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Abstract Epilepsy is a disorder of cortical excitability and
still an important medical problem. The correct diagnosis of
a patient’s epilepsy syndrome clarifies the choice of drug
treatment and also allows an accurate assessment of
prognosis in many cases. The aim of this study is to
classify subgroups of primary generalized epilepsy by using
Multilayer Perceptron Neural Networks (MLPNNs). This is
the first study classifying primary generalized epilepsy
using MLPNNs. MLPNN classified primary generalized
epilepsy with the accuracy of 84.4%. This model also
classified generalized tonik–klonik, absans, myoclonic and
more than one type seizures epilepsy groups correctly with
the accuracy of 78.5%, 80%, 50% and 91.6%, respectively.
Moreover, new MLPNNs were constructed for determining
significant variables affecting the classification accuracy of
neural networks. The loss of consciousness in the course of
seizure time variable caused the largest decrease in the
classification accuracy when it was left out. These out-
comes indicate that this model classified the subgroups of
primary generalized epilepsy successfully.
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Introduction

Epilepsy is a disorder of cortical excitability and interictal
electroencephalography (EEG) remains the most conve-

nient and the least expensive way to demonstrate physio-
logical manifestations of this disorder [1–3].

Epilepsy is classified as either generalized or partial with
several subcategories in each class. In the management of
patients with established epilepsy, the concept of epilepsy
syndrome based on age at onset, seizure type or types, EEG
findings and etiology has been an important advancement
[4]. The correct diagnosis of a patient’s epilepsy syndrome
clarifies the choice of drug treatment and also allows an
accurate assessment of prognosis in many cases [3–6].

Recent developments in medicine show that diagnostic
expert systems can help physicians make a definitive
diagnosis. Artificial Neural Network (ANN) has been found
to be helpful in expert systems in the diagnoses of diseases
and used in many different situations [7–9]. ANNs have
also been used for the detection of seizure activity [10–12].
The results of these studies on detection of seizure events in
EEGs of epileptic patients showed that ANNs are capable
of capturing qualitative information from an EEG with over
90% accuracy. Walczak and Nowack [13] were the first to
use ANNs for the diagnosis of epilepsy. However, they did
not obtain high categorization accuracy. Some authors also
applied neural network and statistical recognition methods
to EEG analysis [14–18]. These results confirmed that the
proposed models have potential in classifying the EEG
signals.

Although ANNs have been used for the detection of
seizure activity related to video EEGs analysis before, none
of the previous works classify the subgroups of primary
generalized epilepsy. In this study, we have extended our
study in which we classified epilepsy groups such as partial
and primary generalized epilepsy in order to test to what
extent we could determine the subgroups of generalized
epilepsy classification of the patients with the method of
ANN.
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Material and methods

Collection and processing of data

Seventy-nine patients with primary generalized epilepsy
diagnoses according to International League against Epi-
lepsy [19] are included in this study. The patients at the
clinic of epilepsy outpatients of Cukurova University
Medical School, Neurology Department between the years
of 2002–2005 were examined and included in the study.
The epilepsy diagnosis was based on the medical history,
clinical findings, electrophysiological reports, radiological
and biochemical analysis.

This study considers the categorization of sex, age of
seizure onset groups, seizure types, the loss of conscious-
ness in the course of seizure time and the properties of the
first interictal EEG analysis of epileptic patients. Patients
are classified as having early or late age on set of seizures
based on a cut-off age value. In this study, we selected the
cut-off value as 20 years according to literature [20]. In the
classification belonging to age of seizure onset: the patients
between 0–20 year olds were classified as group 1, between
21–60 year olds were classified as group 2. The EEG
records were detected by 12 channel Nihon-Kohden EEG
machine. Each EEG record was done for 20 min, but the
EEG of the activated sleep was recorded for 2 h. The
patients who had pseudo seizures and EEG from out of
our electrophysiology laboratory were excluded from the
study. Eventually, we reevaluated 418 patients with their
first EEGs and clinical properties. All the EEGs examined
in this study were recorded after postictal period of
seizure.

EEG signals contain a wide range of frequency compo-
nents; this range is classified approximately in a number of
frequency bands as follows: δ (0.5–4 Hz), θ (4–8 Hz), α (8–
13 Hz), β (13–30 Hz). The δ, θ waves were accepted as
abnormal activities, whereas α, β waves were accepted as
normal. On the other hand, sharp, sharp and wave, spike,
spike and wave activities were accepted as abnormal
signals as well. While the frequency component of delta
and theta activities as stated above is a limited application,
the frequency of the other abnormal activities is not limited
[21]. Two experienced neurologists in the clinical analysis
of EEG signals inspected each record separately in the
study to categorize signals. The EEGs of every patient were
evaluated by using visual methods. The activity properties
of EEG findings were classified in the direction of group 1:
sharp and/or spikes; group 2: delta and/or theta, group 3:
normal. In the course of EEG, the physiological conditions
of the patients were determined as either awake or sleep and
the existence of rhythmicity of the abnormal activities were
categorized as yes or no. The localization of abnormal
activities was categorized; either they are focal (frontal,

temporal, parietal, occipital or in more fields than one) or
generalized or normal. On the other hand, abnormal
activities were categorized from the point of hemispheric
lateralization as right, left, diffuse and normal. We
determined the frequency of abnormal waves (how many
times a second these activities have been repeated), and
duration of the abnormal signals (how long abnormal
signals take during the EEG recording) on the EEG. On
the other hand we checked the parameter of whether the
loss of consciousness in the course of seizure time was
being identified (yes/no/sometimes reported but not in all
seizure).

Multilayer perceptron neural network (MLPNN)

The architecture of Multilayer Perceptron Neural Networks
may contain two or more layers. Each layer consists of
units which receive their input from a layer directly below
and send their output to units in a layer directly above the
unit. The input node activation values xi are multiplied by
the strengths of the respective connection weights wji and
summed at each hidden layer node. The weighted sum is
then transmitted by an appropriate transfer function into the
activation value of the hidden node, which becomes the
input to the output layer nodes.

yj ¼ f wjixi
� � ð1Þ

where f is an activation function that is necessary to
transform the weighted sum of all inputs. In most
applications a feed-forward network with a single layer of
hidden units is used with a sigmoid activation function for
the units. For the output units, an activation function
suitable for the distribution of the target values should be
chosen. For binary (0/1) targets, the logistic function is an
excellent choice. For categorical targets using 1-of-K
coding, the softmax activation function is the logical
extension of the logistic function [22–24].

The sum of squared differences between the desired and
output values of the output neurons E is defined as

E ¼ 1

2

X

j

ydj � yj
� �2 ð2Þ

where ydj is the desired value of output neuron j and yj is the
actual output of that neuron. The connections wji between
the neurons are arranged by using a “learn” algorithm.
There are many training algorithms used to train an
MLPNN and a frequently used one is called backpropaga-
tion (BP) training algorithm [23, 25]. Although the BP
algorithm has been a significant milestone in neural
network research area of interest, it has been known as an
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algorithm with a very poor convergence rate. Many
attempts have been made to speed up the BP algorithm. A
significant improvement on realization performance can be
observed by using various second order approaches namely
Newton’s method, conjugate gradient’s, or the Levenberg–
Marquardt (LM) optimization technique [26–29]. LM can
be thought of as a combination of the steepest descent and
the Gauss–Newton method. In the last years, the LM
method, directly taken from the Optimization field, has
been increasing its popularity within the neural networks
community. The difference between optimization and
neural network applications of the method comes from the
fact that in the latter there is usually a great deal of
parameters to be estimated [30, 31].

A commercial Microsoft Windows based ANN software
package was used to set up the ANNs in the study. The type
of neural network used in the study has been a Multilayer
Perceptron neural network with Levenberg–Marquardt.

The input of the MLPNNs had ten nodes representing
parameters which are the age of seizure onset groups, sex,
the activity properties of EEG findings, the physiological
conditions of the patients during EEG, the existence of
rhythmicity of the abnormal activities, the localization of
abnormal signals, hemispheric lateralization, the frequency
of abnormal waves, the duration of the abnormal signals
and the loss of consciousness in the course of seizure time.
The duration of the abnormal signals and the frequency of
abnormal waves that we used as input to MLPNNs were
interval variables. The coding of categorical and ordinal
variables was shown in Table 1.

Results

Seventy-nine patients who had been diagnosed with
epilepsy were included in this study. Thirty (37.9%) of
patients were female and 49 (62.1%) of them were male.
According to the age of seizure onset groups, the patients
were between 0–20 years in 58 patients (73.4%), between
21–60 years in 21 (26.6%) of all patients. Patients who
were diagnosed as primary generalized epilepsy were
classified as generalized tonic–clonic (n=23), absans (n=
11), myoclonic (n=5), atonic (n=0), more than one type of
seizures (n=40). The data set was summarized in Table 2.

Table 2 Demographic and disease properties of the patients

N %

Sex
Female 30 37.9
Male 49 62.1

Total 79
Age groups
0–20 58 73.4
21–60 21 26.6

Primary generalized epilepsy subgroups
Generalized tonic–clonic 23 5.5
Absans 11 2.6
Myoclonic 5 1.2
Atonic – –

More than one type of seizure 40 9.6

Neither tonic nor clonic seizures were determined in the patients.

Table 1 Coding of input
parameters used in training and
testing of neural networks

Parameter Value/range Code

Age of seizure onset groups 0–20 1
21–60 2

Sex Male 0
Female 1

Physiological conditions during EEG Awake 0
Sleep 1

Existence of rhythmicity of the abnormal activities Yes 0
No 1

Localization Local discharge 1
Generalize discharge 2
Normal 3

Hemispheric lateralization Right 1
Left 2
Diffuse 3
Normal 4

The activity properties of EEG findings Group 1: sharp and/or spikes 1
Group 2: delta and/or theta 2
Group3: normal 3

The loss of consciousness in the course of seizure time No 0
Sometimes reported but not in all seizure 1
Yes 2
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The learning of the network was executed by applying
the input and output vectors. In this classification, the
output layer of MLPNN represented the subgroups of
primary generalized epilepsy (generalized tonik–klonik,
absans, myoclonic and more than one type seizure) and
was coded as 1, 2, 3 and 4, respectively. In the hidden layer
and the output layer, the activation functions were selected
as sigmoid and softmax function, respectively. The
MLPNNs were developed using the 34 training examples,
while the remaining 45 examples were used for testing the
model. For obtaining a better generalization, nine training
examples were selected randomly to be used as a cross
validation set. The class distribution of the samples in training,
validation and test data sets were summarized in Table 3.

It is important to determine the architecture of MLPNNs
having the best generalization. Therefore, we have formed
different MLPNNs composed of different number of nodes
in the hidden layer in order to find optimal topologies of
MLPNNs. The most popular approach to finding the
optimal number of nodes in hidden layer is by trial and
error. In order to evaluate the performance of the neural
networks, classifications were done by the expert neurolo-
gists and the classification results calculated at the output of
neural network were compared.

When the structure of the neural network was formed as
a result of the performed experiments, the MLPNN having
45 nodes in the hidden layer had the best total classification
accuracy of 84.4% (Fig. 1).

The classifications done by the expert neurologists and
classification results calculated at the output of neural
network were compared in order to evaluate the perfor-
mance of the neural network. The first four columns of the
Table 4 represented the confusion matrix for the classifica-
tion subgroups of primary epilepsy.

Accuracy for each subgroup is expressed as the ratio of
number of correctly classified cases within the subgroup
over the total number of cases in that subgroup. Total
classification accuracy shows the overall performance of a
neural network over. As it is seen from Table 4, the
MLPNN classified the subgroups of primary generalized
epilepsy with the accuracy of 84.4%. It classified general-
ized tonik–klonik, absans, myoclonic and more than one
type seizures epilepsy groups correctly with the accuracy of
78.5%, 80%, 50% and 91.6%, respectively.

Additionally, ten new MLPNNs were constructed for
determining significant variables. As the results shown in
Table 5, all variables were significant because the classifi-
cation accuracy of MLPNN decreased when one of them

Table 3 The class distribution of the samples for the subgroups of primary generalized epilepsy

Primary generalized epilepsy subgroups Training set Validation set Test set Total

Generalized tonik–klonik 07 2 14 23
Absans 04 2 05 11
Myoclonic 02 1 02 05
More than one type seizures 12 4 24 40
Total 25 9 45 79

Fig. 1 Total classification
accuracy of tested MLPNNs for
the subgroups of primary
generalized epilepsy
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was omitted from the input vector. Therefore, no variables
were excluded. The loss of consciousness in the course of
seizure time variable caused the largest decrease in the
classification accuracy when it was left out.

Discussion

EEG findings enhance the multi-axial diagnosis of epilepsy
in terms of whether the seizure disorder is partial or
generalized. As other laboratory tests, it should be used in
conjunction with clinical data. However, partial and
generalized seizure disorders show some overlap both
clinical and EEG manifestation. The conceptual classifica-
tion of seizures as partial or primary generalized epilepsy is
important and clinically useful because the knowledge of an
individual patient’s epilepsy group allows the assessment of
prognosis and the choice of the most effective antiepileptic
drug.

Most of the studies carried out earlier focused on the
epileptic seizure detection and the classification of EEG
signals through ANN using some of EEG properties. In this
study, we have extended our studies in which we classified
epilepsy groups such as partial and primary generalized
epilepsy [17] and the subgroups of partial epilepsy [18] in
order to test to what extent we could determine the
subgroups of primary generalized epilepsy classification
of the patients with the method of ANN. The neural
networks were trained by the parameters obtained from not
only the EEG signals, but also the demographic properties
of patients and the parameter of the loss of consciousness in
the course of seizure. This is the first study to classify the
subgroups of primary generalized epilepsy using the neural
network according to these parameters. To achieve this aim, the
demographic properties, the loss of consciousness in the course
of seizure and the first EEGs of 79 patients were evaluated and
applied to neural network as independent variables. Subse-
quently, the MLPNNs trained with Levenberg–Marquardt
algorithm were used to classify the subgroups of primary
generalized epilepsy. In the present study, each formed

MLPNNs having different number of node in the hidden
layer from 1 to 100 were trained for classifying primary
generalized epilepsy groups in order to find optimal number
of nodes in the hidden layer. When the structure of the neural
network was formed as a result of the performed experi-
ments, it was found that; the MLPNN having 45 nodes in the
hidden layer had the best total classification accuracy for the
classification the subgroups of primary generalized epilepsy
(Fig. 1).

The MLPNN classified the subgroups of primary
generalized epilepsy with the accuracy of 84.4% according
to Table 4. The MLPNN had a good accuracy for the
detection of more than one type of seizure. In our study, all
variables we studied were significant and no variable was
removed. On the other hand, the parameter of the loss of
consciousness in the course of seizure constituted the most
significant variables in the classification of epilepsy groups
by using MLPNN (Table 5). When the confusion matrix
and the classification accuracies obtained for each subgroup
are examined, the MLPNN have obtained acceptable
classification success. These outcomes indicate that this
model may classify the subgroups of primary generalized
epilepsy successfully after it is developed.

Table 5 Ten variables classification accuracy for the subgroups of
primary generalized epilepsy

Missing value Total classification
accuracy (%)

The loss of consciousness in the
course of seizure time

57.7

Duration of the abnormal signals 62.2
The activity properties of EEG findings 66.6
Localization 71.1
Rhythmicity of the abnormal activities 71.1
Frequency of abnormal waves 75.5
Hemispheric lateralization 77.7
Age of seizure onset groups 77.7
Physiological conditions during EEG 82.2
Sex 82.2

Table 4 Confusion matrix and statistical parameters for the subgroups of primary generalized epilepsy

Result (GTK) Result
(absans)

Result
(myoclonic)

Result
(more than one type seizures)

Accuracy (%)

Result (GTK) 11 0 0 00 78.5
Result (absans) 02 4 0 02 80
Result (myoclonic) 00 1 1 00 50
Result (more than one type seizures) 01 0 1 22 91.6
Total 14 5 2 24 84.4

GTK Generalized tonik–klonik
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