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Abstract Since there is no definite decisive factor evaluated
by the experts, visual analysis of EEG signals in time domain
may be inadequate. Routine clinical diagnosis requests to
analysis of EEG signals. Therefore, a number of automation
and computer techniques have been used for this aim. In this
study we aim at designing a MLPNN classifier based on the
Fast ICA that accurately identifies whether the associated
subject is normal or epileptic. By analyzing a data set
consisting of 100 normal and 100 epileptic EEG time series,
we have found that the MLPNN classifier based on the Fast
ICA achieved and sensitivity rate of 98%, and specificity rate
of 90.5%. The results demonstrate that the testing perfor-
mance of the neural network diagnostic system is found to be
satisfactory and we think that this system can be used in
clinical studies. Since the time series analysis of EEG signals
is unsatisfactory and requires specialist clinicians to evalu-
ate, this application brings objectivity to the evaluation of
EEG signals.
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Introduction

The recording of the human electroencephalogram (EEG) is
a non-invasive method to record brain electric potentials
from the human scalp via a set of electrodes. Because of the
complex character of the EEG, research is needed for better
understanding of the mechanisms causing epileptic disor-
ders. EEG researchers have long been familiar with the fact
that EEG activity has a wide variety of frequency compo-
nents, which may be associated with different physiological
processes. However, the range of clinical and physiological
interests is between 0.5 and 30 Hz. This range is classified
approximately in a number of frequency bands as follows:
δ (0.5–4 Hz), θ (4–8 Hz), a (8–13 Hz), b (13–30 Hz) [1].

The epileptiform EEG includes abnormal electrical
activity generated during an epileptic seizure, superimposed
onto the ongoing background EEG. The detection of
epileptiform discharges is of particular interest in determin-
ing the regions of the brain which are involved with the
seizure activity, especially during seizure onset. Much work
has also been performed in analyzing the structure of
normal background EEG in healthy subjects. In particular,
in trying to extract a measure of ‘vigilance’ from
background wake EEG.

Since time domain analysis of EEG signal is insufficient,
generally frequency domain analysis, different signal
processing and soft computing techniques are used to
extract the diagnostic information. For example; Alkan et
al. [1], have used logistic regression and artificial neural
network for epileptic seizure detection. They used the three
different spectral analysis methods for pre-processing to get
features of EEG signals. These features were used to train
and test artificial neural network. Subasi et al. [3], have
used wavelet neural networks [2], parametric and subspace
methods for epileptic seizure detection.
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In recent times, the independent component analysis
(ICA) method has been introduced in the field of bio-signal
processing as a promising technique for separating inde-
pendent sources [4–7]. The ICA method can process raw
EEG data and find features related to various one’s activity.
Therefore, ICA overcomes the problems related with
ensemble averaging, and it observes the waveforms of the
EEG data. There have been research results reported for
applying ICA to EEG signals and magneto encephalogram
(MEG) signals. For example, Jung et al. [5], applied ICA to
removing electrooculogram (EOG) noise from EEG data.
Ikeda et al. [6], Applied ICA to removing signal noise
introduced by environmental noises. Tang et al. [7], applied
ICA to the task of estimating dipoles using MEG data. In
the field of EEG and MEG researches, the main application
for ICA is to noise reduction and dipole estimation (Fig. 1).

Hence, there has been little research undertaken to
extract the desired EEG signals related to motion and
emotion in applications of the ICA method. ICA performs a
blind separation of statistically independent sources using
higher-order statistics. Several different implementations of
ICA can be found in the literature; Comon [8], Bell and
Sejnowski [9] Makeig et al. [10] and Leal et al. [11].

In this study we have used the fast independent
component analysis (FastICA) algorithm as an projection
pursuit, because of its ease of implementation and speed of
operation. Outputs of the Fast ICA algorithm are used as an
input to a multiple layer neural network (MLPNN) to
classify the subjects as epileptic or not. The results of the
classification system are superior than the studies give in
references [1, 2].

Materials and methods

In our applications, a detailed classification between a set of
healthy subjects and a set epileptic subjects was performed.
The correct classification rates and convergence rates of the
proposed MLPNN model which uses Fast ICA as a
preprocessor was examined and then performance of the
model was reported.

Finally, some conclusions were drawn concerning the
MLPNN on classification of the EEG signals. A sample
epileptic and non-epileptic EEG signals are given in Fig. 2.
The details of the data can be found in the reference [12].
We performed all of the methods/computations described in

this study using an IBM PC with 3 GHz Pentium IV
processor, 1 GB of memory, and Windows-XPTM Profes-
sional operating system.

Independent component analysis

ICA is a novel data analysis method that has gained interest
in recent years, and it has different applications of the
algorithm to several data analysis problems. ICA has been
developed for the cocktail party problem, which involves
the separation of the relevant individual signals from the
mixture signal resulting when two or more speakers talk
simultaneously. Thus, several application examples have
been reported with the increased attention in ICA on the
recent years.

Definition of independent component analysis

Mixture signals consist of independent original signals
which overlap under different conditions. ICA can solve the
problem by which observation of the mixture signals
decomposed independent signals. Assume that we observed
an M-dimensional observation vector expressed as;

x tð Þ ¼

x1 tð Þ
x2 tð Þ
::
::

xM tð Þ

2
66664

3
77775

ð1Þ

And an N-dimensional original vector s(t) can written as;

s tð Þ ¼

s1 tð Þ
s2 tð Þ
::
::

sN tð Þ

2
66664

3
77775

ð2Þ

Without loss of generality, we can assume that both the
mixture variables and the independent components have
zero mean: if this is not true, then the observable variables
x(t) can always centered by subtracting the sample mean,
which makes the model zero-mean [15]. Using this vector-
matrix notation, to give the the relation between x(t) and
s(t) the above mixing model is written as

x tð Þ ¼ a1s1 þ a2s2 þ :::::::::::þ aNsN ¼ As tð Þ ð3Þ

Data Projection Pursuit Classification Result

Fast ICA MLPNN

Epileptic

Normal
EEG Signals

Fig. 1 Block diagram of the
proposed classification system

18 J Med Syst (2008) 32:17–20



It is implicit that there exists a linear relationship
between the signals x and s, so the vector A is given as;
A=[a1,a2,a3,...,aN].

The aim of the use of ICA is to find the estimation of the
mixing matrix A, consequently the independent source
vectors from the observed mixed vector x. This aim is the
same to find a separating matrix W that satisfies,

ŝ ¼ Wx ð4Þ
where ŝ is the estimation of s.

To find the separation matrix W, the following assump-
tions are made: (1) The sources are statistically indepen-
dent; (2) the sources must have nongaussian distributions. It
needs to point out here that non-Gaussianity is a require-
ment for the elements of ŝ , i.e. the source signals or
independent components. There are different measures of
non-Gaussianity such as kurtosis and negentropy. Non-
Gaussianity is here measured by the approximation of
negentropy.

Negentropy is based on the information-theoretic quan-
tity of (differential) entropy. The entropy of a random
variable can be interpreted as the degree of information that
the observation of the variable gives. The more random, i.e.
unpredictable and unstructured the variable is, the larger its
entropy. The differential entropy H of a random variable y
with density p(y) is defined as H(y)=−∫p(y) log p(y) dy. A
fundamental result of information theory is that a Gaussian
variable has the largest entropy among all random variables
of equal variance. This means that entropy could be used as
a measure of non-Gaussianity. To obtain a measure of non-
Gaussianity that is zero for a Gaussian variable and always
non-negative, one often uses a slightly modified version of
the definition of differential entropy, negentropy, which is
defined as J(y)=H(ygauss)−H(y), where ygauss is a Gaussian
random variable of the same covariance matrix as y. Due to
the above-mentioned properties, negentropy is always

nonnegative, and is zero if and only if y has a Gaussian
distribution [15].

The negentropy J can have the following approximation,

J yð Þ � k E G yð Þf g � EGðvÞg½ �2; ð5Þ
where G is a practically any non-quadratic function, k is a
positive constant and v is a Gaussian variable of zero mean
and unit variance.

Therefore, in order to find one independent component,
one can maximize the function JG,

JG wð Þ ¼ E G wTxð Þf g � E G vð Þf g½ �2 ð6Þ
where w, a vector in the weight matrix W, is constrained so
that E{(wTx)2}=1. According to Hyvärinen [13, 14] the
function G has the following choices:

G1 uð Þ ¼ 1=a1ð Þ log cosh a1uð Þ; ð7Þ

G2 uð Þ ¼ � exp �u2=2ð Þ; ð8Þ

G3 uð Þ ¼ 1=4ð Þu4; ð9Þ

where 1≤a1≤2, a≈1. G1 is said to be a good general-
purpose function among these three choices. When the
independent components are highly super-Gaussian, or
when robustness is very important, G2 may be better. G3

is actually based on the kurtosis and is justified on
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Fig. 2 Sample EEG recordings. a Epileptic. b Normal

Table 1 Number of epilepsy and normal EEG data after testing by
ANN

Training set

True False

Test set Positive 197 19
Negative 181 3
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statistical grounds only for estimating sub-Gaussian inde-
pendent components when there is no outlier.

Preprocessing

In the data analysis using ICA, it is necessary to carry out
preprocessing of the observation signals. This is referred to
as whitening. Because the general technique of whitening
can be easily performed as compared to the independent
component analysis, such a technique is suitable to reduce
the complexity of the problem. Hyvärinen and Oja [15],
have developed a fast fixed-point algorithm (FastICA). Fast
ICA is a method by which the independent components are
extracted one after the other by the use of the kurtosis. This
method has high-speed convergence.

Results and conclusions

Normal and epileptic EEG signals are classified by using a
standard artificial neural network (ANN). Total number of
EEG data is 200 (100 epileptic and 100 normal). Half of the
data is used for training and the other half is used for testing
the network. Since each data is very long (4,097 sample),
we divided the each data into two parts and there fore we
have 400 (doubled) the used data each has 2,048 samples.
As a result we used 200 epileptic and 200 normal EEG
signals. To lower the dimension of the signals and provide
the classification between epileptic and normal signals we
used ICA as a projection pursuit. Although there are
different ICA algorithms in literature we used the Fast
ICA algorithm because of its computational speed.

The outputs of Fast ICA are used as an input for the multi
layer perceptron neural network (MLPNN). Since the output
of the Fast ICA contains 20 components we used a MLPNN
with 20 input neurons and 1 output neuron. The optimum
number of hidden layer neurons is selected as 29 experi-
mentally. After 35 iterations the network reached a perfor-
mance of 9.01214e-024. This result can be seen in Fig. 3.

The sensitivity and specificity values can be calculated
by using the equations given below.

Sensitivity ¼ TP= TPþ FNð Þ ð10Þ

Specificity ¼ TN= FPþ TNð Þ ð11Þ
After training the MLPNN we used the test data to see

the test results of the network. The test results are
summarized in Table 1. By using these test results in Eqs.
10 and 11 [1] the sensitivity and specificity values are
founded 98% and 90.5% respectively. The results of the
classification system are especially sensitivity value supe-
rior than the studies give in references [1, 2]. The testing

performance of the neural network diagnostic system which
uses the Fast ICA algorithm as a pre-processor is found to
be satisfactory and we think that this system can be used in
clinical studies in the future. Since the time series analysis
of EEG signals is unsatisfactory and requires expert
clinicians to evaluate, this application brings objectivity to
the evaluation of EEG signals and it makes it easy to be
used in clinical applications.
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