED 7 segment displays. The
behavioral modeling of the system has been done by
considering the heart of the system as a finite state machine.

In order to map the VHDL model into an FPGA, a bit-
stream pattern was generated using the VHDL model of the
system, and finally downloaded on the FPGA chip using the
JTAG interface. The bit-stream pattern is written in a.sof file
(telmed.sof) that has been downloaded using Byte-Blaster II
for JTAG configuration. The inputs have been given to the
FPGA chip through push button switches. The FPGA chip
receives a ‘0’ input when each switch is pressed. The binary
data entered through push button switch array have been
converted into real numbers for computation using conversion-
weights stored in an EPROM. Using these parameter values,
the corresponding membership function values up, uy, and
Ly are computed. uy, tnv, and g refers to the membership of
a pathophysiological parameter value in the ‘low’, ‘moderate’
and ‘high’ fuzzy set respectively. Based on these membership
function values, the possibilities the values of the different
Fig. 4 Circuit diagram of the

FPGA based smart diagnostic
system

pathophysiological parameters will be low, moderate or high
has been computed by the system using the methodology
described in “Methodology for medical diagnosis using
adaptive perceptive particle swarm optimization”. The max-
imum of these three possibilities at any instant of time
suggests the possible next physiological state of the patient.
The possibility values are also stored in a TC58FVB160AFT
CMOS flash memory The system predicts a condition of
approaching criticality when the weighted sum of high
possibilities exceeds the weighted sum of moderate possibil-
ities. The output therapeutic decision has been displayed on
LED 7-segment display. Figure 4 shows the circuit diagram
of the FPGA based smart diagnostic system.

The heart of the circuit consists of the Altera Cyclone
EP1C6Q240C8 FPGA chip in which the decision making
logic is realized through programming. The FPGA is
interfaced with an EPCS1 configuration PROM chip that
stores the configuration bits for configuring the FPGA for
the particular application. The patient data and the rules for
inferencing are stored in a CMOS flash memory.

A typical fuzzy medical diagnostic application consists of
groups of rules that share the common antecedent. This
suggests not storing all the antecedents but only the terms,
which vary; the constant terms for each group are stored only
once. In the actual implementation, two separate address
spaces are used. One memory contains constant terms and the
number of rules in the group. The other contains the other
antecedents in each rule. This leads to a huge saving in
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Fig. 5 Medical diagnostic system codesign on EP1C6Q240C8

memory space for rule storage. The rule memory can store a
maximum of 256 rules. The number of memory locations can
be sufficiently increased to store much more than 256 rules.
There can be more than 256 rules in principle. However, for
our particular application of medical diagnosis, we do not
require more than 256 locations in the rule memory. The
proposed diagnostic system does not calculate the degree of
activation for all the rules, but only for active ones. This is
achieved in the following way: As a group features the
presence of constant terms, if their degree of truth is null, it is
useless processing the rules in this group. The system can thus
pass on to the rules in the next group.

The whole system is realized by configuring the FPGA as
a Altera Nios II embedded soft core processor which handles
the task of interfacing the peripherals with FPGA. The LED
7 segment displays are driven by BC 545 PNP transistors.
The seven segment displays indicate the possibilities of low,
moderate and high values of the different pathological
parameters at the next physiological state of the patient.
Since, there are four seven segment displays for output in the
final system, and there is only one port available for display,
hence a four bit output called SCAN (0 to 3) is used.
Actually the different bit lines of the SCAN are connected to
cathodes of different common cathode LED 7 segment
displays so as to select the seven segment LED in time
shared mode. The display codes corresponding to the seven-
segment display has been stored in a ROM. The system can
be reset at any point in time by a reset input which has been
implemented using a push button switch. Two LEDs
connected in the common anode mode indicate whether the
condition of the patient is moderately critical or severely
critical. The whole system is provided with a battery back-up

@ Springer

to provide a continuous power supply to the system so as to
overcome the non-volatility of the FPGA chip.

For peripheral interfacing, a Nios II soft core processor
has been realized in the FPGA. The architecture of the
whole system including the Nios II soft core processor is
shown in Fig. 5:

The main modules in the design are:

Ul: 2 MB of Flash Memory containing the patient data.

U2: Tristate bridge

U3: Nios II processor

U4: DMA controller configured to feed the smart pro-
cessing unit (US) with patient data.

US: Smart Processing Unit that performs the task of
decision making.

U6: Four LED seven segment displays and two LED for
display of output results.

U7: 11 Push button switches for entering input data

U8: EPROM that contains the look up table for storing the
display codes and conversion weights of codes.

The algorithm implemented in VHDL is shown in the
flowchart is shown in Fig. 6:

Start
Compute membershij
Enter input function values
data

Calculate the
possibilities using
present and past data

Patient Profile

Rule Memory

Is the
patient

moderately,
critical?

Display the indication in
LED

Is the
patient

severely
critical

Display the indication in
LED

[
u

Display output data

Fig. 6 Software algorithm of the system
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The technology schematic of the smart agent as realized
on the FPGA is shown Fig. 7.

The technology schematic shows how the look up tables
(LUTs) in the FPGA chip have allocated and the con-
nections between the different LUTs to realize the system

on the FPGA. Table 2 shows the resource utilization
summary of the smart agent.

The resource utilization summary shows the number of
different types of blocks realized on the FPGA for realizing the
particular application. From Table 1, it is clear that only 13
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Fig. 7 Technology schematic of the FPGA based smart agent
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Table 2 Resource utilization summary of the smart agent

Resource Usage
Combinational logic elements with no register ~ 4382
Registers 848
Combinational logic elements with a register 285
Total logic elements 5967 (out of 5980)
Total logic cells in carry chains 2354
1/0 pins 27
Maximum fan out node Clk
Maximum fan out 1164
Total fan out 15238
Average fan out 2.87

logic elements in the FPGA have been wasted in achieving an
FPGA based implementation of the system. The FPGA based
implementation of the system is very attractive owing to the
fact that FPGAs are reconfigurable and becoming economical
and faster day by day. The system has been tested with real
life patient to find out the correlation between the decision
being taken up by the physician and the decision being taken
up by the smart agent.

Results and discussions

In order to determine the weights of the pathophysiological
parameters, the APPSO algorithm is run using data of 40
patients from Chittaranjan National Medical College and
Hospital. The FPGA based diagnostic system is then tested
with the data of 40 patients to test the applicability of the
system being implemented.

Weights of pathophysiological parameters
As discussed in “Methodology for medical diagnosis using
adaptive perceptive particle swarm optimization”, eight

variations of APPSO have been used to determine the

Table 3 Weights of different pathophysiological parameters

weights of the diagnosing parameters. As discussed in
“Adaptive perceptive particle swarm optimization”, in the
different variations of APPSO algorithms, one or more or
none of the perception radius, number of sampling
directions and the number of sample points per direction
has been varied. If the perception radius is varied, as in
APPSO (5-8) algorithms, the minimum perception radius is
varied between 3 and 9 units; otherwise the perception
radius is kept fixed at 6 units. If the number of sampling
directions is varied as in APPSO (3, 4, 6, 8) algorithms, the
number of sampling directions is varied between 4 and
12 units; otherwise the number of sampling directions is
kept fixed at 8 units. Similarly, if the number of sample
points per direction is varied as in APPSO (2, 4, 6, 8)
algorithms, the number of sample points per direction is
varied between 4 and 12; otherwise the number of sample
points per direction is kept foxed at 8. To determine the
weights of the parameters so that the system can clearly
indicate whether the patient is tending towards a critical
condition or not, the weights of the pathophysiological
parameters are obtained separately from the possibility
values of different pathophysiological parameters of 40
patients at different instants of time using APPSO (1-8),
PSO and GA and then averaging is done in each case. The
weights of the different pathophysiological parameters
obtained by the four techniques are shown in Table 3:

These diagnosing weights are used by the system to
make an inference about the current pathophysiological
condition of the patient. It is very interesting to note that the
parametric weights obtained through statistical calculations
using APPSO exactly correspond to the prevailing medical
judgment associated with these parameters.

Computation time of the algorithms
The running time of the proposed APPSO (1-8) algorithm

on a Pentium IV machine has been determined. The
performance of the proposed APPSO algorithm has been

Algorithm Weights of parameters

BMI Glucose Urea Creatinine SBP DBP
APPSO1 (PPSO) 22.18 57.03 71.01 96.57 35.36 80.78
APPSO2 22.23 56.99 71.01 96.52 35.41 80.85
APPSO3 22.17 57.04 71.05 96.59 35.48 80.86
APPSO4 22.13 57.21 71.38 96.95 35.34 80.41
APPSO5 22.28 56.85 70.98 96.47 35.44 80.87
APPSO6 22.34 56.84 70.87 96.42 35.49 80.92
APPSO7 22.24 56.97 71.03 96.54 35.43 80.84
APPSO8 22.26 57.23 71.37 96.61 35.45 80.89
PSO 22.24 56.58 70.84 96.05 35.32 81.43
GA 18.62 59.64 68.53 89.84 37.63 82.21
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Table 4 Comparison of the running time of different algorithms

Algorithm Running time (ms)
APPSOL1 (PPSO) 0.68
APPSO2 0.66
APPSO3 0.67
APPSO4 0.69
APPSO5 0.64
APPSO6 0.62
APPSO7 0.65
APPSOS8 0.63
PSO 0.65
GA 2.13

compared with PPSO, PSO and GA and is shown in
Table 4.

The computing times of the algorithms have been
determined by running the algorithms on a Pentium IV
machine having a 2.8 GHz processor running Fedora 5.0.
The running time of the algorithm is determined by using
times() function in C. Analysis of Table 1 indicates that the
running time of APPSO (1-8), PPSO and PSO are
approximately the same, but the GA is much slower than
the other three. However, the weights of the diagnosing
parameters obtained through PSO are determined offline
and these different values are only used in the FPGA based
implementation of the system, which means the computing
time of PSO algorithm does not affect the performance of
the FPGA based hardware implementation of the system.

Results of patient data

Using the weights of the pathophysiological parameters
obtained, the system is then tested with data of remaining
40 patients to ascertain the accuracy of diagnosis. To show
the applicability of the system and the diagnostic algorithm,
the data of a sample patient of age 42 years has been

Table 5 Result of a sample patient of age 42 years

analyzed and shown in the paper in Table 5. The data has
been taken at 10 days interval of time. T1 refers to Oth day
and T10 refers to the 90th day.

Using these data, the system computes the membership
function values using the membership functions of the
different pathophysiological parameters described in
“FPGA based hardware realization of the diagnostic
system”. The membership function values obtained at
different instants of time is shown in Table 6.

In the above table, uy, um and py refers to the
membership function values for low, moderate and high
values of different pathophysiological parameters. From the
above table, we come to know that the patient attains a
critical condition when py=1 for all parameters. This
happens at time T10.

Using these membership function data, the system
computes the possibilities of low, moderate and high values
of different pathophysiological parameters at different
instants of time. Table 7 shows the possibility values of
different parameters at different instants of time.

Using these possibility values, the system computes the
weighted sum of the possibility values at different instants of
time, called as criticality values to determine the criticality of
the patient. The criticality values have been determined using
all the eight APPSO, PSO and GA. Table 8 shows the
criticality values determined using APPSO3.

Identically, criticality values are determined with all
other algorithms [APPSO(1,2,4-8), PSO and GA]. In
Table 8, Cy, Cy and Cy shows the criticality values for
low moderate and high values of parameters. It is clear that
at time T6, Cy; exceeds Cyy. Therefore, the system indicates
a condition of approaching criticality at time T6 (at 50 days)
much before the condition of criticality occurs (at time T10,
viz. 90 days). This also elucidates that the system can be
deployed in telemedicine environments in rural areas,
where the health care professionals often provide support
services in absence of the physician.

Time Weight BMI Glucose Creatinine Systolic blood pressure Diastolic blood pressure
TI 64.1 27.97 120 1.0 128 87
T2 66.2 28.31 125 1.1 131 88
T3 66.8 28.57 128 1.2 132 90
T4 67.5 28.87 127 1.3 136 94
T5 66.9 28.61 128 1.4 137 96
T6 67.8 29.00 128 1.4 138 98
T7 68.2 29.17 128 1.4 139 98
T8 69.5 29.73 129 1.4 140 97
T9 70.5 30.15 129 1.8 140 100
T10 70.6 30.62 131 2.4 143 101

Height of patient—5.0 ft
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Table 6 Membership function values of different pathophysiological parameters

Time Membership function values

BMI Glucose Urea Creatinine SBP DBP

HL 15! HH HL Hm Hu HL Hm HH Hr Hm Hu Ho Hm Hu ML Hm HH
Tl 0.00 0.50 0.50 0.00 1.00 000 000 1.00 0.00 0.00 1.00 0.00 0.00 1.00 000 000 1.00 0.00
T2 0.00 0.17 0.83 0.00 050 050 000 1.00 0.00 0.00 1.00 0.00 0.00 090 0.10 0.00 1.00 0.00
T3 0.00 0.14 086 0.00 020 080 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.8 020 0.00 1.00 0.00
T4 0.00 0.11 0.89 0.00 030 070 000 095 0.05 0.00 0.67 033 0.00 040 060 000 060 0.40
T5 0.00 0.14 086 0.00 020 080 000 0.15 085 0.00 033 0.67 0.00 030 070 000 040 0.60
T6 0.00 0.10 090 0.00 020 080 000 020 0.80 0.00 033 0.67 0.00 020 080 000 020 0.80
T7 0.00 0.08 092 000 020 080 000 0.10 090 0.00 033 0.67 0.00 0.10 090 000 020 0.80
T8 0.00 0.03 097 000 0.10 090 000 0.05 095 0.00 033 067 0.00 000 100 000 030 0.70
T9 0.00 0.00 1.00 0.00 0.10 090 0.00 0.05 095 0.00 0.00 1.00 0.00 0.00 100 000 0.00 1.00
T10 0.00 0.00 1.00 0.00 000 1.00 000 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 000 0.00 1.00

Validation of diagnosis by the FPGA based diagnostic

GFR, the level of risk is estimated

according to the

system

In order to testify the fact whether the patient is heading
towards a critical renal condition, the data set is verified
using the Cockford Gault Equation which based on a single
set of data at any point in time can indicate the glomerular
filtration rate (GFR) that is an index of the renal condition
of the patient.

The glomerular filtration rate of a patient at any instant
of time is calculated on the basis of present inputs like age,
weight and plasma creatinine according to Cockford Gault
Equation [56]:

(140 —A4) x W
72 x Cr “)

where A is the age, W is the weight and Cr refers to the
plasma creatinine of the person. Depending on the value of

GFR =

following grouping:

GFR>90 => Stage 1 (lowest risk)
60<GFR<90 => Stage 2
30<GFR<60 => Stage 3
15<GFR<30 => Stage 4

0<GFR<15 => Stage 5 (highest risk).

Stage 5 indicates the early renal failure condition of a
patient. If multiple patients have the same level of risk,
priority is given to the patient with elevated blood pressure,
blood glucose and blood urea levels.

For the 42 years old patient whose data is given above,
the GFR is calculated and shown in Table 9:

The above table definitely indicates that the patient is
heading towards a critical renal condition. The glomerular
filtration rate is gradually decreasing and the patient has
moved from stage 2 to stage 3 in the scale of risk levels

Table 7 Possibility values of different parameters at different instants of time

Time Membership function values

BMI Glucose Urea Creatinine S.B.P. D.B.P.

Pr Py Py PL Py Py Py Py Py Pr Py Py P Py Py P Py Py
T1 0.00 0.50 0.50 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 000 1.00 000 000 1.00 0.00
T2 0.00 0.18 0.82 0.00 0.67 033 0.00 1.00 0.00 0.00 1.00 0.00 000 093 007 000 1.00 0.00
T3 0.00 0.14 0.86 0.00 0.70 030 0.00 1.00 0.00 0.00 1.00 0.00 000 087 0.13 000 1.00 0.00
T4 0.00 0.14 0.86 0.00 0.54 046 0.00 098 0.02 0.00 087 0.13 000 068 032 000 084 0.16
T5 0.00 0.13 0.87 0.00 033 057 0.00 070 030 0.00 0.69 031 0.00 055 045 000 069 0.31
T6 0.00 0.12 0.88 0.00 029 071 0.00 056 044 0.00 059 041 000 045 055 000 055 045
T7 0.00 0.11 0.89 0.00 026 074 0.00 044 056 000 052 048 000 036 064 000 046 054
T8 0.00 0.10 090 0.00 023 077 0.00 036 064 000 048 052 000 028 072 000 042 0.8
T9 0.00 0.07 093 0.00 020 0.80 0.00 029 071 0.00 038 062 000 023 077 000 034 0.66
T10 0.00 0.06 094 0.00 0.16 0.84 0.00 024 076 0.00 031 069 000 0.18 082 000 028 0.72
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Table 8 Criticality values of patient

Time Criticality values
CL Cm Cu

Tl 0.00 352.10 17.19
T2 0.00 326.70 39.49
T3 0.00 328.76 40.79
T4 0.00 279.61 176.83
T5 0.00 213.23 178.29
T6 0.00 176.41 186.77
T7 0.00 148.72 214.46
T8 0.00 131.77 232.02
T9 0.00 105.22 257.27
T10 0.00 86.48 276.71

which definitely indicates the criticality of the condition is
increasing. This is confirms the correctness of our diagnos-
tic technique. Moreover, since in our diagnostic technique,
analysis is not based on the data of a single instant of time,
chances of incorrect decision due to noisy data being
entered at a particular instant of time is minimized.

Estimation of reliability of the diagnostic system

Bayesian analysis has been carried out on the population
under study to estimate the reliability of the system. In
order to estimate the reliability of diagnosis, the definitions
of statistical terms used in [57] have been used. As follows
from the application of Bayes’ theorem, the predictive
value of any diagnostic test is influenced by the prevalence
among the tested population, and by the sensitivity and
specificity of the test [58]. In our particular case, the total
population under study was 80. However, the weights of
the pathophysiological parameters for diagnosis have been
obtained using the data of 40 patients. The system has been
tested with the data of remaining 40 patients.

Let 4 be the number of patients where the diagnostic test
yields a positive result and the patient really has a disease,
B be the number of patients where the diagnostic test yields
a positive result and the patient does not have a disease, C
be the number of patients where the diagnostic test yields a
negative result and the patient really has a disease and D be
the number of patients where the diagnostic test yields a
positive result and the patient does not have a disease.

Hence, (4 + B + C + D)=40.

Therefore,
Sensitivity of diagnosis, Se = 0 Afc)
Specificity of diagnosis, Sp = ﬁ
False positive rate = 1 — Sp = (BfD)
False negative rate = 1 — Se = (Afc)
Accuracy of diagnosis = % x 100%

The system has been tested for accuracy using the
weights determined by the algorithms APSSO (1-8), PSO
and GA. Apart from that, the system has been tested for
accuracy of diagnosis using standard fuzzy inferencing
techniques [59] like Mamdani method, Larsen Method,
Tagaki, Sugeno and Kang method and Tsukamoto method.
Table 10 shows a comparative study of sensitivity,
specificity, 1-sensitivity (false negative rate), 1-specificity
(false positive rate) and accuracy of diagnosis using the
different algorithms for weighted diagnosis and fuzzy
inferencing techniques.

Using the sensitivity and 1-specificity values, the
receiver operating characteristics have been plotted as
shown in Fig. 8.

From the receiver operating characteristics, we find a
sharp peak at (1, 0.0371), which is also closest to the (1, 0)
point on the receiver operating characteristic. This corre-
sponds to the weighted diagnosis with weights determined
using APPSO4 algorithm. Hence, we conclude that the
APPSO4 is the most reliable one. The pseudo code of
APPSO4 algorithm is shown in the Appendix.

Now Prevalence of disease, Prevalence of disease, P =

e S =0.325

(ATB+C+D) :

Using Bayes’ theorem,

Probability(disease | positive test result) = P(d|+) =
P.Se —

PSet+(1-P).(1-Sp) 1.0000

Probability(no disease | negative test resulf) = P(d'|—) =

(1-P).§ _

These values of conditional probabilities give a measure
of the reliability of the diagnostic system [1].

Performance analysis of the diagnostic system

The computing time for a single data set and one active
group has been found to be equal to 0.24 ps. In the number
of active group increases, then the computing time
increases. In order to compare the delay of computation
by the FPGA based hardware implementation with that of a

Table 9 Analysis of patient data based on Cockford Gault equation

Time Weight Creatinine GFR Stage
Tl 64.1 1.0 87.2 2
T2 66.2 1.1 81.9 2
T3 66.8 1.2 75.8 2
T4 67.5 1.3 70.7 2
TS 66.9 1.4 65.1 2
T6 67.8 1.4 65.9 2
T7 68.2 1.4 66.3 2
T8 69.5 1.4 67.5 2
T9 70.5 1.8 533 3
T10 70.6 2.4 40.1 3
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Table 10 Comparative study of accuracy of medical diagnosis

Method A B C D Sensitivity Specificity 1-Sensitivity 1-Specificity ~ Accuracy (%)
APPSO1 12 1 1 26 0.9230 0.9629 0.0077 0.0371 95
APPSO2 11 1 2 26 0.8461 0.9629 0.1539 0.0371 92.5
APPSO3 12 1 1 26 0.9230 0.9629 0.0077 0.0371 95
APPSO4 13 1 0 26 1.0000 0.9629 0.0000 0.0371 97.5
APPSO5 11 2 2 25 0.8461 0.9259 0.1539 0.0741 90
APPSO6 10 2 3 25 0.7692 0.9259 0.2308 0.0741 87.5
APPSO7 12 2 1 25 0.9230 0.9259 0.0077 0.0371 925
APPSOS8 11 2 2 25 0.8461 0.9259 0.1539 0.0371 90
PSO 11 1 2 26 0.8461 0.9629 0.1539 0.0371 92.5
GA 10 1 3 26 0.7692 0.9629 0.2308 0.0371 90
Mamdani Method 10 3 3 24 0.7692 0.8888 0.2308 0.1112 85
Larsen Method 10 4 5 21 0.6667 0.8400 0.3333 0.1600 71.5
Tsukamoto Method 10 2 3 25 0.7692 0.9259 0.2308 0.0741 87.5
Tagaki, Sugeno and Kang Method 10 3 2 25 0.8333 0.8928 0.1667 0.1072 87.5

software implementation, a sequential version of the
algorithm is realized in C and studied on a general purpose
computer (Pentium IV processor 2.0 GHz running Fedora
5.0). The actual running time of the sequential algorithm
have been determined via clock ticks using times() function
in C. The CPU time for running the sequential algorithm is
found to be 0.06ms. This amount to a speed up of 343
using FPGA based implementation of the system. With an
ARM 922T processor [60] of speed 200 MHz, the CPU
time for running the sequential algorithm comes out to be
equal to 2.5 ps. This again amounts to a speed up of 10
using FPGA based implementation of the processor. The
difference in delay of computation may stand out to be
considerable when the system is redeployed for computa-
tionally intensive applications. Table 11 shows the compar-
ative study of the different processors.

It is clear from the above table that the FPGA based
fuzzy processor stands far superior to the other two

1

09

08

07

Sensitivity
o o o o
() +a ()1 (s3]

S
h

0.1

U L 1 1 1 L | 1 1 1
0 0.1 0.2 03 04 05 08B 0.7 og 039 1

1-Specificity

Fig. 8 Receiver operating characteristics
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processors. Moreover, assuming that there can be no more
than 16 active rules at a time (which is true for our system),
the processor is guaranteed to produce results within an
interval of 1.92 us, which elucidates the real time behavior
of the system. This interval of time is even less than
minimum time needed to produce results on the ARM 922T
processor

Conclusion

In this paper, an automated diagnostic system has been
proposed to predict the approaching critical condition of a
patient at an early stage. The weights of pathophysiological
parameters used for medical diagnosis has been ascertained
using a variant of particle swarm optimization called
adaptive perceptive particle swarm optimization. The
diagnostic system has been realized on an FPGA. The
performance of the proposed diagnostic system has been
compared with the state of the art processors and found to
be better. As an example of medical diagnosis using the
developed FPGA based diagnostic system, the problem of
monitoring and predicting renal physiological condition of
a patient has been taken up. For diagnosis purposes, BMI,
glucose, urea, creatinine, systolic and diastolic blood
pressures are considered as pathophysiological parameters.
The optimal weights of these pathophysiological parame-

Table 11 Comparative study of the processors

Processor Cost (USD)  Speed Power
dissipation (W)
FPGA based 120 5.0 MFLIPS 0.06
diagnostic system
ARM 922T 150 0.41 MFLIPS 0.5
Pentium IV 200 0.02 MFLIPS 71.8
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ters in medical diagnosis have been determined using
adaptive perceptive particle swarm optimization. The
correctness of diagnosis technique is verified by comparing
its prediction with the indication of risk using Cockford
Gault equation. The accuracy of the proposed diagnostic
system has also been analyzed and found to be better than
that obtained by using standard fuzzy inferencing techniques.
However, for renal diagnosis, the proposed technique is
much better because the analysis is not based on the data
of a single instant of time; so that chances of incorrect
decision due to noisy data being entered at a particular
instant of time is minimized. Finally the reliability of the
system has been studied using Bayesian analysis and the
correctness of membership functions being used for
fuzzification of patient data is verified using receiver
operating characteristics.
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Appendix

The pseudo-code of the APPSO4 algorithm is stated
below.:

Algorithm APPSO4

Input: Randomly initialize position and velocity of
particles in an n+1 dimensional search space in case of
an n dimensional problem;

Output: Position of the approximate global optimum;

Begin

Initialize the perception radius, the maximum and
minimum number of observing directions, maximum and
minimum number of sample points along any observing
direction and the maximum velocity of a particle;

/*This is also the minimum number of observing
directions and minimum number of sampling points along
any direction®/

Set personal best position of a particle as the initial
position of the particle;

While terminating condition not reached do

Begin

For I =1 to number of particles

Randomly choose the position of the neighboring
particle;

Update the local best position;

Update the velocity of particle;

Evaluate the fitness function;

If the present performance is better than the performance
at personal best position then

Update personal best position of the particle;

Minimize the spacing between the sample points along
any direction within limits;

Increase the number of sampling directions within limits;

Else if the present performance is worse than the
performance at personal best position then

Increase the spacing between the sample points along
any direction within limits;

Minimize the number of sampling directions within
limits;

Else

Keep the spacing between the sample points and the
number of sampling directions unaltered;

End if;

End if;

Increment I;

End for;

End while;

End
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