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Abstract

A high-order time discretization scheme to approximate the time-fractional wave equation
with the Caputo fractional derivative of order & € (1, 2) is studied. We establish a high-
order formula for approximating the Caputo fractional derivative of order @ € (1, 2). Based
on this approximation, we propose a novel numerical method to solve the time-fractional
wave equation. Remarkably, this method corrects only one starting step and demonstrates
second-order convergence in both homogeneous and inhomogeneous cases, regardless of
whether the data is smooth or nonsmooth. We also analyze the stability region associated
with the proposed numerical method. Some numerical examples are given to elucidate the
convergence analysis.

Keywords Time-fractional wave problem - Caputo derivative - Laplace transform method -
Initial correction - Nonsmooth data
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1 Introduction

Consider the following time-fractional wave equation, with 1 < @ < 2,

SDMu+ Au=f(1),0<t<T,
u(0) = uo, (L.1)
u'(0) = ui,

where g D¢ u stands for the Caputo fractional derivative of order o with respect to ¢ defined
by
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Here A = —A with the definition domain D(A) = H} () N H*(R) and A stands for
the Laplacian, where HOl () and H%(Q) denote the standard Sobolev spaces on a domain
Q c R? d = 1,2, 3. Furthermore, uq and u; are the initial values with ug, u; € H where
H := L*(Q) is the Hilbert space of square integrable functions defined on  with the norm
Il - |I. Therefore for any z € {z # 0 : |argz| < 6} with /2 < 6y < /o, @ € (1,2), the
operator A satisfies the following resolvent estimates [6]

Il +A N <Clzl™, 1T+ A7 < Clzl™. (1.2)

The time fractional wave equations are extensively used for modeling processes character-
ized by non-local effects, [1, 2, 5, 18]. The solution of the time fractional wave equation has
a singularity near the origin. It is essential to identify efficient numerical methods for solving
the time fractional wave equation while working within limited smoothness assumptions for
the solutions.

Utilizing convolution quadratures as outlined in [10] and incorporating techniques from
[11], Jin et al. [6] introduced two methods based on convolution quadrature in time. They
established error estimates for both smooth and nonsmooth data in the context of time-
fractional wave equations. Additionally, they corrected the initial steps of the BDF methods
[7], resulting in high-order numerical methods for approximating the time-fractional wave
equation with both smooth and nonsmooth data. A nonuniform L2 — 1, Crank-Nicolson
difference method was developed on a nonuniform temporal mesh [23] for solving time-
fractional wave equation. In [12], convergence in the HO1 (£2)-norm was derived for alow-order
Petrov-Galerkin method with a nonsmooth source term. Li et al. [ 13] proposed a time-spectral
method characterized by exponential decay in temporal discretization when the solution is
smooth enough. Furthermore, in [14], they analyzed a space-time finite element method,
showing that high-order temporal accuracy can still be achieved with appropriately graded
temporal grids.

The time fractional wave equation can be written as an evolution equation with a positive-
type memory term. Various numerical methods exist for dealing with evolution equations
with such positive-type memory terms. McLean et al. [15, 16] introduced two positive defi-
nite quadratures specifically designed for the time fractional integral operator. Applying the
convolution quadratures from [10] and using backward difference methods in time, Lubich et
al. [3, 11] obtained the first and second-order time-stepping schemes. They derived optimal
error estimates with nonsmooth initial data. Mustapha and McLean [17] proposed a novel
class of algorithms by applying a discontinuous Galerkin method to address the challenges
posed by the time fractional wave equation.

In more recent developments, the S2 and S3 formulae, both belonging to the S-type formula
category, were introduced as means to approximate the Caputo fractional derivative. These
formulae exhibit convergence orders of O (k> and O (k*~®) for « € (1,2) [19]. The L3
formula, as presented in [21], has been formulated for approximating the Caputo derivative
of order o € (1, 2). This particular formula demonstrates second-order convergence and has
been used in approximating solutions to the time-fractional wave equation.

Based on the ideas in [19, 21], in this paper, we introduce a new high-order time discretiza-
tion scheme with the corrections on the starting steps. Using the discrete Laplace transform
method, we prove that the proposed method has the optimal convergence order O (k?) in both
homogeneous and inhomogeneous cases with both smooth and nonsmooth data.
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The paper is organized as follows. In Section 2, we introduce a high-order formula
for approximating the Caputo derivative of order ¢ € (1,2) with some specific weight
corrections. Section 3 introduces the corrected numerical methods for approximating the
time-fractional wave equation in both homogeneous and inhomogeneous cases. We estab-
lish optimal error estimates using the Laplace transform method. In Section 4, we consider
the stability region of the proposed numerical method. Finally, Section 5 presents numerical
results aimed at validating the theoretical findings and showing the robustness of the proposed
numerical method.

Throughout this paper we denote C a generic constant independent of the step size k
which could be different at different occurrences.

2 Time Discretization

Let k = T /N and construct a partition over [0, T]asO0O =1y <t < --- <t < -+ <ty =
T. We shall approximate the Caputo fractional derivative, with « € (1, 2),

1 In _
ng“(fn) = m/to (ty, — S)1 “u(s) ds,

1 "l
fo—w Z/ (tn — )% 4" (s) ds. Q2.1
j=171-1

On the subintervals [7g, #1] and [#1, #2], we approximate u by the cubic interpolation poly-
nomials Il3 ju and I3 2u defined the nodes (to, u(ty)), (t1, u(t1)), (t2, u(t2)), (t3, u(13)),
respectively. On the other subintervals [¢;_1,¢;], 3 < j < n, we approximate u by I3 ju
defined on the nodes (¢; 3, u(tj—3)), (tj—2, u(tj—2)), (tj—1, u(tj—1)), (¢j, u(t;)). By setting

uj—uj-1 drtdj g = Oty

_ 2,
8tuj_%— 3 , Sjuj = T s

1
3
8[ uj = k7(8[M1+% — 25[1/!1_% + Stuj_%),

we obtain, with 8,3uj_% = 8,2(8,uj_%),
(M3, ju(r)” = 512141'—2 +(t— fj—2)5t3”j7%-
Let Azuj =uj42 — 2ujq1 + u; and similar as (2.10) in [21], we have, with n > 3,

1

6P = 57—

f n
( (tg — )17 (T3,1u(s))” ds + / (tn — )" 7% (T3 2u(s))" ds
1o n

n 7 n—1
+ Z/ (tn — 5)' 7% (T3 ju(s))" ds) — K Zcf,,"‘_)l_j A%u;_y +R",
j=37ti-1 j=1

22)
where R" = O (k?) and the coefficients ¢\’ in (2.2) are defined by for n > 3,
oy )
o o o o o o o .
C(Dl) o 1 g — Ay — 2anfl + bnfl + bn72 + bn73 - bn74’ j=2,
T TG ) | a b+ 6, 3<j<n—2,
() .
bna_j_l, j=n-—1,
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in which the coefficients a;“) and bi.“) are defined by
a;a) — (] + 1)2—0( _ j2—0(,
1
bﬁa) _ o ((] + 1)3—a _ jS—a) +(+ 1)2—04 _ 2J-2—ot_

Then, we rewrite the L3 formula in (2.2) as

n
6 Dfulty) =k~ Y wjutaj)+R".  n=3,

j=0
with the following coefficients
o ji=0
cga) - 2ch), j=1,
Wjn = 05.01)2—20?1)1—}-6'5,&), j=2,...,n—2,

ey —2¢,, j=n—1,
@ -

n—2° J =n.

(2.3)

2.4)

(2.5)

Remark 2.1 Whena — 2, the L3 formula reduces to the following scheme for approximating

the second time derivative u () forn > 3, i.e.,
iy 1) ~ K2 (20(0) = Sulty-1) + 4ty 2) = u(ty-3)),

which has the second order convergence, that is

iy () = K72 (2000) = Su(ty—1) + 4uty—2) = u(t,-3)) = OK?), ask — 0.

Based on (2.5), we may define w; as follows

wo = F(31—oe)(1+3ia>’

1 1
=72270¢_4 72370{_4 ,
W F(3—a)( T3 ))
1 25704 33704
— 6_24—01 32701 _ ,
. r(s—oo( R I i)

1 . e, GAEDI je o
= Do L0 gty 6(j — 1)>
w; F(3—oz)((J+) + 3o J 3_a+(] )T+
~_23—a -_33—01
—4(j—2)2’“—4u+(j—3)2’“+u>, J=3.4,....
3 — 33—«

'_13—0(
6(1 )
3—«

2.6)

Remark 2.2 In Eq. (2.5), the weights w; , rely on the parameter n, whereas in Eq. (2.6), the
weights w; are independent of n. In the subsequent section, we will employ the weights w,
forj =0,1,2,...,fromEq. (2.6) to establish our numerical method. This selection is made

in order to facilitate the application of the discrete Laplace transform method.

3 Error Analysis

In this section, we introduce the time discretization scheme for approximating (1.1). We
proceed to derive error estimates for the schemes in both homogeneous and inhomogeneous

cases, encompassing both smooth and nonsmooth data.
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3.1 Homogeneous Case

In this subsection, we consider the time discretization of (1.1) with f = 0, i.e.,

$DMu+Au=0,0<t<T,
u(0) = uo, (3.1
' (0) =uy.

Let V(¢) := u(t) — u(0) — tu’(0) then (3.1) can be written as

{ng‘V(t) +AV(t) = —Au(0) — Atu’(0), 0 <t < T,

V(©0)=0, V'(0)=0. (3.2)

Based on the idea in [7], we define the following corrected time discretization schemes for
solving (3.2),

n
ko an,jVj + A V" = —Aug — t,Auy + a1 (—Aug) + b kAuy, n =1,

—
i= (3.3)
k=Y w, VI A V" = —Aug — t, Auy, n>2,
j=1
where the correction coefficients are a; = %, b = 11—2

J
Lemma3.1 ([4, 7]) For p # 1,2, ..., the polylogarithm function Li,(z) = Z?‘;l Z—p is
J
analytically continued in the split plane C \ [1, +00] and satisfies the singular expansion

o0 k
Lip@e™) ~T(=p)2 ™+ Y (=D*(p—k) 17 as 2= 0, (3.4)
k=0 ’

in which & is the Riemann zeta function.
Lemma3.2 Let{ = e %, z € Cand 1 < a < 2. Then, for some suitable constants dy, da,
we have
— . 1 1
() =Y wit) = (k) — FEOT Hdi@0 4 3@+ T - as 2k = 0.
Jj=0

Proof Note that

_ ° . 1 _ >
D) =Y wie! = oo [e T — 4 6c — a2+ ) (Y0 )
= rG-—o) =
1 1 4 6 4 1 ad
-1 _ _ 2 3 3—a . j
+F(3—0[)|:3—Ol{ 3—0[+3—Ol{ 3—0{{ +3—a{:|<122;] {>
- [ezk—4+6e*zk—4e*2zk+e*3zk]u 2(0)
I'G—oa) “
1 1, 4 6 .4 4 o |
ek _ k 3K Liy_3().
+F(3—a)[3—ae e T3-a° -« T3¢ fa-3(4)
Utilizing (3.4) with p = o — 2, @ — 3, we have
. 1 1
W) = (zk)* — g(zk)”“ +d (k)" + §<zk>3+‘* +da(zk) o as zk — 0.
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for some suitable constants dy, do, .. .. m]

Lemma3.3 Let K(z) = z7'(z% + A)~'A and 7 € Ty where, for some 0 € (1/2, ),

Iy ={zel:|3z| <n/k}, T ={z#0:|argz| =6} (3.5)
We denote, witht = e~ 7 € T,
_ @ — BV _ £
o= 80 =0 n@) =80 (1 : +aic). (3.6)
Then we have the following statements
ple™h) —1= 0k, aszk -0, 3.7)
Clz| = |zl = Clzl, (3.8)
IK (z1) = K@l < CK*[z], (3.9)
(K (z1) = K@ < CK|zl, (3.10)
kzZi(Zn(f”‘)” + ble*”‘) — 1= 0((zk)?), aszk — 0. @3.11)
n=1

Proof By Lemma 3.2, we obtain
—X

e —1= (1 +ale_x><§:wj(e_x)j) —1
j=0

—X

1 1
= (7o Fae )0 = 3 it e

RI=

1
= (—5 +aDx+cox?+oxt Y fexd 4

By choosing a; = }, we get lim,_.o 2“5~ = C which implies (3.7).
We now turn to the proof of (3.8). We first show that there exists a constant C > 0 such

that
|z |

ﬁ < C, for z € Fk. (312)
z
Note that
R
lzel 18 fw(eH)z]
|z] |kz| lzk|
and
.1
) u?(e*x)al ) (Z?O:O wjle ) )« (%= %x”o‘ +dix*+ %x3+°‘ +... )%
lim ———~— = lim : = lim =1.
x—0 X x—0 X x—0 X
D n"kal
Hence thereexists0 < §; < sige suchthat% <C, forz € Tk, |zk| < 81.Since%is
) D 7Zkal
analyticforz € Ty, & < |zk| < ﬁ,wehave‘% < Cforz eIy, 81 < |zk| < siﬁG‘
Thus (3.12) follows.
‘We next show that there exists a constant C > 0 such that
z
l <C, forzeTly. (3.13)
|zk|
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Note that
1
5(€—Zk) 3(€_Zk) — 7k (Z(;OZO wj(e—zk)j)a —zk
dTEETTT T k - k
GO = @R+ GO ) — 2k (- @R ) — 2k

k a k
= 0?2, askz— 0.
We see that there exists 0 < 8, < 1 such that
|z —zk| < 2|kzz3| for |zk| < &7,
which implies that
1 1
lz] <lz —zkl + lzxl < Elkzlzlzl + |zl < EIZI + lzkl, for|zk| < &.

Thus we obtain

|z] < 2|zk|, forz € Tk, |zk| < 3. (3.14)
Now we turn to the case for z € Ty, 8 < |zk| < sln() for some 0 € (, ) close to
Note that
w(e * w(ek w(ek
1= |2 D) B D ) DN e, ey, < Ikl < o (315)
(zk)* (ﬁ) sin

Assume at the moment that there exists a constant ¢ > 0 such that

[~ > ca, forz e Ty, 8y < |2k| < %@ (3.16)

We then get, by (3.15), there exists a constant C > 0 such that

T
lzk| = Clz|, forz e Ty, & < |zk| < ol
in

Together this with (3.14) show (3.13).

It remains to show (3.16), that is, establishing a lower bound for | (e~%%)| when z € Ty
and &, < [zk| < 4. Due to the complexity of the expression for (e~ ), establishing a
direct proof for (3.16) appears to be an exceedingly challenging task. Jin and Zhou [9, Lemma
5.4] have previously shown the existence of such a lower bound for the L1 scheme. Instead,
we shall visually illustrate the existence of a constant ¢ satisfying (3.16) for some 6 € (% ,7T)
close to 5. To achieve this, we graphically present the complex function w(e~") for w in
the range [—1, 1] x [82, ;5] which contains the line w € {zk 1,z € T, , 62 < |zk| < 75}

In Fig. 1, it is evident that w(e~") maintains a lower bound for 6 = 0.5,0 = 0.5, « = %

Table 1 provides the lower bounds for various combinations of §; and «. Regardless of the

specific values chosen, it is apparent that (3.16) remains valid. Thus, we have demonstrated

the existence of the desired lower bound, supporting the conclusion that (3.16) holds true.
Following the proof in [22, Lemma 2.2], and noticing ||K'(z)|| < C 12|72, we get

IK (zx) — K (@)|| < Clz| 72Kz < CK?|z,

which shows (3.9).
Now, using the fact that || K (zz)|| < C|z|™", (3.10) follows from

I(OK (z0) — K@ < 1(6(0) = DK @)l + 1K () — K@) < [zk[*Clz|™" + Ck*|z] < CK*[z].
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Fig. 1 Plot of the function
g(x.y) = [w(e™™)] for

w = x + iy with

(x,y) € [—1,1] x [8, ] for
a = 1.1 and 8§ = 0.5. The
minimum value of g(x, y) on
[—1, 1] x [62, 7] 18 0.5

Table 1 The lower bounds ¢y of
|w(e~%)| in (3.16) on domain
w e [=1,1] x [62, 7]

Real (z)

0.5

15 2

Image (z)

82 o4 Lower bounds ¢
0.1 1.1 0.08
1.5 0.03
1.7 0.02
1.9 0.01
0.2 1.1 0.17
1.5 0.05
1.7 0.06
1.9 0.05
0.5 1.1 0.50
1.5 0.39
1.7 0.35
1.9 0.31

It remains to prove (3.11). Note that, with § defined by (3.6) and for some suitable constants

Cj,j=1,2,...,

o0

o0

82 (Do nEe™) + b)) = 1= e (Yo ne™) + b)) ~ 1

n=1 n=1
=@x* - 1x2+a +dix* + lea +- -~)(L +blefx) -1
3 3 (1 —e)2
=cix? e + et Fogxtte 4
we arrive at
82 (L2 ne™) +bie™) ~ 1
lim 3 =C,
x—0 X
which completes the proof of (3.11). The proof of Lemma 3.3 is complete. O

During the proof of the error estimate in Theorem 3.1 below, it is crucial to ensure the
existence of (z} + A)~!, where z; is defined in (3.6). In simpler terms, we need to demonstrate
the existence of 6y € (0, 27) such that z{ € Xg, for z € Iy, with I'; defined in (3.5). The
theoretical proof of z € Xy, is generally challenging due to the complexity of the expression
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Fig.2 Plane graph of z{ fora =1.2,1.4,1.6, 1.8
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Fig.3 Plane graphs of ZZ foro = 1.01 and o = 1.99
z¢ [91. Therefore, to address this issue, we will adopt the approach of visualizing the region
of z} through plots, similar to those presented in [20, Figures 4, 5, 6]. Note that

- N

w(E) 1S R . ke ] e

% = T =k720wf'f’=k7;wf'<e z>’~k72)wj<e 9 zely, (GID
J= J= J=

where z = |z|e!? = ﬁem for y e (0, w/k]. Here we shall choose 6 = g%n in 'y, which

is very close to /2. In Figure 2, we choose N = 100 in (3.17) and plot the region of z§ for
the different o € (1, 2). It is evident that for any « € (1, 2), there exists a 6y € (0, 27) such
that z{ € Xg, for all z € T'y. Drawing from this observation, we put forward the following
conjecture, which bears resemblance to the conjecture proposed in [20] for the subdiffusion
problem with order @ € (0, 1).

Conjecture 3.1 Let & > /2 be sufficiently close to 7 /2 and z; be defined by (3.6). Then
there exists 8y € (r/2, ) such that

Zf € Zgy, Vz € Tk

To see the plane graphs of z when « — 1 and o — 2, in Fig.3, we plot the plane
graph for « = 1.01 and o = 1.99. It clearly show that there exist 8y € (r/2, 7) such that
Zg € Xgy, Yz €Ty
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Theorem 3.1 Let @ € (1,2) and let V(ty) and V" be the solutions of (3.2) and (3.3),
respectively. Then
1V (1) = V"Il < K4, luoll + CRZ 1 luy |- (3.18)

Proof Taking the Laplace transform in both sides of (3.2) with respect to 7, we obtain
V(@) =@+ A (—Augz™" — Auiz™),
and by the inverse Laplace transform, we get
1
V() = Tm/ e (2% 4+ A) 'z (= Aug) + ¥ + AT 23 (—Auy)) dz
r

On the other hand, taking the discrete Laplace transform in (3.3) leads to

n

i(k 3w V) +Z<AV")¢ = (- AMO)(CHC-!—%)

n=1 j=1
+(—Au1>(kb1;+ztn;").
Using the equality "~
i(zw ,w) (Zowjﬁ )<V (V4 ) =00V, (319)

V(@) = 6@ + A [(—Auw(al; o)+ A (kbic + Y rn;")} :

n=1
and we have

1 —zk

v o%ln ((Zg + A)_lzlzl(Auo)) (Zkk(ale_lk + L)) dz

27i Jr, 1 —e 2k
1 o0
-5 / e (@ + M7z (Au) <Zkk2(b1e—zk + Zne—zk”)> dz.
2mi Jr, =
Recalling (3.6), we get V (,) — V" =1+ 1I therein
1

T=5 e (2% + A) 'z (—Aug) dz

I\
1
+ %/ o3l <(Z0l + A)ilzil _ (Zz + A)flzk—lu(efzk))(—Auo) dz =1 + 1o,
Tk
1 Ity (A -1_-2

m=— e (Z* +A) T (—Auy) dz

I\

1 zty o 71 1,2 J _
+%/er (@ + A2 =+ AR Zb; 30" —Aun) dz

n=1

=1 + 1.
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Noticing (1.2), [[(z% + A)~'A| = |[I — 2%(z* + A)~'| < C, and then

1 o
Il = ll=— / (% + AT (—Aug) dz| < € / e~z 7 dz | uo |
27 Jr\ry L
o0 o0
< Cﬁ e~ 2172 2] |dz ] lluo |l < Ckzﬁ el z)dz] [luo |
13 k
< Ck*t; 2 uo]. (3.20)
Using (3.10), we obtain
— L 2y o —1_-1_ (o —1_-—1 —zk _
Ll == [ (@ +A7 27 =@ + A 7 @) ) (= Aug) dz||
2w I'x
=l e (@ + AT A = G AT Ae™)) deluol
T
kOO
< CkZ/ e~ rdrllug|l < Ck2; luol. (3.21)
0

(1.2) we obtain

1 o © _
||Ih||=||—./ (2 4 A 22— Auy) dz] EC/ ¢l dz ]y |
27Tl F\Fk %

o0
<o [ e azng < ck . (3.22)

k

Finally, utilizing (3.9) and (3.11) we have

1 o —-1_— o — - n
||Hz||=||%[rk e (@ + A = G+ TR Big + Y ng") ) (—Au) dz]

n=1

o0
<c| | e ((z“ F AT A - @+ AT PA(bI + Zn;")) dz|llu1
T

n=1

=i e ((z“ F AT A - (8 + A)_lzk_zA) dz /ey
k

o0
+ cn/ e (zf + A)—lA(z,j2 — k2 (big + Zn;")) dz || [luy ||
T

n=1

< c/oooe—”nszdrnuln < CK* ;M lur . (3.23)
The proof is completed by combining (3.20)—(3.23). O
3.2 Inhomogeneous Case
In this subsection, we consider the time discretization of (1.1) with f # 0, i.e.,
SDfu+Au=f,0<t<T,
u(0) = uo, (3.24)

u' (0) =uj.
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Let V(¢) := u(t) — u(0) — tu’(0) then (3.24) can be written as

{ng‘V(t) + AV () = —Au(0) — At’ (O) + f(1), 0 <t <T,

V() =0, V/(0) = 0. (3.25)

Using the Taylor expansion and denoting the convolution of g and & by g x h, we have

f@)y=fO) + 'Oy +R1®), R@) = —f”(O) + < f<3>> ).

Following [22], we take the Laplace transform in both sides of (3.25) with respect to ¢ and
obtain

V@ = @+ A7 ((~Auo + fO)z + (—Aur + /' O)27 + R@).
and by the inverse Laplace transform, we obtain
1
V)= — / e”((z“ + A T (—Aug + £(0) + @+ AT A (—Aur + £(0)
27 r

+ @@+ A7 ﬁ(z)) dz. (3.26)

3.2.1 The Case for f € C%([0, T1; L2(R))

In this subsection, we shall construct a corrected scheme for approximating (3.24) when
f € C%([0, T]; L*>(S2)) and prove the optimal error estimate.

Denoting V" as an approximation of the exact solution V (¢,), we define the following
corrected time discretization scheme for solving (3.25),

n
K=Y " wy VI A V" = —Aug — ty Aut + f(ta) + a1 (—Aug + £(0))

j=1
+b1k(Auy + f7(0)), n=1,
n
k7Y VI + AV" = —Aug — ta Auy + f (1), n=2,
j=1
(3.27)

in which w; are defined by (2.6).

Lemma 3.4 Fora € (1, 2) and zi defined in (3.6), we have

o 2
1 - _ 3 -
I+ A = G+ A) 1(kZ1 2¢" )l = CkPel 1
n=
Proof Following the proof of (3.9) and considering

X 42

11— z3k Zzl I= 0((zk)?).

we can write

)
1+ 7 =+ (k) 2
n=1""
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X 2
—1_— -1 _— 1 - 4
SIE AT = G AT+ AT (1 gk Y )
n=1

< ClzI™ K21z + ClzI ™1z 2K |z)* < Ck*z) 71,

Theorem 3.2 Leta € (1,2) and assume that f € C2([0,t1; H) and ;" (t, —)* | f® (s) || ds
< 00. Let V(t,) and V" be the solutions of (3.25) and (3.27), respectively,. Then we have

1V = V1= CR (12 ol + 15 | + 1521 O -+ £ 17 @l 44215 O]
t”
+ [P s).
0

Proof Taking the discrete Laplace transform in (3.27), we get

Z(k‘ an Ve +Z<Av”); = Aug+ FO) (g + 1) + ZR(tn)c

n=1
b aur+ P O)(kbie + 3 ),
n=1

and considering (3.19), we obtain

V(@) = 60 (@) + M) [ (~Auo + fO) a1t + 1%{) +3 R
n=l1

+ (= Aur + f'O) (kbrg + it,,{”)]. (3.28)

n=1
Therefore, we have

0 1 <t o —1 -1 _ L
v ——7./”6’((2/( +A) 7 (Aug f(o))><zkk(a1§+l—§)) .

2mi
1 oo
o zt,, 1 71 / 2 n
i ((z A Ay — f (0)))<Zkk (b1§ -l—;n{ )) dz
1 o0
—— | (@A) (- wakQ] RtnM) da
o (@) (- O R )) dz
With (3.6), we write V (t,) — V" =1+ II + III such that
1

I=_— e (2% + A) ' (= Aug + £(0)) dz
2mi I\
+— “ln ((z” + AT - @A g e ))(—Auo + f0) dz:=T; + Do,
2mi I
1 .
M= _—— e (% + A) 22 (= Auy + f(0)) dz
2mi I\

3 00
1 (o -2« S12(N" g ) n )
T (@ + a2 =+ a7k (;b,§f~l—’;nt ))(=Aus + 1'0)) dz
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=10 + II.
1 N
m = —/ (% + A2 2R () dz
2mi r

1 o0
- (22 + A kY Rt dz = 11 + 1.
ol A R 3 Rw: )) dz =l + Il

Utilizing (3.20) and (3.21), we may write

k

o0
Il < Ck* 1, % ol + Cﬁ e~z 7z dz 1] £ (O]

and ||| < CK*4, 2 luoll +CIl [, e ((z“+A)—1z—1—<z“+A>—1z,:1u(e—zk>)dz||||f<0)||
where
o0 o0
C f e~ |21z 7 dz | £ (0) | = CK? f e~ Wl 17 | dz || £ (0] < CE2 22 £ (O,
k 13

and

Cll [ e (@ + a7 = @+ A7 g e ™) dzllI £ O
Ik

o0
< Ck? /0 ez 7 2 Tz P ldz I £ ()] < CRE 2L F Ol

which implies that T < Ck?(t;, 2 [|uol| + 122 £ (0)|D).
For II, employing (3.22) and (3.23) leads to

I < CE2 4, uy || + €l / (2% + A2 F(0) dz,
I\

]| < CK 6 || + C| / e (@4 AT = @+ T dzll O,
Ty
in which

o0
Cll M+ A0zl < Ck? / e~ dz || £/ O < CRHETLF O,
I\I'x I3

cif e ((ﬂ FA) o+ A)‘lz,;z) dzlll £/
Ty

=l e+ A7 (57 = (bas + Y ne")) 1zl f O

Tk n=1

o0
<C / e~ MTI2rdr | £/ (0)|| < CRHETHLF (O,
0
which implies that IT < Ck2 (&, H|u || + 12| £/ (O) ).

Finally, we rewrite R(t) := Ry (1) + Ra(r) with Ry (1) = & f7(0) and Ra(r) = (% =
F®)(¢) which leads to III = III; + III,. Then, using Lemma 3.4 we have

L < C| Mz + AT 23z )l
\Il'x

> t2 " 1!
+CIL e (@077 =@+ A7 (Y 2 )zl O < R Ol
k n=1""
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Moreover, following [8, Lemma 3.7], we obtain Il < Ck? [;" (t, — $)*|| f® (s)[|ds which

completes proof. O

3.2.2 The Case for f € C'([0, T]; L2(R))

In this subsection, we shall construct a corrected scheme for approximating (3.24) when
f e CL([0, T1; L*(Q)) and prove the optimal error estimate.

Following the idea in [7, (25)], we introduce g = 8,71 f in the time discretization scheme
in order to to reduce the regularity requirements on f in the error estimates. To see this, we
rewrite the scheme of (3.27) as

n
K wn VI AV = —Aug — ty Aus + dig(in) + a1 (—Auo + £(0))

j=1
+b1k(Aur + £(0)), n=1,
n
k= “wa VI AV = —Aug — tyAuy + 8,g(tn), n>2.
j=1
(3.29)

Since g(0) = 0, then using Taylor expansion we have
., 1?5
8(t) =10:8(0) + Ry (1) = 1f(0) + Re (1), Re(t) = 57078(0) + | 5; %978 | (0).
Replacing f = d;g in (3.25) and taking Laplace transform in both sides, we obtain
1
V) = 7/ €Z[(Za + A)_lz_l(—Auo — Aulz_l)dz
2mi r
1 2t oo —1(_ -1 o
+— ] e+ A) (Z fO) + zRg(z)> dz. (3.30)
2mi r

On the other hand, we take the Laplace transform in (3.29) and get

> (ke ; wn V)" + ;(AV")C" = (f(0) = Au)(ar¢ + 1%) +bikf'(0)¢

n=1
— Aur (kb1 + Y 06") + 3 Ry (1)),
n=1 n=lI

Therefore, we have

1 e—zk
n__ _ 2ty o —1_-1 _ —zk
V= /F Kk (e + 07"z Aug f(O)))(Zkk(ale +i1_e_zk)> dz
1 o0
_ 2l o A -1 —1A k2<b —zk —zk”) d
3 /I:ke <(zk +A)7" z; u1) Zk e +nE:lne z
1 o0
_ 2ty o -1 -1\, —zk £/ —zk"
i) (G + 75 ) 2 (bike ™ £0) + 3 Ry (t)e™™")) dz.

n=1

(3.31)
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Finally, we derive the error estimate for scheme (3.29) with lower regularity requirement. The
proof of the Theorem 3.3 below runs along similar lines as in Theorem 3.2 with g = 8;1 f
instead of f.

Theorem 3.3 Leta € (1,2) and assume that f € C'([0, t1; H) and ;" (t, —s)* | f® (s) || ds
< o0o. Let V(t,) and V" be the solutions of (3.25) and (3.29), respectively,. Then we have

1V (@) = VIl = R (52 ol + 65 |+ 5721 £ Ol + 57 1L/ O

th
+ [ =91 wlas).
0

4 Stability Region

In this section, we shall consider the stability region of the numerical method for solving the
following test problem, with & € (1, 2) and i1 < O,

SDYu(t) = ru(), u(0) =uo, u'(0) = ui, (4.1)

where 1 and u| denote the values of u(¢) and u’(¢) at t = 0, respectively.
Let u" =~ u(t,) be the approximate solution of u(z,). We define the following numerical
method to approximate (4.1),

n
k¢ Z wiju" = ", 4.2)
=0

where w;, j =0, 1,,2,... are defined by (2.6).
Let u" = &" be the solution of (4.2). Then we have

n
> wiE T = kUag". (4.3)
j=0
The stability region consists of all complex values z = k%X that satisfy the following
conditions: all roots &;, withi = 1,2, ..., n, of the polynomial Z?:o w;&E""/ = z&" must
fulfill |&;| < 1, and only the single roots lie on the unit circle |§;| = 1. To visualize the stability
region, we employ the boundary locus method. In Fig. 4, we plot the values of z obtained by
n i .
evaluating z = Z’:O# with £ = e'? 6 € [0, 2r] for different « = 1.2, 1.4, 1.6, 1.8.
This enables us to visualize and determine the stability regions.

5 Numerical Results
In this section, we shall consider some numerical examples to determine the convergence
orders of the proposed numerical scheme (3.3) and (3.27) regarding the smooth and nons-

mooth initial data.

Example 5.1 Consider the following fractional differential equation with 1 < o < 2,

{(?Df‘y(t)ﬂ(t) =0, 0=r=T, 5.0)

y(0)=05,  y'(0)=0,
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Stability region of the corrected method
T T T T

Fig.4 Stability regions of the scheme (4.3) witho = 1.2, 1.4, 1.6, 1.8

Table 2 (Example 5.1) Numerical convergence orders of scheme (3.3)

o n=23 n=2* n=25 n =20 n=27 Order(=x 2)

1.2 5.3147e—4 1.0555e—4 2.358le—5 5.6187e—6 1.4097e—5

2.33 2.16 2.07 1.99 2.13
1.4 1.4692e—3 3.1918e—4 7.2587e—5 1.7065e—5 4.1021e—6

2.20 2.14 2.09 2.06 2.12
1.6 2.2460e—3 5.3637e—4 1.2445e—4 2.8945e—5 6.7590e—6

2.07 2.10 2.10 2.09 2.09
1.8 1.9771e—-3 5.7221e—4 1.4623e—4 3.5810e—5 8.5709e—6

1.79 1.97 2.03 2.06 1.96

We aim to use the time discretization scheme (3.3) to solve (5.1). Let 7T = 1, and 0 <
th <t < --- <t, =T be auniform mesh on [0, 7] with the time step size k. First,
we compute the reference solution y,.r on a very small time step size, i.e. kyef = 210,
For calculating the numerical solution at y(7) using the method (3.3), we choose n =
23 23 ..., 27. The maximum error estimates and convergence orders are illustrated in Table
2. Ithas been demonstrated that the corrected numerical method exhibits the expected second-
order convergence.

Example 5.2 Consider the following time-fractional wave equation with 1 < « < 2,

82
§Dfute =25 (= fr.0. 0 <x <101 =T,
X
u@,1) =u(l,1) =0 0<t=T, (5.2)
u(x,0) = uo(x), 0=<x<1,
u'(x,0) = u(x), 0<x=<1,

where

(@) up(x) =x(1—x) € H* (N H}(Q), u1(x) =0and f =0,

(b) uo(x) = x10,1/21(x), u1(x) =0and f =0,

(c) up(x) = 0,u1(x) = xp0,1/21(x) and f = 8 (cos(r) + sin(1))(1 + X10,1/21(x)), with
B=0,1.1.
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Table 37 (Example 5.2 -cases (a) and (b)) Numerical temporal convergence orders of scheme (3.3) with
h=2"

a=12 a=14 a=1.6 a=1.38
n E Order E Order E Order E Order

Case (a) 2% 14644e—4 193 10187e—=3  2.70 5.7130e-3  2.15 4.6429¢e—3  1.68
25 3.8485¢—5 2.00 1.5617e—4 232 1.2886e—3  2.15 1.4458e—3 1.95
26 95605¢e—6 1.99 3.124%9¢—-5 2.14 2.8956e—4  2.11 3.7527e—4  2.07
27 23972¢—6 1.95 7.0648e—6 2.16 6.6968e—5 2.14 8.9043e—-5 2.12
28 6.1994e—7 1.5775e—6 1.5193e—5 2.0414e—5

Case (b) 2% 2.7753¢—5 257 6.9293e—4 540 1.1791e-3  0.70 5.4035e—2 1.66
25 4.663le—6 2.05 1.6380e—5 1.38 1.9275e—3 1.93 1.7076e—2  1.50
26 1.1218e—6 2.04 6.2863e—6 2.04 5.0759%e—4  2.08 6.0439e—3 1.79
27 27238e—7 2.08 1.5242e—6  2.03 1.1970e—4  2.14 1.7472e—3  2.08
28 6.4285¢—8 3.7279e-7 2.7046e—5 4.1273e—4

05 7 oz O
o 08 06 -

Fig.5 (Example 5.2) Numerical solutions using the scheme (3.3) witha = 1.5 and n = 22 for case a (left)
and case b (right)

Let0 =xp < x1 < --- < X, = 1 be a uniform partition with space step size 7. We compute
the reference solutions (in each case) u,.r at T = 1 on a finer mesh with A,y = 277 and
kref = 2-10_ For the cases (a) and (b), we consider the corrected numerical method (3.3) and
finite difference method for the time and space discretizations, respectively. Then, we choose
n = 2% 25 ....28 to obtain the numerical solutions at time 7. In Table 3, the maximum
error estimates and convergence temporal orders are presented which show the expected
second-order convergence in time. In addition, numerical solution of case (a) with ¢ = 1.5
and n = 2* is shown in Fig. 5.

For the case (c), we consider the corrected numerical method (3.27) for the time dis-
cretization and finite difference method for the spatial variable. In this case, the problem
has nonsmooth data in both initial condition and source term f. We choose &7 = 27 and
n=2% 2% ...,2% to obtain the numerical solutions which are listed in Tables 4 and 5 when
f e C%([0, T1, L3(2)) and f € cl([o, T1, L3(Q)), respectively. The illustrated conver-
gence orders confirm the theoretical results.
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Table 46(Example 5.2 - case (c) - B = 0) Numerical temporal convergence orders of scheme (3.27) with
h=2"

o n=2~4 n=25 n =20 n=27 n =28 Order(~ 2)

1.1 2.2049e—-5 4.2375e—6 9.9801e—7 2.4422e—-7 5.8068e—8

2.37 2.08 2.03 2.07 2.14
1.5 2.7032e—3 5.4022e—4 1.2000e—4 2.7823e—5 6.3846e—6

2.32 2.17 2.10 2.11 2.17
1.9 1.6595e—2 4.9792e—3 1.5619e—3 4.5964e—4 1.1587e—5

1.74 1.70 1.76 1.98 1.80

Table 56(Examp]e 5.2 - case (c) - B = 1.1) Numerical temporal convergence orders of scheme (3.27) with
h=2"

o n =24 n=2° n=20 n=27 n=28 order(~ 2)
1.1 1.3023e—4 3.2235¢—5 7.9976e—6 1.9714e—6 4.6893e—7
2.01 2.01 2.02 2.07 2.03
15 6.8449e—4 1.036e—4 2.5283e—5 6.0761e—6 1.4318e—6
2.65 2.11 2.06 2.09 222
1.9 1.6178e—2 4.5367e—3 1.4979e—3 4.4898¢—4 1.1566e—4
1.83 1.60 1.74 1.96 1.80

6 Conclusion

In this paper, we have introduced a high-order formula for approximating the Caputo frac-
tional derivative with an order o € (1, 2), which arises in the context of the time fractional
wave equation. We have rigorously demonstrated the second-order convergence of the pro-
posed method for both smooth and nonsmooth initial data. Furthermore, numerical examples
have been provided to validate the reliability and effectiveness of our approach.
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