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Abstract
The present article introduces, mathematically analyzes, and numerically validates a new
weak Galerkin mixed finite element method based on Banach spaces for the stationary
Navier–Stokes equation in pseudostress–velocity formulation. Specifically, a modified pseu-
dostress tensor, which depends on the pressure as well as the diffusive and convective terms,
is introduced as an auxiliary unknown, and the incompressibility condition is then used to
eliminate the pressure, which is subsequently computed using a postprocessing formula.
Consequently, to discretize the resulting mixed formulation, it is sufficient to provide a ten-
sorial weak Galerkin space for the pseudostress and a space of piecewise polynomial vectors
of total degree at most ’k’ for the velocity. Moreover, the weak gradient/divergence operator
is utilized to propose the weak discrete bilinear forms, whose continuous version involves
the classical gradient/divergence operators. The well-posedness of the numerical solution is
proven using a fixed-point approach and the discrete versions of the Babuška–Brezzi theory
and the Banach–Nečas–Babuška theorem. Additionally, an a priori error estimate is derived
for the proposed method. Finally, several numerical results illustrating the method’s good
performance and confirming the theoretical rates of convergence are presented.
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1 Introduction

1.1 Scope

In recent decades, there has been a growing interest in developing approximation techniques
based on general polygonal or polyhedral meshes, such as hybrid high-order (HHO) meth-
ods [13, 22], virtual element methods (VEMs) [5, 6], weak Galerkin (WG) methods (or
weak Galerkin finite element methods) [54, 55], etc. Here we focus specifically on the weak
Galerkin methods in more details. The Weak Galerkin finite element method, introduced by
Wang and Ye in [54] for second-order elliptic problems, is a novel numerical technique for
PDEs that approximates differential operators in the variational formulation using a frame-
work that mimics the theory of distributions for piecewise polynomials. This innovation
enablesWGmethods to providemultiple benefits, such as significant flexibility in polynomial
approximations and mesh generation. Additionally, carefully-designed stabilizers compen-
sate for the usual regularity of the approximating functions. Indeed, WG method may be
viewed as a type of discontinuous Galerkin (DG) finite element method in some perspec-
tives. However, unlike traditional DG methods, WG method produces more straightforward
schemes and does not require the selection of sufficiently large parameters specified in the
stabilization term. Moreover, by selecting appropriate function spaces for the weak func-
tions, some WG method variants do not even need penalty terms (see e.g., [2, 58]). These
advantages have led to WG methods being successfully applied to a variety of problems:
Brinkman equations [47, 48, 62], Stokes equations [19, 46, 57], Navier-Stokes equations
[44, 49, 59–61], Poisson-Nernst-Planck systems [36, 43], Boussinesq problem [24], coupled
Cahn-Hilliard-Navier–Stokes phase-field model [36], etc. Several other notable works can
be found in [38, 41, 50, 56] and references therein that deal with WG methods for Maxwell,
Biot and elasticity equations.
On the other hand, to date, extensive mathematical studies have been carried out to solve the
nonstationaryNavier–Stokes equation [3, 33–35, 39, 42] and its couplingwith other equations
[1, 20, 23, 25] due to its extensive applications in physics, chemistry, and engineering.
However, most of these works are from the classical families of finite elements which are
based on velocity-pressure formulation and thus are not conservative methods. To overcome
this issue of non-conservativity, numerous researchers have adopted alternative discretization
techniques, including Finite Volumes and Discontinuous Galerkin methods, etc (see e.g.,
[11, 12, 52]). Recently, some researchers have developed one type of conservative classical
approach by means of mixed finite element methods in the pseudostress–velocity-based
formulations for flow problems (see for instance [14–18, 29, 30], and the references therein).
In particular, in [28], a dual-mixed approach that proposes the velocity gradient tensor as
the main unknown of the system is extended for solving the Navier–Stokes equations. In
[16] the authors proposed and analyzed a new momentum conservative mixed finite element
method for the Navier-Stokes problem posed in nonstandard Banach space. The approach
in [16] involves introducing a pseudostress tensor relating the velocity gradient with the
convective term, leading to amixed formulation in pseudostress tensor and the velocity terms.
Furthermore, they provide a solvability and convergence analysis, specifically demonstrating
that the error decays with the optimal rate of convergence. Recently, Gatica et al. in [31] and
Gharibi in [37] extended the conservative mixed FEM approach introduced in [16], adapting
it to mixed virtual element and weak Galerkin frameworks for solving the Navier–Stokes and
Brinkman equations, respectively.
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According to the above discussion and aiming to broaden the application of the mixed-WG
method to nonlinear fluid mechanics models, we now extend the novel approach proposed
in [37] for the Brinkman equations, to address the Navier-Stokes problem. More precisely,
we are particularly interested in the development of mixed formulations not involving any
augmented terms (see e.g. [14, 15]). To this end, we now extend the applicability of the
approach employed in [16] for the fluid model, in the framework weak Galerkin method. In
fact, instead of using the primal or dual-mixed formulation of weak Galerkin method (see
e.g. [36, 55]), we now employ a modified mixed formulation and adapt the approach from
[37] to propose, up to our knowledge by the first time, a weak Galerkin mixed-FEM for
Navier–Stokes, which consists of introducing the gradient of velocity and a vector version of
the Bernoulli tensor as further unknowns. In this way, besides eliminating the pressure, which
can be approximated later on via postprocessing, the resulting mixed variational formulation
does not need to incorporate any augmented term, and it yields basically the same Banach
saddle-point structure.

1.2 Outline and Notations

The remainder of the paper is organized as follows. In Sect. 2, we introduce the model of
interest by referring to Ref. [16], summarize the dual-mixed variational formulation with the
unknownsσ andu in appropriateBanach spaces, and present themain result demonstrating its
well-posedness. We then introduce theWG discretization in Sect. 3, following Refs. [55] and
[36]. This section comprises four main parts: first, we state basic assumptions on the mesh;
second, we define the local WG space, projections, and weak differential operators; third, we
discuss their approximation properties; and fourth, we derive the globalWG subspace and the
disceret scheme. In Sect. 4, we analyze the solvability of our discrete scheme using a fixed-
point strategy. To accomplish this, we derive common estimates for the bilinear and trilinear
forms, as well as the discrete inf-sup condition, so that the classical Banach theorem, along
with the Babuška-Brezzi theory in Banach spaces, allows us to conclude, under a smallness
assumption on the data, the existence of a unique solution. Sect. 5 is dedicated to deriving
a priori error estimates for the numerical solution under a small data assumption. Finally, in
Sect. 6, we present some numerical experiments to confirm the theoretical correctness and
effectiveness of the discrete schemes.

For any vector fields v = (v1, v2)
t and w = (w1, w2)

t, we set the gradient, divergence
and tensor product operators as

∇v := (∇v1,∇v2), div(v) := ∂xv1 + ∂yv2, and v ⊗ w := (vi w j )i, j=1,2,

respectively. In addition, denoting by I the identity matrix of R2, for any tensor fields
τ = (τi j ), ζ = (ζi j ) ∈ R2×2, we write as usual

τt := (τ j i ), tr(τ ) := τ11 + τ22, τd := τ − 1

2
tr(τ )I, and τ : ζ :=

2∑

i, j=1

τi jζi j ,

which corresponds, respectively, to the transpose, the trace, and the deviator tensor of τ , and
to the tensorial product between τ and ζ .

Throughout the paper, given a bounded domain �, we let O be any given open subset of
�. By (·, ·)0,O and ‖ · ‖0,O we denote the usual integral inner product and the corresponding
norm of L2(O), respectively. For positive integersm and r , we shall use the common notation
for the Sobolev spaces Wm,r (O) with the corresponding norm and semi-norm ‖ · ‖m,r ,O and
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| · |m,r ,O, respectively; and if r = 2, we set Hm(O) := Wm,2(O), ‖ · ‖m,O := ‖ · ‖m,2,O and
| · |m,O := | · |m,2,O. Furthermore,M andM represent corresponding vectorial and tensorial
counterparts of the scalar functional space M. On the other hand, given t ∈ (1,+∞), letting
div be the usual divergence operator div acting along the rows of a given tensor, we introduce
the standard Banach space

H(divt ;�) :=
{
τ ∈ L

2(�) : div(τ ) ∈ Lt (�)
}
,

equipped with the usual norm

‖τ‖divt ;� := ‖τ‖0,� + ‖div(τ )‖0,t;�, ∀ τ ∈ H(divt ;�),

2 TheModel Problem and its Continuous Formulation

Consider a spatial bounded domain� ⊂ R
d (d = 2, 3) with a Lipschitz continuous boundary

∂� with outward-pointing unit normal n. We focus on solving the Navier–Stokes equation
with viscosity ν, where, given the body force term f ∈ L2(�) and suitable boundary data
g ∈ H1/2(∂�), the objective is to find a velocity field u : � → R and a pressure field
p : � → R such that

−ν �u + u · ∇u + ∇ p = f in �,

div(u) = 0 in �,

u = g on ∂�,

(2.1)

In addition, in order to guarantee uniqueness of the pressure, this unknown will be sought in
the space

L2
0(�) :=

{
q ∈ L2(�) :

∫

�

p = 0
}
. (2.2)

Note that due to the incompressibility of the fluid (see the second row of (2.1)), gmust satisfy
∫

�

g · n = 0.

For the subsequent analysis, we assume that the coefficient ν is piecewise constant and
positive.

Next, to obtain a velocity-pseudostress formulation, the first step is to rewrite equation
(2.1) so that stress and velocity are the only unknowns in the equation. To achieve this, we
introduce a tensor field denoted by σ , represented as

σ := ν∇u − u ⊗ u − (p + ru)I in �, (2.3)

where

ru := −cr (tr(u ⊗ u), 1)0,� = −cr (u,u)0,� with cr = 1

d|�| .

In this way, by applying the trace operator to both sides of (2.3) and utilizing the incompress-
ibility condition div(u) = 0, one arrives at

p = −1

2
(tr(σ ) + tr(u ⊗ u)) − ru in �. (2.4)
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which allows us to eliminate the pressure variable from the formulation. In turn, according
to (2.4), the assumption (2.2) becomes

∫

�

tr(σ ) = 0. (2.5)

Hence, after substituting (2.3) back into (2.1) and combining the resulting equation with
(2.5), we have the following problem, which contains the unknowns σ and u.

Problem 1 (Model problem) Find σ : � → R,u : � → R such that
⎧
⎪⎪⎨

⎪⎪⎩

σd + (u ⊗ u)d = ν ∇u in �,

div(σ ) = −f in �,∫

�

tr(σ ) = 0.

supplied with the following boundary condition

u = g on ∂�.

Next, to derive a velocity-pseudostress-based mixed formulation for Problem 1, we let X
and Y be the corresponding test spaces. We then proceed to multiply the first and second
equations of Problem 1 by τ and v, respectively, and use the fact that tr(τd) = 0 to obtain

1

ν

∫

�

σd : τd + 1

ν

∫

�

(u ⊗ u)d : τ =
∫

�

∇u : τ ∀ τ ∈ X, (2.6)

and
∫

�

div(σ ) · v = −
∫

�

f · v ∀ v ∈ Y, (2.7)

it is easy to notice that, thanks to Cauchy–Schwarz’s inequality, the first term on the left-hand
side of (2.6) makes sense for σ , τ ∈ L

2(�). In turn, regarding the term on the right-hand side
of (2.6), assuming originally that u ∈ H1(�), and given t, t ′ ∈ (1,∞), conjugate to each
other, we can integrate by parts with τ ∈ H(divt ;�), so that using the Dirichlet boundary
condition provided in Problem 1, we obtain

∫

�

∇u : τ = −
∫

�

u · div(τ ) + 〈τn, g〉 ∀ τ ∈ H(divt ;�), (2.8)

where 〈·, ·〉 stands for the duality (H−1/2(∂�),H1/2(∂�)
)
. Now, from the first term

on the right-hand side of the foregoing equation, along with the Sobolev embedding
H1(�)↪→Lt ′(�), we realize that it actually suffices to look for u ∈ Lt ′(�). However, it
is clear from (2.6) that its second term is well-defined if u ∈ L4(�), which yields t ′ = 4 and
thus t = 4/3.

At this point, in order to deal with the null mean value of tr(σ ) (cf. third row of Problem 1),
we introduce the subspace of H(div4/3;�) given by

H0(div4/3;�) :=
{
τ ∈ X :

∫

�

tr(τ ) = 0
}
.

Then, testing the new (2.6) against τ ∈ H(div4/3;�) is equivalent to doing it against τ ∈
H0(div4/3;�), and taking into account the above discussion, we define the testing spaces as

X := H0(div4/3;�), with ‖ · ‖X := ‖ · ‖div4/3;�
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and

Y := L4(�), with ‖ · ‖Y := ‖ · ‖0,4,�.

Let us introduce the following bilinear (and trilinear) forms

A(·, ·) : X × X → R A(ζ , τ ) := 1

ν

∫

�

ζd : τd ,

B(·, ·) : X × Y → R B(τ , v) :=
∫

�

v · div(τ ) ,

C(·; ·, ·) : Y × Y × X → R C(w, v; τ ) := 1

ν

∫

�

(w ⊗ v)d : τ ,

and the linear functionals (associated to given data)

G(τ ) := 〈τn, g〉 ∀ τ ∈ X and F(v) := −
∫

�

f · v ∀ v ∈ Y.

Then, with these forms at hand, the variational formulation of Problem 1 reads as follows:

Problem 2 Find the tensor σ ∈ X and the velocity u ∈ Y such that

{A(σ , τ ) + C(u,u; τ ) + B(τ ,u) = G(τ ) ∀ τ ∈ X,

B(σ , v) = F(v) ∀ v ∈ Y.

The solvability result concerning Problem (2) is established as follows.

Theorem 2.1 Let δ > 0 be the constant related to the inf-sup condition of the linear part of
the left-hand side of Problem 2 (cf. Ref. [16, Eq. (3.29)]) and cg be the upper bound of G(·),
define the ball

Ŷ :=
{
z ∈ Y : ‖z‖Y ≤ δν

2

}
,

and assume that the given data satisfy

(νδ

2

)−2
(
cg‖g‖1/2,∂� + ‖f‖0,4/3;�

)
≤ 1

ν
.

Then, there exists a unique solution (σ ,u) ∈ X × Ŷ for Problem 2, and there holds the
following stability estimate

‖σ‖X + ‖u‖Y ≤ 2

δ

(
cg‖g‖1/2,∂� + ‖f‖0,4/3;�

)
.

Proof See [16, proof of Theorem 3.8]. ��

3 Weak Galerkin Approximation

This section aims to introduce the weak Galerkin spaces and the discrete bilinear forms
essential for introducing a weak Galerkin mixed FEM scheme.
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3.1 Various Tools inWeak Galerkin Method

A fundamental aspect of the weak Galerkin method is the use of uniquely defined weak
derivatives instead of traditional derivative operators. Our emphasis here is on the weak
divergence operator, which is a crucial step in introducing our weak Galerkin technique. To
facilitate this discussion, we begin with an overview of the mesh structure.
Mesh notation. Let Kh = {K } be a partition of domain � that consists of arbitrary polygo-
nal/polyhedral elements, where the mesh size h = max{hK }, hK is the diameter of element
K . Assume that the partition Kh is WG shape regular - defined by a set of conditions as
detailed in [55]. The interior and the boundary of any element K ∈ Kh , are represented by
K 0 and ∂K , respectively. Denote by Eh the set of all edges/faces inKh , and let E0h = Eh\∂�

be the set of all interior edges/faces. Here is a set of normal directions on Eh :

Dh :=
{
ne : ne is unit and outward normal to e, for all e ∈ Eh

}
. (3.1)

Weak divergence operator and weak Galerkin space. It is well known that the weak
divergence operator is well-defined for weak matrix-valued functions τ = {τ 0, τ b} on the
element K such that τ 0 ∈ L

2(K ) and τ bne ∈ H−1/2(∂K ), where ne ∈ Dh |K . Components
τ 0 and τ b can be understood as the value of function τ in K 0 and on ∂K , respectively. We
follow [55, Section 3], and introduce for each K ∈ Kh the local weak tensor space

Xw(K ) :=
{
τ = {τ 0, τ b} : τ 0 ∈ L

2(K ) and τ bne ∈ H−1/2(∂K ) ∀ne ∈ Dh |K
}
.

(3.2)

The global space Xw is defined by gluing together all local spaces Xw(K ) for any K ∈ Kh .
Now, we define the weak divergence operator for matrix-valued functions as follows.

Definition 3.1 ([54]) For anyweakmatrix-valued function τ ∈ Xw(K ) and element K ∈ Kh ,
theweakdivergence operator, denoted bydivw, is defined as the unique vector-valued function
divw(τ ) ∈ H1(K ) satisfying

(divw(τ ), ζ )0,K := −(τ 0, ∇ζ )0,K 0 + 〈τ bne, ζ 〉0,∂K ∀ ζ ∈ H1(K ). (3.3)

Our focus will be on a subspace of Xw in which (τ b|e) = (τ |ene)ne. On the other hand,
discrete weak divergence operator can be introduced using a finite-dimensional space Xh ⊂
Xw, which will be stated in the next. First, for any mesh object 	 ∈ Kh ∪ Eh and for any
r ∈ N let us introduce the space Pr (	) to be the space of polynomials defined on 	 of
degree ≤ r , with the extended notation P−1(	) = {0}. Similarly, we let Pr (	) and Pr (	)

be the vectorial and tensorial versions of Pr (	). In addition, the jump of τ = {τ 0, τ b} on
edge/face e ∈ Eh is given by

�τ �e =
{

τ b|∂K1n∂K1 + τ b|∂K2n∂K2 on e ∈ E0h
τ bne on e ∈ Eh ∩ ∂�,

Then, given k ∈ N0, we define for any K ∈ Kh the local discrete weak Galerkin space

Xh(K ) :=
{
τ h = {τ 0h, τ bh} ∈ Xw(K ) : τ 0h |K ∈ Pk(K ) and

τ bh |e = τb ⊗ ne, τb ∈ Pk(e), ∀ e ⊂ ∂K , ∀ne ∈ Dh

}
.

In addition, the global finite dimensional spaceXh , associatedwith the partitionKh , is defined
so that the restriction of every weak function τ h to the mesh element K belongs to Xh(K ).
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Furthermore, let X̃h be a subspace of Xh consisting of functions with zero jump on each
interior boundary, that is

X̃h :=
{
τ h = {τ 0h, τ bh} ∈ Xh : �τ h�e = 0 ∀ e ∈ Eh

}
.

Definition 3.2 ([54]) For any τ h ∈ Xh(K ) and element K ∈ Kh , the discrete weak
divergence operator, denoted by divw,h, is defined as the unique vector-valued polynomial
divw,h(τ h) ∈ Pk+1(K ) satisfying

(divw,h(τ h), ζ h)0,K := −(τ 0h, ∇ζ h)0,K 0 + 〈τ bhn, ζ h〉0,∂K ∀ ζ h ∈ Pk+1(K ). (3.4)

On the other hand, for approximating the velocity unknownswe simply consider the piecewise
polynomial space of degree up to k + 1:

Yh :=
{
vh ∈ Y : vh |K ∈ Pk+1(K ) for all K ∈ Kh

}
.

L2-orthogonal projections and approximation properties. For any r ∈N and K ∈ Kh ,
we introduce L2-projection operators PPK

0,r : L
2(K ) → Pr (K ) and PK

b,r : L2(∂K ) →
Pr (∂K ) which are type of interior and boundary, and are given by

∫

K
PPK

0,r (τ ) : q̂r =
∫

K
τ : q̂r and

∫

∂K
PK

b,r (v) · qr =
∫

∂K
v · qr , (3.5)

for all (τ , v) ∈ L
2(K ) × L2(∂K ) and (̂qr ,qr ) ∈ Pr (K ) × Pr (∂K ).

Now, we introduce projection operator PPK
h into the tensorial weak Galerkin space Xh(K )

as:

PPK
h τ :=

{
PPK

0,kτ 0, PK
b,k(τb) ⊗ ne

}
, for all τ ∈ Xh(K ).

Also, for each element K ∈ Kh and function τ ∈ Xh , the global projection operator PPh on
the space Xh is defined by

PPh(τ )|K = PPK
h (τ |K ).

The approximation properties of PP0 and Ph are stated as follows.

Lemma 3.3 LetKh be a finite element partition of � satisfying the shape regularity assump-
tions A1-A4 stated in [55]. Then, for k, s,m ∈ N0 such that m ∈ {0, 1} there exist constants
C1,C2, independent on the mesh size h, such that

∑

K∈Kh

‖τ − PPK
0 (τ )‖2m,0;K ≤ C1h

2(s−m)|τ |2s s ≤ k , (3.6)

∑

K∈Kh

‖v − PK
k+1(v)‖20;K ≤ C2h

2s |v|2s s ≤ k + 1 . (3.7)

3.2 Weak Galerkin Scheme

In order to define ourweakGalerkin scheme for Problem2,we introduce,where necessary, the
discrete versions of the bilinear forms and functionals involving the weak spaces. Following
theusual procedure in theWGsetting, their construction is basedonweakderivatives to ensure
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computability for all weak functions. Notice that, for each ζ , τ ∈ Xh and z,w, v ∈ Yh , the
quantities

A(ζ , τ ), C(z,w; τ ), G(τ ) and F(v),

are computable, while the bilinear form B|Xh×Yh is not computable because it involves the
divergence operator, which cannot be evaluated for weak functions. To overcome this matter,
employing Definition 3.2 we define the discrete bilinear form BK

h : Xh(K )×Pk+1(K ) → R
by

BK
h (τ , v) :=

∫

K
divw,h(τ h) · vh ∀ (τ , v) ∈ Xh(K ) × Pk+1(K ). (3.8)

On the other hand, despite the computability of A|Xh×Xh , this form needs an additional
stabilization term to achieve thewell-posedness of ourweakGalerkin scheme.More precisely,
we define the corresponding discrete bilinear form as follows:

AK
h (ζ , τ ) := 1

ν

∫

K
ζd
0 : τd

0 + ρ SK (ζ , τ ) ∀ ζ , τ ∈ Xh(K ), (3.9)

where ρ is the piecewise constant on Kh and the stabilization form SK (·, ·) : Xh(K ) ×
Xh(K ) → R is given by

SK (ζ , τ ) := hK
〈
ζ 0n − ζ bn, τ 0n − τ bn

〉
0,∂K ∀ ζ , τ ∈ Xh(K ). (3.10)

In addition, the global bilinear forms Ah and Bh can be derived by adding the local contri-
butions, that is,

Ah(·, ·) :=
∑

K∈Kh

AK
h (·, ·) and Bh(·, ·) :=

∑

K∈Kh

BK
h (·, ·).

Finally, let us introduce the subspace of X̃h as

X0,h :=
{
τ h = {τ 0h, τ bh} ∈ X̃h :

∫

�

tr(τ 0h) = 0

}
.

Referring to the above space and the discrete bilinear forms provided by (3.9) and (3.8), the
discrete weak Galerkin problem reads as follow.

Problem 3 Find σ h ∈ X0,h and uh ∈ Yh such that
{Ah(σ h, τ h) + C(uh,uh; τ h) + Bh(τ h,uh) = G(τ h) ∀ τ h ∈ X0,h,

Bh(σ h, vh) = F(vh) ∀ vh ∈ Yh .

4 Solvability Analysis

The goal of this section is to establish the well-posedness of Problem 3.We start by analyzing
the stability properties of the forms Ah and Bh . Next, we introduce resolvent operators for
each decoupled equations of Problem 3 and reformulate the problem as an equivalent fixed-
point equation. Finally, we demonstrate that these operators are well-defined and use the
classical Banach theorem, together with the Babuška–Brezzi theory in Banach spaces to
conclude the solvability of Problem 3.
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4.1 Stability Properties

We begin by equipping the approximate pair spaces X̃h and Yh +H1(�) with the following
discrete norms, respectively (see e.g., [55])

‖τ h‖2H,h :=
∑

K∈Kh

[‖τ 0h‖20,K + SK (τ h, τ h)
]

for all τ h ∈ X̃h,

and

‖vh‖21,h :=
∑

K∈Kh

|vh |21,K +
∑

e∈Eh
h−1
e ‖Pb,k�vh�‖20,e for all vh ∈ Yh + H1(�).

Note that the above suggests the following norm on X̃h × Yh

‖(τ h, vh)‖2h := ‖τ h‖2H,h + ‖vh‖21,h for all (τ h, vh) ∈ X̃h × Yh .

Next, we provide the following result which is a counterpart of [16, Lemma 3.1] for the
weak divergence operator.

Lemma 4.1 There exists ĉ� > 0 depends on � but independent of mesh size, such that

ĉ�‖τ 0h‖20,� ≤ ‖τd
0h‖20,� + ‖divw,h(τ h)‖20,4/3;� ∀ τ h ∈ X̃h . (4.1)

Proof We extend the proof [32, Lemma 2.3, Chapter 3] in the discrete framework. Indeed,
by recalling from [7, third proposition of eq. (2.11)] that the divergence operator div is an
isomorphism from R⊥

k+1 to the whole Pk , where

Rk+1 =
{
zk+1 := rot(vk+2) with vk+2 ∈ Pk+2

}
, Pk+1 = Rk+1 ⊕ R⊥

k+1. (4.2)

Then, given τ h = {τ 0h, τ bh} ∈ Xh , by knowing τ 0h |K ∈ Pk(K )we have tr(τ 0h |K ) ∈ Pk(K )

and therefore there exist a unique zk+1 ∈ R⊥
k+1 such that div(zk+1) = tr(τ 0h) in K and

‖zk+1‖1,K ≤ c1‖ tr(τ 0h)‖0,K , (4.3)

where c1 > 0 is a constant independent of zk+1. Now, utilizing that fact div(zk+1) = ∇zk+1 :
I and the definition of deviatoric, we have that

‖tr(τ0h)‖20,� =
∑

K∈Kh

∫

K
tr(τ0h) div(zk+1) =

∑

K∈Kh

∫

K
tr(τ0h)I : ∇z

= 2
∑

K∈Kh

∫

K
(τ0h − τd0h) : ∇zk+1

= 2
∑

K∈Kh

{∫

∂K\∂�
τbhn · zk+1 −

∫

K
divw,h(τh) · zk+1 −

∫

K
τd0h : ∇zk+1

}
,

= 2
∑

e∈E0h

∫

e
�τh�e · zk+1 − 2

∑

K∈Kh

{∫

K
divw,h(τh) · zk+1 +

∫

K
τd0h : ∇zk+1

}
,

where in the third step we have used the definition of discrete weak divergence (cf. (3.4)).
Note here that the first term on the right-hand side of the above equation vanishes due to
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the definition of X̃h . Hence, applying Cauchy–Schwarz and Hölder inequalities, Sobolev
embedding H1↪→L4 and then (4.3), we find that

‖tr(τ0h)‖20,� ≤
∑

K∈Kh

{
‖divw,h(τh)‖0,4/3,K ‖zk+1‖0,4,K + ‖τd0h‖0,K ‖∇zk+1‖0,K

}

≤ 2max{cem, 1}
⎛

⎝
∑

K∈Kh

‖zk+1‖21,K
(‖divw,h(τh)‖0,4/3,K + ‖τd0h‖0,K

)2
⎞

⎠
1/2

≤ 2max{cem, 1}c1
⎛

⎝
∑

K∈Kh

‖tr(τ0h)‖20,K
(‖divw,h(τh)‖0,4/3,K + ‖τd0h‖0,K

)2
⎞

⎠
1/2

,

which gives

‖ tr(τ 0h)‖20,� ≤ 4c1 max{cem, 1}
∑

K∈Kh

{
‖divw,h(τ h)‖20,4/3,K + ‖τd

0h‖20,K
}
.

This inequality and the fact that

‖τ 0h‖20,� = ‖τd
h‖20,� + 1

2
‖ tr(τ 0h)‖20,�,

complete the proof by letting ĉ� := 2c1 max{cem, 1} + 1. ��

Then, some properties of Ah (cf. (3.9)) are established as follows.

Lemma 4.2 The discrete bilinear formAh defined in (3.9), satisfies the following properties:

• consistency: for any ξ ∈ H
1(�), we have that

Ah(ζ h, ξ) = A(ζ h, ξ) ∀ ζ h ∈ Xh .

• stability and boundedness: there exists a positive constant cA, independent of K and h,
such that:

∣∣Ah(ζ h, τ h)
∣∣ ≤ cA ‖ζ h‖H,h ‖τ h‖H,h ∀ ζ h, τ h ∈ Xh, (4.4)

and let X̂h be the discrete kernel of the bilinear form Bh. Then, there exists constant
α > 0, independent of K , such that

Ah(τ h, τ h) ≥ α ‖τ h‖2H,h ∀ τ h ∈ X̂h . (4.5)

Proof By considering ξ ∈ H
1(�) and ζ h ∈ Xh and employing the definition of the discrete

formAh (cf. (3.9)), along with the observation that the stabilization term (cf. (3.10)) vanishes
when one of the components is sufficiently regular, we deduce the "consistency" property.
Next, to verify the boundedness ofAh , we use the Cauchy–Schwarz inequality and, in virtue
of

‖τd
0h‖20,K = ‖τ 0h‖20,K − 1

2
‖ tr(τ 0h)‖20,K ≤ ‖τ 0h‖20,K . (4.6)
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This gives

∣∣Ah(ζ h, τ h)
∣∣ =

∣∣∣∣
∑

K∈Kh

(1
ν

∫

K
ζd
0h : τd

0h + ρ SK (ζ h, τ h)
)∣∣∣∣

≤
∑

K∈Kh

(1
ν
‖ζ 0h‖0,K ‖τ 0h‖0,K + ρ

(
SK (ζ h, ζ h)

)1/2 (SK (τ h, τ h)
)1/2 )

≤ max

{
1

ν
, ρ

}
‖ζ h‖H,h ‖τ h‖H,h .

We now aim to establish the ellipticity of Ah on the discrete kernel of Bh |Xh×Yh , that is,

X̂h :=
{
τ h ∈ Xh :

∫

�

divw,h(τ h) · vh = 0 ∀ vh ∈ Yh

}
,

which, together with fact divw,h(τ h) ∈ Yh (cf. Definition 3.2) implies that

X̂h :=
{
τ h ∈ Xh : divw,h(τ h) = 0 in �

}
. (4.7)

Therefore, employing Lemma 4.1 and the fact that τ h is the weak divergence-free, we obtain

Ah(τ h, τ h) =
∑

K∈Kh

(1
ν
‖τd

0h‖20,K + ρ SK (τ h, τ h)
)

≥
∑

K∈Kh

( ĉ�

ν
‖τ 0h‖20,K + ρ SK (τ h, τ h)

)

≥ min

{
ĉ�

ν
, ρ

}
‖τ h‖2H,h ,

which together with setting cA = max

{
1

ν
, ρ

}
and α = min

{
ĉ�

ν
, ρ

}
completes the proof.

��
To establish the discrete inf-sup condition for the bilinear form Bh , we require a preliminary
result, as stated in the following lemma.

Lemma 4.3 For any τ h ∈ Xh and vh ∈ Yh, we have

Bh(τ h, vh) =
∑

e∈Eh
〈τ bhne, �vh�〉e −

∑

K∈Kh

(τ 0h,∇vh)0,K .

Proof It straightforwardly follows from the definition of Bh , as given in (3.8), and the appli-
cation of the discrete divergence operator (cf. Definition 3.2). ��
We are now in a position to establish the discrete inf-sup condition for the bilinear from Bh .

Lemma 4.4 There exists a positive constant β̂, independent of h, such that

sup
0 �=τ h∈Xh

Bh(τ h, vh)
‖τ h‖H,h

≥ β̂ ‖vh‖1,h ∀ vh ∈ Yh . (4.8)

Proof In what follows, we proceed similarly to the proof of [55, Lemma 3.3]. In fact, given
vh ∈ Yh , we set

{
τ 0h = −∇vh in K ,

τ bh = h−1
e Pb,k�vh� ⊗ ne on e,
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which satisfies

Bh(τ h, vh) =
∑

e∈Eh
〈Pb,k�vh�,Pb,k�vh�〉e +

∑

K∈Kh

(∇vh,∇vh)0,K = ‖vh‖21,h . (4.9)

On the other hand, we use the definition of the discrete norm ‖ · ‖H,h to the above chosen
τ h := {τ 0h, τ bh} and the trace inequality, to obtain

‖τ h‖2H,h =
∑

K∈Kh

(
‖∇vh‖20,K + SK (τ h, τ h)

)

=
∑

K∈Kh

(
‖∇vh‖20,K + hK ‖(∇vh)n + h−1

e Pb,k�vh�‖20,∂K
)

≤ (1 + Ctr)
∑

K∈Kh

‖∇vh‖20,K +
∑

e∈Eh
h−1
e ‖Pb,k�vh�‖20,e

≤ max
{
1, (1 + Ctr)

}‖vh‖21,h .

Combining the above result with (4.9) concludes the desired inequality (4.8) with setting
β̂ := 1√

max{1,(1+Ctr)} . ��

The boundness property of the discrete bilinear form Bh (cf. (3.8)) is established as follows.

Lemma 4.5 The discrete bilinear form Bh(·, ·) is bounded in Xh ×Yh. In other words, there
exists a positive constant cB such that

sup
0 �=(τ h ,vh)∈Xh×Yh

Ah[(ζ h,wh), (τ h, vh)]
‖(τ h, vh)‖h ≥ αA ,d ‖(ζ h,wh)‖h . (4.10)

Proof An application of Lemma 4.3 and Cauchy–Schwarz inequality, yields

∣∣Bh(τ h, vh)
∣∣ ≤

∑

e∈Eh
‖τ bhne‖0,e ‖�vh�‖0,e +

∑

K∈Kh

‖τ 0h‖0,K ‖∇vh‖0,K

≤
⎛

⎝
∑

e∈Eh
he‖τ bhne‖20,e

⎞

⎠
1/2 ⎛

⎝
∑

e∈Eh
h−1
e ‖�vh�‖20,e

⎞

⎠
1/2

+‖τ 0h‖0,�
⎛

⎝
∑

K∈Kh

‖∇vh‖20,K
⎞

⎠
1/2

≤
{⎛

⎝
∑

e∈Eh
he‖τ bhne‖20,e

⎞

⎠
1/2

+ ‖τ 0h‖0,�
}

‖vh‖1,h . (4.11)

Our aim is now to show that

⎛

⎝
∑

e∈Eh
he‖τ bhne‖20,e

⎞

⎠
1/2

+ ‖τ 0h‖0,� � ‖τ h‖H,h ∀ τ h ∈ Xh .
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To attain the aforementioned inequality, we employ the trace inequality, resulting
∑

e∈Eh
he‖τ bhne‖20,e ≤ 2

∑

e∈Eh

(
he‖(τ bh − τ 0h)ne‖20,e + he‖τ 0hne‖20,e

)

≤ 2
∑

e∈Eh
he‖(τ bh − τ 0h)ne‖20,e + 2 C2tr

∑

K∈Kh

‖τ 0h‖20,K .

Substituting the above result back into (4.11) finishes the proof of lemma. ��

Then, knowing from Lemmas 4.2,4.4 and 4.5, that the pair of bilinear forms (Ah,Bh) satis-
fies the hypotheses of the discrete Babuška-Brezzi theory (see, e.g. [26, Proposition 2.42]),
straightforward application of this result yields the discrete inf-sup condition for the bilinear
form Ah : (Xh × Yh) × (Xh × Yh) → R defined by

Ah[(ζ h,wh), (τ h, vh)] := Ah(ζ h, τ h) + Bh(τ h,wh) + Bh(ζ h, vh). (4.12)

In other words, there exists the positive constant αA ,d, depending on cA, cB, α, β̂, such that

sup
0 �=(τ h ,vh)∈Xh×Yh

Ah[(ζ h,wh), (τ h, vh)]
‖(τ h, vh)‖h ≥ αA ,d ‖(ζ h,wh)‖h . (4.13)

Furthermore, the boundedness of the trilinear form C(·; ·, ·) onYh×Yh×Xh can be readily
inferred by utilizing the Hölder inequality, the Sobolev embedding H1↪→L4 and inequality
(4.6), as follows:

∣∣C(wh; vh, τ h)
∣∣ =

∣∣∣
1

ν

(
(wh ⊗ vh)d, τ 0h

)
0,�

∣∣∣

=
∣∣∣
1

ν

(
(wh ⊗ vh), τd

0h

)
0,�

∣∣∣ ≤ 1

ν
‖wh‖Y‖vh‖Y‖τd

0h‖0,�
≤ c2em

ν
‖wh‖1,h‖vh‖1,h‖τ h‖H,h .

(4.14)

4.2 The Fixed-Point Strategy

We begin by introducing the associated fixed-point operator for any zh ∈ Yh as Sd(zh) =
u
,h , where (σ 
,h,u
,h) ∈ X0,h × Yh is the solution of the linearized version of Problem 3,
that is,

{Ah(σ 
,h, τ h) + C(zh,u
,h; τ h) + Bh(τ h,u
,h) = G(τ h) ∀ τ h ∈ X0,h,

Bh(σ 
,h, vh) = F(vh) ∀ vh ∈ Yh .
(4.15)

Equivalently, given zh ∈ Yh , introducing the bilinear form Ah,zh : (Xh × Yh) × (Xh ×
Yh) → R given by

Ah,zh [(ζ h,wh), (τ h, vh)] := Ah[(ζ h,wh), (τ h, vh)] + C(zh;wh, τ h), (4.16)

and the linear functional F : Xh × Yh → R as

F (τ h, vh) := G(τ h) + F(vh). (4.17)

for all (ζ h,wh), (τ h, vh) ∈ Xh × Yh , the linearized problem (4.15) can be rewritten as

Ah,zh [(σ 
,h,u
,h), (τ h, vh)] = F (τ h, vh) ∀ (τ h, vh) ∈ X0,h × Yh . (4.18)
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It can be observed that solving Problem 3 is equivalent to seeking a fixed point of Sd, that
is: Find uh ∈ Yh such that

Sd(uh) = uh .

Next, we utilize the discrete version of classical Banach–Nečas–Babuška theorem (see
e.g, [26, Theorem 2.22]) to demonstrate that, for any arbitrary zh ∈ Yh , the problem (4.15)
(or equivalently (4.18)) is well-posed, implying the well-definedness of Sd.

The following lemma demonstrates the global discrete inf-sup condition for Ah,zh on
space Vh := Xh × Yh .

Lemma 4.6 For any zh ∈ Yh such that

‖zh‖1,h ≤ ν αA ,d

2c2em
, (4.19)

there holds

sup
0 �=(τ h ,vh)∈Vh

Ah,zh [(ζ h,wh), (τ h, vh)]
‖(τ h, vh)‖h ≥ αA ,d

2
‖(ζ h,wh)‖h ∀ (ζ h,wh) ∈ Vh .

(4.20)

where αA ,d is the positive constant in (4.13).

Proof Bearing in mind the definition of Ah,zh (cf. (4.16)) for each zh ∈ Yh , and combining
(4.13) with the effect of the extra term given by C(zh; ·, ·), which means invoking the upper
bound provided by (4.14), we arrive at

sup
0 �=(τ h ,vh)∈Vh

Ah,zh [(ζ h,wh), (τ h, vh)]
‖(τ h, vh)‖h

≥
{
αA ,d − c2em

ν
‖zh‖Y

}
‖(ζ h,wh)‖h ∀ (ζ h,wh) ∈ Vh,

from which, under the assumption (4.19) we arrive at (4.20), which ends the proof. ��
Nowwe ready to show that map Sd is well-defined or equivalently problem (4.15) is uniquely
solvable.

Lemma 4.7 Let the assumption of Lemma 4.6 be satisfied. Then, there exists a unique
(σ 
,h,u
,h) ∈ Xh × Yh solution to problem (4.15). In addition, there holds

‖Sd(zh)‖1,h = ‖u
,h‖1,h ≤ 2

αA ,d

(
‖f‖0,4/3;� + cg‖g‖1/2,∂�

)
. (4.21)

Proof A straightforward application of the classical Babuška–Brezzi theory and Lemma 4.6
implies that problem (4.15) is well-posed. For the second part of proof, by combining (4.18)
and Lemma 4.6 with considering (ζ h,wh) := (σ 
,h,u
,h), we readily obtain

αA ,d

2
‖(σ 
,h,u
,h)‖h ≤ sup

0�=(τ h ,vh)∈Vh
Ah,zh [(σ 
,h,u
,h), (τ h, vh)]

‖(τ h, vh)‖h
= sup

0 �=(τ h ,vh)∈Vh
F (τ h, vh)
‖(τ h, vh)‖h ≤

(
cg‖g‖1/2,∂� + ‖f‖0,4/3;�

)
,

where the boundness of F was used in the last step, and this finishes the proof. ��
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We continue the analysis by establishing sufficient conditions under which Sd maps a closed
ball of Yh into itself. Let us define the set

Ŷh :=
{
zh ∈ Yh : ‖zh‖1,h ≤ ν αA ,d

2c2em

}
,

and state the following result.

Lemma 4.8 Assume that the data are sufficiently small so that

(
cg‖g‖1/2,∂� + ‖f‖0,4/3;�

)
≤ ν α2

A ,d

4c2em
.

Then, Sd(Ŷh) ⊆ Ŷh.

Proof It deduces straightly from a priori estimate stated by (4.21). ��

We now address the continuity property of Sd.

Lemma 4.9 For any zh, yh ∈ Yh, there holds

‖Sd(zh) − Sd(yh)‖1,h ≤ 4c2em
ν α2

A ,d

(
‖f‖0,4/3;� + cg‖g‖1/2,∂�

)
‖zh − yh‖1,h . (4.22)

Proof Given zh, yh ∈ Ŷh we let Sd(zh) = u
,h and Sd(yh) = u◦,h , where (σ 
,h,u
,h) and
(σ ◦,h,u◦,h) are the corresponding solutions of equation (4.18). It follows from (4.18) that

Ah,zh [(σ 
,h,u
,h), (τ h, vh)] = Ah,yh [(σ ◦,h, y◦,h), (τ h, vh)] ∀ (τ h, vh) ∈ Vh,

from which, according to the definitions of Ah,zh and Ah,yh (cf. (4.16)), we have

Ah[(σ 
,h − σ ◦,h,u
,h − u◦,h), (τ h, vh)] = C(yh,u◦,h, τ h) − C(zh,u
,h, τ h).

This result, combined with (4.12) by setting (ζ h,wh) := (σ 
,h − σ ◦,h,u
,h − u◦,h), yields

Ah,zh [(σ 
,h − σ ◦,h,u
,h − u◦,h), (τ h, vh)] = Ah[(σ 
,h − σ ◦,h,u
,h − u◦,h), (τ h, vh)]
+ C(zh,u
,h − u◦,h; τ h)

= C(yh,u◦,h; τ h) − C(zh,u
,h; τ h) + C(zh,u
,h − u◦,h; τ h)

= −C(zh − yh,u◦,h; τ h).

Now, we apply the discrete global inf–sup condition (4.20) to the left-hand side of the above
equation and utilize the estimates (4.14) and (4.21), to get

αA ,d

2
‖(σ 
,h − σ ◦,h , u
,h − u◦,h)‖h ≤ sup

0�=(τh ,vh )∈Vh

Ah,zh [(σ 
,h − σ ◦,h , u
,h − u◦,h), (τh , vh)]
‖(τh , vh)‖h

= sup
0�=(τh ,vh )∈Vh

C(yh − zh ,u◦,h; τh)

‖(τh , vh)‖h

≤ c2em
ν

‖zh − yh‖1,h ‖u◦,h‖1,h

≤ 2c2em
ναA ,d

(
‖f‖0,4/3;� + cg‖g‖1/2,∂�

)
‖zh − yh‖1,h .
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So, thanks to the above inequality, we arrive at

‖Sd(zh) − Sd(yh)‖1,h = ‖u
,h − u◦,h‖1,h
≤ ‖(σ 
,h − σ ◦,h,u
,h − u◦,h)‖h ≤ 4

α2
A ,dν

(
‖f‖0,4/3;� + cg‖g‖1/2,∂�

)

‖zh − yh‖1,h ,

and thus ends the proof. ��
The main result of this section is summarized in the following theorem.

Theorem 4.10 Assume that, in addition to the hypothesis of Lemma 4.8, the data satisfy

4c2em
ν α2

A ,d

(
cg‖g‖1/2,∂� + ‖f‖0,4/3;�

)
< 1.

Then, there exists a unique solution (σ h,uh) ∈ X0,h × Yh for Problem 3. Moreover, there
holds

‖(σ h,uh)‖h ≤ 2

αA ,d

(
‖f‖0,4/3;� + cg‖g‖1/2,∂�

)
. (4.23)

Proof The compactness of Sd on space Ŷh and the Lipschitz-continuity of Sd are guaranteed
by Lemmas 4.8 and 4.9, respectively. Hence, by applying the Banach fixed-point theorem
directly to Problem 3, one can conclude its existence and uniqueness. Furthermore, the
stability result (4.23) is derived straightly from (4.21) stated in Lemma 4.7. ��

5 Convergence Analysis

In this section, we are interested in deriving a priori estimate for errors

‖σ − σ h‖H,h, ‖u − uh‖1,h and ‖u − uh‖0,�.

where (σ ,u) ∈ X × Y with u ∈ Ŷ, is the unique solution of Problem 2, and (σ h,uh) ∈
X0,h × Yh with uh ∈ Ŷh is the unique solution of Problem 3. As a byproduct of this, we
also derive a priori estimate for ‖p − ph‖0,�, where ph is the discrete pressure computed
according to the postprocessing formula suggested by (2.4), that is

ph := −1

2
(tr(σ 0h) + tr(uh ⊗ uh)) − ruh . (5.1)

To this end, we divide our result into suboptimal and optimal convergence for the velocity.

5.1 Suboptimal Convergence

We begin by introducing the following lemmas, which will play an essential role in the error
analysis.

Lemma 5.1 (trace inequality) Assume that the partition Kh satisfies the shape regularity
assumptionsA1-A4 stated in [55]. Then, there exists a constant Ctr such that for any K ∈ Kh

and edge/face e ⊂ ∂K, we have

‖v‖20,e ≤ Ctr
(
h−1
K ‖v‖20,K + hK ‖∇v‖20,K

)
. (5.2)
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Proof See [55, proof of Lemma A.3]. ��

Lemma 5.2 (inverse inequality) Let K ⊂ Rd be a d-simplex which has diameter hK and is
shape regular. Assume that p and q be non-negative integers such that p ≤ q. Then, there
exists a constant Cinv such that

‖�‖0,q,K ≤ Cinv hd( 1q − 1
p ) ‖�‖0,p,K , (5.3)

for any polynomial � of degree no more than k.

Lemma 5.3 For σ ∈ H
r+1(�) and r ∈ N such that r ≤ k, there exist positive constants C0

and Cs such that
∑

K∈Kh

hK ‖σn − PK
b (σn)‖20,∂K ≤ C0 h

2(r+1)‖σ‖2r+1, (5.4)

and
∣∣SK (PPhσ , τ h)

∣∣ ≤ Csh
r+1‖σ‖r+1‖τ h‖H,h, (5.5)

for all τ h ∈ Xh

Proof The result follows by proceeding analogously to the proof of [36, eqs. (33) and (34)]
for the vector version. We omit further details. ��

Thanks to the projection error estimate stated in Lemma 3.3, we only need to analyze the
error functions defined by

θh := PPhσ − σ h = {PPK
0 σ − σ 0h, (PK

b (σne) − σ bhne) ⊗ ne
}

and θh := Phu − uh .

On the other hand, as the primary step in convergence analysis, we derive the error equation
as follows.

• For any τ h ∈ Xh , from the first equation of Problem 2, we deduce

Ah(θh, τ h) + Bh(τ h, θh) = [Ah(PPhσ , τ h) + Bh(τ h,Phu)
]

−[Ah(σ h, τ h) + Bh(τ h,uh)
]

= A(PPhσ , τ h) + S(PPhσ , τ h) + Bh(τ h,Phu) + C(uh;uh, τ h) − G(τ h).

We test the first equation of Problem 1, i.e., σd + (u ⊗ u)d − ν∇u = 0 against τ 0 h ,
where τ h ∈ Xh , and add it on the right-hand side of the above equation,then use the
L2-orthogonality property of projections PP0, Ph , along with the definition of discrete
weak divergence operator (cf. Definition 3.2) and Green’s formula, to obtain

Ah(θh, τ h) + Bh(τ h, θh)

= 1

ν

∫

�

(PP0σ )d : τd
0h + S(PPhσ , τ h) + Bh(τ h,Phu) + C(uh;uh, τ h)

−
(
G(τ h) + 1

ν

∫

�

σd : τd
0h −

∫

�

∇u : τ 0h + 1

ν

∫

�

(u ⊗ u)d : τ 0h

)

= S(PPhσ , τ h) +
(
C(uh;uh, τ h) − C(u;u, τ h)

)

+
∑

K∈Kh

〈(τ 0h − τ bh)n, u − Phu〉∂K .
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• An application of the second equation of Problem 1, that is, div(σ ) + f = 0 with test
function vh ∈ Yh , along with Definition 3.2 and Green’s formula, gives

Bh(θh, vh) = Bh(PPhσ , vh) − B(σ , vh) =
∑

K∈Kh

〈PK
b (σn) − σn, vh〉∂K . (5.6)

Hence, the error equation reads as follows.

Problem 4 Find error functions θh ∈ Xh and θh ∈ Yh such that
{Ah(θh, τ h) + Bh(τ h, θh) + [C(u;u, τ h) − C(uh;uh, τ h)

] = L1((σ ,u); τ h),

Bh(θh, vh) = L2(σ , vh),
(5.7)

in which

L1((σ ,u); τ h) := S(PPhσ , τ h) +
∑

K∈Kh

〈(τ 0h − τ bh)n, u − Phu〉∂K ,

L2(σ , vh) :=
∑

K∈Kh

〈PK
b (σn) − σn, vh〉∂K .

for all τ h ∈ Xh and vh ∈ Yh.

The following result states the estimate for the error terms that appear in Problem 4.

Lemma 5.4 Let σ ∈ X ∩ H
r+1(�), u ∈ Y ∩ Hr+2(�) and r ≤ k. Then, there exist the

constants C1 and C2 such that
∣∣L1((σ ,u); τ h)

∣∣ ≤ C1 hr+1 (‖σ‖r+1 + ‖u‖r+2) ‖τ h‖H,h ∀ τ h ∈ Xh,∣∣L2(σ ; vh)
∣∣ ≤ C2 hr+1‖σ‖r+1‖vh‖1,h ∀ vh ∈ Yh .

Proof The proof is analogous to that of [36, Lemma 4]. ��
Nowwe are in position of establishing the main result of this section, namely, the suboptimal
rate of convergence for the weak Galerkin scheme provided by Problem 3.

Theorem 5.5 Assume that the data satisfy

4

ναA αA ,d

(
‖f‖0,4/3;� + cg‖g‖1/2,∂�

)
≤ 1

2
, (5.8)

and let (σ h,uh) ∈ Xh ×Yh be the solution to Problem 3 and (σ ,u) ∈ X×Y be the solution
of Problem 2 satisfying the regularity conditions σ ∈ H

k+1(�) and u ∈ Hk+2(�). Then,
there exists a positive constant Csub, independent of h, such that

‖PPhσ − σ h‖H,h + ‖Phu − uh‖1,h ≤ Csub hk+1
(
‖σ‖k+1 + ‖u‖k+2

)
. (5.9)

Proof Bearing in mind the definition ofAh,uh (cf. (4.16)), utilizing Problem 4 (cf. (5.7)), and
some simple computations we obtain

Ah,uh [(θh, θh), (τ h, vh)]
= [C(uh; θh, τ h) − C(u;u, τ h) + C(uh;uh, τ h)

]
,

+L1((σ ,u); τ h) + L2(σ , vh).
(5.10)

Next, by adding and subtracting some suitable terms and recalling that θh = Phu − uh , the
first term on the right-hand side of the above equation can be rewritten as

C(uh; θh, τ h) − C(u;u, τ h) + C(uh;uh, τ h)

= C(uh;Phu − u, τ h) + C(uh − u;u, τ h)

= [C(uh;Phu − u, τ h) + C(Phu − u;u, τ h)
] − C(θh;u, τ h).

(5.11)
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Now, it suffices to substitute (5.11) back into (5.10) and employ the discrete global inf-sup of
Ah,uh (cf. Lemma 4.6, eq. (4.20)), the continuity property of C (cf. (4.14)) and the estimates
of L1 and L2 (cf. Lemma 5.4), to arrive at

αA ,d

2
‖(θh, θh)‖h ≤ 1

ν
‖Phu − u‖Y

(
cem‖uh‖1,h + ‖u‖Y

)
+ cem

ν
‖u‖Y‖θh‖1,h

+ C3 hk+1
(
‖σ‖k+1 + ‖u‖k+2

)
,

(5.12)

where C3 is a constant depending on C1, C2.
In this way, using the fact that u ∈ Ŷ and uh ∈ Ŷh , in particularly a priori bounds provided

by (4.21) and (4.23), and the inequality (5.12) we deduce that

αA ,d

2
‖(θh, θh)‖h ≤

{
4

ν min{αA , αA ,d}‖Phu − u‖Y + 2

αA ν
‖(θh, θh)‖h

}

(
‖f‖0,4/3;� + cg‖g‖1/2,∂�

)

+ C3 hk+1
(
‖σ‖k+1 + ‖u‖k+2

)
,

which, together with assumption (5.8), implies (5.9) by considering

Csub := 2

αA ,d
max

{
4

ν min{αA , αA ,d}
(‖f‖0,4/3;� + cg‖g‖1/2,∂�

)
, C3

}
,

and concludes the proof. ��

5.2 Optimal Convergence

To obtain an optimal order error estimate for the vector component θh = uh − Phu in the
usual L2-norm, we consider a dual problem that seeks ϑ and � satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ϑd + (u ⊗ �)d = ν∇� in �,

−div(ϑ) = θh in �,∫

�

tr(ϑ) = 0 and � = 0 on ∂�,

(5.13)

Assume that the usual H2-regularity is satisfied for the dual problem; i.e., for any θh ∈ L2(�),
there exists a unique solution (ϑ,�) ∈ H

1(�) × H2(�) such that

‖ϑ‖1 + ‖�‖2 ≤ Creg‖θh‖0,�. (5.14)

The main result of this section is stated in the following theorem.

Theorem 5.6 Let the assumption of Theorem 5.5 be satisfied. Also, assume that (ϑ,�) ∈
H

1(�) × H2(�) be a solution of (5.13). Then, there exists a positive constant Copt, inde-
pendent of h, such that

‖Phu − uh‖0 ≤ Copt hk+2
(
‖u‖k+2 + ‖σ‖k+1

)
. (5.15)

Proof We divide the proof into three steps.
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Step 1: discrete evolution equation for the error. First, for any v ∈ H1(�) using Definition
3.2 and Green’s formula, we obtain the following result

Bh(τ h,Phv) =
∑

K∈Kh

[ − (τ 0h,∇(Phv))K + 〈τ bhn,Phv〉∂K
]

=
∑

K∈Kh

[
(div(τ 0h),Phv)K + 〈(τ bh − τ 0h)n,Phv〉∂K

]

=
∑

K∈Kh

[
(div(τ 0h), v)K + 〈(τ bh − τ 0h)n,Phv〉∂K

]

=
∑

K∈Kh

[ − (τ 0h,∇v)K + 〈τ 0hn, v〉∂K + 〈(τ bh − τ 0h)n,Phv〉∂K
]

=
∑

K∈Kh

[ − (τ 0h,∇v)K + 〈(τ 0h − τ bh)n, v − Phv〉∂K + 〈τ bhn, v〉∂K
]
.

(5.16)

Now, testing of Eq. (5.13) against (θh, θh) yields

A(θh,ϑ) + C(u;�, θh) =
∫

�

∇� : θ0h , and (5.17a)

−B(ϑ, θh) = (θh, θh)0,� . (5.17b)

Then, by employing (5.16) and the fact that � = 0 on ∂�, the term on the right-hand side of
(5.17a) can be rewritten as:

∫

�

∇� : θ0h = −Bh(θh,Ph�) +
∑

K∈Kh

〈(θ0h − θbh)n,� − Ph�〉∂K ,

from which, replacing the first term on the right-hand by the second row of (5.7) and using
the fact that � ∈ H1(�) and � = 0 on ∂� gives

∫

�

∇� : θ0h = L2(σ ,Ph�) +
∑

K∈Kh

〈(θ0h − θbh)n,� − Ph�〉∂K

=
∑

K∈Kh

〈σn − PK
b (σn),� − Ph�〉∂K

︸ ︷︷ ︸
=:I1

+
∑

K∈Kh

〈(θ0h − θbh)n,� − Ph�〉∂K
︸ ︷︷ ︸

=:I2

.

(5.18)
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On the other hand, by following the similar arguments of (5.6) the term on the left-hand side
of (5.17b) can be rewritten by

B(ϑ, θh) = Bh(PPhϑ, θh) +
∑

K∈Kh

〈ϑn − PK
b (ϑn), θh〉∂K

= L1((σ ,u);PPhϑ) − Ah(θh,PPhϑ) − [C(u;u,PPhϑ) − C(uh;uh,PPhϑ)
]

+
∑

K∈Kh

〈ϑn − PK
b (ϑn), θh〉∂K

= S(PPhσ , PPhϑ) − Ah(θh,PPhϑ) − [C(u;u,PPhϑ) − C(uh;uh,PPhϑ)
]

+
∑

K∈Kh

〈(PP0ϑ − PPbϑ)n, u − Phu〉∂K +
∑

K∈Kh

〈ϑn − PK
b (ϑn), θh〉∂K

=:
7∑

i=3

Ii ,

where the first row of (5.7) and the definition ofL1 (cf. Problem 4) were applied in the second
and fourth lines, respectively.
Step 2: bounding the error terms I1-I7. For the term I1, by applying the Cauchy-Schwarz
inequality, the bound (5.4) stated in Lemma 5.3 and trace inequality (cf. Lemma 5.1) we
estimate

∣∣I1
∣∣ ≤

⎛

⎝
∑

K∈Kh

hK ‖σn − PK
b (σn)‖20,∂K

⎞

⎠
1/2 ⎛

⎝
∑

K∈Kh

h−1
K ‖� − Ph�‖20,∂K

⎞

⎠
1/2

≤ Chk+1‖σ‖k+1

⎛

⎝
∑

K∈Kh

[
h−2
K ‖� − Ph�‖20,K + ‖∇(� − Ph�)‖20,K

]
⎞

⎠
1/2

≤ Chk+2‖σ‖k+1‖�‖2.

(5.19)

As for the term I2, the Cauchy-Schwarz and trace inequalities, and the definition of discrete
norm ‖ · ‖H,h (cf. first paragraph of Sect. 4.1) imply that

∣∣I2
∣∣ ≤

⎛

⎝
∑

K∈Kh

hK ‖(θ0h − θbh)n‖20,∂K
⎞

⎠
1/2 ⎛

⎝
∑

K∈Kh

h−1
K ‖� − Ph�‖20,∂K

⎞

⎠
1/2

≤ Ctr‖θh‖H,h

⎛

⎝
∑

K∈Kh

[
h−2
K ‖� − Ph�‖20,K + ‖∇(� − Ph�)‖20,K

]
⎞

⎠
1/2

≤ Ctr h ‖θh‖H,h‖�‖2.

(5.20)
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For the term I3,weuse the definition ofS(·, ·)given by (3.10), the continuity andorthogonality
properties of operator PK

b , and trace inequality to get
∣∣I3

∣∣ = ∣∣S(PPhσ , PPhϑ)
∣∣

=
∣∣∣∣

∑

K∈Kh

hK
〈
PK
b ((PPK

0 σ )n − σn), PK
b ((PPK

0 ϑ)n − ϑn)
〉

0,∂K

∣∣∣∣

≤
⎛

⎝
∑

K∈Kh

hK ‖PK
b ((PPK

0 σ )n − σn)‖20,∂K

⎞

⎠
1/2 ⎛

⎝
∑

K∈Kh

hK ‖PK
b ((PPK

0 ϑ)n − ϑn)‖20,∂K

⎞

⎠
1/2

≤
⎛

⎝
∑

K∈Kh

hK ‖(PPK
0 σ )n − σn‖20,∂K

⎞

⎠
1/2 ⎛

⎝
∑

K∈Kh

hK ‖(PPK
0 ϑ)n − ϑn‖20,∂K

⎞

⎠
1/2

≤
⎛

⎝
∑

K∈Kh

‖PPK
0 σ − σ‖20,K + h2K ‖∇(PPK

0 σ − σ )‖20,K

⎞

⎠
1/2

×
⎛

⎝
∑

K∈Kh

‖PPK
0 ϑ − ϑ‖20,K + h2K ‖∇(PPK

0 ϑ − ϑ)‖20,K

⎞

⎠
1/2

≤ Chk+2‖σ‖k+1‖ϑ‖1,

(5.21)

where the approximation property of the projector PPK
0 (cf. Lemma 3.3) was used in the last

step. Next, in order to estimate I4, we add zero in the form ±Ah(θh,ϑ) to find that

I4 = Ah(θh,PPK
h ϑh − ϑ) + Ah(θh,ϑ). (5.22)

The first term on the right-hand side of the above equation can be estimated using the con-
tinuity of Ah given in Lemma 4.2 and the approximation property of the projector PPK

0 as
follows:

∣∣Ah(θh,PPK
h ϑh − ϑ)

∣∣ ≤ cA ‖θh‖H,h ‖PPK
h ϑh − ϑ‖H,h ≤ Ch‖θh‖H,h‖ϑ‖1. (5.23)

Also, an application of the consistency property of Ah (cf. Lemma 3.3) and testing the first
row of (5.13) with θh yields

Ah(θh,ϑ) = A(θh,ϑ) = −
∫

�

∇� : θ0h − C(u;�, θh) = −I1 − I2 − C(u;�, θh),

(5.24)

where the the equivalent expression of
∫
�

∇� : θ0h given by (5.18) was used in the last step.
Then, thanks to (5.19) and (5.20) it suffices to estimate the last term on the right-hand side.
For this purpose, we rewrite the associated term by adding and subtracting some suitable
term as

C(u;�, θh) = C(u;� − Ph�, θh) + C(u;Ph�, θh). (5.25)

To determine upper bounds for the right-hand side terms, we use Hölder’s inequality, the
approximation and the continuity properties of the projector Ph , the Gagliardo-Nirenberg
inequality, the inverse inequality and the Sobolev embedding H2↪→W1,4. This gives

∣∣C(u;� − Ph�, θh)
∣∣ ≤ 1

ν
‖u‖Y‖� − Ph�‖Y‖θh‖H,h ≤ 1

ν
‖u‖Y h ‖�‖2 ‖θh‖H,h,
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and

∣∣C(u;Ph�, θh)
∣∣ ≤ 1

ν
‖u‖0,4 ‖Ph�‖0,4 ‖θd0,h‖0

≤ 1

ν

(
CGN‖u‖1/20 ‖∇u‖1/20

) (
CGN‖Ph�‖1/20 ‖∇Ph�‖1/20

)
‖θh‖H,h

≤ 1

ν
C2
GN

(
h1/4‖u‖1/20,4 ‖∇u‖1/20

) (
h1/2‖Ph�‖1/20,4 ‖∇Ph�‖1/20,4

)
‖θh‖H,h

≤ 1

ν
C2
GN h

3/4 ‖u‖1
(
‖∇Ph�‖1/20 ‖∇Ph�‖1/20,4

)
‖θh‖H,h

≤ 1

ν
C2
GN h

3/4 ‖u‖1
(
h1/4‖∇Ph�‖1/20,4 ‖∇Ph�‖1/20,4

)
‖θh‖H,h

≤ 1

ν
C2
GN h ‖u‖1 ‖�‖2 ‖θh‖H,h .

Combining the above bounds with (5.25) and (5.24), along with (5.19), (5.20) yields

∣∣Ah(θh,ϑ)
∣∣ ≤ C

(
hk+2‖σ‖k+1 + h‖θh‖H,h

)
‖�‖2,

which, together with estimate (5.23) gives

∣∣I4
∣∣ ≤ C

(
hk+2‖σ‖k+1 + h‖θh‖H,h

)
‖�‖2 + Ch‖θh‖H,h‖ϑ‖1. (5.26)

In what follow, we focus on the estimate of I5. To this end, using similar arguments as in the
proof of Theorem 5.5 (cf. equation (5.11)), we obtain

I5 = C(u;u,PPhϑ) − C(uh;uh,PPhϑ)

= C(u − Phu;u,PPhϑ) + C(uh;u − Phu,PPhϑ)

+C(θh;u,PPhϑ) + C(uh; θh,PPhϑ),

(5.27)

and therefore, each of the terms above are estimated utilizing the approximation and the con-
tinuity properties of the projectorsPh and PPh , Gagliardo-Nirenberg and inverse inequalities
and the Sobolev embedding, H1↪→L4 as follows:
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∣∣C(u − Phu;u,PPhϑ)
∣∣ ≤ ‖u − Phu‖0‖u‖0,4‖PPhϑ‖0,4 ≤ Chk+2‖u‖k+2‖u‖Y‖ϑ‖1

∣∣C(uh;u − Phu,PPhϑ)
∣∣ ≤ Chk+2‖u‖k+2‖uh‖Y‖ϑ‖1∣∣C(θh;u,PPhϑ)
∣∣ ≤ ‖θh‖0,4‖u‖0,4‖PPhϑ‖0

≤ ‖θh‖0,4‖u‖Y Cinv h1/2‖PPhϑ‖0,4
≤ (CGN‖θh‖1/20 ‖∇θh‖1/20 )‖u‖Y Cinv h1/2(

CGN‖PPhϑ‖1/20 ‖∇(PPhϑ)‖1/20

)

≤ h
1
4 (CGN‖θh‖1/20,4 ‖∇θh‖1/20 )‖u‖Y C3inv h

3
4

(
CGN‖PPhϑ‖1/20,4 ‖∇(PPhϑ)‖1/20

)

≤ Ch‖∇θh‖0‖u‖Y‖∇(PPhϑ)‖0 ≤ Ch ‖θh‖1,h‖u‖Y‖ϑ‖1∣∣C(uh; θh,PPhϑ)
∣∣ ≤ Ch ‖θh‖1,h‖uh‖Y‖ϑ‖1

which leads to
∣∣I5

∣∣ ≤ C
(
hk+2‖u‖k+2 + h ‖θh‖1,h

) (‖u‖Y + ‖uh‖Y
)‖ϑ‖1. (5.28)

On the other hand, by arguments similar to those used in the estimation term I1, we derive

∣∣I6
∣∣ =

∑

K∈Kh

∣∣∣∣〈(PP0ϑ − PPbϑ)n, u − Phu〉∂K
∣∣∣∣

=
∑

K∈Kh

∣∣∣∣〈(PP0ϑ − ϑ)n − (PPbϑ − ϑ)n, u − Phu〉∂K
∣∣∣∣

≤ ‖PPhϑ − ϑ‖H,h

⎛

⎝
∑

K∈Kh

[
h−2
K ‖u − Phu‖20,K + ‖∇(u − Phu)‖20,K

]
⎞

⎠
1/2

≤ Chk+2‖u‖k+2‖ϑ‖1.
Similarly, using (5.4) we have

∣∣I7
∣∣ =

∑

K∈Kh

∣∣∣∣〈ϑn − PK
b (ϑn), θh〉∂K

∣∣∣∣ =
∣∣∣∣〈ϑn − PK

b (ϑn), θh − θ̄h〉∂K
∣∣∣∣

≤
⎛

⎝
∑

K∈Kh

hK ‖ϑn − PK
b (ϑn)‖20,∂K

⎞

⎠
1/2 ⎛

⎝
∑

K∈Kh

h−1
K ‖θh − θ̄h‖20,∂K

⎞

⎠
1/2

≤ Ch‖ϑ‖1
⎛

⎝
∑

K∈Kh

[
h−2
K ‖θh − θ̄h‖20,K + ‖∇θh‖20,K

]
⎞

⎠
1/2

≤ Ch‖θh‖1,h‖ϑ‖1.
Step 3: error estimate.We now insert the bounds on I1-I7 in (5.17b), yielding

‖θh‖20 ≤
(
Chk+2 + h(‖θh‖1,h + ‖θh‖H,h)

)
(‖ϑ‖1 + ‖�‖2). (5.29)

The sought result follows from Theorem 5.5 and employing regularity (5.14). ��
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We end this section by establishing the error estimate for the pressure. By proceeding as in
[30, Theorem 5.5, eqs. (5.38) and (5.39)] (see also [31, eq. 5.14]), we deduce the existence
of a positive constant C , independent of h, such that

‖p − ph‖0,� ≤ C
{
‖σ − σ h‖0,� + ‖u − uh‖0,4;�

}
. (5.30)

Therefore, thanks to Theorems 5.5 and 5.6 we get

‖p − ph‖0 ≤ C hk+1 (‖σ‖k+1 + ‖u‖k+2) . (5.31)

6 Numerical Results

We examine the performance of the WG mixed-FEM for solving three examples of the
Navier–Stokes problem governed by the Eq. (2.1) in two space dimension. Here, the weak
Galerkin spaceX0,h is used for the pseudostress σ whereas the piecewise polynomial spaces
Pk+1(Kh) and Pk+1(Kh) are used for the velocity fieldu and pressure solution p, respectively,
with k ∈ {0, 1}. Also, like in Ref. [31], we use a real Lagrange multiplier to impose the zero
integral mean condition for σ h of the discrete scheme. As a result, Problem 3 is rewritten as
follow: find ((σ h,uh), λ) ∈ X0,h × Yh × R such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ah(σ h, τ h) + C(uh,uh; τ h) + Bh(τ h,uh) + λ

∫

�

tr(τ h) = G(τ h) ∀ τ h ∈ Xh,

Bh(σ h, vh) = F(vh) ∀vh ∈ Yh,

ξ

∫

�

tr(σ h) = 0 ∀ ξ ∈ R.

(6.1)

In addition, a fixed point strategy with a fixed tolerance Tol = 1e-6 is utilized for solving
the nonlinear equation (6.1). To that end, we begin with a vector of all zeros as an initial guess
and stop iterations when the pseudostress’s and velocity’s errors between two consecutive
iterations are adequately small, that is

‖σm − σm
h ‖X + ‖um − umh ‖Y ≤ Tol.

We now introduce some additional notations. The individual errors associated to the main
unknowns and the postprocessed pressure are denoted and defined, as usual, by

e(σ ) := ‖σ − σ h‖div4/3;�, e(u) := ‖u − uh‖0,4;�, and e(p) := ‖p − ph‖0,�.

In turn, for all 
 ∈ {σ ,u, p}, we let r(
) := log(e(
)/e′(
))
log(h/h′)

be the experimental rates of

convergence, where h and h
′
denote two consecutive mesh sizes with errors e(
) and e

′
(
),

respectively.
The examples to be considered in this section are described next. In the first two examples,

we solve a two-dimensional problem with manufactured exact solutions to validate the the-
oretical error estimates presented in the present study regarding the pseudostress, velocity,
and pressure, and demonstrate the scheme’s robustness with respect to viscosity. Examples
3 and 4 are utilized to evaluate the effectiveness of the discrete scheme by simulation of
practical problems for which no analytical solutions. We performed our computations using
the MATLAB 2020b software on an Intel Core i7 machine with 32 GB of memory. In all
our computation, the hexagonal partition, and the non-convex partition are generated by
PolyMesher package [53] (see Fig. 1).
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Fig. 1 Example 1, samples of the kind of meshes utilized

6.1 Example 1: Accuracy Assessment

We turn first to the numerical verification of the rates of convergence anticipated by Theo-
rems 5.5 and 5.6. To this end, we consider parameter ν = 0.1 and design the exact solution
as follows:

u(x1, x2) =
(
x21 exp(−x1)(1 + x2) (2 sin(1 + x2) + (1 + x2) cos(1 + x2))

x1(x1 − 2) exp(−x1)(1 + x2)2 sin(1 + x2)

)
,

p(x1, x2) = sin(2πx1) sin(2πx2),

for all (x1, x2)t ∈ � = (0, 1)2. The model problem is then complemented with the appro-
priate Dirichlet boundary condition. Using the weak Galerkin spaces given in Sect. 3 with
polynomial degree k= 0, 1, we solve Problem 3 and obtain the approximated stress on a
sequence of three successively refined polygonal meshes made of hexagons, non-convex and
triangular elements (see Fig. 1) denoted by K1,h , K2,h and K3,h , respectively. In addition,
the discrete pressure is computed using post-processing approach stated in Sect. 5. At each
refinement level we compute errors between approximate and smooth exact solutions. The
results of this convergence study are collected in Tables 1, 2 and 3. One can see that the rate of
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convergence of individual stress and pressure variables is O(hk+1), whereas it is O(hk+2) for
the velocity, which both are in agreement with the theoretical analysis stated in Theorems 5.5
and 5.6. On the other hand, in order to illustrate the accurateness of the discrete scheme,
in Fig. 2 we display components of the approximate velocity, stress, pressure on polygonal
mesh with h = 3.030e-2 and k= 0.

6.2 Example 2: Robustness with Respect to Viscosity

In this section, we focus on studying the scheme’s robustness concerning viscosity. Specifi-
cally, we investigate how the error behaves as the value of ν decreases. For that end, we take
Kh := K1,h and consider the exact solution as

u(x1, x2) =
(− sin(πx1) sin(πx2)

− cos(πx1) cos(πx2)

)
, p = sin(πx1) + cos(πx2) − 2

π
.

The computed errors and experimental rates of convergence are listed in Table 4 for k = 1 and
ν ∈ {10−3, 10−6, 10−9}. One can observe that with the decrease in viscosity, small changes
have occurred in the calculated errors, which do not affect the convergence rate.

6.3 Example 3 [40]: Lid-Driven Cavity Problem

The next example is chosen to illustrate the performance of the proposedmethod formodeling
the lid-driven cavity flow in the square domain � = (0, 1)2 with different values of ν. For
boundary conditions, we set the inflow g = (1, 0)t at the top end of � and no-slip condition
everywhere on the boundary. In addition, the body force term is f = 0. In Fig. 3 we display
the computed velocity components and pressure on hexagon mesh with h = 3.03e-2 and
k = 0, ν ∈ {1, 10−2, 10−3}, which confirm the obtained results in [40].

6.4 Example 4: Fluid Flows with Heterogeneous Porous Inclusions

Mathematical modeling and simulation of fluid flows in the presence of single or multiple
obstacles have been topics of interest for several decades due to their wide applicability in
various practical circumstances across disciplines. Flow past solid bodies, such as cylinders
and airfoils, has been investigated extensively for a long time using Navier–Stokes equations
(see, for instance, [27, 45, 51]). Hence, we study the unsteadyNavier–Stokes equation, which
depends on the porosity parameter, within the exterior flow domain (� f ), characterized by
large porosity, and in the porous subdomains (�p), characterized by small porosity. A typical
computational domain in the present problem is illustrated in Fig. 4a. Here, denoting domain
by � = (−1, 1)2 and the final time by tF , we consider the unsteady Navier–Stokes equation
with the porosity φ using the following non-dimensionalization

1

φ

(
ut + u · ∇u − ν�u

)
+ ∇ p = f in � × (0, tF ],
div(u) = 0 in � × (0, tF ],
u(·, 0) = 0 in �.

(6.2)

Regarding the boundary condition, we prescribe an inflow velocity uin = (0, 1)t on the left
boundary, while on the right boundary denoted by �out , we impose a zero normal Cauchy
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Fig. 2 Example 1, snapshots of the numerical stress components (first row, left to right), the velocity com-
ponents and pressure (second row, left to right), computed with k = 0 in the mesh made of hexagons with
h = 3.030e-2

stress, which means that we need to set
(
σ + u ⊗ u

)
n = 0 on �out ,

and on the remainder of the boundarywe set no-slip velocityu = 0. In addition,we performed
discretization of time by Backward Euler method and taken 24 circular inclusions with
different radii at relatively random locations. The performance of the proposed method has
been tested with the following data:

φ =
{
0.2 on �p,

1 on � f ,
ν = 0.01, tF = 0.1, �t = 2e − 3.

In Fig. 4b, we depicted the polygonal mesh of the computational domain. The results of the
desired case simulation are presented in Fig. 5. It can be seen that the fluid is flowing faster
in the area that has a large porosity; for the area that has a small porosity, the fluid is flowing
slowly. In the area that has small porosity, we can see the gradationmotion of the fluid clearly;
this fact emphasizes that the proposed scheme can deal with the irregular pattern of porosity.
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Fig. 3 Example 3. The numerical velocity and pressure for ν = 1 (first row), ν = 1e-2 (second row) and
ν = 1e-3 (third row).

Fig. 4 Example 4. a) schematic of of the computational domain� = �p ∪� f , where� f is the large porosity
subdomain and �p is subdomain with the small porosity. b) the polygonal mesh of domain
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Fig. 5 Example 4. The numerical velocity and the first two components of stress from left to right
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