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Abstract
We present a higher-order space-time adaptive method for the numerical solution of the
Richards equation that describes a flow motion through variably saturated media. The dis-
cretization is based on the space-time discontinuous Galerkin method, which provides high
stability and accuracy and can naturally handle varying meshes. We derive reliable and effi-
cient a posteriori error estimates in the residual-based norm. The estimates use well-balanced
spatial and temporal flux reconstructions which are constructed locally over space-time
elements or space-time patches. The accuracy of the estimates is verified by numerical exper-
iments. Moreover, we develop the hp-adaptive method and demonstrate its efficiency and
usefulness on a practically relevant example.

Keywords Space-time discontinuous Galerkin method · Richards equation · A posteriori
error estimate · hp-mesh adaptation

Mathematics Subject Classification 65M60 · 65M15 · 65M50

1 Introduction

Fluid flows in variably saturated porousmedia are usually described by the Richards equation
[33], which is expressed in the form

∂tϑ(ψ) − ∇ · (K(θ(ψ))(∇ψ + ∇z)
) = g, (1)
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where ∂t denotes the derivative with respect to time,∇· and∇ are the divergence and gradient
operators, respectively,ψ is the sought pressure head (= normalized pressure), z is the vertical
coordinate, θ is the water content function, K is the hydraulic conductivity tensor and g is
the source term. In addition, the active pore volume ϑ is related to θ by the following relation

ϑ(ψ) := θ(ψ) + Ss
θs

∫ ψ

−∞
θ(s) ds, (2)

where Ss, θs ≥ 0 are material parameters. The hydraulic conductivity satisfies K(ψ) =
KsKr (ψ), where Ks is the saturated conductivity tensor, and Kr ∈ [0, 1] is the relative
saturation. The functions θ andKr are given by constitutive relations, e.g., by vanGenuchten’s
law [27] and by Mualem’s law [31], respectively.

The Richards equation belongs to the nonlinear parabolic problems, and it can degenerate,
in particularK → 0 or dϑ

dψ → 0.Due to the degeneracy, the numerical solution is challenging,
and various techniques have been developed for its solution in the last decades, see [25] for
a survey.

In [14], we presented the adaptive space-time discontinuous Galerkin (STDG) method for
the numerical solution of (1). This technique is based on a piecewise polynomial discontin-
uous approximation with respect to both the spatial and temporal coordinates. The resulting
scheme is sufficiently stable, provides high accuracy, and is suitable for the hp-mesh adapta-
tion. This is an important property, since the weak solution of the Richards equation is (only)
piecewise regular and exhibits singularities along the material interfaces and the unsatu-
rated/saturated zone (when ψ ≈ 0). Therefore, an adaptive method that allows different
meshes at different time levels, can achieve an accurate approximation with a relatively
small number of degrees of freedom.

The numerical experiments presented in [14] showed the potential of the adaptive STDG
method. However, the mesh adaptation used is based on interpolation error estimates that do
not guarantee an upper error bound. The aim of this work is to overcome this bottleneck,
derive a posteriori error estimates, and use them in the hp-mesh adaptation framework.

A posteriori error estimates for the numerical solution of the Richards equation have
been treated in many papers for different numerical methods. We mention the finite volume
framework with multistep time discretization in [5], the mixed finite element method in [6],
the two-point finite volume discretization in [8], the lowest-order discretization on polytopal
meshes in [38], finite element techniques in [30] and the references cited therein.

Guaranteed error estimates without unknown constants are usually obtained by mea-
suring the error in a dual norm of the residual. Introducing reconstructed fluxes from the
space H1(div,Ω), the upper bound can then be obtained directly. In [18], we developed
this approach to the higher-order STDGmethod for nonlinear parabolic problems, where the
temporal discontinuities were treated by temporal flux reconstructions considering the time
jumps.

In this paper, we extend the approach [18] to the Richards equation (1). Although the
definition of the temporal and spatial flux reconstructions aswell as the derivation of the upper
bounds is straightforward, the proof of the lower bound (efficiency) is rather tricky since the
term θ(ψ) in the timederivative is not a polynomial function for a polynomialψ . In contrary to
[18], the proof of efficiency requires the additional oscillatory data terms.We construct spatial
fluxes by solving local Neumann problems defined on space-time patches that generalize the
approach from [22]. Moreover, we provide numerical experiments verifying derived error
estimates. Compared to [18], the resulting effectivity indices are much closer to one. This is
the first novelty of this paper.
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Secondly, we deal with the errors arising due to iterative solution of nonlinear algebraic
systems. We introduce a cheap stopping criterion for iterative solvers and justify it by numer-
ical experiments. Thirdly, we introduce a space-time adaptive algorithm that employs the
anisotropic hp-mesh adaptation technique [15]. The algorithm admits local adaptation of
size and shape of mesh elements and the local adaptation of degrees of polynomial approx-
imation with respect to space. However, the size of the time step can vary globally, and the
degree of polynomial approximation with respect to time is fixed. Using the equidistribution
principle, the algorithm gives an approximate solution with the error estimate under the given
tolerance. The performance of the adaptive algorithm is demonstrated numerically, including
a practically relevant example.

The rest of the paper is organized as follows. In Sect. 2, we introduce the problem con-
sidered, its STDG discretization is briefly described in Sect. 3. The main theoretical results
are derived in Sect. 4, where the upper and lower bounds are proved. Two possible spatial
reconstructions are discussed in Sect. 5 together with the stopping criteria of iterative solvers.
The numerical verification of the error estimates is given in Sect. 6. Furthermore, we present
the resulting hp-mesh adaptation algorithm in Sect. 7 and demonstrate its performance by
numerical examples. Finally, we conclude with some remarks in Sect. 8.

2 Problem Formulation

LetΩ ⊂ R
d (d = 2, 3) be the domain occupied by a porous medium and T > 0 the physical

time to be reached. For simplicity, we assume that Ω is polygonal. By Γ := ∂Ω , we denote
the boundary of Ω which consists of two disjoint parts: the Dirichlet boundary ΓD and the
Neumann boundary ΓN. We write the Richards equation (1) in a different form, which is
more suitable for the analysis. We seek a function u = u(x, t) : Ω × (0, T ) → R, which
represents a hydraulic head (with the physical unit L). The quantity u is related to the pressure
head ψ by u = ψ + z. The Richards equation (1) reads

∂tϑ(u) − ∇ · (K(u)∇u) = g in Ω × (0, T ) (3)

u = uD on ΓD × (0, T )

K(u)∇u · n = gN on ΓN × (0, T ),

u(x, 0) = u0 in Ω,

where g : Ω × (0, T ) → R represents a source term if g is positive or a sink term if g is
negative, ϑ : R → R denotes the dimensionless active pore volume, and K : R → R

d×d is
the hydraulic conductivity with the physical unit L · T−1 (L = length, T = time). Moreover,
uD is a trace of a function u∗ ∈ L2(0, T ; H1(Ω)) on ΓD × (0, T ), gN ∈ L2(0, T ; L2(ΓN))

and u0 ∈ L2(Ω). We note that with respect to (1), we should write ϑ = ϑ(u − z) and
K = K(θ(u− z)), however, we skip this notation for simplicity. We assume that the function
ϑ(u) is non-negative, non-decreasing and Lipschitz continuous. Moreover, the tensor K(u)

is symmetric, positively semi-definite, and Lipschitz continuous.
In order to introduce the weak solution, we set H(div,Ω) = {v ∈ L2(Ω)d : ∇ · v ∈

L2(Ω)} and define the spaces

X = L2(0, T , H1(Ω)), V = {v ∈ X : v|ΓD = 0}, (4)

Y = {v ∈ X : ϑ ′(v) ∈ L2(0, T , L2(Ω))}, Y 0 = {v ∈ Y : v(0) = u0},
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where ϑ ′(u) = ∂tϑ(u) = dϑ
du ∂t u denotes the time derivative (in the weak sense). Obviously,

if v ∈ Y then ϑ(v) ∈ C([0, T ], L2(Ω)). In order to shorten the notation, we set the physical
flux

σ(u,∇u) := K(u)∇u, u ∈ X . (5)

Definition 1 We say that u ∈ Y is the weak solution of (3) if u − u∗ ∈ V and
∫ T

0

((
ϑ ′(u), v

)
Ω

+ (σ (u,∇u),∇v)Ω − (g, v)Ω − (
gN , v

)
ΓN

)
dt = 0 ∀v ∈ V , (6)

where
(
u, v

)
Ω

:= ∫
Ω
uv dx and

(
u, v

)
ΓN

:= ∫
ΓN

uv dS.

The existence and uniqueness of the Richards equation is studied in [2], see also the later
works [3, 28].

3 Space-time discretization

Webrieflydescribe the discretization of (6) by the space-timediscontinuousGalerkin (STDG)
method, for more details, see [13, 14]. Let 0 = t0 < t1 < . . . < tr = T be a partition of the
time interval (0, T ) and set Im = (tm−1, tm) and τm = tm − tm−1. For eachm = 0, . . . , r , we
consider a simplicial mesh T m

h coveringΩ . For simplicity, we assume that T m
h ,m = 0, . . . , r

are conforming, i.e., neighbouring elements share an entire edge or face. However, this
assumption can be relaxed by the technique from [12].

For each element K ∈ T m
h , we denote by ∂K its boundary, nK its unit outer normal and

hK = diam(K ) its diameter. In order to shorten the notation, we write ∂KN := ∂K ∩ ΓN.
By the generic symbol γ , we denote an edge (d = 2) or a face (d = 3) of K ∈ T m

h and
hγ denotes its diameter. In the following, we speak only about edges, but we mean faces for
d = 3. We assume that

– T m
h , m = 0, . . . , r are shape regular, i.e., hK /ρK ≤ C for all K ∈ Th , where ρK is the

radius of the largest d-dimensional ball inscribed in K and constant C does not depend
on T m

h for h ∈ (0, h0), m = 0, . . . , r .
– T m

h , m = 0, . . . , r are locally quasi-uniform, i.e., hK ≤ ChK ′ for any pair of two
neighbouring elements K and K ′, where the constant C does not depend on h ∈ (0, h0),
m = 0, . . . , r .

Let pK ≥ 1 be an integer denoting the degree of polynomial approximation on K ∈ T m
h ,

m = 0, . . . , r and PpK (K ) be the corresponding space of polynomial functions on K . Let

Shp,m = {v ∈ L2(Ω) : v|K ∈ PpK (K ), K ∈ T m
h }, m = 0, . . . , r (7)

denote the spaces of discontinuous piecewise polynomial functions on T m
h with possibly

varying polynomial approximation degrees. Furthermore, we consider the space of space-
time discontinuous piecewise polynomial functions

Sτq
hp = {v ∈ L2(Ω × (0, T )) : v|Im ∈ Pq(Im, Shp,m), m = 1, . . . , r}, (8)

where q ≥ 0 denotes the time polynomial approximation degree and Pq(Im, Shp,m) is the
Bochner space, i.e., v ∈ Pq(Im, Shp,m) can be written as v(x, t) = ∑q

j=0 t
j v j (x), v j ∈

Shp,m , j = 0, . . . , q .
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For v ∈ Sτq
hp , we define the one-sided limits and time jumps by

vm+ = lim
t→t+m

v(t), m = 0, . . . , r − 1, vm− = lim
t→t−m

v(t), m = 1, . . . , r , (9)

{
v
}
m = vm+ − vm−, m = 1, . . . , r − 1, v0− = ϑ(u0), {v}0 = v0+ − ϑ(u0),

where u0 is the initial condition. In the following, we use the notation

(
u, v

)
M =

∫

M
u v dx,

(
u, v

)
M,m =

∫

M×Im
u v dx dt, m = 1, . . . , r , (10)

where M is either element K ∈ T m
h or its (part of) boundary ∂K . The corresponding norms

are denoted by ‖·‖M and ‖·‖M,m , respectively. By
∑

K ,m = ∑r
m=1

∑
K∈T m

h
, we denote the

sum over all space-time elements K × Im , where K ∈ T m
h and m = 1, . . . , r .

Moreover, we define the jumps andmean values of v ∈ Shp,m on edges γ ⊂ ∂K , K ∈ T m
h

by

[v] =

⎧
⎪⎨

⎪⎩

(v(+) − v(−))nK for γ ∈ Ω,

(v(+) − uD)nK for γ ⊂ ΓD,

0 for γ ⊂ ΓN,

〈v〉 =

⎧
⎪⎨

⎪⎩

(v(+) + v(−))/2 for γ ∈ Ω,

v(+) for γ ⊂ ΓD,

0 for γ ⊂ ΓN,

(11)

where v(+) and v(−) denote the traces of v on ∂K from interior and exterior of K , respectively,
and uD comes from the Dirichlet boundary condition. For vector-valued v ∈ [Shp,m]d , we
set [v] = (v(+) − v(−)) · nK for γ ∈ Ω and similarly for boundary edges.

For each space-time element K × Im , K ∈ T m
h , m = 1, . . . , r , we define the forms

aK ,m(u, v) := (
K(u)∇u,∇v

)
K ,m − (

g, v
)
K ,m − (

gN , v
)
∂KN ,m, (12)

AK ,m(u, v) := (
K(u)∇u,∇v

)
K ,m − (〈K(u)∇u〉 · nK − α[u] · nK , v

)
∂K\ΓN,m

+ (β − 1
2 )
(
K(u)[u],∇v

)
∂K\Γ ,m + (2β − 1)

(
K(u)[u],∇v

)
∂K∩ΓD,m

− (
g, v

)
K ,m − (

gN , v
)
∂KN ,m,

where α > 0 is a sufficiently large penalization parameter (α ∼ p2K /hK ) and β ∈ {0, 1
2 , 1}

corresponds to the choice of the variants of the interior penalty discretization (SIPG with
β = 0, IIPG with β = 1/2 and NIPG with β = 1), see, e.g., [13, Chapter 2].

We introduce the space-time discontinuous Galerkin discretization of (3).

Definition 2 The function uτ
h ∈ Sτq

hp is called the approximate solution of (6) obtained by the
space-time discontinuous Galerkin method (STDGM), if

∑

K ,m

BK ,m(uτ
h, v) = 0 ∀v ∈ Sτq

hp , (13)

where

BK ,m(u, v) := (
ϑ ′(u), v

)
K ,m + AK ,m (u, v) + ({

ϑ(u)
}
m−1, v

m−1+
)
K (14)

with form AK ,m given by (12) and {·} defined by (9).
Remark 1 We note that uτ

h is discontinuous with respect to time at tm, m = 1, . . . , r −
1. The solution between Im−1 and Im is stuck together by the “time-penalty” term({

ϑ(u)
}
m−1, v

m−1+
)
K which alsomakes sense for u and v belonging to different finite element

spaces.
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Finally, we derive some identities that will be used later. Let Fm
h denote the set of all

interior edges γ �⊂ Γ of mesh T m
h and Fm

D the set of boundary edges of T m
h lying on ΓD.

Then, the identity
∑

K∈T m
h

(
w, z nK

)
∂K\ΓN,m =

∑

γ∈Fm
h

((〈w〉, [z])
γ,m + ([w], 〈z〉)

γ,m

)
+

∑

γ∈Fm
D

(
w · nK , z

)
γ,m

(15)

holds for a piecewise smooth vector-valued functionw and a piecewise smooth scalar function
z.

Using identity (15) and the following obvious formulas valid for interior edges
〈〈K(u)∇u〉〉 = 〈K(u)∇u〉, 〈α[u]〉 = α[u], [〈K(u)∇u〉] = 0, [α[u]] = 0, we gain

∑

K∈T m
h

(〈K(u)∇u〉 · nK , v
)
∂K\ΓN,m =

∑

γ∈Fm
h

(〈K(u)∇u〉, [v])
γ,m +

∑

γ∈Fm
D

(
K(u)∇u · nK , v

)
γ,m ,

∑

K∈T m
h

(
α[u] · nK , v

)
∂K\ΓN,m =

∑

γ∈Fm
h

(
α[u], [v])

γ,m +
∑

γ∈Fm
D

(
α[u] · nK , v

)
γ,m , (16)

∑

K∈T m
h

(
K(u)[u], ∇v

)
∂K\Γ ,m =

∑

K∈T m
h

([u],K(u)∇v
)
∂K\Γ ,m = 2

∑

γ∈Fm
h

([u], 〈K(u)∇v〉)
γ,m ,

∑

K∈T m
h

(
K(u)[u], ∇v

)
∂K∩ΓD,m =

∑

γ∈Fm
D

([u],K(u)∇v
)
γ,m .

Consequently, from (12) and (16), we obtain the identity
∑

K∈T m
h

AK ,m(u, v) =
∑

K∈T m
h

(
K(u)∇u,∇v

)
K ,m −

∑

γ∈Fm
h

(〈K(u)∇u〉, [v])
γ,m (17)

+ (2β − 1)
∑

γ∈Fm
h

([u], 〈K(u)∇v〉)
γ,m −

∑

γ∈Fm
D

(
K(u)∇u · nK , v

)
γ,m

+ (2β − 1)
∑

γ∈Fm
D

([u],K(u)∇v
)
γ,m +

∑

γ∈Fm
h

(
α[u], [v])

γ,m

+
∑

γ∈Fm
D

(
α[u] · nK , v

)
γ,m − (

g, v
)
Ω,m − (

gN , v
)
ΓN,m .

4 A Posteriori Error Analysis

4.1 Error Measures

In order to proceed to the derivation of error estimators, we define the spaces of piecewise
continuous functions with respect to time by

Y τ = {v ∈ X : ϑ ′(v)|Im ∈ L2(Im, L2(Ω))}, V τ = {v ∈ Y τ : v|ΓD×(0,T ) = 0}. (18)

Obviously, Y 0 ⊂ Y ⊂ Y τ ⊂ X and Sτq
hp ⊂ Y τ . Moreover, we have the following result.

Lemma 1 Let u ∈ Y 0 be the weak solution of (6). Then it satisfies
∑

K ,m

bK ,m(u, v) = 0 ∀v ∈ V τ , (19)
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where

bK ,m(u, v) := (
ϑ ′(u), v

)
K ,m + aK ,m(u, v) + ({ϑ(u)}m−1, v

m−1+
)
K (20)

with aK ,m given by (12) and the time jump {·}m−1 defined by (9). Moreover, there exists a
unique solution u ∈ Y τ such that u − u∗ ∈ V τ and satisfies (19).

Proof The proof follows directly by comparing formulas (19)–(20) with (6) and the fact that({ϑ(u)}m−1, v
m−1+

)
K = 0 for u ∈ Y 0. For the proof of uniqueness, we employ the fact that

C∞
0 (Ω) is dense in L2(Ω), i.e., there exists a sequence {vε} ⊂ C∞

0 (Ω) for any v ∈ L2(Ω)

such that ‖vε − v‖ → 0 as ε → 0, cf. [34, Theorem 3.14]. We apply v = vs,ε1(x)vt,ε2(t)
in (19), where the spatial component vs,ε1 ∈ {v ∈ H1(Ω) : v|ΓD = 0} tends to {ϑ(u)}m−1

as ε1 → 0 and the time component vt,ε2 is given as 0 outside the interval (tm−1, tm−1 + ε2)

and vt,ε2 = 1 − (t − tm−1)/ε2 on (tm−1, tm−1 + ε2), i.e., vt,ε2(t) tends to 0 as ε2 → 0.
Therefore, all the terms containing time integrals in (19) tend to 0 when ε2 tends to 0. Since
vm−1+ = vs,ε1 , the remaining jump term tends to ‖{ϑ(u)}m−1‖2 as ε1 tends to 0. From this it
follows that {ϑ(u)}m−1 = 0. Then it is possible to see that any solution of (19) satisfies the
original weak formulation (6). Since the weak problem (6) has a unique solution, cf. [2], the
extended problem (19) has a unique solution as well. ��

In virtue of [11, § 2.3.1], we define a parameter dK ,m associated with the space-time
element K × Im , K ∈ T m

h , m = 1, . . . , r . The parameter dK ,m represents a user-dependent
weight, typically with physical units (TL)1/2 so that the error measure has the same physical
unit as the energy norm. In this paper, we use two choices

dK ,m :=
(
h−2
K ‖K(uh)‖m,∞ + τ−2

m T
∥∥ dϑ
du (uh)

∥∥
m,∞

)−1/2
, (21a)

dK ,m :=
(
h2K ‖K(uh)‖−1

m,∞ + τ 2m/T
∥∥ dϑ
du (uh)

∥∥−1
m,∞

)1/2
. (21b)

where ‖·‖m,∞ := ‖·‖L∞(Ω×Im ). We note that the following error analysis is independent of
the choice of dK ,m . Moreover, we define the norm in the space V τ (cf. (18)) by

‖v‖2V τ =
∑

K ,m

‖v‖2VK ,m
, ‖v‖2VK ,m

= d−2
K ,m

(
h2K ‖∇v‖2K ,m + τ 2m

∥∥v′∥∥2
K ,m

)
. (22)

In virtue of (19), we introduce the error measure as a dual norm of the residual

R(uτ
h) = sup

0 �=v∈V τ

∑
K ,m bK ,m(uτ

h, v)

‖v‖V τ

, (23)

where bK ,m is given by (20). The residual R(v) represents a natural error measure for
u − v ∈ V τ , cf. [11, Remark 2.3]. In Sect. 4, we estimateR(uτ

h) for u
τ
h being the solution of

(13).
Since the approximate solution uτ

h belongs to the space of discontinuous function Sτq
hp �⊂

V τ , we introduce the second building block measuring the nonconformity of the solution in
spatial variables. Therefore, similarly to [18], we define the form

J (v) =
∑

K ,m

JK ,m(v), JK ,m(v) = d2K ,m τ−1
m h−2

K CK ,m,K,α‖[v]‖2∂K ,m, (24)

whereCK ,m,K,α = α2+∥∥K(uτ
h)
∥∥2
L∞(K×Im )

. The scaling factors are chosen such thatJ (v)1/2

has the same physical unit as R(uτ
h).
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We note that J (v) measures also the violation of the Dirichlet boundary condition since
J (v) contains the term ‖v − uD‖∂K∩ΓD,m , cf. (11).

The final error measure is then defined by

E(uτ
h) := (

R(uτ
h)

2 + J (uτ
h)
)1/2

, (25)

where R(uτ
h) is given by (23) and J (uτ

h) by (24).

Lemma 2 The error measure E(uτ
h) = 0 if and only if uτ

h = u is the weak solution given by
(6).

Proof Obviously, if uτ
h = u, then J (uτ

h) = 0 andR(uτ
h) = 0 due to (19). On the other hand,

if J (uτ
h) = 0, then uτ

h ∈ Y τ and uτ
h − u∗ ∈ V τ . Moreover, R(uτ

h) = 0 and the uniqueness
of (19) imply that uτ

h is the weak solution (6). ��

4.2 Temporal and Spatial Flux Reconstructions

Similarly as in [18], we define a temporal reconstruction Rτ
h = Rτ

h (x, t) as a continuous
function with respect to time that mimics ϑ(uτ

h), u
τ
h ∈ Sτq

hp . Let rm ∈ Pq+1(Im) be the
right Radau polynomial on Im , i.e., rm(tm−1) = 1 and rm(tm) = 0, and rm is orthogonal to
Pq−1(Im) with respect to the L2(Im) inner product. Then we set

Rτ
h (x, t) := ϑ(uτ

h(x, t)) − {
ϑ(uτ

h)
}
m−1(x) rm(t), x ∈ Ω, t ∈ Im, (26)

where
{·} is given by (9). The temporal flux reconstruction Rτ

h (x, t) is continuous in time,
namely Rτ

h ∈ H1(0, T , L2(Ω)) and it satisfies the initial condition due to

Rτ
h (·, 0) = ϑ(uτ

h(·, 0)) − {ϑ(uτ
h)}0(·)r1(0) (27)

= ϑ(uτ
h(·, 0)) − (ϑ(uτ

h(·, 0)) − ϑ(u0(·)) = ϑ(u0(·)).
Moreover, by the integration by parts and the properties rm(tm−1) = 1, rm(tm) = 0, we
obtain
(
(Rτ

h − ϑ(uτ
h))

′, v
)
K ,m = −(r ′

m

{
ϑ(uτ

h)
}
m−1, v

)
K ,m (28)

= (
rm
{
ϑ(uτ

h)
}
m−1, v

′)
K ,m − rm(tm)

({
ϑ(uτ

h)
}
m−1, v

m−
)
K

+ rm(tm−1)
({

ϑ(uτ
h)
}
m−1, v

m−1+
)
K

= (
rm
{
ϑ(uτ

h)
}
m−1, v

′)
K ,m + ({

ϑ(uτ
h)
}
m−1, v

m−1+
)
K , v ∈ V τ ,

which together with definition (26) implies
(
(Rτ

h − ϑ(uτ
h))

′, v
)
K ,m − ({

ϑ(uτ
h)
}
m−1, v

m−1+
)
K = −(Rτ

h − ϑ(uτ
h), v

′)
K ,m, v ∈ V τ .

(29)

Finally, using the orthogonality of rm to Pq−1(Im), we obtain from (28), the formula

(
(Rτ

h − ϑ(uτ
h))

′, v
)
m,K =

(
{ϑ(uτ

h)}m−1, v
m−1+

)

K
∀v ∈ Pq(Im, L2(K )). (30)

Consequently, if uτ
h is the approximate solution given by (13), then it satisfies
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(
(Rτ

h )
′, v

)
K ,m = (

ϑ ′(uτ
h), v

)
K ,m + ({

ϑ(uτ
h)
}
m−1, v

m−1+
)
K = −AK ,m(uτ

h, v) (31)

∀v ∈ Pq(Im, PpK (K )).

Obviously, the reconstruction Rτ
h is local and explicit, so its computation is fast and easy to

implement.
The spatial flux reconstruction needs to define a function σ τ

h ∈ L2(0, T , H(div,Ω))

which mimics the flux σ(uτ
h,∇uτ

h) = K(uτ
h)∇uτ

h , cf. (5). In particular, σ τ
h |K×Im ∈

Pq(Im,RTNp(K )) where

RTNp(K ) = Pp(K )d + x Pp(K ), K ∈ Th, m = 1, . . . , r (32)

is the Raviart-Thomas-Nedelec finite elements, cf. [7] for more details. We assume that the
reconstructed flux σ τ

h has to be equilibrated with the temporal flux Rτ
h

(∇ · σ τ
h , v

)
K ,m = (

(Rτ
h )

′ − g, v
)
K ,m ∀v ∈ Pq(Im, PpK (K )), K ∈ T m

h , (33)

and with the Neumann boundary condition
(
σ τ
h · n, v

)
γ,m = (

gN , v
)
γ,m ∀v ∈ Pq(Im, PpK (γ )) ∀γ ⊂ ∂KN , K ∈ T m

h . (34)

In Sect. 5 we present two possible constructions of σ τ
h including the choice of the spatial

polynomial degree p in (32).

4.3 Auxiliary Results

In the forthcoming numerical analysis, we need several technical tools. We will employ the
scaled space-time Poincarè inequality, cf. [11, Lemma 2.2]: Let ϕK ,m ∈ P0(K × Im) be the
L2-orthogonal projection of ϕ ∈ H1(K × Im) onto a constant in each space-time element
K × Im , K ∈ T m

h , m = 0, . . . , r . Then,

∥∥ϕ − ϕK ,m
∥∥
K ,m ≤ CP

(
h2K ‖∇ϕ‖2K ,m + τ 2m

∥∥ϕ′∥∥2
K ,m

)1/2 = CPdK ,m‖ϕ‖VK ,m
, (35)

where CP is the Poincarè constant equal to 1/π for simplicial elements and the last equality
follows from (22).

Moreover, we introduce the space-time trace inequality

Lemma 3 Let ϕγ,m ∈ P0(γ × Im) be the L2-orthogonal projection of ϕ ∈ H1(K × Im)

onto a constant on each γ × Im, where γ ⊂ ∂K is an edge of K ∈ T m
h . Then there exists a

constant CT > 0 such that
∥∥ϕ − ϕγ,m

∥∥
γ×Im

≤ CT max(1, h−1/2
γ )dK ,m‖ϕ‖VK ,m

, (36)

where CT = max(cT ,CP), CP is from (35) and cT > 0 is the constant from the (space) trace
inequality.

Proof The proof is straightforward, we present it for completeness. Let ϕ ∈ H1(K × Im)

and, for all t ∈ Im , set ϕ̃(t) := |γ |−1
∫
γ

ϕ(x, t) dS. Observing that (ϕ − ϕ̃) and (ϕ̃ − ϕγ,m)

are L2(γ × Im)-orthogonal, we have
∥∥ϕ − ϕγ,m

∥∥2
γ×Im

= ‖ϕ − ϕ̃‖2γ×Im + ∥∥ϕ̃ − ϕγ,m
∥∥2

γ×Im
. (37)

Using the standard trace inequality (e.g., [21, Lemma 3.32]), we have

‖ϕ(·, t) − ϕ̃(t)‖γ ≤ cT h
1/2
γ ‖∇ϕ‖K ∀t ∈ Im, (38)
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where cT > 0 is a constant whose values can be set relatively precisely, see the discussion
in [37, Section 4.6]. Hence, integrating the square of (38) over Im and using the fact that
hγ ≤ hK , γ ⊂ hK , we estimate the first term on the right-hand side of (37) as

‖ϕ − ϕ̃‖2γ×Im ≤ c2T hγ ‖∇ϕ‖2K×Im ≤ c2T h
−1
γ h2K ‖∇ϕ‖2K×Im . (39)

Using the fact that ϕγ,m = τ−1
m

∫
Im

ϕ̃(t) dt , the one-dimensional Poincarè inequality on In
and the Cauchy–Schwarz inequality yield

∥
∥ϕ̃ − ϕγ,m

∥
∥2

γ×Im
= |γ |

∫

Im
|ϕ̃ − ϕγ,m |2(t) dt ≤ |γ |C2

Pτ
2
m

∫

Im
| ddt ϕ̃(t)|2 dt (40)

= C2
Pτ

2
m

|γ |
∫

Im

(∫

γ

∂tϕ(x, t) dx

)2

dt ≤ C2
Pτ

2
m

∫

Im

(∫

γ

|∂tϕ|2 dx
)

dt

= C2
Pτ

2
m‖∂tϕ‖2γ×Im .

Collecting bounds (37), (39), (40) and the definition of the norm (22) yields (36). ��

4.4 Reliability

We presented the upper bound of R(uτ
h), cf. (23).

Theorem 1 Let u ∈ Y be the weak solution of (6) and uτ
h ∈ Sτq

hp be the approximate solution

given by (13). Let Rτ
h ∈ H1(0, T , L2(Ω)) be the temporal reconstruction given by (26) and

σ τ
h ∈ L2(0, T , H(div,Ω)) be the spatial reconstruction satisfying (33). Then

R(uτ
h)

2 ≤ η2 :=
∑

K ,m

η2K ,m, ηK ,m := CPηR,K ,m + (η2S,K ,m + η2T ,K ,m)1/2 + CTηN ,K ,m,

(41)

where CP is the constant from Poincarè inequality (35), CT is the constant from the trace
inequality (36) and the estimators ηR,K ,m, ηS,K ,m, ηT ,K ,m, and ηN ,K ,m are given by

ηR,K ,m := dK ,m
∥∥(Rτ

h )
′ − ∇ · σ τ

h − g
∥∥
K ,m, (42a)

ηS,K ,m := dK ,m

hK

∥∥σ τ
h − σ(uτ

h,∇uτ
h)
∥∥
K ,m, (42b)

ηT ,K ,m := dK ,m

τm

∥∥Rτ
h − ϑ(uτ

h)
∥∥
K ,m, (42c)

ηN ,K ,m :=
∑

γ⊂∂KN

max(1, h−1/2
γ )dK ,m

∥∥σ τ
h · n − gN

∥∥
∂KN ,m . (42d)

The proof of Theorem 1 can be found in [19] for the case of the homogeneous Dirichlet
boundary condition. For completeness,we present itsmodification includingmixedDirichlet-
Neumann boundary conditions.

Proof Starting from (20), adding the terms ±(Rτ
h , v

)
K ,m and ±(∇ · σ τ

h , v
)
K ,m , and using

the integration by parts, we obtain
∑

K ,m

bK ,m (uτ
h , v) (43)

=
∑

K ,m

{(
ϑ ′(uτ

h) − g, v
)
K ,m − (

gN , v
)
∂KN ,m + (

σ(uτ
h ,∇uτ

h),∇v
)
K ,m + ({

ϑ(uτ
h)
}
m−1, v

m−1+
)
K

}
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=
∑

K ,m

(
(Rτ

h )′ − ∇ · στ
h − g, v

)
K ,m −

∑

K ,m

(
στ
h − σ(uτ

h , ∇uτ
h), ∇v

)
K ,m

−
∑

K ,m

{(
(Rτ

h − ϑ(uτ
h))′, v

)
K ,m − ({

ϑ(uτ
h)
}
m−1, v

m−1+
)
K

}
+
∑

K ,m

(
στ
h · n − gN , v

)
∂KN ,m

=: ξ1 + ξ2 + ξ3 + ξ4.

The terms ξi , i = 1, . . . , 4 are estimated separately.
Let vK ,m ∈ P0(K × Im) be the piecewise constant projection of v ∈ V τ given by the

identity
(
vK ,m, 1

)
K ,m = (

v, 1
)
K ,m . Using the Cauchy–Schwarz inequality, assumption (33),

the Poincarè inequality (35), and (22), we have

|ξ1| ≤
∑

K ,m

∣
∣((Rτ

h )
′ − ∇ · σ τ

h − g, v
)
K ,m

∣
∣ =

∑

K ,m

∣
∣((Rτ

h )
′ − ∇ · σ τ

h − g, v − vK ,m
)
K ,m

∣
∣

(44)

≤
∑

K ,m

CP
∥
∥(Rτ

h )
′ − ∇ · σ τ

h − g
∥
∥
K ,m

(
h2K ‖∇v‖2K ,m + τ 2m

∥
∥v′∥∥2

K ,m

)1/2

=
∑

K ,m

CP dK ,m
∥
∥(Rτ

h )
′ − ∇ · σ τ

h − g
∥
∥
K ,m‖v‖VK ,m

=
∑

K ,m

CPηR,K ,m‖v‖VK ,m
.

Furthermore, by the Cauchy–Schwarz inequality and (22), we obtain

|ξ2| ≤
∑

K ,m

∣∣(σ τ
h − σ(uτ

h,∇uτ
h),∇v

)
K ,m

∣∣ (45)

≤
∑

K ,m

dK ,m

hK

∥∥σ τ
h − σ(uτ

h,∇uτ
h)
∥∥
K ,m

hK
dK ,m

‖∇v‖K ,m =
∑

K ,m

ηS,K ,m
hK
dK ,m

‖∇v‖K ,m .

The use of (29), and a similar manipulations as in (45), give

|ξ3| ≤
∑

K ,m

∣∣((Rτ
h − ϑ(uτ

h))
′, v

)
K ,m − ({

ϑ(uτ
h)
}
m−1, v

m−1+
)
K

∣∣ =
∑

K ,m

∣∣(Rτ
h − ϑ(uτ

h), v
′)
K ,m

∣∣

≤
∑

K ,m

dK ,m

τm

∥∥Rτ
h − ϑ(uτ

h)
∥∥
K ,m

τm

dK ,m

∥∥v′∥∥
K ,m =

∑

K ,m

ηT ,K ,m
τm

dK ,m

∥∥v′∥∥
K ,m . (46)

Hence, estimates (45)–(46), the Cauchy inequality and (22) imply

|ξ2| + |ξ3| ≤
∑

K ,m

(
ηS,K ,m

hK
dK ,m

‖∇v‖K ,m + ηT ,K ,m
τm

dK ,m

∥∥v′∥∥
K ,m

)
(47)

≤
∑

K ,m

(
η2S,K ,m + η2T ,K ,m

)1/2 ‖v‖VK ,m
.

Furthermore, let vγ,m ∈ P0(γ × Im), γ ⊂ ∂KN be the L2-orthogonal projection from
Lemma 3. Then using assumption (34), the Cauchy inequality and the space-time trace
inequality (36), we have

|ξ4| =
∑

K ,m

∑

γ⊂∂KN

(
στ
h · n − gN , v − vγ,m

)
γ,m ≤

∑

K ,m

∑

γ⊂∂KN

∥∥στ
h · n − gN

∥∥
γ,m

∥∥v − vγ,m
∥∥
γ,m

≤ CT
∑

K ,m

∑

γ⊂∂KN

max(1, h−1/2
γ )dK ,m

∥
∥στ

h · n − gN
∥
∥
γ,m‖v‖VK ,m . (48)
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The particular estimates (44), (47), and (48), together with the discrete Cauchy–Schwarz
inequality, imply (41). ��
Remark 2 Obviously, if ∂K ∩ ΓN �= ∅, then ηN ,K ,m = 0.

4.5 Efficiency

The aim is to show that the local individual error estimators ηR,K ,m , ηS,K ,m and ηT ,K ,m from
(41)–(42) are locally efficient, i.e., they provide local lower bounds to the error measure up
to a generic constant C > 0 which is independent of u, uτ

h , h and τ , but may depend on
data problems and the degrees of polynomial approximation p and q . A dependence of the
estimate up to this generic constant we will denote by �.

In order to derive the local variants of the error measure, we denote by ωK the set of
elements sharing at least a vertex with K ∈ T m

h , i.e.,

ωK = ∪K ′∩K �=0K
′, K ∈ T m

h , m = 0, . . . , r . (49)

Moreover, we define the functional sub-spaces VD,m = {v ∈ V τ : supp (v) ⊂ D × Im} for
any set D ⊂ Ω (cf. (18)) and the corresponding error measures (cf. (23))

RD,m(w) = sup
{0 �=v∈VD,m }

1

‖v‖V τ

∑

K ,m

bK ,m(w, v). (50)

Obviously, the definition of VD,m and RD,m(uτ
h) together with the shape regularity implies

∑

K ,m

RK ,m(uτ
h) ≤

∑

K ,m

RωK ,m(uτ
h) � R(uτ

h). (51)

Moreover, for each space-time element K × Im , K ∈ T m
h , m = 1, . . . , r , we introduce

the L2(K × Im)-projection of the non-polynomial functions, namely

ϑ ′(uτ
h) ∈ Pq(Im, PpK (K ) : (

ϑ ′(uτ
h), v

)
K ,m = (

ϑ ′(uτ
h), v

)
K ,m ∀v ∈ Pq(Im, PpK (K ))

g ∈ Pq(Im, PpK (K )) : (
g, v

)
K ,m = (

g, v
)
K ,m ∀v ∈ Pq(Im, PpK (K )). (52)

Finally, for each vertex a of the mesh T m
h , we denote by ωa a patch of elements K ∈ T m

h
that share this vertex. By pa = maxK∈ωa pK we denote the maximal polynomial degree on
ωa . Then, for each a of K ∈ T m

h , we define a vector-valued function σ a = σ a(uτ
h,∇uτ

h) ∈
Pq(Im,RTNpa (K )) (cf. (32)) by
(
σ a · nK , v

)
γ,m = (

ψa
〈
σ(uτ

h,∇uτ
h)
〉 · nK , v

)
γ,m ∀v ∈ Pq(Im, Ppa (γ )), γ ⊂ K (53)

(σ a · v)K ,m = (ψaσ(uτ
h,∇uτ

h), v)K ,m ∀v ∈ Pq(Im, Ppa−1(K )d),

where 〈·〉 denotes the mean value on γ ⊂ ∂K and ψa is a continuous piecewise linear
function such that ψa(a) = 1 and it vanishes at the other vertices of K . Finally, we set
σ |K×Im = ∑

a∈K σ a .
The proof of the local efficiency of the error estimates presented is based on the choice of

a suitable test function in (23). We set

w(x, t) = d2K ,m

τm
Ph
({

ϑ(uτ
h)
}
m−1

)
(x)χK (x)Φm(t). (54)
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where χK (x) is the standard bubble function on K , Φm(t) is the Legendre polynomial of
degree q + 1 on Im (and vanishing outside) and Ph

({
ϑ(uτ

h)
}
m−1

) ∈ PpK (K ) is the L2(K )-
projection weighted by χK (x) given by

(
Ph
({

ϑ(uτ
h)
}
m−1

)
, χK v

)
K = ({

ϑ(uτ
h)
}
m−1, χK v

)
K ∀v ∈ PpK (K ). (55)

We note that

Ph
({

ϑ(uτ
h)
}
m−1

) �= {
ϑ(uτ

h)
}
m−1, (56)

in general, compare with (52).
Using the inverse inequality, the polynomial function w given by (54) can be estimated as

‖w‖2VK ,m
= d−2

K ,m

(
h2K ‖∇w‖2K ,m + τ 2m

∥
∥w′∥∥2

K ,m

)
� d−2

K ,m‖w‖2K ,m (57)

≤ d2K ,m

τ 2m

∥
∥
∥Ph

({
ϑ(uτ

h)
}
m−1

)∥∥
∥
2

K

∫

Im
Φ2

m(t) dt �
d2K ,m

τm

∥
∥
∥Ph

({
ϑ(uτ

h)
}
m−1

)∥∥
∥
2

K
.

Similarly as in [11] or [18], we introduce the oscillation terms

ηG,K ,m := dK ,m‖g − g‖K ,m, ηϑ,K ,m := dK ,m√
τm

∥∥∥
{
ϑ(uτ

h)
}
m−1 − Ph

({
ϑ(uτ

h)
}
m−1

)∥∥∥
K
,

(58)

ηϑ ′,K ,m := dK ,m

∥∥∥ϑ ′(uτ
h) − ϑ ′(uτ

h)

∥∥∥
K ,m

,

ησ,K ,m := dK ,m

hK

∥∥σ − σ(uτ
h,∇uτ

h)
∥∥
K ,m + dK ,m

∥∥∇ · σ − ∇ · σ(uτ
h,∇uτ

h)
∥∥
K ,m .

The goal is to prove the lower bounds of the proposed error estimates, namely to estimate
ηT ,K ,m , ηR,K ,m and ηS,K ,m by RK ,m(uτ

h) and the oscillation terms (58), K ∈ Th , m =
1, . . . , r .

Theorem 2 Let ηT ,K ,m, K ∈ T m
h , m = 1, . . . , r be the error estimates given by (42), then

ηT ,K ,m � RK ,m(uτ
h) + ηG,K ,m + ηϑ ′,K ,m + ηϑ,K ,m + ηS,K ,m . (59)

where RK ,m are the local error measures defined by (49)–(50) and the oscillation terms
ηG,K ,m, ηϑ,K ,m and ηϑ ′,K ,m are given by (58).

Proof We start the proof by the putting function w from (54) as the test function in (50), i.e.

RK ,m(uτ
h) = sup

0 �=v∈VK ,m

∑
K ,m bK ,m(uτ

h, v)

‖v‖V τ

≥ bK ,m(uτ
h, w)

‖w‖V τ

(60)

since supp(w) = K × Im , cf. (54). Then, using (20) and the fact that w vanishes on ∂K , we
have

RK ,m(uτ
h) ≥

(
ϑ ′(uτ

h) − g, w
)
K ,m + (

σ(uτ
h,∇uτ

h),∇w
)
K ,m + ({

ϑ(uτ
h)
}
m−1, w

m−1+
)
K

‖w‖VK ,m

(61)
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=
(
ϑ ′(uτ

h) − g, w
)
K ,m + (

σ τ
h ,∇w

)
K ,m

‖w‖VK ,m

+
({

ϑ(uτ
h)
}
m−1, w

m−1+
)
K

‖w‖VK ,m

=: ξ1 + ξ2

+
(
g − g, w

)
K ,m + (

σ − σ τ
h ,∇w

)
K ,m + (

ϑ ′(uτ
h) − ϑ ′(uτ

h), w
)
K ,m

‖w‖VK ,m

=: ξ3 + ξ4 + ξ5.

The functionsϑ ′(uτ
h), g and σ τ

h are polynomials of degree q in timewhereasw and∇w are the
(Legendre) polynomial of degree (q + 1) in time, cf. (54). Due to the L2(Im)-orthogonality
of the Legendre polynomials, we have ξ1 = 0, since

(
ϑ ′(uτ

h) − g, w
)
K ,m + (

σ τ
h ,∇w

)
K ,m = 0 (62)

Moreover, using inequality (57), relations (54)-(55) and the equivalence of norms on finite
dimensional spaces,

we obtain

ξ2 �
(
Ph
({

ϑ(uτ
h)
}
m−1

)
,
d2K ,m
τm

Ph
({

ϑ(uτ
h)
}
m−1

)
χK

)
K

dK ,m√
τm

∥∥∥Ph
({

ϑ(uτ
h)
}
m−1

)∥∥∥
K

(63)

� dK ,m√
τm

(
Ph
({

ϑ(uτ
h)
}
m−1

)
, Ph

({
ϑ(uτ

h)
}
m−1

))
K∥∥∥Ph

({
ϑ(uτ

h)
}
m−1

)∥∥∥
K

= dK ,m√
τm

∥∥∥Ph
({

ϑ(uτ
h)
}
m−1

)∥∥∥
K
.

Furthermore, let wK ,m = 1
K×Im

∫
K×Im

w dx dt be the mean value of w on the space-time
element K × Im . Due to (52), the Cauchy–Schwarz inequality and (35), we have

|ξ3| =
∣∣(g − g, w − wK ,m

)
K ,m

∣∣

‖w‖VK ,m

≤ ‖g − g‖K ,m

∥∥w − wK ,m
∥∥
K ,m

‖w‖VK ,m

� dK ,m‖g − g‖K ,m = ηG,K ,m, (64)

and

|ξ5| � dK ,m

∥∥∥ϑ ′(uτ
h) − ϑ ′(uτ

h)

∥∥∥
K ,m

= ηϑ ′,K ,m . (65)

Similarly, the Cauchy–Schwarz inequality and (22) imply

|ξ4| ≤ dK ,m

hK

∥∥σ(uτ
h,∇uτ

h) − σ τ
h

∥∥
K ,m

hK ‖∇w‖K ,m

dK ,m‖w‖VK ,m

≤ dK ,m

hK

∥∥σ(uτ
h,∇uτ

h) − σ τ
h

∥∥
K ,m = ηS,K ,m . (66)

Collecting (61)–(66), we have

RK ,m(uτ
h) � dK ,m√

τm

∥∥∥Ph
({

ϑ(uτ
h)
}
m−1

)∥∥∥
K

− ηG,K ,m − ηS,K ,m − ηϑ ′,K ,m . (67)

Moreover, using (42c), (26), integration by parts, the boundedness of the Radau polyno-
mials, the triangle inequality and (58), we have
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ηT ,K ,m = dK ,m

τm

∥
∥Rτ

h − ϑ(uτ
h)
∥
∥
K ,m = dK ,m

τm

∥
∥
∥
{
ϑ(uτ

h)
}
m−1rm

∥
∥
∥
K ,m

(68)

= dK ,m

τm

∥
∥
∥
{
ϑ(uτ

h)
}
m−1

∥
∥
∥
K

√∫

Im
r2m dt � dK ,m√

τm

∥
∥
∥
{
ϑ(uτ

h)
}
m−1

∥
∥
∥
K

≤ dK ,m√
τm

∥
∥
∥Ph

({
ϑ(uτ

h)
}
m−1

)∥∥
∥
K

+ ηϑ,K ,m .

Hence, (67) and (68)

ηT ,K ,m ≤ RK ,m(uτ
h) + ηϑ,K ,m + ηG,K ,m + ηϑ ′,K ,m + ηS,K ,m, (69)

which proves the theorem. ��
Theorem 3 Let ηS,K ,m and ηR,K ,m, K ∈ T m

h , m = 1, . . . , r be the error estimates given by
(42), then

ηR,K ,m � RωK ,m(uτ
h) + ηG,K ,m + ησ,K ,m + ηS,K ,m, (70)

ηS,K ,m � RωK ,m(uτ
h) + ηG,K ,m +

∑

K⊂ωK

ησ,K ,m, (71)

where RωK ,m is the local error measures defined by (49)–(50) and the oscillation terms
ηG,K ,m, ηϑ,K ,m and ηϑ ′,K ,m are given by (58).

Proof The proof is in principle identical with the proof [18, Lemmas 7-9], we present the
main step for completeness. Let g and σ be the projection given by (52) and (53). Using the
triangle inequality, the inverse inequality and (58), we obtain

ηR,K ,m = dK ,m
∥∥(Rτ

h )
′ − ∇ · σ τ

h − g
∥∥
K ,m (72)

≤ dK ,m
∥∥(Rτ

h )
′ − ∇ · σ − g

∥∥
K ,m + dK ,m‖g − g‖K ,m + dK ,m

∥∥∇ · σ − ∇ · σ τ
h

∥∥
K ,m

� dK ,m
∥∥(Rτ

h )
′ − ∇ · σ − g

∥∥
K ,m + ηG,K ,m + dK ,m

hK

∥∥σ − σ τ
h

∥∥
K ,m .

The first term on the right-hand side of (72) can be estimated as in [36, Theorem 4.10] by

dK ,m
∥∥(Rτ

h )
′ − ∇ · σ − g

∥∥
K ,m � ResωK ,m(uτ

h) + ηG,K ,m + ησ,K ,m, (73)

where the resulting oscillation terms are estimated with the aid (58). Moreover, the last term
on the right-hand side of (72) together with (42b) and assumption (58), reads

dK ,m

hK

∥∥σ − σ τ
h

∥∥
K ,m ≤ dK ,m

hK

∥∥σ − σ(uτ
h,∇uτ

h)
∥∥
K ,m + dK ,m

hK

∥∥σ(uτ
h,∇uτ

h) − σ τ
h

∥∥
K ,m

(74)

≤ ησ,K ,m + ηS,K ,m,

which proves (70).
The proof of (71) is based on the decomposition

∥∥σ τ
h − σ(uτ

h,∇uτ
h)
∥∥
K ,m ≤ ∥∥σ τ

h − σ
∥∥
K ,m + ∥∥σ − σ(uτ

h,∇uτ
h)
∥∥
K ,m . (75)

While the second term on the right-hand side of (75) can be estimated by assumption (58), the
estimate of the first term is somewhat more technical. It depends on the flux reconstruction
used. For the flux reconstruction in Sect. 5.2, the proof is identical to the proof of [18, Lemma
9], which mimics the stationary variant [24, Theorem 3.12]. On the other hand, using the flux
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reconstruction from Sect. 5.1, it is possible to apply the technique from [11, Lemma 7.5],
where the final relation has to be integrated over Im . ��

5 Spatial Flux Reconstructions and Stopping Criteria

We present two ways of reconstructing the spatial flux σ τ
h ∈ L2(0, T , H(div,Ω)) that satis-

fies the assumptions (33)–(34). The first one, proposed in [19] for the case of homogeneous
Dirichlet boundary condition, is defined by the volume and edge momenta of the Raviart-
Thomas-Nedelec (RTN) elements, cf. [7], and is easy to compute. The second approach is
based on the solution of local Neumann problems on patches associated with each vertex of
the mesh. This idea comes from, e.g., [24], its space-time variant was proposed in [18] for
nonlinear convection-diffusion equations. Finally, in Sect. 5.3, we discuss the errors arising
from the solution of algebraic systems and introduce a stopping criterion for the appropriate
iterative solver.

5.1 Element-Wise Variant

We denote by pK ,max the maximum polynomial degree over the element K and its neigh-
bours that share the entire edge with K and pγ,max the maximum polynomial degree on
neighbouring elements having a common edge γ . Let RTNpK ,max(K ) be the space of RTN
finite elements of order pK ,max for element K ∈ T m

h , cf. (32), and uτ
h ∈ Sτq

hp be the approxi-
mate solution. The spatial reconstruction σ τ

h is defined element-wise: for each K ∈ T m
h , find

σ τ
h |K×Im ∈ Pq(Im,RTNpK ,max(K )) with σ τ

h · n|γ×Im ∈ Pq(Im, Ppγ,max(γ )) such that

(
στ
h · n, v

)
γ,m =

{(〈
K(uτ

h)∇uτ
h

〉 · n − α[uτ
h ] · n, v

)
γ,m ∀v ∈ Pq (Im , Ppγ,max (γ )), γ ⊂ ∂K \ ΓN(

gN , v
)
γ

∀v ∈ Pq (Im , Ppγ,max (γ )), γ ⊂ ∂KN

(76)
(
στ
h , v

)
K ,m = (

K(uτ
h)∇uτ

h , ∇v
)
K ,m + (β − 1

2 )
(
K(uτ

h)[uτ
h ], ∇v

)
∂K\Γ ,m

+ (2β − 1)
(
K(uτ

h)[uτ
h ], ∇v

)
∂K∩ΓD,m ∀v ∈ Pq (Im , PpK ,max−1(K )d ).

The edge momenta in (76) are uniquely defined and since pγ,max ≤ pK ,max, σ τ
h in (76) is

well defined as well. Here, the numerical flux
〈
K(uτ

h)∇uτ
h

〉 · n − α[uτ
h] · n is conservative on

interior edges, which implies that σ τ
h · n are the same on each interior edge γ and therefore

the resulting reconstruction σ τ
h ∈ L2(0, T , H(div,Ω)) globally.

Obviously, the first relation in (76) with pK ≤ pγ,max directly implies assumption (34).
Moreover, using the Green theorem, (76), (12), (31) and pK ≤ pγ,max ≤ pK ,max, we obtain
(∇ · σ τ

h , v
)
K ,m = −(σ τ

h ,∇v
)
K ,m + (

σ τ
h · nK , v

)
∂K ,m (77)

= −(K(uτ
h)∇uτ

h,∇v
)
K ,m + (〈

K(uτ
h)∇uτ

h

〉 · n − α[uτ
h] · n, v

)
∂K\ΓN,m

− (β − 1
2 )
(
K(uτ

h)[uτ
h],∇v

)
∂K\Γ ,m − (2β − 1)

(
K(uτ

h)[uτ
h],∇v

)
∂K∩ΓD,m

+ (
gN , v

)
∂KN ,m

= −AK ,m(uτ
h, v) − (

g, v
)
K ,m =(

(Rτ
h )

′ − g, v
)
K ,m

∀v ∈ Pq(Im, PpK (K )), K ∈T m
h ,

which justifies the assumption (33).
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5.2 Patch-Wise Variant

For each vertex a of the mesh T m
h , we denote by ωa a patch of elements K ∈ T m

h sharing
this vertex. By pa = maxK∈ωa pK we denote the maximal polynomial degree on ωa . Let
P∗
pa (ωa) be the space of piecewise polynomial discontinuous functions of degree pa on ωa

with mean value zero for a /∈ ∂Ω . We define the space

WN
RTN,pa

(ωa) = {v ∈ H(div, ωa); v|K ∈ RTNpa (K ), v · n = 0 on ∂ωa}, a /∈ ∂Ω (78)

WN
RTN,pa

(ωa) = {v ∈ H(div, ωa); v|K ∈ RTNpa (K ), v · n = 0 on ∂ωa \ ∂Ω,

& (v · n, φ)γ,m = (gN , φ)γ,m ∀φ ∈ Pq (Im , Ppa (γ )) on ∂ωa ∩ ∂KN }, a ∈ ∂Ω.

We set the local problems on patchesωa for all vertices a: find σ τ
h ∈ Pq(Im,WN

RTN,pa
(ωa))

and r τ
a ∈ Pq(Im, P∗

pa (ωa)) such that

(
σ τ
a , v

)
ωa ,m

− (
r τ
a ,∇ · v

)
ωa ,m

= (
ξ1a , v

)
ωa ,m

∀v ∈ Pq(Im,WN
RTN,pa (ωa)) (79)

(∇ · σ τ
a , φ

)
ωa ,m

= (
ξ2a , φ

)
ωa ,m

∀φ ∈ Pq(Im, P∗
pa (ωa)),

where

ξ1a = ψaσ(uτ
h,∇uτ

h) (80)

ξ2a = ψa(R
τ
h )

′ − ψag + ∇ψa · �ξ(uτ
h,∇uτ

h),

with

�ξ(uτ
h,∇uτ

h) = σ(uτ
h,∇uτ

h) + (2β − 1)
∑

γ �⊂ΓN

�m,γ (uτ
h), (81)

and �m,γ : Shp,m → [Sh0,m]d is the lifting operator defined by
∫

Ω

�m,γ (uτ
h) · v dx =

∫

γ

[uτ
h]
〈
K(uτ

h)v
〉
dx ∀v ∈ [Sh0,m]d , γ �⊂ ΓN. (82)

Then the final reconstructed flux is obtained by summing up σ τ
a on each element that

contains vertex a, i.e.,

σ τ
h |K ,m =

∑

a∈K
σ τ
a |K . (83)

The assumption (34) follows directly from (78) and pK ≤ pa . Inserting the hat function
ψav for a /∈ ∂Ω and v ∈ Pq(Im) in (17), using (5), (82) and omitting the zero terms, we
have
∑

K∈T m
h

AK ,m(uτ
h, ψav)

=
∑

K∈T m
h

(
K(uτ

h)∇uτ
h,∇ψav

)
K ,m (84)

+ (2β − 1)
∑

γ �⊂∂Ω

([uτ
h],

〈
K(uτ

h)∇ψav
〉)

γ,m + (2β − 1)
∑

γ⊂ΓD

([uτ
h],K(uτ

h)∇ψav
)
γ,m

− (
g, ψav

)
Ω,m = (

ξ2a , v
)
ωa ,m

− (
Rτ
h , ψav

)
ωa ,m
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Applying (13) and (31), we gain for a /∈ ∂Ω and v ∈ Pq(Im)

(∇ · σ τ
a , v

)
ωa ,m

=
∑

K⊂ωa

(
AK ,m(uτ

h, ψav) + (
Rτ
h , ψav

)
K ,m

)
= (

ξ2a , v
)
ωa ,m

. (85)

From this it follows that the second relation in (79) holds element-wise, i.e.
(∇ · σ τ

a , φ
)
K ,m = (

ξ2a , φ
)
K ,m, ∀φ ∈ Pq(Im, Ppa (K )). (86)

Then (33) follows from

(∇ · σ τ
h , φ)K ,m =

∑

a⊂K

(∇ · σ τ
a , φ)K ,m =

∑

a⊂K

(
ξ2a , φ

)
K ,m (87)

= ((Rτ
h )

′ − g, φ)K ,m ∀φ ∈ Pq(Im, Ppa (K ))

and from pK ≤ pa .

5.3 Stopping Criteria for Iterative Solvers

The space-time discretization (13) leads to a system of nonlinear algebraic equations for each
time levelm = 1, . . . , r . These systems have to be solved iteratively by a suitable solver, e.g.,
the Picard method, the Newton method or their variants. Therefore, it is necessary to set a
suitable stopping criterion for the iterative solvers so that, on the one hand, the algebraic errors
do not affect the quality of the approximate solution and, on the other hand, an excessive
number of algebraic iterations is avoided.

However, the error estimates presented in Sect. 4 do not take into account errors arising
from the inaccurate solution of these systems. Indeed, the aforementioned reconstructions
fulfill assumption (33) only if the systems given by (13) are solved exactly. The full a posteriori
error analysis including algebraic errors has been treated, e.g., in [8, 23, 29]. These error
estimators are based on additional flux reconstructions that need to be evaluated at each
iteration, and therefore, the overall computational time is increased.

To speed up the computations and control the algebraic errors, we adopt the technique
of [17]. This approach offers (i) the measurement of algebraic errors by a quantity similar
to the error measure (23), (ii) the setting of the stopping criterion for iterative solvers with
one parameter corresponding to the relative error, and (iii) a fast evaluation of the required
quantities.

For each m = 1, . . . , r , we define the estimators (cf. (23))

ηmalg(u
τ
h) = sup

0 �=v∈Sτq
hp

∑
K∈T m

h
bK ,m(uτ

h, v)

‖v‖V τ

, ηmspa(u
τ
h) = sup

0 �=v∈Sτq+1
hp+1

∑
K∈T m

h
bK ,m(uτ

h, v)

‖v‖V τ

,

(88)

where the norm ‖·‖V τ is given by (22),

Sτq+1
hp+1 = {v ∈ L2(Ω × (0, T )) : v|Im ∈ Pq+1(Im, Shp+1,m), m = 1, . . . , r}, (89)

and Shp+1,m = {v ∈ L2(Ω) : v|K ∈ PpK+1(K ), K ∈ T m
h }, m = 0, . . . , r .

The space Sτq+1
hp+1 is an enrichment space of Sτq

hp by polynomials of the space degree pK + 1
and the time degree q + 1 for each K × Im , K ∈ T m

h , m = 1, . . . , r . Finally, we define the
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global in time quantities

ηalg(u
τ
h) =

(
r∑

m=1

(ηmalg(u
τ
h))

2

)1/2

, ηspa(u
τ
h) =

(
r∑

m=1

(ηmspa(u
τ
h))

2

)1/2

. (90)

Obviously, if uτ
h fulfills (13) exactly, then ηmalg(u

τ
h) = 0 for all m = 0, . . . , r . Moreover, if

uτ
h is the weak solution (6) then ηmspa(u

τ
h) = 0 for allm = 0, . . . , r . Comparing (88) with (23),

the quantity ηspa(uτ
h) exhibits a variant of the error measure R(uτ

h). Nevertheless, ηspa(u
τ
h)

is neither lower nor upper bound of R(uτ
h) since S

τq+1
hp+1 �⊂ V τ and V τ �⊂ Sτq+1

hp+1 .
The quantities (88) can be evaluated very fast since the suprema (maxima) are the sum of

the suprema (maxima) for all space-time elements K × Im , K ∈ T m
h , m = 1, . . . , r , which

are computable separately, cf. [17] for details. Hence, we prescribe the stopping criterion for
the corresponding iterative solver as

ηmalg(u
τ
h) ≤ cAηmspa(u

τ
h), m = 1, . . . , r , (91)

where cA ∈ (0, 1) is the user-dependent constant. The justification of this approach and the
influence of algebraic errors on the error estimates are studied numerically in Sect. 6.1.1.

6 Numerical Experiments

We present numerical experiments that justify the a posteriori error estimates (41)–(42).
Since the error measure (23) is the dual norm of the residual, it is not possible to evaluate
the error even if the exact solution is known. Therefore, similarly to [18], we approximate
the error by solving the dual problem given for each time interval Im, m = 1, . . . , r : Find
ψm ∈ Y τ

m = L2(Im, H1(Ω)),
(
ψm, φ

)
Y τ
m

=
∑

K ,m

bK ,m(uτ
h, φ) ∀φ ∈ Y τ

m, (92)

where (cf. (21a)–(22))
(
u, v

)
Y τ
m

=
∑

K∈T m
h

d−2
K ,m

(
h2K

(∇u,∇v
)
K ,m + τ 2m

(
u′, v′)

K ,m

)
, m = 1, . . . , r . (93)

Then we have R(uτ
h)

2 = ∑r
m=1 ‖ψ‖2Y τ

m
. We solve (92) for each m = 1, . . . , r by linear

conforming finite element on a global refinement of the space-time mesh T m
h × Im which

is proportional to the space and time polynomial approximation degrees. We denote this
quantity by R̃(uτ

h). The second error contribution J given by (24) is computable, so the total

error E (cf. (25)) is approximated by Ẽ(uτ
h) := (

R̃(uτ
h)

2 + J (uτ
h)
)1/2

.

Remark 3 Sometimes, this approximate evaluation of the (exact) error is not sufficiently
accurate for fine grids and high polynomial approximation degrees. In this case, very fine
global refinement is required and then the resulting algebraic systems are too large to be
solved in a reasonable time.

All numerical experiments were carried out using the patch-wise reconstruction from
Sect. 5.2 using the in-house code ADGFEM [10]. The arising nonlinear algebraic systems
are solved iteratively by a Newton-like method, we refer to [14] for details. Each Newton-
line iteration leads to a linear algebraic system that is solved by GMRES method with block
ILU(0) preconditioner.
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6.1 Barenblatt Problems

We consider two nonlinear variants of (3) following from the Barenblatt problem [4] where
the analytical solution exists. The first variant reads

∂tϑ(u) − Δu = 0, ϑ(u) = u1/m, m ∈ (0, 1), (94)

where the analytical solution is

u(x1, x2, t) = 1

1 + t

(⌊
[1 − m − 1

4m2

x21 + x22
(1 + t)1/m

⌋

+

) m
m−1

, �z�+ := max(z, 0), z ∈ R

(95)

Using the substitution v := u1/m , we have the second variant

∂tv − ∇ · (m|v|m−1∇v) = 0, m > 1, (96)

having the solution

v(x1, x2, t) =
{

1

1 + t

(⌊
1 − m − 1

4m2

x21 + x22
(1 + t)1/m

⌋

+

) m
m−1

}1/m
. (97)

For both problems ((94)–(95) and (96)–(97)), the computational domain is Ω = (−6, 6)2

and the Dirichlet boundary condition is prescribed on all boundaries by (95) or (97). The
final time is T = 1.

We carried out computation using a sequence of uniform triangular grids (having 288,
1152, 4608 and 18432 triangles) with several combinations of polynomial approximation
degrees with respect to space (p) and time (q). The time step has been chosen constant
τ = 0.01. Besides the error quantities (R̃(uτ

h) and J (uτ
h)) and its estimators η, ηR :=∑

K ,m ηR,K ,m , ηS := ∑
K ,m ηS,K ,m and ηT := ∑

K ,m ηT ,K ,m , we evaluate the effectivity
indices

ieff = η

R̃(uτ
h)

, i toteff =
(
η2 + J (uτ

h)
)1/2

Ẽ(uτ
h)

. (98)

In addition, we present the experimental order of convergence (EoC) of the errors and the
estimators for each pair of successive meshes.

Tables 1–4 show the results for both Barenblatt problems ((94)–(95) with m = 0.25
and (96)–(97) with m = 2) with two variants of the scaling parameter dK ,m , K ∈ T m

h ,
m = 1, . . . , r given by (21a) and (21b). The quantity #DoF represents the number of degrees
of freedom in the space, that is, #DoF = dim Shp,m , m = 1, . . . , r . We observe a good
correspondence between R̃(uτ

h) and η, the effectivity index ieff varies between 1 and 2.5 for
all tested values of p and q and both variants of dK ,m ((21a) and (21b)).

Finally,we note that the experimental orders of convergenceEoC inTables 1–4) of the error
R̃(uτ

h) and its estimateη areO(h p) for the choice (21b) of the scaling parameter dK ,m but only
O(h p−1) for the choice (21a). This follows from the fact that τm � hK for the computations
of the Barenblatt problem and then the dominant part of dK ,m is τ−2

m T
∥∥ dϑ
du

∥∥
K ,m,∞, cf. (21a),

which implies that dK ,m = O(h0) (the time step is the same for all computations). The
dominant part of the error estimator is ηS,K ,m , hence if

∥∥σ τ
h − σ(uτ

h,∇uτ
h)
∥∥
K ,m = O(h p)

then ηS,K ,m = O(h p−1), cf. (42b). Nevertheless, comparing the pairs of Tables 1–2 and
Tables 3–4, we found that the effectivity indexes are practically independent of the choice of
dK ,m .
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6.1.1 Justification of the Algebraic Stopping Criterion (91)

We present the numerical study of the stopping criterion (91) which is used in the iterative
solution of algebraic systems given by (13). We consider again the Barenblatt problem (94)–
(95) with m = 0.25 and (96)–(97) with m = 2. The user-dependent constant cA in (91) has
been chosen as 10−1, 10−2, 10−3 and 10−4. Tables 5 and 6 show the estimators η, J (uτ

h),
ηalg and ηalg, cf. (90), for selected meshes and polynomial approximation degrees and the
scaling parameter dK ,m chosen by (21a).

Additionally, we present the total number of steps of the Newton-like solver Nnon, the total
number of GMRES iterations Nlin and the computational time in seconds. The computational
time has only an informative character.

We observe that the error estimators η, J (uτ
h) and also ηspa converge to the limit values

for decreasing cA in (91) which mimic the case when the algebraic errors are negligible.
Moreover, the relative differences between the actual values η and J (uτ

h) and their limits
correspondmore or less to the value of cA. Obviously, smaller values of cA cause prolongation
of the computational time, due to a higher number of iterations, with a negligible effect on
accuracy. Thus, the choice cA = 10−2 seems to be optimal in order to balance accuracy and
efficiency.

The presented numerical experiments indicate that the estimator ηspa(uτ
h) gives an upper

bound of R(uτ
h), however, this observation is not supported by the theory. The quantity

ηspa(uτ
h) is used only in the stopping criterion (91).

6.2 Tracy Problem

Tracy problem represents a standard benchmark, where the analytical solutions of the
Richards equation are available [35]. We consider the Gardners constitutive relations [26]

K(u) =
{
Ks exp(−αψ) if ψ > 0
Ks if ψ ≤ 0

, ϑ(u) =
{

θr + (θs − θr ) exp(−αψ) if ψ > 0
θs if ψ ≤ 0

(99)

whereψ = u− z is the pressure head, z is the vertical coordinate and the material parameters
Ks = 1.2I, θs = 0.5, θr = 0.0, and α = 0.1 are the isotropic conductivity, saturated
water content, residual water content, and the soil index parameter related to the pore-size
distribution, respectively.

The computational domain is Ω = (0, 1)2, the initial condition is set u = ur := −10 in
Ω where ur corresponds to the hydraulic head when the porous medium is dry. On the top
part of the boundary Γ1 := {(x, z), x ∈ (0, 1), z = 1}, we prescribe the boundary condition

u(x) = 1

α
log

(
exp(αur ) + (1 − exp(αur ) sin(πx)

)
, x ∈ (0, 1) (100)

and on the rest of boundary Γ we set u = ur . We note that this benchmark poses an
inconsistency between the initial and boundary conditions onΓ1. Hence, themost challenging
part is the computation close to t = 0. In order to avoid the singularity at t = 0, we investigate
the error only on the interval t ∈ [1.0 × 10−5, 1.1 × 10−4] with the fixed time step τ is
1.0 × 10−6.

We perform a computation using a sequence of uniform triangular grids with several
combinations of polynomial approximation degrees and the choice (21b), the results are
shown in Table 7.We observe reasonable values of the effectivity indices except for the finest
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Algorithm 1: Space-time mesh adaptive algorithm.

1: inputs: tolerance δ > 0, initial time step τ1, initial mesh T 1
h and space Shp,1

2: set m ← 1, t ← 0
3: while t < T do
4: repeat
5: solve

∑
K BK ,m (uτ

h , v) = 0 ∀v ∈ Sτq
hp for the given m, cf. (13)

6: evaluate ηm (uτ
h) and set δm , cf. (41) and (102)

7: if ηm ≤ δm then
8: set t ← t + τm , propose the new size of the time step τm+1

9: set T m+1
h ← T m

h , Shp,m+1 ← Shp,m , m ← m + 1
10: else
11: generate a new mesh T m

h & space Shp,m
12: reduce the size of the time step τm
13: end if
14: until ηm ≤ δm
15: end while

grids and the higher degrees of polynomial approximation, where the effectivity indices ieff
are below 1. Based on the values of EoC, we suppose that ieff below 1 is not caused by the
failure of the error estimator but due to an inaccurate approximation R̃(uτ

h) of the exact error;
see Remark 3.

7 Mesh Adaptive Algorithm

We introduce the mesh adaptive algorithm which is based on the a posteriori error estimates
η, cf. (41). Let δ > 0 be the given tolerance, the goal of the algorithm is to define the sequence
of time steps τm , meshes T m

h and spaces Shp,m , m = 1, . . . , r such that the corresponding
approximate solution uτ

h ∈ Sτq
hp given by (13) satisfies the condition

η = η(uτ
h) ≤ δ. (101)

Another possibility is to require
(
η2 + J (uτ

h)
)1/2 ≤ δ, then the following considerations

have to be modified appropriately.
The mesh adaptation strategy is built on the equi-distribution principle, namely the

sequences {τm, T m
h , Shp,m}rm=1 should be generated such that

ηm ≤ δm := δ
√

τm/T ∀m = 1, . . . , r , (102a)

ηK ,m ≤ δK ,m := δm

√
1/#T m

h ∀K ∈ T m
h ∀m = 1, . . . , r , (102b)

where ηm := (
∑

K∈T m
h

η2K ,m)1/2 is the error estimate corresponding to the time interval
Im , m = 1, . . . , r and #T m

h denotes the number of elements of T m
h . Obviously, if all the

conditions in (102) are valid, then the criterion (101) is achieved.
Based on (101)–(102),we introduce the abstractAlgorithm1.The size of τm ,m = 1, . . . , r

(step 8 of the algorithm) are chosen to equilibrate estimates of the spatial and temporal recon-
struction, ηS,m := (

∑
K∈T m

h
(ηS,K ,m)2)1/2 and ηT ,m := (

∑
K∈T m

h
(ηT ,K ,m)2)1/2, cf. (42).

Particularly, we set the new time step according to the formula

τm+1 = τmcF

(
ηS,m

ηT ,m

)1/(q+1)

, m = 1, . . . , r , (103)
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Table 8 Barenblatt problem (96)–(97), scaling parameter dK ,m given by (21b), the error estimators obtained
by the adaptive computations using Algorithm 1

hp adaptation
δ #DoF η J (uτ

h)1/2 ηR ηS ηT

2.0E−03 4 543 7.82 × 10−4 1.69 × 10−3 2.18 × 10−4 5.40 × 10−4 3.23 × 10−4

1.0E−03 6 244 4.57 × 10−4 1.17 × 10−3 1.48 × 10−4 3.13 × 10−4 1.43 × 10−4

5.0E−04 9 071 2.10 × 10−4 7.02 × 10−4 6.75 × 10−5 1.38 × 10−4 7.79 × 10−5

The quantity #DoF is the average number of space degrees of freedom per one time step

where cF ∈ (0, 1) is the security factor and q ≥ 0 is the polynomial degree with respect to
time. Therefore, q + 1 corresponds to the temporal order of convergence.

The construction of the new mesh (step 11 in Algorithm 1) is based on the modification
of the anisotropic hp-mesh adaptation method from [15, 20]. Having the actual mesh T m

h ,
for each K ∈ T m

h we set the new volume of K according the formula

νK = |K |Λ(δK ,m/ηK ,m), K ∈ T m
h , (104)

where δK ,m is the local tolerance from (102b), |K | is the volume of |K | and Λ : R+ → R+
is a suitable increasing function such that Λ(1) = 1. For particular variants of Λ, we refer to
[15, 20].

When the new volume of mesh elements is established by (104), the new shape of K and
a new polynomial approximation degree pK are optimized by minimizing the interpolation
error. This optimization is done locally for each mesh element. In one adaptation level, we
admit the increase or decrease of pK by one. Setting the new area, shape, and polynomial
approximation degree for each element of the current mesh, we define the continuous mesh
model [16] and carry out a remeshing using the code ANGENER [9].

The generated meshes are completely non-nested and non-matching, hence the evaluation
of the time-penalty term (cf. Remark 1) is delicate. We refer to [20] where this aspect is
described in detail and numerically verified. The presented numerical analysis takes into
account the errors arising from the re-meshing in the temporal reconstruction Rτ

h , which
contains term

{
ϑ(uτ

h)
}
m−1, cf. (26). The following numerical experiments show that the

error estimator is under the control also after each remeshing.

7.1 Barenblatt Problem

We apply Algorithm 1 to the Barenblatt problem (96) with m = 2. Table 8 shows the error
estimators obtained by adaptive computation for three different tolerances δ. Compared with
the error estimators from Table 4, we observe that the adaptive computations achieve signif-
icantly smaller error estimates using a significantly smaller number of degrees of freedom.
We note that we are not able to present the quantity R̃ (cf. (92)–(93)) approximating the error
since the finite element code used for the evaluation of R̃ supports only uniform grids.

Figure 1 shows the performance of Algorithm 1, where each dot corresponds to one time
step m = 1, . . . , r . We plot the values of the accumulated estimators ηm = ∑m

i=1 ηi for all
m = 1, . . . , r . The red nodes correspond to all computed time steps, including the rejected
ones (steps 11–12 of Algorithm 1) whereas the blue nodes mark only the accepted time
steps. The rejected time steps indicate the re-meshing. Moreover, we plot the “accumulated”
tolerance δ(tm/T )1/2, cf. (101) and (102a).We observe that the resulting estimator η at t = T
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Fig. 1 Barenblatt problem, (96)–(97), m = 2, performance of Algorithm 1, accumulated error estimator ηm
and the “accumulated” tolerance δ(tm/T )1/2 for m = 1, . . . , r

Fig. 2 Barenblatt problem, hp-mesh obtained by Algorithm 1 (left) and the error estimators ηK ,m , K ∈ T m
h

at T = 1

is below the tolerance δ by a factor of approximately 2.5 since conditions (102) are stronger
than (101).

Figure 2, left, shows the hp-mesh obtained by Algorithm 1 at the final time T = 1, each
triangle is highlighted by a color corresponding to the polynomial degree used pK , K ∈ T m

h .
We observe a strong anisotropic refinement about the circular singularity of the solution
when u → 0+, see the analytical formula (97). Outside of this circle, large triangles with the
smallest polynomial degree (p = 1) are generated. On the other hand, due to the regularity
of the solution in the interior of the circle, the polynomial degrees p = 2 or p = 3 are
generated.

Moreover, Fig. 2, right, shows the error estimator ηK ,m , K ∈ T m
h at T = 1. The elements

in the exterior of the circle have small values of ηK ,m ≈ 10−17 – 10−14 due to a constant
solution and negligible errors. On the other hand, the values of ηK ,m for the rest of elements
K ∈ T m

h are in the range 10−13–10−11 due to the equidistant principle used.
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7.2 Single Ring Infiltration

We deal with the numerical solution of the single ring infiltration experiment, which is
frequently used for the identification of saturated hydraulic conductivity, cf. [32, 39] for
example. We consider the Richards equation (3) where the active pore volume ϑ is given by
(2), thewater content function θ is given by the vanGenuchten’s law [27] and the conductivity
K(u) = KsKr (u) is given by the Mualem function [31], namely

θ(u) =
{

θs−θr
(1+(−αψ)n)m

+ θr for ψ < 0,
θs for ψ ≥ 0,

Kr (u) =
{

(1−(−αψ)m n(1+(−αψ)n)−m)
2

(1+(−αψ)n)m/2 for ψ < 0,

1 for ψ ≥ 0,
(105)

whereψ = u− z is the pressure head, z is the vertical coordinate and the material parameters
Ks = 0.048 I m · hours−1, θs = 0.55, θr = 0.0, α = 0.8m−1, n = 1.2, m = 1/6 and
Ss = 10−3 m−1 (cf. (2)).

The computational domain together with the boundary parts is sketched in Fig. 3a. On the
boundary part ΓD we set the Dirichlet boundary condition u = 1.05m, and on ΓN = Γ \ΓD

we consider the homogeneous Neumann boundary condition. The smaller “magenta” vertical
lines starting at ΓD belong to ΓN. At t = 0, a dry medium with u = ψ + z = −2m
is prescribed. We carried out the computation until the physical time T = 2 hours. The
inconsistency of the initial and boundary condition on ΓD makes the computation quite
difficult for t ≈ 0.

Figure 3b verifies the conservativity of the adaptive method. We plot the quantities

F(t) =
∫ t

0

∫

Γ

K(u)∇u · n dS dt,

ΔV (t) = V (t) − V (0), V (t) =
∫

Ω

ϑ(u(·, t)) dx, t ∈ [0, T ], (106)

where F(t) is the total flux of the water through the boundary Γ till time t and ΔV (t) is the
changes of the water content in the domain between times 0 and t . From equation (3) and the

Fig. 3 Single ring infiltration problem
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Fig. 4 Single ring infiltration, performance of Algorithm 1, accumulated error estimator ηm with respect to
tm , m = 1, . . . , r

Stokes theorem, we have the conservation law F(t) = ΔV (t) for all t ∈ [0, T ]. Therefore,
we also show the relative difference between these quantities |F(t) − ΔV (t)|/ΔV (t) for
t > 0 in Fig. 3b the vertical label on the right. We observe that, except for the time close to
zero, where the inconsistency between initial and boundary conditions is problematic, the
relative difference is at the level of several percent.

Furthermore, Fig. 4 shows the accumulated estimators ηm = ∑m
i=1 ηi for time levels tm ,

m = 1, . . . ,m. The red nodes correspond to all computed time steps, including the rejected
steps whereas the blue line connects only the accepted time steps. The rejected time steps
are followed by the remeshing which is carried out namely for small t . We observe that the
elimination of the rejected time steps causes that the errors arising from the remeshing do
not essentially affect the total error estimate η.

Moreover, Fig. 5 shows the hp-meshes, the hydraulic head and the error estimator ηK ,m ,
K ∈ T m

h at selected time levels obtained from Algorithm 1 with δ = 5.0×10−3. We observe
the mesh adaptation namely at the (not sharp) interface between the saturated and non-
saturated medium and also in the vicinity of the domain singularities. The error estimators
ηK ,m , K ∈ T m

h indicate an equi-distribution of the error.

8 Conclusion

We derived reliable and efficient a posteriori error estimates in the residual-based norm for
the Richards equation discretized by the space-time discontinuous Galerkin method. The
numerical verification indicates the effectivity indexes between 1 and 2.5 for the tested
examples. Moreover, we introduced the hp-mesh adaptive method handling varying non-
nested and non-matching meshes and demonstrated its efficiency for simple test benchmark
and its applicability for the numerical solution of the single ring infiltration experiment.

It will be possible to generalize the presented approach to genuinely space-time hp-
adaptive method, where the (local) polynomial order q in time is varied as well. However, the
question is of potential benefit. Based on our experience, the setting q = 1 gives sufficiently
accurate approximation for the majority of tested problems.

On the other hand, the choice q = 0 would be sufficient only in subdomains of Ω where
the solution is almost constant in time. Therefore, we suppose that the benefit of local varying
of polynomial order in time will be low.
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Fig. 5 Single ring infiltration, hydraulic head (top ), the corresponding hp-meshes obtained by Algorithm 1
(center) and the error estimators ηK ,m , K ∈ T m

h (bottom) at t = 0.4, t = 0.8 and t = 2 hours (from left to
right)

Although the presented numerical examples are two-dimensional, it would be possible to
apply the presented error estimates and mesh adaptation to three-dimensional problems as
well. We refer, e.g., to [1] and the references therein, where the anisotropic mesh adaptation
techniques are developed for time-dependent 3D problems.

Funding Open access publishing supported by the National Technical Library in Prague. This work has been
supported by the Czech Science Foundation Grant No. 20-01074 S (V.D.), the Charles University grant SVV-
2023-260711, and the Grant Agency of Charles University Project No. 28122 (H.S.), European Development
Fund-Project “Center for Advanced Aplied Science” No. CZ.02.1.01/0.0/0.0./16 019/0000778 (M.V.). V.D.
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