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Abstract
The Keller-Segel (KS) chemotaxis equation is a widely studied mathematical model for
understanding the collective behavior of cells in response to chemical gradients. This paper
investigates the direct discontinuous Galerkin method with interface correction (DDGIC) for
one-dimensional and two-dimensional KS equations governing the cell density and chemoat-
tractant concentration. We establish error estimates for the proposed scheme under suitable
smoothness assumptions of the exact solutions. Numerical experiments are conducted to
validate the theoretical results. We explore the impact of different coefficient settings in the
numerical fluxes on the error of the DDGIC method on uniform and nonuniform meshes.
Our findings reveal that the DDGIC method achieves optimal convergence rates with any
admissible coefficients for polynomials of odd degrees, while the accuracy of the cell density
is sensitive to the numerical flux coefficient in the chemoattractant concentration for poly-
nomials of even degrees. These results hold regardless of whether the mesh is uniform or
nonuniform.

Keywords Discontinuous Galerkin methods · Keller-Segel chemotaxis model · Error
estimate · Direct discontinuous Galerkin method

1 Introduction

The Keller-Segel (KS) model is a widely used mathematical model for studying chemotaxis,
which involves themovement of biological cells andmicroorganisms in response to chemical
gradients. The model consists of two nonlinear equations: a convection-diffusion equation
for the cell density and a reaction-diffusion equation for the chemoattractant concentration.
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It describes the dynamics of cell density and chemoattractant concentration, where cells both
move in response to the gradient of the chemoattractant and produce the chemoattractant. The
KS model’s intuitive simplicity, analytical tractability, and ability to replicate key behavior
of chemotactic populations have made it successful in studying various biological systems,
including bacterial colonies, immune cell migration, and tumor invasion.

The existence and uniqueness of weak solutions to the KS model heavily depend on
the initial conditions. For certain initial conditions, these solutions may exhibit blow-up or
singular, spiky behaviors [6, 14, 19–23, 31]. Additionally, the exact solutions are always
positive. These facts pose challenges in designing accurate and computationally efficient
numerical methods for KS models. Previous works are primarily focused on the simplified
parabolic-elliptic system; see, for example, [9, 13, 18, 29, 38] and the references therein.

In recent years, a fewnumerical techniques have been developed to dealwith the parabolic-
parabolic system of the KS model. Semi-group methods were proposed in [32] to obtain
stability and error estimates of finite element methods. Conservative upwind finite element
methods were designed in [34] and analyzed in [35] to obtain positive numerical approx-
imations with suitable meshes. An implicit finite element method was presented in [37]
to maintain mass conservation and guarantee the positivity of the cell density in three-
dimensional models. The second-order central-upwind finite volume method was introduced
in [5] to preserve the positivity of the solution. Later, a fourth-order hybrid finite-volume-
finite-difference scheme was developed in [4]. In [12], a composite particle-grid numerical
method with adaptive time stepping was studied to resolve singular solutions. Other works
include the positivity-preserving and asymptotic preservingmethod of [27], themovingmesh
method of [2] to precisely compute the collapse time, and the convergence of numerical blow-
up time calculation in [15]. We refer to the recent review article [1] for a comprehensive
summary of analytical and numerical developments for the KS equations.

Discontinuous Galerkin (DG)methods are another popular approach for KSmodels. They
were investigated in [8], and error estimates for fully discrete schemes with forward Euler
or second-order explicit strong-stability-preserving (SSP) Runge–Kutta (RK) methods were
analyzed in [10]. The interior penalty DG (IPDG) methods were investigated in [11] to
obtain suboptimal convergence rates and numerical fluxes were constructed for the nonlinear
convection term to obtain positive approximations. The local DG (LDG) method was applied
in [24] to obtain optimal error estimates, and a positivity-preserving limiter was added to
construct second-order positivity-preserving LDG schemes. The constructed LDG method
was proposed in [16] and was proven energy dissipative and numerically positive with a third
order of accuracy.

This paper investigates the KS models in the direct DG (DDG) methods framework.
The DDG methods are a class of DG methods specifically designed for solving diffusion
equations. Unlike the LDG method, which introduces auxiliary variables for the derivatives
of the solution and rewrites the original equation into a first-order system, the DDG method
is based on the direct weak formulation of the diffusion equations with a numerical flux
formula designed at the cell interfaces to approximate the spatial derivatives of the solution.
The original DDGmethod was introduced in [25], and the DDGICmethod [26] is a variation
of the original DDG method by adding interface correction terms to balance the solution
and test function in the bilinear form. This guarantees optimal convergence and improves
the capability of the DDG method. Compared to other DDG variations, the DDGIC method
is the most suitable solver for time-dependent parabolic equations. The DDGIC method
explores fewer degrees of freedom and thus is more efficient than the LDG method. Unlike
the DG methods listed above, the DDGIC method does not introduce auxiliary variables
to separately approximate the solution’s gradient. While it is standard to introduce gradient
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approximations to maintain the overall convergence orders, such methods are expensive.
Moreover, the DDGIC method possesses the superconvergence property of approximating
the solution’s gradient [39]. Such a property leads to the capability of the DDGIC method
to solve the KS equations optimally and directly without auxiliary variables. Furthermore, it
was proved in [33] to preserve positivity with a third order of accuracy for the KS models.

This paper applies the DDGIC method to one- and two-dimensional KS equations. We
aim to establish the estimate for the bilinear and nonlinear terms of the DDGIC operators
and prove the error estimates under suitable smoothness assumptions of the exact solutions
before blow-up occurs. The numerical solutions are proved to achieve k-th order of accuracy
under L∞(L2) norm for the DDGIC schemewith Pk polynomial approximations. Numerical
experiments are conducted to validate the theoretical results. We further investigate whether
the convergence of the DDGIC method is affected by different coefficient settings in the
numerical flux on both uniform and nonuniform meshes. Numerical tests show that, for the
DDGICmethod with odd-degree polynomial approximations, optimal (k+1)th convergence
rates are achieved with any admissible numerical flux coefficients, while for polynomials of
even-degree, the errors of the cell density are sensitive to the numerical flux coefficient in
the chemoattractant concentration. This phenomenon holds regardless of whether the mesh
is uniform or nonuniform.

The paper is organized as follows. In Sect. 2, we introduce the KS chemotaxis equations
and present the DDGICmethod for one-dimensional and two-dimensional models. In Sect. 3,
we establish error estimates for the proposed scheme for two-dimensional models. Section4
is devoted to numerical tests to validate the proposed DDGIC scheme. Concluding remarks
are given in Sect. 5.

2 DDGICMethod for Keller-Segel Equations

In this section, we introduce theKS chemotaxismodels and present the algorithm formulation
of the DDGIC method for solving the model equations.

2.1 Model Equations

The KS chemotaxis model consists of two governing equations: one equation represents the
concentration of cells, and the other equation represents the diffusion and production of the
chemoattractant. The one-dimensional version of the KS model is given by

ρt + (χcxρ)x = ρxx , x ∈ (a, b), t > 0, (2.1a)

ct = cxx − c + ρ, x ∈ (a, b), t > 0. (2.1b)

The two-dimensional version of the KS model [6] is given by

ρt + ∇ · (χρ∇c) = �ρ, (x, y) ∈ �, t > 0, (2.2a)

ct = �c − c + ρ, (x, y) ∈ �, t > 0, (2.2b)

where � is a convex, bounded, and open set R
2. In these equations, ρ is the cell density, c

is the chemoattractant concentration, and χ is the chemotactic sensitivity. For simplicity, we
set χ = 1 in our study.

The boundary conditions are set as homogeneous Neumann boundary conditions. For the
one-dimensional case, we have ρx = cx = 0 at the boundaries x = a and x = b. For the
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two-dimensional case, the boundary conditions are given by

∇ρ · n = ∇c · n = 0, (x, y) ∈ ∂�, (2.3)

where n is the outward unit normal vector of the boundary ∂�.
Initial conditions are crucial for the existence and uniqueness of the weak solution to

(2.1) and (2.2). Specifically, assume that the initial conditions ρ0(x, y) and c0(x, y) for
two-dimensional equations satisfy the following conditions

ρ0 ∈ L2(�), CGNS‖ρ0‖L1(�) < 1, ρ0(x, y) ≥ a0 > 0, and c0 ∈ H1
p(�), p > 2,

(2.4)

where a0 is some positive constant and CGNS is the best constant in the Gagliardo-
Nirenbuerg-Sobolev inequality. Then, for a suitable time T > 0, there exists a unique weak
solution with

ρ ∈ C([0, T ]; L2(�) ∩ L2(0, T ; H1(�)), c ∈ L2(0, T ; H1(�)). (2.5)

More details can be found in [13, 14]. It is worthmentioning that the solutions to theKSmodel
can exhibit blow-up pattern with certain initial conditions. This phenomenon is known as
chemotactic collapse, which describes the tendency of cells to concentrate to form spore-like
structures. Mathematically, the blow-up corresponds to the concentration of the cell density
ρ towards a Dirac delta function in the sense of distribution in finite time. We refer interested
readers to [6, 13, 14, 17, 19–23, 31].

2.2 DDGICMethod: One-Dimensional Case

In this section, we present the algorithm formulation of the DDGIC method for the one-
dimensional KS equation (2.1).

We start by making a partition of the spatial domain [a, b] into N computational cells,
denoting each cell as I j = [x j− 1

2
, x j+ 1

2
] with

a = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b.

We further denote the cell size as h j = x j+ 1
2

− x j− 1
2
and let h = max1≤ j≤N h j . The mesh

is assumed to be regular, namely there exists a constant γ > 0 independent of h such that

h j ≥ γ h, 1 ≤ j ≤ N .

The finite element space is defined by

V
k
h :=

{
vh ∈ L2[a, b] : vh |I j ∈ Pk(I j ), j = 1, . . . , N

}
,

where Pk(I j ) denotes the space of polynomials of degree up to k defined in the cell I j . For
vh ∈ V

k
h , we define the jump and average of vh across the cell interface as

�vh� = v+
h − v−

h , {{{vh}}} = 1

2
(v+

h + v−
h ),

where v+
h , v−

h denote the left and right limits of the function v at the cell interface,
respectively.
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For simplicity, let f (ρ) = cxρ denote the convection term. The semi-discrete DDGIC
scheme for solving the one-dimensional KS equation (2.1) is defined as follows: find the
unique functions ρh, ch ∈ V

k
h such that, for all test functions vh, wh ∈ V

k
h , we have

∫

I j
(ρh)tvhdx +

(
f̂ (ρh) − (̂ρh)x

)
vh

∣∣∣
j+ 1

2

j− 1
2

−
∫

I j
( f (ρh) − (ρh)x )(vh)xdx

+ (vh)
−
x

2
�ρh� j+ 1

2
+ (vh)

+
x

2
�ρh� j− 1

2
= 0, (2.6a)

∫

I j
(ch)twhdx − (̂ch)xwh

∣∣∣
j+ 1

2

j− 1
2

+
∫

I j
(ch)x (wh)xdx +

∫

I j
(ch − ρh)whdx

+ (wh)
−
x

2
�ch� j+ 1

2
+ (wh)

+
x

2
�ch� j− 1

2
= 0, (2.6b)

where we adopt the following short notations

(
f̂ (ρh) − (̂ρh)x

)
vh

∣∣∣
j+ 1

2

j− 1
2

:=
(
f̂ (ρh) − (̂ρh)x

)
(vh)

−
j+ 1

2
−

(
f̂ (ρh) − (̂ρh)x

)
(vh)

+
j− 1

2
,

(̂ch)xwh

∣∣∣
j+ 1

2

j− 1
2

:= (̂ch)x (wh)
−
j+ 1

2
− (̂ch)x (wh)

+
j− 1

2
.

The aboveweak formulation is obtained by directlymultiplying both sides of the system (2.1)
by test functions and performing integration by parts in the cell I j . f̂ (ρh), (̂ρh)x , and (̂ch)x
are the so-called numerical fluxes, since ρh, ch ∈ V

k
h are discontinuous at the cell interfaces.

For theDDGICmethod, numerical fluxes (̂ch)x and (̂ρh)x directly approximate the deriva-
tives (ch)x and (ρh)x of the solutions at the cell interfaces. They are uniquely defined at the
cell interface by

(̂ρh)x = β0
�ρh�

h
+ {{(ρh)x }} + β1h�(ρh)xx �, (2.7a)

(̂ch)x = β0
�ch�

h
+ {{(ch)x }} + β1h�(ch)xx �, (2.7b)

where, with a slight abuse of notation, h is taken as the average of the mesh sizes h j and h j+1

when evaluating the numerical fluxes at the cell interface x j+ 1
2
. The numerical fluxes (̂ch)x

and (̂ρh)x involve the jump of the solutions, jump, the average of the first derivative, and the
jump of the second-order derivative. They are consistent to the spatial derivatives cx and ρx

of the solutions. It is worth noting that there exists a large group of admissible coefficients
pair (β0, β1) that ensures the stability and optimal accuracy of the DDGIC method [26].

For the numerical flux f̂ (ρh) associated with the convection term f (ρ) = cxρ, we employ
the Lax-Friedrichs (LF) flux

f̂ (ρh) = 1

2

(
( f (ρ+

h ) + f (ρ−
h )) − α(ρ+

h − ρ−
h )

)
, (2.8)

where f (ρ±
h ) = ((̂ch)x )(ρh)± with (̂ch)x defined in (2.7b). For the local LF fluxes, α is taken

as α = |((̂ch)x ) j+ 1
2
|. For the global LF flux, α is taken as α = max1≤ j≤N |((̂ch)x ) j+ 1

2
|.

Regarding the Neumann boundary conditions, we simply set (̂ρh)x = (̂ch)x = 0 at the
boundaries x = a and x = b.
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2.3 DDGICMethod: Two-Dimensional Case

In this section, we present the algorithm formulation of the DDGIC method for the two-
dimensional KS equation (2.2).

Let Th be a shape-regular partition of the domain� consisting of rectangular or triangular
elements K . Denote Eh as the set of all edges, E I

h as the set of all internal edges, and ED
h as

the set of all boundary edges of Th . Clearly, Eh = E I
h ∪ ED

h . We denote hK as the diameter
of the element K and he as the length of the edge e ∈ Eh . The element K is regular in the
sense that there exists a positive constant γ independent of h such that

hK ≥ γ h, k ∈ Th .

The finite element space is defined as

V
k
h := {vh ∈ L2(�) : vh |K ∈ Pk(K ),∀K ∈ Th},

where Pk(K ) denotes the set of polynomials of total degree at most k in the element K .
For vh ∈ V

k
h , we further introduce the concepts of jumps and averages. For any edge

e ∈ ∂K ∩ E I
h sharing with the element K ′, the jump and average of vh over e are defined as

�vh� = vh |K ′ − vh |K , {{vh}} = 1

2
(vh |K + vh |K ′) . (2.9)

In the two-dimensional case, denote the nonlinear convection term as F(ρ) = (cxρ, cyρ)

for simplicity. The semi-discrete DDGIC scheme for solving (2.2) is defined as follows: find
the unique solutions ρh, ch ∈ V

k
h such that, for any test functions vh, wh ∈ V

k
h , we have∫

K
(ρh)tvhdxdy +

∫

∂K

(
̂F(ρh) · n − (̂ρh)n

)
vhds

+
∫

K
(∇ρh − F(ρh)) · ∇vhdxdy +

∫

∂K
�ρh�

(vh)n

2
ds = 0, (2.10a)

∫

K
(ch)twhdxdy −

∫

∂K
(̂ch)nwhds +

∫

K
∇ch · ∇whdxdy

+
∫

K
(ch − ρh)whdxdy +

∫

∂K
�ch�

(wh)n

2
ds = 0, (2.10b)

where (φ)n = ∇φ · n represents the normal derivative of any function φ, and n denotes the
outward unit normal vector to ∂K .

Similarly to the one-dimensional case, numerical fluxes (̂ρh)n and (̂ch)n are introduced to
directly approximate the normal derivatives (ρh)n and (ch)n across the edges. These fluxes
involve the solution jump, the average of the normal derivative, and the jump of the second
order normal derivative, given by

(̂ρh)n = β0
�ρh�

he
+ {{(ρh)n}} + β1he�(ρh)nn�, (2.11a)

(̂ch)n = β0
�ch�

he
+ {{(ch)n}} + β1he�(ch)nn�, (2.11b)

where (ρh)nn = ∇(∇ρh · n) · n. According to [26], the admissible coefficients pair (β0, β1)

can be chosen to ensure the stability and optimal accuracy of the DDGIC method.
For the numerical flux ̂F(ρh) · n associated with the nonlinear convection term F(ρh) =

ρh∇ch , again we use the LF flux to approximate F(ρ) · n on the edge e of the element K
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sharing with the element K ′. The LF flux is defined as

̂F(ρh) · n = 1

2

(
(̂ch)n (ρh |K ′ + ρh |K ) − α (ρh |K ′ − ρh |K )

)
, (2.12)

where (̂ch)n is given in (2.11b). For the local LF flux, we set α as α = ∣∣(̂ch)n|e
∣∣. For the

global LF flux, we set α as α = maxe∈E I
h

∣∣(̂ch)n|e
∣∣. Due to the Neumann boundary condition,

for e ∈ ∂�, we set

(̂ρh)n = (̂ch)n = ̂F(ρh) · n = 0. (2.13)

For the convenience of analysis, by summing up (2.10a)–(2.10b) over all elements K ∈ Th ,
together with the boundary conditions (2.13), we obtain the semi-discrete DDGIC scheme
in the global form, given by

∫

�

(ρh)tvh dxdy − Ah(ρh, ch, vh) + Bh(ρh, vh) = 0, (2.14a)
∫

�

(ch)twh dxdy + Bh(ch, wh) +
∫

�

(ch − ρh)wh dxdy = 0, (2.14b)

with the nonlinear functional Ah(ρh, ch, vh) defined as

Ah(ρh, ch, vh) :=
∑
K∈Th

∫

K
ρh∇ch · ∇vh dxdy +

∑

e∈E I
h

∫

e

̂F(ρh) · n�vh� ds, (2.15)

and the bilinear form Bh(uh, vh) defined as

Bh(uh, vh) :=
∑
K∈Th

∫

K
∇uh · ∇vh dxdy +

∑

e∈E I
h

∫

e

(
(̂uh)n�vh� + {{(vh)n}}�uh�

)
ds.

(2.16)

3 Error Estimates

In this section, we carry out the error estimate for the DDGIC method solving the two-
dimensional KS chemotaxis model (2.2). The analysis can also be conducted in a similar
and easier way for one-dimensional case. We first introduce the norms and some inequalities
used in the proof in Sect. 3.1, and present the main result and its proof in Sect. 3.2.

3.1 Preliminaries

In this subsection, we present the notations and norms used in this paper. We adopt the
standard norms and seminorms in the Sobolev space. Let H 
(K ) denote the space equipped
with the norm ‖ · ‖H
(K ), in which the function itself and the derivatives up to the 
-th order
are all in L2(�). Clearly, H0(K ) = L2(K ). We further define the stand L∞ norm in K as
‖ · ‖∞,K and define the L∞ norm on the whole domain as ‖ · ‖∞ = maxK∈Th ‖ · ‖∞,K . We
further introduce the energy norm for piecewise polynomial function vh ∈ V

k
h as

|||vh |||h :=
⎛
⎜⎝

∑
K∈Th

∫

K
∇vh · ∇vhdx +

∑

e∈E I
h

∫

e

�vh�
2

he
ds

⎞
⎟⎠

1/2

. (3.1)
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We also define the standard L2 projection � as

(�ρ, vh)K = (ρ, vh)K , ∀vh ∈ Pk(K ). (3.2)

The following two lemmas are to show the approximation property of the L2 projection
and the classical trace inequalities, which can be obtained by standard arguments in [7].

Lemma 3.1 (projection property) For any function v ∈ Hk(�), the project error satisfies

‖v − �v‖Hm (K ) + h‖v − �v‖∞,K ≤ Ckh
k−m
K ‖v‖Hk (K ), ∀ 0 ≤ m ≤ k, K ∈ Th,

where m and k are non-negative integers, and the constant Ck is independent of hK and v.

Lemma 3.2 (trace theorem with scaling) For K ∈ Th and e ⊂ ∂K, there exists a positive
constant Cg independent of K such that

‖v‖L2(e) ≤ Cgh
−1/2
K (‖v‖L2(K ) + hK ‖∇v‖L2(K )), for v ∈ Hs(K ) with s ≥ 1,

‖vn‖L2(e) ≤ Cgh
−1/2
K (‖∇v‖L2(K ) + hK ‖∇2v‖L2(K )), for v ∈ Hs(K ) with s ≥ 2.

For the finite element space V
k
h , we state the classical inverse properties in the following

lemma, the proof of which can be found in [7].

Lemma 3.3 (inverse inequality) For any function vh ∈ V
k
h , there exist positive constants Ct

and Ci independent of vh, K, and hk such that

‖∇vh‖L2(K ) ≤ Cih
−1
K ‖vh‖L2(K ),

‖vh‖L2(e) ≤ Cth
−1/2
K ‖vh‖L2(K ),

‖(vh)n‖L2(e) ≤ Cth
−1/2
K ‖∇vh‖L2(K ).

We end this subsection by establishing the coercivity of the bilinear form (2.16).

Lemma 3.4 (coercivity) There exists a positive constant Cs for the DDGIC scheme (2.14)
such that, for any vh ∈ V

k
h , we have

Bh(vh, vh) ≥ Cs |||vh |||2h . (3.3)

Proof It follows from the definition of the numerical flux in (2.11) that the bilinear form
(2.16) can be rewritten as

B(vh, vh) =
∑
K∈Th

∫

K
∇vh · ∇vh dxdy +

∑

e∈E I
h

∫

e

(
β0

�vh�

he
+ 2{{(vh)n}} + β1he�(vh)nn�

)
�vh� ds.

(3.4)

We first estimate the term involving {{(vh)n}}. Let e ∈ E I
h be an edge shared by elements

K1 and K2. Then according to the definition of average {{·}} in (2.9) and Lemma 3.3, we have

‖{{(vh)n}}‖L2(e) ≤ 1

2

∥∥((vh)n)|K1

∥∥
L2(e) + 1

2

∥∥((vh)n)|K2

∥∥
L2(e)

≤ Ct

2
h−1/2
K1

‖∇vh‖L2(K1)
+ Ct

2
h−1/2
K2

‖∇vh‖L2(K2)

≤ Ct

2
h−1/2
e

(‖∇vh‖L2(K1)
+ ‖∇vh‖L2(K2)

)
,

(3.5)
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where the last inequality is based on the fact that he ≤ hK1 and he ≤ hK2 , when hK represents
the longest edge of element K . It is important to note that this inequality also holds with a
slight modification of a constant when hK denotes the general diameter of K . This is because
for any regular element K and e ⊂ ∂K , there exists a positive constant μ independent of K
such that he ≤ μhK .

Combining the estimate (3.5) with the Cauchy-Schwarz inequality and Young’s inequality
leads to∣∣∣∣∣∣∣
∑

e∈E I
h

∫

e
2{{(vh)n}}�vh� ds

∣∣∣∣∣∣∣
≤ 2

∑

e∈E I
h

‖{{(vh)n}}‖L2(e)‖�vh�‖L2(e)

≤ Ct

∑

e∈E I
h

(‖∇vh‖L2(K1)
+ ‖∇vh‖L2(K2)

)
h−1/2
e ‖�vh�‖L2(e)

≤ √
2Ct

∑

e∈E I
h

(
‖∇vh‖2L2(K1)

+ ‖∇vh‖2L2(K2)

)1/2
h−1/2
e ‖�vh�‖L2(e)

≤ √
6Ct

⎛
⎝ ∑

K∈Th

‖∇vh‖2L2(K )

⎞
⎠

1/2
⎛
⎜⎝

∑

e∈E I
h

h−1
e ‖�vh�‖2L2(e)

⎞
⎟⎠

1/2

≤ 1

ε

∑
K∈Th

‖∇vh‖2L2(K )
+ 3

2
εC2

t

∑

e∈E I
h

h−1
e ‖�vh�‖2L2(e),

where ε is a small positive constant independent of he and vh . It is worth mentioning that the
coefficient

√
6 in the fourth inequality is specific to the use of a triangular mesh. In the case

of a rectangular mesh, this coefficient should be adjusted to 2
√
2. However, it is important to

emphasize that adjusting this coefficient does not impact the results of the lemma or the main
theorem. Hence, for the sake of simplicity and clarity, we will continue using the triangular
mesh as an illustrative example to demonstrate the analysis procedure.

For the term involving �(vh)nn�, similar estimates can be conducted to obtain

‖�(vh)nn�‖L2(e) ≤ ‖(vh)nn|K1‖L2(e) + ‖(vh)nn|K2‖L2(e)

≤ Cth
−1/2
K1

‖∇(vh)n‖L2(K1)
+ Cth

−1/2
K2

‖∇(vh)n‖L2(K2)

≤ CtCih
−3/2
K1

‖(vh)n‖L2(K1)
+ CtCih

−3/2
K2

‖(vh)n‖L2(K2)

≤ √
2CtCih

−3/2
e

(‖∇vh‖L2(K1)
+ ‖∇vh‖L2(K2)

)
,

(3.6)

where the third inequality is due to Lemma 3.3. And
∣∣∣∣∣∣∣
∑

e∈E I
h

∫

e
β1he�(vh)nn��vh� ds

∣∣∣∣∣∣∣
≤

∑

e∈E I
h

β1he‖�(vh)nn�‖L2(e)‖�vh�‖L2(e)

≤ √
2β1CtCi

∑

e∈E I
h

(‖∇vh‖L2(K1)
+ ‖∇vh‖L2(K2)

)
h−1/2
e ‖�vh�‖L2(e)

≤ 2
√
3β1CtCi

⎛
⎝ ∑

K∈Th

‖∇vh‖2L2(K )

⎞
⎠

1/2
⎛
⎜⎝

∑

e∈E I
h

h−1
e ‖�vh�‖2L2(e)

⎞
⎟⎠

1/2
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≤ 1

δ

∑
K∈Th

‖∇vh‖2L2(K )
+ 12δβ2

1C
2
t C

2
i

∑

e∈E I
h

h−1
e ‖�vh�‖2L2(e),

where δ is a small positive constant independent of he and vh .
By substituting the above two terms into (3.4), we have

B(vh, vh) ≥
(
1 − 1

ε
− 1

δ

) ∑
K∈Th

‖∇vh‖2L2(K )

+
(

β0 − 3

4
εC2

t − 12δβ2
1C

2
t C

2
i

) ∑

e∈E I
h

h−1
e ‖�vh�‖2L2(e).

After choosing ε, δ such that 1 − 1
ε

− 1
δ

> 0 and 3
4εC

2
t + 12δβ2

1C
2
t C

2
i < β0, and setting

Cs = min
(
1 − 1

ε
− 1

δ
, β0 − 3

4εC
2
t − 12δβ2

1C
2
t C

2
i

)
, we complete the proof. ��

3.2 Error Estimates

In this subsection, we show the main result and the proof of the error estimates of the DDGIC
scheme (2.14).

We state the main result in the following theorem.

Theorem 3.1 (Main result) Let ρ, c ∈ L∞(0, T ; Hk+1(�) ∩ C2(�)) (k > 1) be the exact
solution of (2.2). Let ρh, ch ∈ V k

h be the numerical solutions of the DDGIC scheme (2.14).
The initial discretization is taken as the standard L2 projection (3.2). Then there exists a
positive constant C independent of h such that

‖(ρ − ρh)(t)‖L2(�) + ‖(c − ch)(t)‖L2(�) ≤ Chk, t ∈ [0, T ]. (3.7)

Here and below, C is a generic positive constant that does not depend on h, k, K , or the
solutions ρ and c. It may have different values at different occurrences.

To prove this theorem, it follows from the standard treatment in finite element analysis
that the error between the exact solution and numerical solution can be divided as

eρ = ρ − ρh = ξρ − ηρ, with ξρ = �ρ − ρh, ηρ = �ρ − ρ, (3.8a)

ec = c − ch = ξc − ηc, with ξc = �c − ch, ηc = �c − c. (3.8b)

Estimates of the projection errors ηρ and ηc can be obtained according to Lemma 3.1. Then
by triangle inequality, Theorem 3.1 can be proved by obtaining the error estimates for ξρ and
ξc, which will be discussed in the following two subsections.

3.2.1 Error Equations

We first show that the exact solutions under suitable smooth conditions satisfy the DDGIC
scheme (2.14) in the following lemma.

Lemma 3.5 Let ρ, c ∈ L∞(0, T ; Hk+1(�) ∩ C2(�)) be the exact solution of (2.2). Then,
for any vh, wh ∈ V

k
h , we have

∫

�

ρtvh dxdy − Ah(ρ, c, vh) + Bh(ρ, vh) = 0, (3.9a)
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∫

�

ctwh dxdy + Bh(c, wh) +
∫

�

(c − ρ)wh dxdy = 0, (3.9b)

with the nonlinear functional Ah and the bilinear form Bh defined in (2.15) and (2.16),
respectively.

Proof By multiplying the system (2.2) with test functions vh, wh ∈ V
k
h , and performing

integration by parts in the element K , we obtain the weak formulation of (2.2)
∫

K
ρtvh dxdy +

∫

∂K
(F(ρ) · n − ρn) vh ds +

∫

K
(∇ρ − F(ρ)) · ∇vh dxdy = 0, (3.10a)

∫

K
ctwh dxdy −

∫

∂K
cnwh ds +

∫

K
∇c · ∇wh dxdy +

∫

K
(c − ρ)wh dxdy = 0,

(3.10b)

with F(ρ) = ρ∇c. The smoothness of the exact solutions implies that �ρ� = 0, �c� = 0,
�ρnn� = 0, and �cnn� = 0 at the element interfaces. Together with the definition of the
numerical fluxes in (2.11), we have

ρ̂n = ∇ρ · n = ρn, ĉn = cn, F̂(ρ) · n = F(ρ) · n = ρcn. (3.11)

Therefore, the weak formulation (3.10) can be rewritten as
∫

K
ρtvh dxdy +

∫

∂K

(
F̂(ρ) · n − ρ̂n

)
vh ds +

∫

K
(∇ρ − F(ρ)) · ∇vh dxdy

+
∫

∂K
�ρ�

(vh)n

2
ds = 0,

∫

K
ctwh dxdy −

∫

∂K
ĉnwh ds +

∫

K
∇c · ∇wh dxdy + +

∫

∂K
�c�

(wh)n

2
ds

+
∫

K
(c − ρ)wh dxdy = 0,

which means that the exact solutions ρ and c satisfy the DDGIC scheme (2.10). By summing
up the above equations over all elements K ∈ Th , the exact solutions also satisfy the DDGIC
scheme in the global form (2.14). Thus, the proof is complete. ��

By subtracting (3.9) from (2.14), together with the definition of� in (3.2) and the linearity
of the bilinear form (2.16), we obtain the error equations

∫

�

(ξρ)tvh dxdy + Bh(ξρ, vh) = Ah(ρ, c, vh) − Ah(ρh, ch, vh) + Bh(ηρ, vh), (3.12a)
∫

�

(ξc)twh dxdy + Bh(ξc, wh) = Bh(ηc, wh) +
∫

�

(
ξρ − ξc

)
wh dxdy. (3.12b)

3.2.2 Error Estimate for �� and �c

To investigate the errors of ξρ and ξc, we make the following a priori assumption

‖ρh(t)‖∞ ≤ C, t ∈ [0, T ], (3.13)

to deal with nonlinear terms. The rationale behind adopting such an assumption can be
verified as follows. Let t∗ = sup{t̃ |‖ρh(t)‖∞ ≤ C, t ∈ [0, t̃]}. It can be confirmed that
(3.13) holds at t = 0. Note that ρh(0) = �ρ(0). Based on the smoothness of the exact
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solutions and Lemma 3.1, we deduce that ‖ρ(0)‖∞ < C and ‖(ρ − ρh)(0)‖∞ < C . By
applying the triangle inequality, we have ‖ρh(0)‖∞ = ‖ρ(0)− (ρ −ρh)(0)‖∞ ≤ C . Hence,
the set {t̃ |‖ρh(t)‖∞ ≤ C, t ∈ [0, t̃]} is not empty, and t∗ exists. Suppose (3.13) fails and
t∗ < T . It follows from the fact that ‖ρh(t)‖∞ is a continuous function of t that there exists
a positive constant ε such that ‖ρh(t)‖∞ ≤ C for t ∈ [0, t∗ + ε]. However, this contradicts
the definition of t∗. Thus, the verification of the a priori assumption is complete.

Lemma 3.6 Under the a priori assumption (3.13), the DDGIC scheme 2.14 satisfies

‖ξρ‖L2(�) + ‖ξc‖L2(�) ≤ Chk .

Proof By taking test functions vh = ξρ in (3.12a) and wh = ξc in (3.12b), and applying the
coercivity of the bilinear form in Lemma 3.4, we can rewrite the error equations as

1

2

d

dt
‖ξρ‖2L2(�)

+ Cs |||ξρ |||2h ≤ Bh(ηρ, ξρ) + Ah(ρ, c, ξρ) − Ah(ρh, ch, ξρ), (3.14a)

1

2

d

dt
‖ξc‖2L2(�)

+ Cs |||ξc|||2h ≤ Bh(ηc, ξc) +
∫

�

(
ξρ − ξc

)
ξc dxdy. (3.14b)

We estimate the terms in the right hand side in the following three steps.
Step 1 : estimate of the bilinear termsBh(ηρ, ξρ) andBh(ηc, ξc)

According to the definition of the bilinear form in (2.16), the term Bh(ηρ, ξρ) can be
rewritten into three terms

Bh(ηρ, ξρ) = O1 + O2 + O3, (3.15)

where

O1 =
∑
K∈Th

∫

K
∇ηρ · ∇ξρ dxdy,

O2 =
∑

e∈E I
h

∫

e
(̂ηρ)n�ξρ� ds,

O3 =
∑

e∈E I
h

∫

e
{{(ξρ)n}}�ηρ� ds,

with (̂ηρ)n defined the same as the flux in (2.11).
For the term O1, a simple use of Young’s inequality, together with Lemma 3.1 and the

definition of the energy norm ||| · ||| in (3.1), leads to

O1 ≤ 1

Cs

∑
K∈Th

∫

K
|∇ηρ |2 dxdy + Cs

4

∑
K∈Th

∫

K
|∇ξρ |2 dxdy

≤ Ch2k‖ρ‖2Hk+1(�)
+ Cs

4
|||ξρ |||2h .

(3.16)

For the term O2, by Young’s inequality and the definition (2.11), we have

O2 ≤ h

Cs

∑

e∈E I
h

∫

e

(
(̂ηρ)n

)2
ds + Cs

4

∑

e∈E I
h

∫

e

�ξρ�2

h
ds

≤ 3h

Cs

∑

e∈E I
h

∫

e

(
β2
0

�ηρ�2

h2e
+ {{(ηρ)n}}2 + β2

1h
2
e�(ηρ)nn�

2
)

ds + Cs

4
|||ξρ |||2h .

(3.17)
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We estimate these terms on element boundaries one by one in the following. Let e ∈ E I
h be

an edge shared by elements K1 and K2. It follows from the definition of average and jump
in (2.9), Lemma 3.1 and Lemma 3.2 that

∑

e∈E I
h

∫

e

�ηρ�2

h2e
ds ≤ 2

∑

e∈E I
h

h−2
e

(
‖ηρ |K1‖2L2(e) + ‖ηρ |K2‖2L2(e)

)

≤ 2
∑

e∈E I
h

h−2
e C2

g

(
h−1
K1

(‖ηρ‖L2(K1)
+ hK1‖∇ηρ‖L2(K1)

)2

+ h−1
K2

(‖ηρ‖L2(K2)
+ hK2‖∇ηρ‖L2(K2)

)2)

≤ 2
∑

e∈E I
h

h−2
e C2

gC
2
k

(
h2k+1
K1

‖ρ‖2Hk+1(K1)
+ h2k+1

K2
‖ρ‖2Hk+1(K2)

)

≤ C
∑
K∈Th

h2k−1
K ‖ρ‖2Hk+1(K )

≤ Ch2k−1‖ρ‖2Hk+1(�)
. (3.18)

∑

e∈E I
h

∫

e
{{(ηρ)n}}2 ds ≤ 1

2

∑

e∈E I
h

(
‖(ηρ)n|K1‖2L2(e) + ‖(ηρ)n|K2‖2L2(e)

)

≤ 1

2

∑

e∈E I
h

C2
g

(
h−1
K1

(‖∇ηρ‖L2(K1)
+ hK1‖∇2ηρ‖L2(K1)

)2

+ h−1
K2

(‖∇ηρ‖L2(K2)
+ hK2‖∇2ηρ‖L2(K2)

)2)

≤ C
∑
K∈Th

h2k−1
K ‖ρ‖2Hk+1(K )

≤ Ch2k−1‖ρ‖2Hk+1(�)
. (3.19)

∑

e∈E I
h

∫

e
h2e�(ηρ)nn�

2 ds ≤ 2
∑

e∈E I
h

h2e
(
‖(ηρ)nn|K1‖2L2(e) + ‖(ηρ)nn|K2‖2L2(e)

)

≤ 2
∑

e∈E I
h

h2eC
2
g

(
h−1
K1

(‖∇(ηρ)n‖L2(K1)
+ hK1‖∇2(ηρ)n‖L2(K1)

)2

+ h−1
K2

(‖∇(ηρ)n‖L2(K2)
+ hK2‖∇2(ηρ)n‖L2(K2)

)2)

≤ 4
∑

e∈E I
h

h2eC
2
g

(
h−1
K1

(‖∇2ηρ‖L2(K1)
+ hK1‖∇3ηρ‖L2(K1)

)2

+ h−1
K2

(‖∇2ηρ‖L2(K2)
+ hK2‖∇3ηρ‖L2(K2)

)2)

≤ Ch2k−1‖ρ‖2Hk+1(�)
. (3.20)

By substituting (3.18)–(3.20) into (3.17), we obtain

O2 ≤ Ch2k‖ρ‖2Hk+1(�)
+ Cs

4
|||ξρ |||2h . (3.21)
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For the term O3, we can use Young’s inequality to obtain

O3 ≤ Cs

6C2
t

∑

e∈E I
h

he

∫

e
{{(ξρ)n}}2 ds + 3C2

t

2Cs

∑

e∈E I
h

∫

e

�ηρ�2

he
ds, (3.22)

which follows a similar estimate as in (3.5) for the term involving (ξρ)n and a similar estimate
as in (3.18) for the term involving �ηρ�, yielding

O3 ≤ Cs

6C2
t

∑

e∈E I
h

C2
t

4

(‖∇ξρ‖L2(K1)
+ ‖∇ξρ‖L2(K2)

)2 + Ch2k‖ρ‖2Hk+1(�)

≤ Cs

4

∑
K∈Th

‖∇ξρ‖2L2(K )
+ Ch2k‖ρ‖2Hk+1(�)

≤ Cs

4
|||ξρ |||2h + Ch2k‖ρ‖2Hk+1(�)

.

(3.23)

It follows from substituting the estimates in (3.16), (3.17), and (3.22) into (3.15) that we
get t the estimate for the bilinear term Bh(ηρ, ξρ) as

Bh(ηρ, ξρ) ≤ 3Cs

4
|||ξρ |||2h + Ch2k‖ρ‖2Hk+1(�)

. (3.24)

Similar estimates can be conducted for the term Bh(ηc, ξc), leading to

Bh(ηc, ξc) ≤ 3Cs

4
|||ξc|||2h + Ch2k‖c‖2Hk+1(�)

. (3.25)

Step 2 : estimate of the nonlinear termAh(ρ, c, ξρ) − Ah(ρh, ch, ξρ)

Based on the definition of the nonlinear functional Ah(ρh, ch, vh) in (2.15), this nonlinear
term can be rewritten as

Ah(ρ, c, ξρ) − Ah(ρh, ch, ξρ) = Z1 + Z2, (3.26)

where

Z1 =
∑
K∈Th

∫

K
ρ∇c · ∇(ξρ) dxdy −

∑
K∈Th

∫

K
ρh∇ch · ∇(ξρ) dxdy,

Z2 =
∑

e∈E I
h

∫

e
F̂(ρ) · n�ξρ� ds −

∑

e∈E I
h

∫

e

̂F(ρh) · n�ξρ� ds.

For the term Z1, it can be rewritten as

Z1 =
∑
K∈Th

∫

K
(ξρ − ηρ)∇c · ∇ξρ dxdy +

∑
K∈Th

∫

K
ρh∇(ξc − ηc) · ∇ξρ dxdy,

which, combining with Lemma 3.1 and Lemma 3.3, the a priori assumption (3.13), the fact
that ‖∇c‖L∞(�) ≤ C due to the smoothness of the exact solution, the Cauchy-Schwarz
inequality, and Young’s inequality yields

Z1 ≤ C
∑
K∈Th

‖ξρ − ηρ‖L2(K )‖∇ξρ‖L2(K ) + C
∑
K∈Th

‖∇(ξc − ηc)‖L2(K )‖∇ξρ‖L2(K )

≤ C
∑
K∈Th

(‖ξρ‖L2(K ) + ‖ηρ‖L2(K ) + ‖∇ξc‖L2(K ) + ‖∇ηc‖L2(K )

) ‖∇ξρ‖L2(K )
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≤ C
(
h2k+2‖ρ‖2Hk+1(�)

+ ‖ξρ‖2L2(�)
+ h2k‖c‖2Hk+1(�)

+ |||ξc|||2h
)

+ Cs

8
|||ξρ |||2h .

(3.27)

For the term Z2 involvingfluxes at the element interface,we follow (3.11) and thedefinition
of average and jump in (2.9), and rewrite the fluxes defined in (2.12) as

̂F(ρh) · n = (̂ch)n{{ρh}} − α

2
�ρh�, F̂(ρ) · n = ĉn{{ρ}} − α

2
�ρ�

Then the term Z2 can be split as

Z2 = Z21 + Z22, (3.28)

where

Z21 =
∑

e∈E I
h

∫

e

(
ĉn{{ρ}} − (̂ch)n{{ρh}}

)
�ξρ� ds,

Z22 = −
∑

e∈E I
h

∫

e

α

2
�ρ − ρh��ξρ� ds.

The estimate of Z21 follows the similar line as the estimate for Z1, yielding

Z21 =
∑

e∈E I
h

∫

e

(
ĉn{{ξρ − ηρ}} − ‖ ̂(ξc − ηc)n{{ρh}}

)
�ξρ� ds

≤ C
∑

e∈E I
h

h1/2e

(
‖{{ξρ − ηρ}}‖L2(e) + ‖ ̂(ξc − ηc)n‖L2(e)

)
h−1/2
e ‖�ξρ�‖L2(e)

≤ C
∑

e∈E I
h

he
(
‖{{ξρ}}‖2L2(e) + ‖{{ηρ}}‖2L2(e) + ‖(̂ξc)n‖2L2(e)2 + ‖(̂ηc)n‖2L2(e)

)
+ Cs

16
|||ξρ |||2h,

where we have used the fact that ĉn = cn in (3.11) and ∇c is uniformly bounded due to the
smoothness assumption of the exact solution. Then the term involving {{ξρ}} can be handled
in a similar fashion as the estimates in (3.5), the term involving {{ηρ}} can be estimated by

Lemma 3.2, the term involving the fluxes (̂ξc)n can be similarly handed as in (3.23), and the
term (̂ηc)n can be handled in a similar fashion as the estimates in (3.17), yielding

Z21 ≤ C
∑
K∈Th

(
‖ξρ‖2L2(K )

+ ‖ηρ‖2L2(K )
+ h2K ‖∇ηρ‖2L2(K )

)

+C
(
h2k‖c‖2Hk+1(�)

+ |||ξc|||2h
)

+ Cs

16
|||ξρ |||2h,

which, together with Lemma 3.1, leads to

Z21 ≤ C
(
h2k+2‖ρ‖Hk+1(�) + h2k‖c‖Hk+1(�) + ‖ξρ‖2L2(�)

+ |||ξc|||2h
)

+ Cs

16
|||ξρ |||2h .

(3.29)
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The estimate of Z22 can be conducted in a similar way as

Z22 = −
∑

e∈E I
h

∫

e

α

2
�ξρ − ηρ��ξρ� ds

≤ α

2

∑

e∈E I
h

∫

e
‖�ξρ − ηρ�‖L2(e)‖�ξρ�‖L2(e) ds

≤ C
(
h2k+2‖ρ‖Hk+1(�) + ‖ξρ‖2L2(�)

)
+ Cs

16
|||ξρ |||2h .

(3.30)

It follows from substituting (3.29) and in (3.30) into (3.28) that we obtain the estimate for
the term Z2 as

Z2 ≤ C
(
h2k+2‖ρ‖Hk+1(�) + h2k‖c‖Hk+1(�) + ‖ξρ‖2L2(�)

+ |||ξc|||2h
)

+ Cs

8
|||ξρ |||2h . (3.31)

Then by collecting the estimates in (3.27) and (3.31) for the terms Z1 and Z2 in (3.26),
we have

Ah(ρ, c, ξρ) − Ah(ρh, ch, ξρ)

≤ C
(
h2k+2‖ρ‖Hk+1(�) + h2k‖c‖Hk+1(�) + ‖ξρ‖2L2(�)

+ |||ξc|||2h
)

+ Cs

4
|||ξρ |||2h .

(3.32)

Step 3 :estimate of the term
∫
�

(
ξρ − ξc

)
ξc dxdy and final estimate

For the term
∫
�

(
ξρ − ξc

)
ξc dxdy, a simply use of Young’s inequality leads to

∫

�

(
ξρ − ξc

)
ξc dxdy ≤ 1

2
‖ξρ‖2L2(�)

− 1

2
‖ξc‖2L2(�)

≤ 1

2
‖ξρ‖2L2(�)

. (3.33)

By substituting (3.24) and (3.32) into (3.14a), we obtain

1

2

d

dt
‖ξρ‖2L2(�)

≤ C
(
h2k‖ρ‖Hk+1(�) + h2k‖c‖Hk+1(�) + ‖ξρ‖2L2(�)

+ |||ξc|||2h
)

. (3.34)

By substituting (3.25) and (3.33) into (3.14b), we obtain

1

2

d

dt
‖ξc‖2L2(�)

+ Cs

4
|||ξc|||2h ≤ Ch2k‖c‖2Hk+1(�)

+ 1

2
‖ξρ‖2L2(�)

. (3.35)

Combining (3.34) and (3.35), for a positive constant δ, we have

1

2

d

dt
‖ξρ‖2L2(�)

+ δ

(
1

2

d

dt
‖ξc‖2L2(�)

+ Cs

4
|||ξc|||2h

)

≤ C
(
h2k‖ρ‖Hk+1(�) + h2k‖c‖Hk+1(�) + ‖ξρ‖2L2(�)

+ |||ξc|||2h
)

+ δ(Ch2k‖c‖2Hk+1(�)
+ 1

2
‖ξρ‖2L2(�)

).

For sufficiently large δ such as δ = 4C
Cs

, we have

d

dt
‖ξρ‖2L2(�)

+ δ
d

dt
‖ξc‖2L2(�)

≤ C
(
h2k‖ρ‖Hk+1(�) + h2k‖c‖Hk+1(�) + ‖ξρ‖2L2(�)

)
)

.

Thus, with the L2 projection as the initial discretization, the proof is complete by applying
the Gronwall’s inequality. ��
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4 Numerical Results

In this section, we provide numerical experiments to demonstrate the accuracy of the DDGIC
method. For temporal discretization, we apply the third-order SSPRK method [36]. A col-
lection of admissible coefficients (β0, β1) is available to guarantee the optimal convergence
of the DDGIC method for diffusion equations. On the other hand, it was proved in [39] that,
when the coefficient β1 coefficient taken as

β1 = 1

2k(k + 1)
,

for P2 polynomial approximations on uniform mesh, the numerical solution of the DDGIC
method is superconvergent to the solution’s spatial derivative under the followingmomentum
norm

MEm[cx − (ch)x ] = max
1≤ j≤N

∣∣∣∣∣

∫
I j

(cx − (ch)x )wh(x) dx

‖wh‖L1

∣∣∣∣∣ , where wh ∈ Pm(IJ ),

which measures the error of the approximation of (ch)x to the solution’s spatial derivative cx .
The superconvergence of the chemoattractant variable c is required to maintain the optimal
convergence for the cell density. Thus, in this section, we explore both the setting of β1 =

1
2k(k+1) and β1 �= 1

2k(k+1) in the numerical flux (2.7b or 2.11b) for Pk approximations, and
further investigate the influence ofβ1 on convergence orders on both uniform and nonuniform
meshes. Specifically, we denote the coefficient β1 for the cell density ρh and chemoattractant
ch by β1ρ and β1c, respectively.

For the settings of the coefficient β0, it was demonstrated in [3, 28, 30, 39] that the errors
of the DDG methods stay almost the same for different choices of admissible coefficient β0.
Thus, in our numerical experiments, we fix β0 = 1 for P0, β0 = 2 for P1, β0 = 6 for P2

and P3, and β0 = 10 for P4 and P5 polynomials.

Example 4.1 (one-dimensional accuracy test) In this example, we follow [16] and consider
the following one-dimensional KS equations

ρt + (cxρ)x = ρxx − 2ρ

2 + cos(x)
− (cos(2x) + 2 cos(x))ρ2

(2 + cos(x))2
, x ∈ [0, 2π], (4.1a)

ct = cxx − c + ρ − 2c

2 + cos(x)
, x ∈ [0, 2π], (4.1b)

with initial conditions ρ(x, 0) = c(x, 0) = 2 + cos x and Neumann boundary conditions.
The exact solutions is

ρ(x, t) = c(x, t) = e−t (2 + cos x).

We apply the DDGIC scheme (2.6) to perform numerical simulations with Pk(k =
0, 1, . . . , 5) polynomials up to T = 0.2. The time step is set as

�t = 1
1

cflc·�x + 1
cfld·�x2

,

where cflc and cfld are the CFL numbers associated for the convection and diffusion terms,
respectively. Specifically, we set cflc = 0.3 and cfld = 0.1 for k = 0, 1, cflc = 0.2 and
cfld = 0.01 for k = 2, cflc = 0.1 and cfld = 0.01 for k = 3, and cflc = 0.05 and
cfld = 0.001 for k = 4, 5.
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Table 1 One-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.1 at t = 0.2
on uniform mesh

ρh − ρ ch − c

N L2 error order L∞ error order L2 error order L∞ error order

k = 0 10 1.06E-01 2.62E-01 1.05E-01 2.54E-01

20 5.38E-02 0.98 1.34E-01 0.98 5.25E-02 1.00 1.28E-01 0.99

40 2.71E-02 0.99 6.72E-02 0.99 2.62E-02 1.00 6.43E-02 1.00

80 1.36E-02 0.99 3.37E-02 0.99 1.31E-02 1.00 3.22E-02 1.00

k = 1 10 1.13E-02 3.99E-02 1.11E-02 3.62E-02

20 2.68E-03 2.08 9.86E-03 2.02 2.62E-03 2.08 8.90E-03 2.02

40 6.56E-04 2.03 2.41E-03 2.04 6.45E-04 2.02 2.21E-03 2.01

80 1.63E-04 2.01 5.96E-04 2.01 1.60E-04 2.01 5.52E-04 2.00

k = 3 10 5.89E-05 1.54E-04 5.61E-05 1.30E-04

20 3.65E-06 4.01 1.00E-05 3.94 3.49E-06 4.01 8.37E-06 3.95

40 2.28E-07 4.00 6.31E-07 3.99 2.18E-07 4.00 5.27E-07 3.99

80 1.42E-08 4.00 3.95E-08 4.00 1.36E-08 4.00 3.30E-08 4.00

k = 5 10 1.69E-07 3.56E-07 1.15E-07 2.09E-07

20 2.67E-09 5.99 5.44E-09 6.03 1.83E-09 5.99 3.35E-09 5.96

40 4.18E-11 6.00 8.45E-11 6.01 2.88E-11 5.99 5.28E-11 5.99

80 6.53E-13 6.00 1.31E-12 6.01 3.36E-13 6.42 7.05E-13 6.23

PK polynomial approximations with k = 0, 1, 3, 5

For k = 0 and k = 1, the coefficient β1 before the solution’s second derivative jump term
does not contribute to the numerical flux calculation. Optimal first and second convergence
orders are obtained for the DDGICmethod. For k = 3 and k = 5 odd-degree approximations,
different settings of β1 achieve the same optimal order of accuracy. The L2 and L∞ errors
and orders are listed in Table 1 for uniform mesh and in Table 2 for nonuniform mesh,
corresponding to the case of β1 �= 1

2k(k+1) . In particular, we take β1 = 1
12 for k = 3, and

β1 = 1
40 for k = 5. The nonuniform mesh is generated from a 40% random perturbation

of the uniform mesh. In particular, the right end of the cell I j is modified to be x j+ 1
2

+
40%(r j+ 1

2
− 0.5)�x , where x j+ 1

2
is the uniform mesh cell right end with mesh size �x .

The random number r j+ 1
2
is generated from the uniform distribution over the range of (0,1).

It can be observed that both ρh and ch achieve the optimal convergence order of (k + 1)
regardless of whether the mesh is uniform or nonuniform.

For even-degree polynomial approximations on uniform mesh, we list the L2 and L∞
errors and orders in Table 3 for P2 approximation and in Table 4 for P4 approximation,
corresponding to different setting of β1 chosen in the numerical fluxes for ρh and ch . We also
list the errors and orders on nonuniform mesh in Tables 5 and 6. It can be observed that all
the settings of β1c and β1ρ leads to the optimal convergence of order (k + 1) for ch , while
the choice of β1c = 1

2k(k+1) leads to the optimal order convergence of (k + 1) for ρh . For

β1c �= 1
2k(k+1) , the convergence order gradually decreases to k. The optimal convergence

of the DDGIC method to KS equations may relate to the superconvergence property of the
method on its approximation to the solution’s derivative or gradient, i.e., (ch)x .
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Table 2 One-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.1 at t = 0.2
on nonuniform mesh

ρh − ρ ch − c

N L2 error order L∞ error order L2 error order L∞ error order

k = 0 10 1.05E-01 2.66E-01 1.05E-01 3.10E-01

20 5.44E-02 0.95 1.56E-01 0.80 5.34E-02 0.98 1.61E-01 0.95

40 2.74E-02 0.99 8.49E-02 0.87 2.66E-02 1.00 8.38E-02 0.94

80 1.37E-02 1.00 4.20E-02 1.01 1.33E-02 1.00 4.07E-02 1.04

k = 1 10 1.22E-02 4.56E-02 1.22E-02 4.36E-02

20 3.14E-03 1.96 1.17E-02 1.97 3.01E-03 2.01 1.23E-02 1.83

40 7.57E-04 2.05 3.23E-03 1.85 7.42E-04 2.02 3.24E-03 1.92

80 1.84E-04 2.04 8.15E-04 1.99 1.80E-04 2.04 6.87E-04 2.24

k = 3 10 1.19E-04 3.45E-04 7.75E-05 2.20E-04

20 7.23E-06 4.04 2.67E-05 3.68 5.11E-06 3.92 2.12E-05 3.38

40 4.45E-07 4.02 1.65E-06 4.03 3.11E-07 4.04 1.32E-06 4.00

80 2.59E-08 4.10 8.74E-08 4.23 1.78E-08 4.13 6.68E-08 4.30

k = 5 10 2.93E-07 8.45E-07 1.92E-07 4.53E-07

20 4.76E-09 5.95 1.61E-08 5.71 3.51E-09 5.77 1.11E-08 5.35

40 6.72E-11 6.14 1.90E-10 6.40 5.05E-11 6.11 1.57E-10 6.14

80 1.23E-12 5.90 3.01E-12 5.98 8.07E-13 5.97 2.19E-12 6.16

Pk polynomial approximations with k = 0, 1, 3, 5

Example 4.2 (one-dimensional delta-shape approximation) In this example, we consider
the one-dimensional KS equation (2.1) over the computational domain [-2, 2] with initial
conditions

ρ(x, 0) = 400

1 + 40x2
, c(x, 0) = 200

1 + 20x2
, (4.2)

and zero Neumann boundary conditions ρx = cx = 0. The initial condition for the cell
density ρ is symmetric and involves a sharp transition solution profile. The exact solution is
close to a Dirac delta function at x = 0.

We apply the DDGIC method with P3 polynomials to simulate the evolution of the solutions
up to t = 6 × 10−3. In Fig 1, we output the approximations of the cell density ρh with
N = 160 and N = 320.

The solution ensembles a Dirac delta function, even though it does not blow up in the
one-dimensional case. The DDGIC method can sharply capture the spiky solution without
oscillations. The result agree well with those in the literature.

Example 4.3 (two-dimensional accuracy test) In this example, we follow [16] and consider
the following two-dimensional KS equations

ρt + ∇ · (ρ∇c) = �ρ − 4ρ

2 + cos(x + y)
− 2ρ2(cos(2(x + y)) + 2 cos(x + y))

(2 + cos(x + y))2
, (4.3a)

ct = �c − c + ρ − 4c

2 + cos(x + y)
, (x, y) ∈ [0, 2π] × [0, 2π],

(4.3b)
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Table 3 One-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.1 at t = 0.2
on uniform mesh

ρh − ρ ch − c

N L2 error order L∞ error order L2 error order L∞ error order

β1c = 1
12

β1ρ = 1
12

10 9.04E-04 1.79E-03 8.36E-04 1.59E-03

20 1.06E-04 3.09 2.19E-04 3.02 1.04E-04 3.01 2.05E-04 2.96

40 1.30E-05 3.02 2.63E-05 3.05 1.29E-05 3.00 2.55E-05 3.00

80 1.62E-06 3.01 3.23E-06 3.02 1.61E-06 3.00 3.19E-06 3.00

160 2.02E-07 3.00 4.01E-07 3.01 2.02E-07 3.00 3.98E-07 3.00

β1c = 1
12

β1ρ = 1
8

10 1.11E-03 2.20E-03 8.33E-04 1.60E-03

20 1.40E-04 2.98 2.74E-04 3.00 1.03E-04 3.01 2.04E-04 2.97

40 1.76E-05 2.99 3.39E-05 3.01 1.29E-05 3.00 2.55E-05 3.00

80 2.20E-06 3.00 4.21E-06 3.01 1.61E-06 3.00 3.18E-06 3.00

160 2.76E-07 3.00 5.25E-07 3.01 2.02E-07 3.00 3.98E-07 3.00

β1c = 1
8

β1ρ = 1
12

10 9.90E-04 2.00E-03 1.11E-03 2.06E-03

20 2.02E-04 2.29 3.64E-04 2.46 1.41E-04 2.98 2.72E-04 2.92

40 4.81E-05 2.07 9.14E-05 2.00 1.77E-05 2.99 3.53E-05 2.95

80 1.19E-05 2.02 2.29E-05 1.99 2.24E-06 2.98 4.67E-06 2.92

160 2.96E-06 2.00 5.74E-06 2.00 2.90E-07 2.95 6.47E-07 2.85

β1c = 1
8

β1ρ = 1
8

10 1.26E-03 2.46E-03 1.11E-03 2.06E-03

20 2.26E-04 2.48 4.09E-04 2.59 1.41E-04 2.98 2.72E-04 2.92

40 4.98E-05 2.18 9.30E-05 2.14 1.77E-05 2.99 3.53E-05 2.95

80 1.20E-06 2.05 2.30E-06 2.01 2.23E-06 2.99 4.67E-06 2.92

160 2.97E-06 2.02 5.75E-06 2.01 2.90E-07 2.95 6.47E-07 2.85

P2 polynomial approximations

Fig. 1 One-dimensional delta-shape approximation: cell densityρh simulation forExample 4.2 at t = 6×10−3

with P3 polynomials on N = 160 (left) and N = 320 (right)
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Table 4 One-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.1 at t = 0.2
on uniform mesh

ρh − ρ ch − c

N L2 error order L∞ error order L2 error order L∞ error order

β1c = 1
40

β1ρ = 1
40

10 1.31E-06 2.47E-06 1.09E-06 2.15E-06

20 3.20E-08 5.35 6.83E-08 5.17 2.99E-08 5.18 6.39E-08 5.07

40 9.15E-10 5.12 2.00E-10 5.09 8.97E-10 5.05 1.94E-09 5.03

80 2.78E-11 5.01 6.07E-11 5.02 2.78E-11 5.01 6.02E-11 5.01

160 8.98E-13 4.95 1.96E-12 4.95 8.96E-13 4.95 1.90E-12 4.98

β1c = 1
40

β1ρ = 1
32

10 1.46E-06 2.80E-06 1.09E-06 2.15E-06

20 3.82E-08 5.25 8.11E-08 5.11 2.99E-08 5.18 6.39E-08 5.07

40 1.12E-09 5.08 2.41E-09 5.07 8.97E-10 5.05 1.94E-09 5.04

80 3.46E-11 5.02 7.36E-11 5.02 2.78E-11 5.01 6.02E-11 5.01

160 1.11E-12 4.97 2.35E-12 4.97 8.96E-13 4.95 1.90E-12 4.98

β1c = 1
32

β1ρ = 1
40

10 1.80E-06 4.22E-06 1.25E-06 2.46E-06

20 6.97E-08 4.69 1.49E-07 4.82 3.56E-08 5.12 7.69E-08 5.00

40 3.74E-09 4.22 7.18E-09 4.38 1.12E-09 4.99 2.48E-09 4.95

80 2.25E-10 4.05 4.35E-10 4.04 3.52E-11 4.99 8.21E-11 4.92

160 1.41E-11 4.00 2.64E-11 4.04 1.18E-12 4.90 2.86E-12 4.84

β1c = 1
32

β1ρ = 1
32

10 1.97E-06 4.51E-06 1.25E-06 2.46E-06

20 7.43E-08 4.73 1.60E-07 4.82 3.63E-08 5.10 7.69E-08 5.00

40 3.83E-09 4.28 7.27E-09 4.46 1.12E-09 5.02 2.48E-09 4.97

80 2.27E-10 4.08 4.37E-10 4.06 3.52E-11 4.99 8.21E-11 4.92

160 1.42E-11 3.99 2.84E-11 3.95 1.18E-12 4.90 2.86E-12 4.84

P4 polynomial approximations

with initial conditions ρ(x, y, 0) = c(x, y, 0) = 2 + cos(x + y) and Neumann boundary
conditions. The exact solutions are

ρh(x, y, t) = ch(x, y, t) = e−2t (2 + cos(x + y)).

We conduct accuracy tests of the DDGIC method (2.10) on rectangular meshes using
Pk(k = 0, 1, . . . , 4) polynomial approximations. The time step size is set as

�t = 1
max |cx |
cflc·�x + max |cy |

cflc·�y + 1
cfld·�x2

+ 1
cfld·�y2

.

Here, cflc and cfld are the CFL numbers for the convection and diffusion terms, respectively.
We apply cflc = 0.3 and cfld = 0.1 for k = 0, 1 piece wise constant and linear polynomials,
cflc = 0.1 and cfld = 0.01 for k = 2, 3 piece wise quadratic and cubic polynomials, and
cflc = 0.01 and cfld = 0.001 for k = 4 the P4 polynomials.

We investigate whether the accuracy of the DDGIC method is affected by the choice of
β1 in the numerical flux, especially β1c for the chemoattractant variable ch(x, y, t). First and
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Table 5 One-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.1 at t = 0.2
on nonuniform mesh

ρh − ρ ch − c

N L2 error order L∞ error order L2 error order L∞ error order

β1c = 1
12

β1ρ = 1
12

10 1.05E-03 2.82E-03 9.45E-04 2.76E-03

20 1.37E-04 2.94 4.07E-04 2.79 1.27E-04 2.89 4.26E-04 2.72

40 1.58E-05 3.11 5.69E-05 2.84 1.53E-05 3.05 5.47E-05 2.96

80 1.98E-06 3.00 6.89E-06 3.04 1.89E-06 3.02 7.20E-06 2.92

160 2.54E-07 2.96 8.67E-07 2.99 2.38E-07 2.98 9.11E-07 2.98

β1c = 1
12

β1ρ = 1
8

10 1.28E-03 3.32E-03 9.46E-04 2.77E-03

20 1.70E-04 2.91 4.69E-04 2.82 1.27E-04 2.89 4.25E-04 2.70

40 2.04E-05 3.06 6.53E-05 2.91 1.53E-05 3.05 5.47E-05 2.96

80 2.53E-06 3.01 8.48E-06 2.95 1.89E-06 3.02 7.20E-06 2.92

160 3.15E-07 2.97 1.11E-06 2.94 2.38E-07 2.98 9.11E-07 2.98

β1c = 1
8

β1ρ = 1
12

10 1.09E-03 2.72E-03 1.21E-03 3.27E-03

20 2.12E-04 2.36 4.89E-04 2.48 1.63E-04 2.89 5.01E-04 2.71

40 4.78E-05 2.15 9.50E-05 2.36 2.04E-05 3.00 6.54E-05 2.94

80 1.16E-05 2.04 2.34E-05 2.02 2.49E-06 3.01 8.78E-06 2.90

160 2.88E-06 2.01 5.60E-06 2.06 3.23E-07 2.95 1.17E-06 2.91

β1c = 1
8

β1ρ = 1
8

10 1.34E-03 3.26E-03 1.21E-03 3.28E-03

20 2.39E-04 2.49 5.58E-04 2.55 1.63E-04 2.89 5.01E-04 2.71

40 4.98E-05 2.26 1.04E-04 2.42 2.04E-05 3.00 6.54E-05 2.95

80 1.18E-05 2.08 2.35E-05 2.15 2.49E-06 3.01 8.43E-06 2.96

160 2.89E-06 2.02 5.61E-06 2.07 3.23E-07 2.95 1.07E-06 2.98

P2 polynomial approximations

second optimal convergence orders are achieved for low order approximations of k = 0 and
k = 1. For high order odd-degree polynomial approximations, i.e., k = 3, different β1 all
lead to the fourth order optimal convergence. The L2 and L∞ errors and orders for k = 0, 1, 3
are listed in Table 7. For k = 3, we choose β1 = 1

12 for which β1 �= 1
2k(k+1) .

The convergence orders of the DDGIC method are impacted by the choice of β1c for the
chemoattractant variable, particularly for k = 2, 4 even-degree polynomial approximations.
The L2 and L∞ errors and orders with different settings of β1 in the numerical fluxes for ρh
and ch are presented in Table 8 for P2 approximations and in Table 9 for P4 approximations.
We observe again that all the settings of β1c and β1ρ result in optimal convergence orders
for the chemical variable ch , while the setting of β1c = 1

2k(k+1) leads to the optimal order

convergence of (k + 1). When β1c �= 1
2k(k+1) , the convergence order gradually decreases to

k-th order. The phenomena relate to the superconvergence property of the DDGIC method
in its approximation to the solution’s gradient, specifically (ch)x and (ch)y .

We also perform accuracy tests on nonuniform mesh generated from a 40% random per-
turbation to the uniformmesh, similar to the one-dimensional nonuniformmesh partitioning.
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Table 6 One-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.1 at t = 0.2
on nonuniform mesh

ρh − ρ ch − c

N L2 error order L∞ error order L2 error order L∞ error order

β1c = 1
40

β1ρ = 1
40

10 2.73E-06 7.42E-06 1.84E-06 6.40E-06

20 8.45E-08 5.01 2.07E-07 5.16 5.36E-08 5.09 2.28E-07 4.81

40 2.11E-09 5.32 6.53E-09 4.99 1.40E-09 5.21 6.83E-09 5.06

80 6.12E-11 5.10 2.32E-10 4.82 4.33E-11 5.04 2.40E-10 4.83

160 1.89E-12 5.01 7.44E-12 4.96 1.61E-12 4.74 7.42E-12 5.01

β1c = 1
40

β1ρ = 1
32

10 2.83E-06 8.11E-06 1.84E-06 6.40E-06

20 8.78E-08 5.01 2.28E-07 5.15 5.37E-08 5.09 2.28E-07 4.81

40 2.24E-09 5.29 7.16E-09 4.99 1.40E-09 5.21 6.76E-09 5.06

80 8.43E-11 4.73 2.56E-10 4.82 4.25E-11 5.04 2.37E-10 4.83

160 2.83E-12 4.90 9.49E-12 4.75 1.61E-12 4.72 7.42E-12 4.99

β1c = 1
32

β1ρ = 1
40

10 2.75E-06 9.45E-06 1.97E-06 7.05E-06

20 8.35E-08 5.04 3.47E-07 4.77 5.83E-08 5.07 2.49E-07 4.82

40 3.66E-09 4.51 1.16E-08 4.90 1.62E-09 5.17 7.46E-09 5.05

80 2.00E-10 4.19 4.37E-10 4.73 5.14E-11 4.98 2.61E-10 4.84

160 1.09E-11 4.20 2.38E-11 4.19 1.82E-12 4.82 8.30E-12 4.97

β1c = 1
32

β1ρ = 1
32

10 2.89E-06 9.99E-06 1.97E-06 7.06E-06

20 8.90E-08 5.02 3.64E-07 4.78 5.83E-08 5.07 2.49E-07 4.82

40 3.78E-09 4.56 1.22E-08 4.90 1.62E-09 5.16 7.46E-09 5.06

80 2.02E-10 4.23 4.39E-10 4.80 5.14E-11 4.98 2.61E-10 4.83

160 1.22E-11 4.04 2.79E-11 3.79 1.62E-12 4.99 8.30E-12 4.97

P4 polynomial approximations

We list the L2 and L∞ errors and orders for k = 0, 1, 3 in Table 10 (β1 = 1
12 for k = 3).

Errors and orders for k = 2 with different β1 are presented in Table 11. Errors and orders
for k = 4 with different β1 are listed in Table 12. The DDGIC method achieves the same
convergence orders on nonuniform mesh as on uniform mesh.

Example 4.4 (two-dimensional blow up case) In this example, we consider the two-
dimensional KS equations (2.2) on the computational domain [−2, 2] × [−2, 2] with the
following initial conditions

ρ(x, y, 0) = 400

1 + 40(x2 + y2)
, c(x, y, 0) = 200

1 + 20(x2 + y2)
,

and homogeneous Neumann boundary conditions. The cell density corresponding to such a
large initial will blow up in a finite time.

We apply P2 polynomials to approximate the evolution of the solutions up to t = 6× 10−4,
at which a delta-shape or close to blow-up solution profile is present. The cell density ρh
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Table 7 Two-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.3 at t = 0.2
on uniform mesh

ρh − ρ ch − c

Nx × Ny L2 error order L∞ error order L2 error order L∞ error order

k = 0 10 × 10 2.12E-01 2.82E-01 2.13E-01 2.83E-01

20 × 20 1.08E-01 0.97 1.42E-01 0.90 1.08E-01 0.98 1.42E-01 0.95

40 × 40 5.31E-02 1.02 7.11E-02 0.98 5.31E-02 1.02 7.11E-02 0.98

80 × 80 2.32E-02 1.19 3.32E-02 1.01 2.32E-02 1.19 3.32E-02 1.09

k = 1 10 × 10 2.11E-02 4.82E-02 2.43E-02 4.63E-02

20 × 20 5.24E-03 2.01 1.22E-02 1.98 6.01E-03 2.01 1.15E-02 2.00

40 × 40 1.29E-03 2.02 3.01E-03 2.02 1.49E-03 2.01 2.87E-03 2.00

80 × 80 3.21E-04 2.01 7.32E-04 2.03 3.71E-04 2.01 7.20E-04 2.00

k = 3 10 × 10 1.89E-04 7.05E-04 1.63E-04 7.40E-04

20 × 20 1.19E-06 3.99 4.42E-05 4.00 1.03E-05 3.98 4.61E-05 4.00

40 × 40 7.42E-07 4.00 2.76E-06 4.00 6.43E-07 4.01 2.87E-06 4.01

80 × 80 4.62E-08 4.01 1.70E-07 4.02 4.01E-08 4.00 1.78E-07 4.01

Pk polynomial approximations with k = 0, 1, 3
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Table 10 Two-dimensional accuracy test: L2 and L∞ errors and orders of ρh and ch for Example 4.3 at
t = 0.2 on nonuniform mesh

ρh − ρ ch − c

Nx × Ny L2 error order L∞ error order L2 error order L∞ error order

k = 0 10 × 10 1.91E-01 2.35E-01 2.05E-01 2.14E-01

20 × 20 9.54E-02 1.00 1.18E-01 0.99 1.02E-01 1.01 1.06E-01 0.91

40 × 40 4.65E-02 1.03 5.87E-02 1.01 5.00E-02 0.97 5.29E-02 1.00

80 × 80 2.32E-02 1.00 2.88E-02 1.03 2.55E-02 1.00 2.61E-02 1.02

k = 1 10 × 10 4.25E-02 1.75E-02 4.05E-02 1.68E-02

20 × 20 1.07E-02 1.99 4.41E-03 1.99 1.01E-02 2.00 4.24E-03 1.99

40 × 40 2.65E-03 2.01 1.10E-03 2.00 2.51E-03 2.01 1.05E-03 2.01

80 × 80 6.62E-04 2.00 2.74E-04 2.01 6.19E-04 2.02 82.61E-04 2.01

k = 3 10 × 10 5.76E-04 7.88E-04 5.54E-04 7.84E-04

20 × 20 3.63E-05 3.99 4.91E-05 4.00 3.51E-05 3.98 4.88E-05 4.01

40 × 40 2.23E-06 4.02 3.04E-06 4.01 2.21E-06 3.99 3.05E-06 4.00

80 × 80 1.39E-078 4.00 1.89E-07 4.01 1.38E-07 4.00 1.91E-07 4.00

Pk polynomials with k = 0, 1, 3
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Fig. 2 Two-dimensional blow up case: cell density ρh approximation with P2 polynomials for Example 4.4.
The contour (left) and the cross-section at y = 0 (right) of ρh at t = 6× 10−4 corresponding to N = 160 are
exported

approximation with N = 160 is demonstrated in Fig. 2, in which twelve contour lines and
the cross-section at y = 0 are exported. The high order polynomial solutions are maintained
positive at all time levels. The DDGICmethod can capture the delta-shape solution evolution
with high resolution and no oscillations. The DDGICmethod simulations are similar to those
in [16].

5 Conclusion

In this paper, we apply the DDGIC method to solve one-dimensional and two-dimensional
KS chemotaxis models, which govern the evolution of cell density and chemoattractant
concentration. Error estimates are established under suitable smoothness assumptions of the
exact solutions. Numerical experiments are provided for both one-dimensional and two-
dimensional examples using the DDGIC method with polynomials of degree k. The impact
of different coefficient settings (β1c, β1ρ) in the numerical fluxes are explored on uniform and
nonuniform meshes. It is observed that for odd degrees k, the optimal convergence rates of
order (k + 1) are achieved for both the cell density ρh and the chemoattractant concentration
ch with any admissible coefficients. For even degrees k, the optimal convergence rate of order
(k + 1) is obtained for the cell density ρh only with β1c = 1

2k(k+1) . The convergence rates

decrease to k with β1c �= 1
2k(k+1) . These insights contribute to developing more accurate and

efficient numerical techniques for simulating chemotaxis phenomena.
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