
Journal of Scientific Computing (2024) 100:64
https://doi.org/10.1007/s10915-024-02621-2

Stability Analysis and Error Estimate of the Explicit
Single-Step Time-Marching Discontinuous Galerkin Methods
with Stage-Dependent Numerical Flux Parameters for a
Linear Hyperbolic Equation in One Dimension

Yuan Xu1 · Chi-Wang Shu2 ·Qiang Zhang3

Received: 14 March 2024 / Revised: 27 June 2024 / Accepted: 5 July 2024 /
Published online: 13 July 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In this paper, we present the L2-norm stability analysis and error estimate for the explicit
single-step time-marching discontinuous Galerkin (DG) methods with stage-dependent
numerical flux parameters, when solving a linear constant-coefficient hyperbolic equation
in one dimension. Two well-known examples of this method include the Runge–Kutta DG
method with the downwind treatment for the negative time marching coefficients, as well
as the Lax–Wendroff DG method with arbitrary numerical flux parameters to deal with the
auxiliary variables. The stability analysis framework is an extension and an application of
the matrix transferring process based on the temporal differences of stage solutions, and a
new concept, named as the averaged numerical flux parameter, is proposed to reveal the
essential upwind mechanism in the fully discrete status. Distinguished from the traditional
analysis, we have to present a novel way to obtain the optimal error estimate in both space
and time. The main tool is a series of space–time approximation functions for a given spatial
function, which preserve the local structure of the fully discrete schemes and the balance of
exact evolution under the control of the partial differential equation. Finally some numerical
experiments are given to validate the theoretical results proposed in this paper.

Keywords Discontinuous Galerkin method · Explicit single step time marching ·
Stage-dependent numerical flux parameters · Hyperbolic equation · Stability analysis and
error estimate

Mathematics Subject Classification 65M12 · 65M15

B Qiang Zhang
qzh@nju.edu.cn

Yuan Xu
yuanxu@njnu.edu.cn

Chi-Wang Shu
chi-wang_shu@brown.edu

1 School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China

2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

3 Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02621-2&domain=pdf
http://orcid.org/0000-0003-1796-7042

64 Page 2 of 47 Journal of Scientific Computing (2024) 100 :64

1 Introduction

In this paper we would like to present the L2-norm stability analysis and error estimate
for the explicit single-step time-marching discontinuous Galerkin (ESTDG) methods in a
more general application of numerical fluxes. Two well-known examples include the RKDG
method and the LWDGmethod to solve hyperbolic equations, which respectively employ the
Runge–Kutta time marching [5–9], and the Lax–Wendroff time marching [13, 23] to solve
the semidiscrete discontinuous Galerkin (DG) method. Many applications have shown that
these methods are good at solving nonlinear conservation laws, due to good stability, high
order accuracy and the ability for capturing shocks sharply. For more details, we refer to the
review papers [10, 15, 20, 21] and the references therein.

Besides the timemarching algorithms, themajor concepts in thesemethods are the numer-
ical fluxes used in the DG spatial discretization. We remark that, in numerical applications,
nonlinear limiters are also used to improve the numerical performance when shocks appear.
However, in this paper we do not consider the limiters and only pay attention to the interaction
between the numerical fluxes and the time discretization. In most numerical experiments,
numerical fluxes are often taken as the same type or with the same parameter at every element
boundaries and time stages. However, the numerical fluxes are allowed to be changed and this
strategy has been actually applied in many numerical simulations. A famous example is the
downwind treatment in high order RKDG methods to deal with the negative time-marching
coefficients [7, 10], in order to ensure the total variation diminishing in the means (TVDM)
property (coupled with a suitable limiter) under the strong-stability-preserving (SSP) frame-
work [11] such that a good numerical performance might be obtained nearby the shock. This
downwind treatment is necessary because the Runge–Kutta algorithm for nonlinear prob-
lems must have negative time-marching coefficients to achieve fifth or higher orders of time
accuracy, as well as in the fourth order with only four stages [12, 17]. We would like to
mention that the downwind treatment is also used in many high order numerical methods
(for instance, the TVD, ENO and WENO schemes) with the Runge–Kutta algorithms [12,
16, 18, 22] and the multistep algorithms [19]. Another example is the LWDGmethod, where
the DG discretization for those high order Lax–Wendroff expansion is often different to that
for the first order (convection) term; see the second example in Sect. 2.2.

To accurately understand the numerical effects of the above treatments, we need to carry
out the corresponding theoretical analysis for the ESTDG method with stage-dependent
numerical flux functions. However, as far as the authors know, till now there is not any
discussion on this topic, even for a simple model equation. To fill in this gap, we would like
in this paper to carry out the L2-norm stability analysis and establish optimal error estimates
of the ESTDG method in a unified framework, for the linear constant-coefficient hyperbolic
equation in one dimension

∂tU + β∂xU = 0, x ∈ I = (0, 1), t > 0, (1.1)

equippedwith the initial conditionU (x, 0) = U0(x) and the periodic boundary condition.We
think that the deep research on this topic provides a starting point to push ahead theoretical
studies on the fully discrete DG method that is really used in the practical simulation of
nonlinear conservation laws. For simplicity, we further assume that β is a positive constant,
and that the numerical flux parameter involved in the numerical flux only changes at different
stage time and does not change with respect to the space position; see Sect. 2.2. Different
from the special case that numerical flux parameters are the same in the RKDG methods,
we have to spend extra effort and propose a new strategy to carefully handle the analysis

123

Journal of Scientific Computing (2024) 100 :64 Page 3 of 47 64

difficulties resulted from the perturbation of the numerical flux parameters in the ESTDG
methods.

There are two major difficulties to carry out the L2-norm stability analysis. On one hand,
it is well known [2] that the DG method coupled with the forward Euler time-marching is
unstable for any fixed CFL number if the polynomial space is not piecewise constant. That
is to say, the L2-norm stability of ESTDG methods can not be derived under the so-called
SSP framework. We have to set up a facilitating energy equation to carry out energy analysis.
However, this is difficult for the high order in time fully discrete DG methods. Recently
this trouble is systematically settled by the technique of matrix transferring process based on
temporal differences of stage solutions, which can automatically achieve the expected energy
equation step by step. This technique has been successfully applied for the RKDG methods
when numerical flux parameters are the same; see the references [1, 26–30]. Similar works on
this issue can be found in the framework to analyze the stability of the explicit RK methods
to solve an ODEs with semi-negative linear operator [24]. On the other hand, in this paper
we have to overcome the new difficulty resulting from the stage-dependent numerical flux
parameters. As a main highlight of this paper, we make an application and/or an extension of
the matrix transferring process and put forward an important quantity, named as the averaged
numerical flux parameter. This quantity reveals the overall upwind effect in every step time-
marching, so it should be greater than one half from the viewpoint of practice. Further, by
deep discussions on two detailed examples we find out that, via adjusting the numerical flux
parameters (even though the averaged numerical flux are not enlarged), we have a chance
to improve the stability performance of the ESTDG method, for example, from the strong
stability to the monotonicity stability. For more detailed concepts and statements, see Sect. 3.

Unfortunately, for the ESTDG method with stage-dependent numerical flux parameters,
the optimal error estimate becomes very difficult, although the suboptimal error estimate is
trivial by traditional treatments. When numerical flux parameters are the same, this purpose
has been achieved for the RKDGmethods [27, 31, 32] by virtue of the above stability analysis
and the generalized Gauss–Radau (GGR) projection with a fixed parameter. However, this
proof strategy does not work well for the general case that numerical flux parameters are
changed at different occurrence. The main reason is that the element boundary errors at
different stages can not be simultaneously eliminated by a fixedGGRprojection. To overcome
this difficulty, we propose in this paper a new analysis tool, named as a series of space–time
approximation functions for any given spatial function. They preserve not only the local
structure of the fully discrete scheme, but also the local balance of exact evolution under the
rule of the considered partial differential equation (PDE). Hence, they are able to provide
a group of good reference functions belonging to the finite element space, such that the
error accumulation in time of the fully discrete scheme is elaborately scattered over every
gap, at the time level tn , between the head function (the first one in the series) of U (x, tn)
and the tail function (the last one in the series) of U (x, tn − τ). Here U (x, t) is the exact
solution and τ is the time step. With the help of the results and the stability conclusions for
the nonhomogeneous problem (as a trivial extension of those in Sect. 3.2), the difficulty to
obtaining the optimal error estimate is shifted to how to prove the optimal estimate for a
series of space–time approximation functions. From our point of view, this analysis line is
specifically designed for the fully discrete scheme and is remarkably distinguished to the
traditional analysis line, which is often pushed ahead from a semi-discrete scheme in either
time or space to the fully discrete scheme.

Because each one in a series of space–time approximation functions cannot be regarded as
a traditional projection of the given function, we encounter serious difficulties in proving the
optimal approximation property; see Lemma 4.1. Fortunately, this aim can be accomplished

123

64 Page 4 of 47 Journal of Scientific Computing (2024) 100 :64

by the aid of those techniques and concepts proposed in the matrix transferring process,
for instance, the temporal differences of stage solutions and the evolution identity. Here we
would like to mention that the averaged numerical flux parameter still plays an important
role in this analysis process. With this special quantity, the L2-norms of the specially-defined
error function sequences (see (4.25) for details) can be mainly bounded by each other in the
forward and reverse directions, respectively; see Lemmas 4.2 and 4.3. In this entire process,
the GGR projection and the flux lifting function (see Sect. 4.2) are fully utilized.

It is worthy to emphasize that the averaged numerical flux parameter makes significant
contributions throughout the theoretical analysis of this paper. To prove Lemma 3.7, we have
to make a deep investigation on the matrix transferring process and make more efforts to
establish the subtle relationship among the one-step time marching and the multistep one.
This procedure involves many manipulations of matrices, such as the matrix description of
matrix transferring process and the Kronecker products of matrices. By tedious and rigorous
calculations, we discover the important role of the hidden zero restriction related to the
averaged numerical flux parameter,which is stated inLemma3.5withm = 1 or the equivalent
identity (7.28). This zero restriction helps us to prove that the concerned submatrix in the
multistep spatial matrix is close to a symmetric positive definite (SPD) matrix congruent
to the Hilbert matrix such that the distance is reciprocal to the multistep number; see the
appendix. Another application of this zero restriction is the proof of Lemma 4.3, where the
coefficient in front of the jump term of the head function is successfully eliminated; see
Sect. 4.2.2.

The rest of paper is organized as follows. In Sect. 2 we describe the ESTDG method with
stage-dependent numerical flux parameters and then present two well-known examples that
will be analyzed and numerically tested in this paper. In Sect. 3 we present a framework
to derive energy equation and carry out the L2-norm stability analysis, where the averaged
numerical flux parameter is proposed. Section4 is devoted to obtaining the optimal error
estimate in L2-norm, where a series of space–time approximation functions are proposed
and analyzed. Some numerical experiments are given in Sect. 5 to verify the theoretical
results. The concluding remarks and some technical proofs are respectively presented in
Sect. 6 and the appendix.

2 The ESTDGMethod

In this section we present the detailed definition of the ESTDG methods to solve (1.1) and
then show two well-known examples including the RKDG method and the LWDG method.

2.1 The Semidiscrete DGMethod

Let J be any positive integer and 0 = x1/2 < x3/2 < · · · < xJ+1/2 = 1 be a quasi-
uniform partition of the spatial interval I . Each element I j = (x j−1/2, x j+1/2) has the length
h j = x j+1/2 − x j−1/2 for j = 1, 2, . . . , J . Denote h = max1≤ j≤J h j . Then we define the
discontinuous finite element space by

Vh = { v ∈ L2(I) : v|I j ∈ Pk(I j), j = 1, 2, . . . , J }, (2.1)

where Pk(I j) is the polynomial space in I j of degree at most k ≥ 0. As usual we denote by
v+ and v− the limits of v from two sides.

123

Journal of Scientific Computing (2024) 100 :64 Page 5 of 47 64

In this paper, Ih denotes the partition and Γh the element boundaries. The inner product
in L2(Ih) and L2(Γh) are respectively denoted by (·, ·)Ih and 〈·, ·〉Γh . The associated norms
are ‖ · ‖L2(I) = ‖ · ‖L2(Ih) and ‖ · ‖L2(Γh)

, respectively. For any v ∈ Vh there hold the inverse
inequalities [4, 15]:

‖∂xv‖L2(I) ≤ μh−1‖v‖L2(I), ‖v±‖L2(Γh)
≤ μh− 1

2 ‖v‖L2(I), (2.2)

where μ > 0 is the inverse constant independent of v and h.
The semidiscrete DG method for the model Eq. (1.1) is defined as follows: find a map

u(t) : [0, T] → Vh such that it satisfies
(
∂t u, v

)
Ih

= Hθ (u, v), ∀ v ∈ Vh, t ∈ (0, T], (2.3)

with a well-defined initial solution u(0) ∈ Vh . Here Hθ (u, v) is the so-called spatial DG
discretization, defined in the form

Hθ (u, v) =
∑

1≤ j≤J

∫

I j
βu∂xvdx

︸ ︷︷ ︸
(βu,∂xv)Ih

+
∑

1≤ j≤J

β{{u}}θ
j+ 1

2
[[v]] j+ 1

2

︸ ︷︷ ︸
〈β{{u}}θ ,[[v]]〉Γh

,

(2.4)

with the weighted average and the jump at element boundary

{{u}}θ = θu− + (1 − θ)u+, [[v]] = v+ − v−.

In this paper, θ is called the numerical flux parameter. It is often assumed to be independent
of time and greater than 1/2 in order to provide the upwind mechanism and the L2-norm
stability.

The following properties [29] for the spatial DG discretization (2.4) will be used. Let u
and v be any piecewise smooth functions. A simple application of integration by parts yields
the approximating skew-symmetric property

Hθ (u, v)+ Hθ (v, u) = −β(2θ − 1)
〈
[[u]], [[v]]

〉
Γh
, (2.5a)

which implies the nonpositive property (if θ > 1/2)

Hθ (u, u) = −1

2
β(2θ − 1)‖[[u]]‖2L2(Γh)

, (2.5b)

to explicitly show the numerical viscosity in the spatial discretization. Moreover, we also
have the weak boundedness property (with the parameter θ)

|Hθ (u, v)| ≤ Cβh−1‖u‖L2(I)‖v‖L2(I), ∀ u, v ∈ Vh, (2.5c)

where the bounding constant C > 0 depends on θ and the inverse constant μ.

2.2 The Fully Discrete ESTDGMethods

Let N > 0 be any positive integer and {tn = nτ : 0 ≤ n ≤ N } be a uniform partition of the
time interval [0, T], where τ = T /N is the time step. In this paper we would like to seek
the numerical solution at every time level tn , denoted by un ∈ Vh , by employing an explicit
single-step time-marching algorithm to solve the semidiscrete DG method (2.3).

123

64 Page 6 of 47 Journal of Scientific Computing (2024) 100 :64

Suppose that un has been obtained at the current time level, we are able to seek un+1

at the next time level through s intermediate (or generalized stage) solutions. The detailed
procedure is often described in the Shu–Osher form as follows:

1. Let un,0 = un .
2. For � = 0, 1, . . . , s − 1, successively find the generalized stage solution un,�+1 ∈ Vh

through the variational formula
(
un,�+1, v

)
Ih

=
∑

0≤κ≤�

[
c�κ

(
un,κ , v

)
Ih

+ τd�κHθ�κ (un,κ , v)
]
, ∀ v ∈ Vh . (2.6)

Here the time-marching coefficients, c�κ and d�κ , are inherited from the r -th order explicit
single-step algorithm. In this paper we demand d��
= 0 and c�κ ≥ 0 for any � and κ .
Note that s ≥ r in general.

3. Let un+1 = un,s .

The initial solution u0 ∈ Vh can be set as any approximation of U0. In this paper we define
it by the local L2-projection Ph , namely

(
u0, v

)
Ih

=
(
U0, v

)
Ih
, ∀ v ∈ Vh . (2.7)

Till now we have completed the definition of the considered fully discrete method, which is
named as the ESTDG(s, r , k) method in this paper for convenience.

We remark again that the numerical flux parameters in (2.6) are allowed to be changed at
every time stage. In this paper we mainly consider two well-known examples and investigate
their stability and accuracy order in the L2-norm.

Example 2.1 The first example is the RKDG(4, 4, k) method with the downwind treatment
[22] to deal with the negative time-marching coefficients in

{c�κ } =

⎛
⎜⎜⎝

1
1/2 1/2
1/9 2/9 2/3
0 1/3 1/3 1/3

⎞
⎟⎟⎠ , {d�κ } =

⎛
⎜⎜⎝

1/2
−1/4 1/2
−1/9 −1/3 1
0 1/6 0 1/6

⎞
⎟⎟⎠ , (2.8)

where � and κ are taken from the set {0, 1, 2, 3} in the natural order.
To be more general than [22], we would like in this paper to take the numerical flux

parameters under the following rule: θ�κ > 1/2 if d�κ ≥ 0 and θ�κ < 1/2 otherwise.

Example 2.2 The second one is the LWDG(r , k) method, which adopts the r th order Lax–
Wendroff time marching to solve (2.3). This method has been proposed and analyzed in [13,
23] for r = 2, 3, with some special numerical flux parameters.

For example, the second order LWDG method [23] is given in the form
(
pn, v

)
Ih

= − Hθ00(un, v),

(
un+1, v

)
Ih

=
(
un, v

)
Ih

+ τHθ10(un, v)− 1

2
τ 2Hθ11(pn, v),

(2.9)

where p is an auxiliary variable to approximate ∂tU = −β∂xU . As for the numerical flux
parameters, the authors only take θ00 = θ10 = 1 and θ11 to be either 0 or 1. Obviously,
this method can be written as an ESTDG method by defining the so-called stage solution
un,1 = −τ pn .

123

Journal of Scientific Computing (2024) 100 :64 Page 7 of 47 64

Actually, every LWDG(r , k) method can be written as an ESTDG(r , r , k) method with
the contributory (or nonzero) parameters

cr−1,0 = 1; d�� = 1, 0 ≤ � ≤ r − 2; dr−1,κ = 1

(κ + 1)! , 0 ≤ κ ≤ r − 1, (2.10)

by similar treatments for all auxiliary variables. In this paper we would like to investigate the
LWDG method in a general case and remove the technical limitations that some numerical
flux parameters must be the same [23], for example, θ00 = θr−1,0.

To end this section we give a remark on the condition
∑

0≤κ≤�
c�κ ≡ 1, � ≥ 0,

which is often true for the RKDG method as a condition to ensure the consistency of the
Runge–Kutta algorithm. However, (2.10) shows that the LWDG method does not satisfy
this condition. Hence, in this paper we would like to discard this unessential condition for
the ESTDG method and directly employ those results given in [26, 29], provided that this
condition is not applied in the proofs.

3 Stability Analysis

In this section we devote to analyzing the L2-norm stability for the ESTDG methods with
stage-dependent numerical flux parameters. The presented analysis framework can be looked
upon as an application and/or an extension of the technique of the matrix transferring process
[27, 29] when numerical flux parameters are the same.

3.1 TheMatrix Transferring Process

In order to accurately understand the stability performance, we have to investigate the scheme
when combining several time steps together in the time-marching. For this purpose, we
introduce the generalized notations for stage solutions, as those in [27, 29]. Namely, for any
nonnegative integers n, i and j , we denote

un,si+ j = un+i, j . (3.1)

Remark that this notational rule has been used in the scheme’s description.
In this paper we use an integer m ≥ 1 to represent the multistep number. It is evident for

the ESTDG(s, r , k) method that every m-steps marching with time step τ can be regarded as
one-step marching of an ESTDG(ms, r , k) method with time step mτ . Namely, for 0 ≤ � ≤
ms − 1, there holds the following variation formula: for any v ∈ Vh ,(

un,�+1, v
)
Ih

=
∑

0≤κ≤�

[
c�κ (m)

(
un,κ , v

)
Ih

+ mτd�κ (m)Hθ�κ (m)(un,κ , v)
]
. (3.2)

Let �′ = � (mod s) and κ ′ = κ (mod s). The contributory (or nonzero) parameters in (3.2)
only emerge for those � and κ satisfying �− �′ = κ − κ ′, such that

c�κ (m) = c�′κ ′ , d�κ (m) = 1

m
d�′κ ′ , θ�κ (m) = θ�′κ ′ . (3.3)

Here �′ and κ ′ are both taken from {0, 1, . . . , s − 1}.

123

64 Page 8 of 47 Journal of Scientific Computing (2024) 100 :64

3.1.1 Temporal Differences of Stage Solutions and Evolution Identity

For 1 ≤ i ≤ ms, we would like to define the i th order temporal difference of stage solutions
in the form

Di (m)u
n =

∑
0≤ j≤i

σi j (m)u
n, j , (3.4)

where σi j (m) are the undetermined combination coefficients independent of stage solutions.
For convenience, we also denote D0(m)un = un and σ00(m) = 1 throughout this paper.

Remark 3.1 The above concepts and notations originate from the error estimates [31, 32] and
have been systematically studied in [27, 29], for the RKDGmethods with the same numerical
flux parameters.

The combination coefficients in (3.4) can be inductively defined along the same way as
in [27, 29]. Assuming, for a certain integer i ≥ 0, the temporal differences of stage solutions
up to the i th order have been well defined, we would like to define the next one in the form

Di+1(m)u
n =

∑
0≤�≤i

φi�(m)
[
un,�+1 −

∑
0≤κ≤�

c�κ (m)u
n,κ

]
, (3.5)

where the combination coefficients φi�(m) will be determined by the following procedure.
Since the above linear combination does not involve any terms about spatial discretization,

we can easily define the combination coefficients by the special case that all the numerical
flux parameters are the same. Hence we introduce an arbitrary fixed constant, denoted by ϑ
in this paper. Due to (3.2) and (3.5), after a changing of summation orders we yield

(
Di+1(m)u

n, v
)
Ih

= mτΦi (v)+ mτΨi (v), (3.6)

where the two terms on the right hand side show the kernel construct and the perturbation
effect, respectively. They read

Φi (v) =
∑

0≤κ≤i

∑
κ≤�≤i

φi�(m)d�κ (m)Hϑ(un,κ , v), (3.7a)

Ψi (v) =
∑

0≤κ≤i

∑
κ≤�≤i

φi�(m)d�κ (m)
[
Hθ�κ (m)(un,κ , v)− Hϑ(un,κ , v)

]
. (3.7b)

We call (3.7b) the perturbation term, since Ψi (v) = 0 if θ�κ ≡ ϑ .
We want to define (3.5) to ensure a nice structure among the temporal differences of

stage solutions, similar as that in [27, 29] for the RKDG method with the same numerical
flux parameters. The process is described as follows. Since every diagonal entry dκκ (m) is
nonzero, the triangular system of linear equations

∑
κ≤�≤i

φi�(m)d�κ (m) = σiκ (m), κ = 0, 1, . . . , i (3.8)

uniquely determines φi�(m) for 0 ≤ � ≤ i . Substituting this into (3.7a), we can achieve the
same expression as that in [27, 29]

Φi (v) = Hϑ(Di (m)u
n, v). (3.9)

123

Journal of Scientific Computing (2024) 100 :64 Page 9 of 47 64

At this moment, by comparing with the coefficients in the front of un,κ , on both sides of
(3.5), we are able to inductively define

σi+1,κ (m) = φi,κ−1(m)−
∑
κ≤�≤i

φi,�(m)c�κ (m), κ = 0, 1, . . . , i, (3.10a)

with the supplemental notation φi,−1(m) = 0, and

σi+1,i+1(m) = φi i (m) = σi i (m)

dii (m)

= 0. (3.10b)

By these data we complete the definition of Di+1(m)un .

Remark 3.2 In [26, 27, 29] for the RKDG method, it seems that we have demanded
∑

0≤ j≤i

σi j (m) = 0, i ≥ 1.

Actually, this condition does not take effect in any analysis therein. In this paper we would
like to completely abandon this condition for the ESTDG method, since it does not hold for
the LWDG method; see Sect. 3.2.2.

After all temporal differences of stage solutions have been well defined, due to
(3.10b), the inversion manipulation yields the linear equivalence of two function sequences
{un,0, un,1, . . . , un,ms} and {D0(m)un,D1(m)un, . . . ,Dms(m)un}. Specially, there holds the
evolution identity

un+m =
∑

0≤i≤ms

αi (m)Di (m)u
n . (3.11)

Remark 3.3 In [27, 29], the left hand side of (3.11)waswritten asα0(m)un+m ,whereα0(m) >
0 is introduced only for scaling. In this paper we always take α0(m) = 1 for convenience.

Note that the above manipulations only depend on the time-marching coefficients, c�κ and
d�κ , and they are totally independent on the numerical flux parameters. Hence all σi j (m) and
αi (m) are the same as those when numerical flux parameters are the same; refer to [26, 27,
29] for more detailed conclusions.

The following lemma [26, Lemma 2.2] will be frequently used in this paper. It can be
easily proved by the fact that the used single-step time-marching algorithm has the r th order
in time.

Lemma 3.1 For any m ≥ 1, there holds α�(m) = 1/�! for 0 ≤ � ≤ r .

3.1.2 Relationship Among Temporal Differences of Stage Solutions

In what follows we continue to discuss (3.6) and set up the relationship among temporal
differences of stage solutions. A simple manipulation yields

Hθ�κ (w, v)− Hϑ(w, v) = β(ϑ − θ�κ)
〈
[[w]], [[v]]

〉
Γh
,

so the perturbation term (3.7b) can be written in the form

Ψi (v) = β
∑

0≤κ≤i

∑
κ≤�≤i

φi�(m)d�κ (m)(ϑ − θ�κ(m))
〈
[[un,κ]], [[v]]

〉
Γh
. (3.12)

123

64 Page 10 of 47 Journal of Scientific Computing (2024) 100 :64

To express the right hand side in terms of temporal differences of stage solutions, we would
like to introduce a series of numbers qi�(m;ϑ), for 0 ≤ � ≤ i , by the triangular system of
linear equations: for κ = 0, 1, . . . , i ,

∑
κ≤�≤i

qi�(m;ϑ)σ�κ(m) = −
∑
κ≤�≤i

φi�(m)d�κ (m)(ϑ − θ�κ(m)). (3.13)

The existence and uniqueness are trivial since every diagonal entry σκκ(m) is nonzero, due
to (3.10b). By substituting (3.13) into the previous identity and changing the summary order,
we can deduce

Ψi (v) = − β
∑

0≤κ≤i

∑
κ≤�≤i

qi�(m;ϑ)σ�κ(m)
〈
[[un,κ]], [[v]]

〉
Γh

= − β
∑
0≤�≤i

qi�(m;ϑ)
〈
[[D�(m)un]], [[v]]

〉
Γh
,

(3.14)

where the definition of temporal differences of stage solutions, like (3.4), is used at the last
step.

Substituting (3.9) and (3.14) into (3.6), we eventually achieve the relationship among the
temporal differences of stage solutions: for any v ∈ Vh , there holds(

Di+1(m)u
n, v

)
Ih

= mτHϑ(Di (m)u
n, v)

− mτβ
∑
0≤�≤i

qi�(m;ϑ)
〈
[[D�(m)un]], [[v]]

〉
Γh
.

(3.15)

It is worthy to mention that the right hand side is independent of the choice of ϑ , hence its
value can be set arbitrarily.

At the end of this subsection, we present the kernel relationship that will be extensively
used in thematrix transferring process. For convenience of notations, wewould like to denote
a series of quantities independent of the choice of ϑ , namely

q̃i�(m) = qi�(m;ϑ)+ δi�ϑ, 0 ≤ � ≤ i and 0 ≤ i ≤ ms − 1. (3.16)

Throughout this paper δi� is a standard Kronecker symbol, being 1 if i = � and otherwise 0.
The independence is easily verified, because (3.16) satisfies the triangular system of linear
equations that is independent of ϑ ,

∑
κ≤�≤i

q̃i�(m)σ�κ(m) =
∑
κ≤�≤i

φi�(m)d�κ (m)θ�κ (m), κ = 0, 1, . . . i,

due to (3.13) and (3.8).
We will see later two kinds of fundamental members in the matrix transferring process.

One is the joint of two L2(Ih)-inner products terms (named as the temporal information
terms)

J (i, j) =
(
Di+1(m)u

n,D j (m)u
n
)
Ih

+
(
Di (m)u

n,D j+1(m)u
n
)
Ih
, (3.17)

and the other is the L2(Γh)-inner product term (the essential ingredient of the spatial
information)

P(i, j) =
〈
[[Di (m)u

n]], [[D j (m)u
n]]
〉
Γh
.

The kernel relationship is stated in the following lemma.

123

Journal of Scientific Computing (2024) 100 :64 Page 11 of 47 64

Lemma 3.2 For 0 ≤ i, j ≤ ms − 1, there holds

J (i, j) = −mτβ
[

− P(i, j)+
∑

0≤i ′≤i

q̃i i ′(m)P(i ′, j)+
∑

0≤ j ′≤ j

q̃ j j ′(m)P(i, j ′)
]
.

Proof This lemma follows from (3.15), (3.16) and an application of (2.5a).
�
Remark 3.4 Suppose all numerical flux parameters are the same, say, θ�κ ≡ θ . Taking the
fixed parameter ϑ = θ , it is easy to see q�κ (m; θ) = 0 due to (3.13) and hence q̃�κ (m) = θδ�κ
due to (3.16). Then we have

J (i, j) = −mτβ(2θ − 1)P(i, j),
from the above lemma. This result is the same as that in [29].

3.1.3 Derivation of Energy Equations

Along the same line as that in the previous works [26, 27, 29], we would like to carry out
the matrix transferring process to automatically achieve a perfect energy equation for the
considered ESTDG method, through a sequence of energy equations

‖un+m‖2L2(I) − ‖un‖2L2(I) = TM(�;m)+ SP(�;m). (3.18)

Here � ≥ 0 stands for the sequence number, and

TM(�;m) =
∑

0≤i≤ms

∑
0≤ j≤ms

a(�)i j (m)
(
Di (m)u

n,D j (m)u
n
)
Ih
, (3.19a)

SP(�;m) = − mτβ
∑

0≤i≤ms

∑
0≤ j≤ms

b(�)i j (m)
〈
[[Di (m)u

n]], [[D j (m)u
n]]
〉
Γh
, (3.19b)

respectively contain all temporal information and all spatial information. For convenience,
we abbreviate two formulas in (3.19) by two symmetric matrices

A
(�)(m) = {a(�)i j (m)}0≤i, j≤ms, B

(�)(m) = {b(�)i j (m)}0≤i, j≤ms . (3.20)

Remark 3.5 It is worthy to mention that (3.19b) is different to that in [26, 27, 29] for the
RKDG methods. Actually, the modification in this paper originates from the application of
the approximating skew-symmetric property (2.5a); see Lemma 3.2.

As a purpose of matrix transferring process, we expect to dig out the contribution of
the spatial discretization as much as possible, by successively transforming the lower order
temporal information into the spatial information. To show that, in what follows we give a
more detailed description on the matrix transferring process.

The initial energy equation is easily derived by squaring and integrating the evolution
identity (3.11). It deduces the initial matrices with

a(0)i j (m) =
{
0, i = j = 0,

αi (m)α j (m), otherwise; and b(0)i j (m) = 0, (3.21)

with α0(m) ≡ 1 as stated in Remark 3.3. Remark that this energy equation does not reflect
any contribution of the spatial discretization.

123

64 Page 12 of 47 Journal of Scientific Computing (2024) 100 :64

The matrix transferring process is carried out step by step. By induction, for � ≥ 1, the
�th step matrix transform starts from two obtained matrices

A
(�−1) =

⎛
⎜⎜⎜⎜⎝

O O O · · ·
O a(�−1)

�−1,�−1 a(�−1)
�−1,� · · ·

O a(�−1)
�,�−1 a(�−1)

�,� · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠
, B

(�−1) =

⎛
⎜⎜⎜⎜⎝

� � � · · ·
� b(�−1)

�−1,�−1 b(�−1)
�−1,� · · ·

� b(�−1)
�,�−1 0 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠
,

where O remarks the zero block and � remarks the transformed (nonzero) region. Here and
below the notation (m) is dropped for convenience if there is no confusion.

The next action depends on the leading element a(�−1)
�−1,�−1(m). If it is equal to zero, we carry

out the following manipulations. In this step, we would like to use Lemma 3.2 to eliminate
every entry at the (� − 1)th row and column of A(�−1). This process generates two new
matrices A(�) and B(�).

More specifically, for the temporal matrix A
(�), the entries at the lower triangular region

are given by the following formulas

a(�)i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, �− 1 ≤ i ≤ ms and j = �− 1,

a(�−1)
i j − 2a(�−1)

i+1, j−1, i = � and j = �,

a(�−1)
i j − a(�−1)

i+1, j−1, �+ 1 ≤ i ≤ ms − 1 and j = �,

a(�−1)
i j , otherwise.

(3.22)

Since A
(�) is demanded to be symmetric, the upper triangular entry is easily filled in. To

understand the above formula in (3.22), we give some comments.

– The difference between the second and the third line results from whether the basic
elimination (with respect to one entry) along the row and column is superimposed on the
same position.

– The third line is used to eliminate a(�−1)
i+1,�−1 by applying Lemma 3.2 to the joint term

a(�−1)
i+1,�−1J (i, �− 1), with the help of the neighbor entry a(�−1)

i,� .

Remark that the order of the left-top zero block is enlarged now.
The above elimination is accompanied by the changing of the spatial matrix. For stage-

dependent numerical flux parameters, each basic elimination affects many entries of the
spatial matrix. For example, the basic elimination on a(�−1)

i+1,�−1 (corresponding to the third
line in (3.22)) has influence on those entries of the spatial matrix at both the left half-line and
the top half-line starting from the position (i, �−1). As a result, it is not easy to present short
and unified formulas for calculating each entry of the new spatial matrix B(�). However, the
manipulation process can be conveniently expressed in the pseudo-code and summarized as
Algorithm 1.

Remark 3.6 Recalling Remark 3.4 for the same numerical flux parameters, it is easy to see
that the two sub-loops in Step 2 really execute only for i = κ and j = � − 1, respectively.
Note that q̃κ,κ = q̃�−1,�−1 = ϑ = θ in this case.

Otherwise, if a(�−1)
�−1,�−1(m)
= 0, we stop the entire transform process and name this entry

as the central objective of temporal matrix. At the same time, we output the termination index
of time marching

ζ(m) = �− 1, (3.23)

123

Journal of Scientific Computing (2024) 100 :64 Page 13 of 47 64

Algorithm 1. Generate the spatial matrix B
(�) = {b(�)i j } for the given �.

Step 1. Initialization: set gi j = 0 for any 0 ≤ i, j ≤ ms;
Step 2. Modification: for κ = �− 1, . . . ,ms − 1, do

if κ = �− 1 then let ν = 1/2; otherwise, ν = 1;

compute gκ,�−1 ← gκ,�−1 − νa(�−1)
κ+1,�−1;

compute gi,�−1 ← gi,�−1 + νa(�−1)
κ+1,�−1q̃κ,i for i = 0, . . . , κ;

compute gκ, j ← gκ, j + νa(�−1)
κ+1,�−1q̃�−1, j for j = 0, . . . , �− 1;

Step 3. Generation: define b(�)i j = b(�−1)
i j + gi j + g ji for 0 ≤ i, j ≤ ms.

together with the ultimate temporal matrix and the ultimate spatial matrix, respectively
denoted by

A(m) = A
(ζ(m))(m) = {ai j (m)}0≤i, j≤ms,

B(m) = B
(ζ(m))(m) = {bi j (m)}0≤i, j≤ms .

Motivated by [26, 27, 29], it is important for the ultimate spatial matrix to find the largest
order of the SPD sequential principal submatrix, i.e.,

ρ(m) = max
{
κ : 1 ≤ κ ≤ ζ and {bi j (m)}0≤i, j≤κ−1 is SPD

}
. (3.24)

This quantity is also named as the contribution index of spatial discretization. If the set in
(3.24) is empty, we define ρ(m) = 0 as a supplement.

Till nowwehave completed the description of thematrix transferring process. The stability
performance of the ESTDG method will be determined by three important quantities: two
indices ζ(m) and ρ(m), as well as the sign of central objective. See Sect. 3.2 for details.

3.1.4 Discussion on Three Important Quantities

Since the ultimate temporal matrix A(m) solely depends on the time-marching coefficients,
we have the same conclusions as those in [26] for the RKDGmethodwith the same numerical
flux parameters. Below we list some conclusions that will be used in this paper.

Lemma 3.3 The termination index ζ(m) ≥ 1 is independent of m, and hence we denote it by
ζ throughout this paper.

Lemma 3.4 For any m ≥ 1, the central objective aζ ζ (m) keeps the same sign.

The ultimate spatial matrix B(m) depends on not only the time-marching coefficients but
also the numerical flux parameters. Hence, for the time-dependent numerical flux parameters,
the property of ρ(m) becomes a little complex and the corresponding analysis turns out to
be much more difficult.

We begin with the assumption that ρ(m) is always positive, in view of the practical
application. This is equivalent to b00(m) > 0 for any m ≥ 1. When all numerical flux
parameters are taken to be θ > 1/2, we have found out in [26] for the RKDG method that

1

2

[
b00(m)+ 1

]
= θ >

1

2
, m ≥ 1. (3.25)

As an extension of this conclusion, we would like to propose an important concept for the
ESTDG method with stage-dependent numerical flux parameters.

123

64 Page 14 of 47 Journal of Scientific Computing (2024) 100 :64

Definition 3.1 For the ESTDGmethod, the averaged numerical flux parameter everym-steps
marching is defined by

Θ(m) ≡ 1

2

[
b00(m)+ 1

]
, m ≥ 1. (3.26)

Especially, Θ = Θ(1) is called the averaged numerical flux parameter.

To well understand the above definition, we need to make more detailed discussions on
(3.26). From Algorithm 1, it is easy to see that

b00(m) ≡ b(1)00 (m) = −a(0)10 (m)+
∑

0≤�≤ms−1

2a(0)�+1,0(m)q̃�,0(m),

which is determined at the first step of the matrix transferring process. Noticing (3.21) and
Lemma 3.1, we have a(0)10 (m) = α0(m)α1(m) = 1 and a(0)�+1,0(m) = α�+1(m). Then it follows
from (3.26) that

Θ(m) =
∑

0≤�≤ms−1

α�+1(m)q̃�,0(m). (3.27)

As a direct application of this formula, we can easily find out the hidden zero restriction that
will be used to analyze the performance of ρ(m) as m goes to infinity and used to obtain the
optimal error estimate. This important conclusion is stated in the following lemma.

Lemma 3.5 There holds for any m ≥ 1 that
∑

0≤�≤ms−1

α�+1(m)q�,0(m;Θ(m)) = 0. (3.28)

Proof We can prove this lemma by (3.16) and taking ϑ = Θ(m) in (3.27).
�
Similar as (3.25) for the fixed numerical flux parameters, we have the following lemma

for variant numerical flux parameters. The proof is put aside in the appendix, since it shares
many materials in the proof of the next lemma.

Lemma 3.6 Θ(m) is independent of m, namely Θ(m) = Θ .

From our point of view, Θ is an essential quantity to accurately describe the upwind
attribute for the fully discrete method. Owing to Lemma 3.6, the assumption that ρ(m) ≥ 1
holds forever is equivalent to demand

Θ > 1/2, (3.29)

which means the upwind mechanism at least in the average sense. Actually, this demand
plays a critical role in the whole analysis of this paper.

Lemma 3.7 If Θ > 1/2, then there is an m� ≥ 1 such that ρ(m) = ζ for m ≥ m�.

The proof line of this lemma is the same as that in [26] for the RKDGmethodwith the same
numerical flux parameters. However, the stage-dependent numerical flux parameters cause
serious analysis difficulties such that the proof process involves many matrix manipulation
and looks much lengthy and technical. We would like to postpone the proof of this lemma to
the appendix and only present the key points in the proof.

1. Algorithm 1 is not convenient to carry out the analysis, and we have to set up a matrix
description for the ultimate spatial matrix B(m). In this process, many tricks are used
to get some convenient and unified formulas, especially for the ζ th order sequential
principle submatrix of B(m), which is denoted by B̃(m) for convenience of statement.

123

Journal of Scientific Computing (2024) 100 :64 Page 15 of 47 64

2. Roughly speaking, in order to prove Lemma 3.7, we would like to split B̃(m) into two
symmetrical matrices for any given parameter ϑ . Although this matrix is independent of
ϑ , finding a good separation with a suitable choice of ϑ is important for the theoretical
analysis.

– One matrix is just the same as that for the special case that all numerical flux param-
eters are taken to be ϑ . Provided ϑ > 1/2, we can prove similarly as in [26] that this
matrix tends to a special SPD matrix as m goes to infinity.

– The other matrix results from the perturbation of stage-dependent numerical flux
parameters with respect to the fixed ϑ . As a trivial purpose, we expect that this per-
turbationmatrix tends to zero asm goes to infinity. In general, this purpose is not easily
accomplished for arbitrary choice of ϑ . However, this aim is fortunately addressed
with the help of a special choice ϑ = Θ , owing to the hidden zero restriction (3.28)
in Lemma 3.5.

3. In order to achieve the second goal in the previous item, we need to reveal the relationship
of the perturbation matrix with regard to the multistep number m. To do that, a large
number of matrix manipulations (including Kronecker products of matrix) are executed.
This simplification process is long and technical.

To end this subsection, we would like to show how to ensure Θ > 1/2 by adjusting
the numerical flux parameters. This purpose can be implemented by the following two
propositions, whose proofs will be given in the appendix.

Proposition 3.1 Θ is a weighted average of the numerical flux parameters. Moreover, it
increases with respect to θ�κ if d�κ > 0 and decreases otherwise.

For the RKDG method, the averaged numerical flux parameter often depends on all
numerical flux parameters. For example, the RKDG(4, 4, k) method (2.8) has

Θ = 37

108
θ00 − 5

36
θ10 + 5

18
θ11 − 1

27
θ20 − 1

9
θ21 + 1

3
θ22 + 1

6
θ31 + 1

6
θ33.

However, it is not true for the LWDG method.

Proposition 3.2 For the LWDG(r , k) method we always have Θ = θr−1,0.

Proposition 3.2 gives a theoretical support to the upwind requirement θr−1,0 > 1/2 for
the LWDG method, which has been implicitly stressed in [13, 23]. This is to say, only the
first order term in the Lax–Wendroff expansion demands the DG discretization with upwind
numerical flux, and the other term can be arbitrarily discretized.

3.2 Energy Analysis and Stability Conclusions

The matrix transferring process yields the final energy Eq. (3.18) for any m ≥ 1, with the
termination index � = ζ , the sign of the central objective, and the contribution index ρ(m).
Based on these informations, we are able to easily carry out the energy analysis and conclude
the L2-norm stability performance along the same line as that in [29].

It is worthy pointing out that the stage-dependent numerical flux parameters do not cause
any essential analysis difficulty in this subsection. To shorten the length of this paper, we only
present the key steps and conclusions and point out the main modifications in this process.

The increment every m steps is still bounded in the form

‖un+m‖2L2(I) − ‖un‖2L2(I) + Sbry ≤ aζ ζ (m)‖Dζ (m)un‖2L2(I) + Shot, (3.30)

123

64 Page 16 of 47 Journal of Scientific Computing (2024) 100 :64

where
Sbry = ε�(m)mτβ

∑
0≤�<ρ(m)

‖[[D�(m)un]]‖2L2(Γh)
,

Shot = C(m)
∑

i, j≥ζ except i= j=ζ

∣∣∣
(
Di (m)u

n,D j (m)u
n
)
Ih

∣∣∣

+ C(m)
∑

max(i, j)≥ρ(m)

∣∣∣
〈
[[Di (m)u

n]], [[D j (m)u
n]]
〉
Γh

∣∣∣τ.

Here ε�(m) is the smallest eigenvalue of the SPD submatrix {bi j (m)}0≤i, j<ρ(m), and C(m)
means the generic constant independent of n, h and τ .

All terms in Shot can be well controlled by the inverse inequality to the jump term of
temporal differences

(τβλ)
1
2 ‖[[Dκ (m)un]]‖L2(Γh)

≤ Cλ‖Dκ (m)un‖L2(I), (3.31a)

and the relationship among temporal differences of stage solutions

‖Di+1(m)u
n‖L2(I) ≤ Cλ‖Di (m)u

n‖L2(I)

+ C(τβλ)
1
2
∑
0≤�≤i

‖[[D�(m)un]]‖L2(Γh)
, (3.31b)

where λ = τβ/h is the CFL number. The inequality (3.31b) can be easily obtained by
taking v = Di+1(m)un in (3.15) and using (2.5c). The last summation on the right hand
side of (3.31b) originates from the perturbation of numerical flux parameters, and thus we
inevitably encounter some terms involved the jumps of lower order temporal differences
in the estimating process to Shot. This is the only analysis difference when numerical flux
parameters are stage-dependent. It is worthy pointing out that we can further diminish the
jump norms for those temporal differences of order not less than ρ(m) in (3.31b) if i ≥ ρ(m),
by an inductive application of two inequalities in (3.31). Namely, we have for i ≥ ρ(m) that

‖Di+1(m)u
n‖2L2(I) ≤ Cλ2‖Dρ(m)(m)un‖2L2(I) + CλSbry. (3.32)

By these treatments, together with some applications of Cauchy–Schwartz inequality, we can
easily bound Shot in the form

Shot ≤ Cλ‖Dρ(m)(m)un‖2L2(I) +
(1
2

+ Cλ
)
Sbry.

As long as λ is small enough, the last term in this inequality can be controlled with the help
of Sbry. Since the obtaining inequality is almost the same as that in the previous works [29],
the stability results can be similarly stated if the polynomials degree k is not specified.

Along the same line as for (3.32) we can similarly have

‖Dρ(m)(m)un‖2L2(I) ≤ Cλ2ρ(m)‖un‖2L2(I) + CλSbry. (3.33)

Note that ‖Dζ (m)un‖2L2(I)
can be bounded by either (3.33) or (3.32), since ζ ≥ ρ(m) due to

their definitions. Summing up the above discussions into (3.30), we have the rough estimate

‖un+m‖2L2(I) ≤
[
1 + Cλmin(2ζ,2ρ(m)+1)

]
‖un‖2L2(I),

Together with Lemma 3.7 for sufficient large m, we can easily obtain the weak stability, as
stated in the next theorem. This conclusion does not consider the effect of the sign of the
central objective.

123

Journal of Scientific Computing (2024) 100 :64 Page 17 of 47 64

Theorem 3.1 The ESTDG method (2.6) has the weak(2ζ) stability at least. Namely, for
sufficiently small h there holds

‖un‖L2(I) ≤ C‖u0‖L2(I), n ≥ 0, (3.34)

under a severe temporal–spatial condition τ ≤ Mh
2ζ

2ζ−1 . Here M is any given positive
constant, and the bounding constant C = C(T ,M) is independent of n, h and τ .

As usual, we pay more attention on the stability under suitable CFL conditions. To this
end, we introduce an important quantity

n� = min
{
m : ρ(m) = ρ(m + 1) = · · · = ρ(2m − 1) = ζ

}
, (3.35)

which is not larger than m� due to Lemma 3.7. Actually, we have proved in [26, Propo-
sition 3.5] that n� = m� holds for many RKDG method with the same numerical flux
parameters. Although we can not prove this conclusion for any ESTDG method with stage-
dependent numerical flux parameters, numerical experiments proposed in this paper indicate
that this statement might be true.

Note that the negativity of the central objective plays a pivotal role in the next theorem.

Theorem 3.2 If the central objective is negative, the ESTDG method (2.6) has the strong(n�)
stability for any k ≥ 0, namely, there exists a maximal CFL number λmax such that

‖un‖L2(I) ≤ ‖u0‖L2(I), n ≥ n�, (3.36)

holds under the CFL condition λ ≤ λmax. Furthermore, if n� = 1 is allowed, there holds the
monotonicity stability in the sense that

‖un+1‖L2(I) ≤ ‖un‖L2(I), n ≥ 0. (3.37)

Remark 3.7 Actually, the strong stability is obtained by the monotonicity stability for the
corresponding ESTDG(ms, r , k) method (3.2), where the multistep number m goes through
n�, n� + 1, . . . , 2n� − 1. Detailed discussions can be found in [27, 29].

Along the same line as that in [29], we can similarly obtain a nice control among the
temporal differences of stage solutions. For instance, the first term on the right hand side
of (3.31b) can be replaced by C‖(mτβ∂x)Di (m)un‖L2(I), which helps us to enhance the
stability performance for piecewise polynomials of lower degree. Detailed discussions are
referred to [29]. The related conclusions are stated in the next theorem.

Theorem 3.3 The ESTDG method (2.6) can have a better stability performance for lower
degree k:

– the strong(n�) stability for k < ζ , if the central objective is positive.
– the monotonicity stability for k < ρ(1) nomatter whether the central objective is positive

or negative.

From the last two theorems we are happy to find out an opportunity to enlarge the contri-
bution index ρ(m) and get better stability performance, by means of suitably adjusting the
numerical flux parameters. If so, the quantity n� may become smaller, even to 1 so that the
strong stability is improved to the monotonicity stability. In the next subsections we will give
some detailed discussions on two examples given in Sect. 2.2.

123

64 Page 18 of 47 Journal of Scientific Computing (2024) 100 :64

3.2.1 The RKDGMethod

Consider the RKDG(4, 4, k) method proposed in Example 2.1, and take the numerical flux
parameters

{
θ�κ − 1

2

}
= ε

⎛
⎜⎜⎝

1
−1 1
−1 −y z

1 0 1

⎞
⎟⎟⎠ , (3.38)

where ε, y and z are positive constants. Three negative entries in the right matrix correspond
to the so-called downwind treatment.

Below we take z = 1 and focus on the effect of y. We begin the stability analysis with
m = 1. The temporal differences of stage solutions are defined as

{σi j (1)} =

⎛
⎜⎜⎜⎜⎝

1
−2 2
0 −4 4
4 0 −8 4
8 0 −16 −16 24

⎞
⎟⎟⎟⎟⎠
, 0 ≤ i, j ≤ 4,

and the numerical flux parameters lead to

{
q̃i j (1)− 1

2
δi j

}
= ε

⎛
⎜⎜⎝

1
2 1

−4/9 + 4y/3 2/3 + 2y/3 1
−100/9 − 8y/3 −4/3 − 4y/3 0 1

⎞
⎟⎟⎠ , 0 ≤ i, j ≤ 3.

The matrix transferring process gives two matrices. The first one is the ultimate temporal
matrix

A(1) =
⎛
⎝
O3

−1/72 1/144
1/144 1/576

⎞
⎠ ,

where O3 is the third order zero matrix. This matrix implies that the termination index of
time marching is ζ = 3 and the central objective satisfies aζ ζ (1) = −1/72 < 0. The second
one is the ultimate spatial matrix

B(1) = ε

⎛
⎜⎜⎜⎜⎝

2y/9 + 79/27 y/9 + 65/54 1/3 y/36 + 17/108 0
y/9 + 65/54 y/18 + 13/18 1/4 y/72 + 7/72 0

1/3 1/4 1/12 1/24 0
y/36 + 17/108 y/72 + 7/72 1/24 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠
,

of which the first three leading principle determinants are

ε
(2y
9

+ 79

27

)
, ε2

(y

18
+ 1937

2916

)
, ε3

(y

324
− 125

17496

)
. (3.39)

The first quantity indicates that the averaged numerical flux parameter indeed satisfies
Proposition 3.1. Now we can claim the following stability results:

– For y > 125/54, these three quantities are all positive and hence ρ(1) = 3 = ζ . Now
we can claim the monotonicity stability for k ≥ 0 by Theorem 3.2.

123

Journal of Scientific Computing (2024) 100 :64 Page 19 of 47 64

– For y < 125/54, the stability performance becomes a little weaker. In this case, only the
first two quantities in (3.39) are positive, and thus ρ(1) = 2 becomes smaller. A series of
matrix transferring process for multisteps time-marching yields ρ(2) = ρ(3) = 3 = ζ ,
as we have predicted in Lemma 3.7. By Theorems 3.2 and 3.3 we can claim the strong(2)
stability for any k ≥ 0 and the monotonicity stability only for k ≤ 1. The sharpness of
this statement will be shown in the numerical experiments.

Remark 3.8 Consider the same RKDG method with y = 1, and focus on the effect of z. The
matrix transferring process derives that ρ(1) = ζ = 3 (i.e., the monotonicity stability) hold
only for z < (2

√
598 − 37)/27 ≈ 0.441. If we increase z out of the above region, although

Θ = ε(67/54 + z/3) + 1/2 becomes larger, the stability performance is weakened to the
strong stability.

From this numerical example (or the LWDG method), we can see that sometimes the sta-
bility performance may be not improved by enlarging the averaged numerical flux parameter.
This contradicts the commonly accepted concept that the greater numerical viscosity provides
the better stability. Hence it seems to show that this quantity should not be simply understood
as the numerical viscosity coefficients for the ESTDGmethods of stage-dependent numerical
flux parameters.

3.2.2 The LWDGMethod

We now turn to the LWDG(r , k) method for r ≤ 5; see Example 2.2. For simplicity, all
involved numerical flux parameters are taken to be 1/2 ± ε, where ε is a positive constant.
Due to Proposition 3.2, we must set θr−1,0 = 1/2 + ε to ensure Θ > 1/2 for all cases.

Let us take the second order (r = 2) LWDG method as an example. By the matrix
transferring process we can obtain

{σi j (1)}0≤i, j≤2 =
⎛
⎝

1
0 1

−2 −2 2

⎞
⎠ and A(1) =

⎛
⎝
0
0
1/4

⎞
⎠ ,

and get ζ = 2 and aζ ζ (1) = 1/4. Due to Theorem 3.1, we claim that this method at least has
the weak(4) stability for k ≥ 0.

Due to Theorem 3.3, we can get the strong stability and/or monotonicity stability for lower
degree k. For different combination of θ00 and θ11, we may achieve different values of n�
by calculating the contribution index of spatial discretization as m increases. The detailed
conclusions are listed as follows.

– Let θ00 = θ11 = 1/2 + ε. We get ρ(1) = 2 = ζ , since

{q̃i j (1)}0≤i, j≤1 =
(
1/2 + ε

1/2 + ε

)
, {bi j (1)}0≤i, j≤1 = ε

(
2 1
1 1

)
.

This concludes the monotonicity stability for k ≤ 1.
– Let θ00 = 1/2 + ε and θ11 = 1/2 − ε. Let m = 1 and we get

{q̃i j (1)}0≤i, j≤1 =
(
1/2 + ε

1/2 − ε

)
, {bi j (1)}0≤i, j≤1 = ε

(
2 0
0 −1

)
,

which implies ρ(1) = 1 and hence the monotonicity stability for k = 0.
By carrying out the matrix transferring process for increasing multistep number, we can
have ρ(3) = ρ(4) = ρ(5) = 2 = ζ and then conclude the strong(3) stability for k ≤ 1.

123

64 Page 20 of 47 Journal of Scientific Computing (2024) 100 :64

Table 1 Stability results for the
LWDG(2, k) methods

Parameters n�: strong (n�) stability
θ00 θ10 θ11 k ≥ 2 k = 1 k = 0

+ + + Weak (4) 1 1

+ + − 3

− + + 3

− + − 4

Table 2 Stability results for the
LWDG(3, k) method

Parameters n�: strong(n�) stability
θ00 θ11 θ20 θ21 θ22 k ≥ 1 k = 0

+ ± + + ± 1 1

+ − + − ± 3

− − + ± ± 3

+ + + − ± 4

− + + ± ± 4

Table 3 Stability results for the
LWDG(4, k) method

Parameters n�: strong(n�) stability
θ00 θ11 θ22 θ30 θ31 θ32 θ33 k ≥ 2 k = 1 k = 0

+ + − + + + ± 1 1 1

+ ± + + + + ± 2 1

+ − − + + ± ± 2 1

+ + ± + + − ± 3 1

+ − + + + − ± 3 1

+ − ± + − + ± 5 3

+ − ± + − − ± 6 3

− − ± + + ± ± 6 3

− − ± + − ± ± 7 3

+ + ± + − ± ± 7 3

− + ± + + ± ± 7 3

− + ± + − ± ± 8 4

– The other cases can be studied similarly.

The stability results for the LWDG(2, k) method are gathered in Table 1, where ± stands for
1/2 ± ε here and below.

For r = 3 or r = 4, we are able to similarly find ζ = r − 1 and that the central objective
is negative. Hence we can claim the strong stability for k ≥ 0, due to Theorem 3.2. The
detailed results are collected in Tables 2 and 3.

For r = 5, we can get ζ = 3 and the positive central objective, which implies the strong
stability for k ≤ 2 due to Theorem 3.3 and the weak(6) stability for k ≥ 3 due to Theorem
3.1. The detailed results are collected in Table 4.

Remark 3.9 In the above four tables, the first row gives the numerical flux parameters to have
the monotonicity stability for some k. If r
= 4, it is acceptable to take θ�κ ≡ 1/2+ ε for any
� and κ . Otherwise, for r = 4, we have to take all θ�κ ≡ 1/2 + ε except θ22 = 1/2 − ε.

123

Journal of Scientific Computing (2024) 100 :64 Page 21 of 47 64

Table 4 Stability results for the LWDG(5, k) method

Parameters n�: strong(n�) stability
θ00 θ11 θ22 θ33 θ40 θ41 θ42 θ43 θ44 k ≥ 3 k = 2 k = 1 k = 0

+ + ± ± + + + ± ± Weak(6) 1 1 1

+ − − ± + + ± ± ± 2 1

+ − + ± + + + ± ± 2 1

+ − + ± + + − ± ± 3 1

+ + ± ± + + − ± ± 3 1

+ − ± ± + − + ± ± 5 3

+ − ± ± + − − ± ± 6 3

− − ± ± + + ± ± ± 6 3

+ ± ± ± + − ± ± ± 7 3

− + ± ± + + ± ± ± 7 3

− + ± ± + − ± ± ± 8 4

Remark 3.10 Associatedwith the second row inTable 1with ε = 1/2,we get theLWDG(2, 1)
method with θ00 = θ10 = 1 and θ11 = 0. This LWDG scheme has been proved in [23] to
have the stability result (un,1 = −τ pn)

‖un‖2L2(I) + ‖un,1‖2L2(I) ≤ ‖u0‖2L2(I) + ‖u0,1‖2L2(I).

This result can not yield the strong(3) stability ‖un‖L2(I) ≤ ‖u0‖L2(I) for n ≥ 3, as claimed
in this paper.

So does for the LWDG(3,k) method [23] when the numerical flux parameters are taken
from the second row of Table 2 with ε = 1/2.

4 Optimal Error Estimate

In this section we are devoted to obtaining the optimal L2-norm error estimate for the ESTDG
method with the stage-dependent numerical flux parameters. This result is stated in the
following theorem.

Theorem 4.1 For the ESTDG(s, r , k) method (2.6) with the averaged numerical flux
parameter Θ > 1/2, we have the optimal error estimate

‖uN −U (t N)‖L2(I) ≤ C‖U0‖H �+1(I)(h
k+1 + τ r), (4.1)

under the same type of temporal–spatial condition to ensure the L2-norm stability, as stated
in Theorems 3.1 through 3.3. Here � = max(k + 1, r) and the bounding constant C > 0 is
independent of h, τ and U0.

This theorem has been proved for the RKDGmethod with the same numerical flux param-
eters, where the fourth order in time scheme is taken as an example [27]. Besides the stability
analysis, the major techniques to prove this theorem are the standard GGR projection with
a fixed parameter and the good definition of the reference functions which are related to
the local time marching of the exact solutions. However, this strategy does not work well
for the ESTDG method with stage-dependent numerical flux parameters, because the GGR

123

64 Page 22 of 47 Journal of Scientific Computing (2024) 100 :64

projection with any fixed parameter can not simultaneously eliminate the projection error at
boundary endpoints for all time stages.We have to find a new approach to prove this theorem.

4.1 Proof of Theorem 4.1

To address the difficulties resulted from the stage-dependent numerical flux parameters, we
would like in this paper to propose a new tool, named as a series of space–time approximation
functions for any given spatial function. They will be used to set up a group of good reference
functions and delicately define the stage errors for the fully discrete scheme. Different to the
traditional analysis technique, they depend on not only the numerical method but also the
considered PDE.

Definition 4.1 Let W (x) ∈ L2(I) be a given periodic function. Associated with the
ESTDG(s, r , k) method of the time step τ > 0 and the finite element space Vh , a series
of space–time approximation functions, denoted by

W �
h = Q

�
h,τW (x) ∈ Vh, � = 0, 1, . . . , s, (4.2)

are defined by the following conditions:

– Matching the local structure of the fully discrete numerical scheme, namely
(
W �+1

h , v
)
Ih

=
∑

0≤κ≤�

[
c�κ

(
W κ

h , v
)
Ih

+ τd�κHθ�κ
(
W κ

h , v
)]
, ∀ v ∈ Vh, (4.3a)

holds for 0 ≤ � ≤ s − 1;
– Preserving the balance of exact evolution under the control of PDE (1.1), namely

(
Ws

h − W 0
h , v

)
Ih

=
(
W (x − τβ)− W (x), v

)
Ih
, ∀ v ∈ V �

h . (4.3b)

Here V �
h =

{
v ∈ Vh : (v, 1)Ih = 0

}
is an orthogonal complementary space.

– Conserving the overall mean for the head function W 0
h , namely

(
W 0

h , 1
)
Ih

=
(
W (x), 1

)
Ih
. (4.3c)

Remark 4.1 The head function is the most important one in the definition. For convenience
of statement, Ws

h is called the tail function.

In what follows we give some comments to this definition. First of all, we point out that
condition (4.3a) can be well understood by making full use of those concepts proposed in
the matrix transferring process, for instance, the temporal differences of stage solutions and
the evolution identity. That is to say, there holds

Ws
h =

∑
0≤�≤s

α�D�Wh with D�Wh =
∑

0≤κ≤�
σ�κW

κ
h , (4.4)

where α� = α�(1) and σ�κ = σ�κ(1) have been defined in (3.11) and (3.4), respectively.
Analogously, there also holds for 0 ≤ � ≤ s − 1 that

(
D�+1Wh, v

)
Ih

= τHϑ(D�Wh, v)− τβ
∑

0≤κ≤�
q�,κ (ϑ)

〈
[[DκWh]], [[v]]

〉
Γh
, (4.5)

for any v ∈ Vh , where q�,κ (ϑ) = q�,κ (1;ϑ) has been defined in (3.13).

123

Journal of Scientific Computing (2024) 100 :64 Page 23 of 47 64

As for the second condition (4.3b), we point out that it can be extended to the whole finite
element space, i.e.,

(
Ws

h − W 0
h , v

)
Ih

=
(
W (x − τβ)− W (x), v

)
Ih
, ∀ v ∈ Vh . (4.6)

This conclusion holds owing to the following facts:

– Since Hϑ(D�Wh, 1) = 0, by taking v = 1 in (4.5) we can inductively derive that
(
D�Wh, 1

)
Ih

= 0, � ≥ 1. (4.7)

Together with (4.4), this equality yields (Ws
h − W 0

h , 1)Ih = 0.
– Since W (x) is periodic, it is easy to see (W (x − τβ)− W (x), 1)Ih = 0.

In other words, condition (4.3c) is only used to ensure the uniqueness if the space–time
approximation functions are made up of (4.3a) and (4.6).

It is worthy to emphasize that any space–time approximation function given in Definition
4.1 is not a projection of W (x), even when the numerical flux parameters are the same. An
example is given below. Let Ih be a uniform mesh with the mesh size h, and consider the
function W (x) ∈ Vh , which in each cell is defined by

W (x) = L j,1(x) = 1

h

(
2x − x j− 1

2
− x j+ 1

2

)
, x ∈ I j .

Associated with the classical second order RKDG method (refer to [29] for details) with
θ�κ ≡ 1, we can yield (with λ = |β|τ/h)

W 0
h = λ− 1

3λ− 1
W , W 1

h = (1 − 6λ)W 0
h , W 2

h = (1 − 6λ+ 18λ2)W 0
h ,

which are all not equal to W . This distinct property will cause many difficulties in obtaining
the next lemma with respect to the approximation property.

Lemma 4.1 For sufficiently small λ = |β|τ/h, a series of space–time approximation func-
tions (4.2) are well defined, and further, if W (x) ∈ Hmax(k+1,r+1)(I), the head function W 0

h
satisfies the optimal error estimate

‖W 0
h − W‖L2(I) ≤ C

[
hk+1‖W‖H �(I) + τ r‖W‖Hr (I)

]
, (4.8)

where the bounding constant C > 0 is independent of h, τ and W. Note that the notation
� = max(k + 1, r) has been given in Theorem 4.1.

For ease of reading and understanding, we postpone the lengthy and technical proof of this
lemma to the next subsection and come back to prove Theorem 4.1 now. For any n ≥ 0, we
utilize Definition 4.1 to define a series of space–time approximation functions with respect
to Un(x) = U (x, tn), namely

χn,� = Q
�
h,τU

n(x) ∈ Vh, � = 0, 1, . . . , s. (4.9)

It is worthy to emphasize that χn+1,0
= χn,s in general, and the accumulation of these gaps
at all time level forms the main error of the ESTDG method.

The reference functions are then defined by those functions in (4.9) except � = s. As a
result, for any n ≥ 0 we denote the stage errors in the finite element space by

ξn,� = un,� − χn,�, � = 0, 1, . . . , s − 1. (4.10a)

123

64 Page 24 of 47 Journal of Scientific Computing (2024) 100 :64

As used in the definition of the ESTDG method, we would like to give a supplementary
notation

ξn,s = ξn+1,0 = ξn+1. (4.10b)

Every functionχn,� in (4.9) satisfies the variation form (4.3a)withW �
h = χn,�. Subtracting

them from the fully discrete method with the same n and �, we can obtain a series of error
equations as following: for � = 0, 1, . . . , s − 1, there holds

(
ξn,�+1, v

)
Ih

=
∑

0≤κ≤�

[
c�κ

(
ξn,κ , v

)
Ih

+ τd�κHθ�κ (ξn,κ , v)
]

+ τ
(
Fn,�, v

)
Ih
,

for any v ∈ Vh , where the source term Fn,� is equal to zero except the last one

Fn,s−1 = 1

τ

(
χn,s − χn+1,0) . (4.11)

These error equations have the same form as the nonhomogeneous ESTDG method. Along
the similar analysis line as in Sect. 3, we can get

‖ξ N‖2L2(I) ≤ C
[
‖ξ0‖2L2(I) +

∑
0≤n<N

‖Fn,s−1‖2L2(I)τ
]
, (4.12)

under the same type of temporal–spatial condition as stated in Theorems 3.1 through 3.3.
where the bounding constant C > 0 is independent of h and τ , but may depend on the final
time T .

Below we estimate each term on the right hand side of (4.12). It follows from the initial
setting that ξ0 = PhU0 − Q

0
h,τU0. By using the triangle inequality, we have

‖ξ0‖L2(I) ≤ ‖U0 − PhU0‖L2(I) + ‖U0 − Q
0
h,τU0‖L2(I)

≤ C
[
hk+1‖U0‖H �(I) + τ r‖U0‖Hr (I)

]
,

(4.13)

where the well-known approximation property of Ph (L2 projection) and Lemma 4.1 are used
separately. Since the time step is uniform, definition (4.3) implies that

χn+1,0 − χn,0 = Q
0
h,τ (U

n+1 −Un). (4.14)

It follows from (4.6) that (χn,s − χn,0, v)Ih = (Un+1 −Un, v)Ih . Hence (4.11) implies

(
Fn,s−1, v

)
Ih

=
(Un+1 −Un

τ
, v
)
Ih

−
(
Q

0
h,τ

(Un+1 −Un

τ

)
, v
)
Ih
,

which, together with Lemma 4.1 again, yields

‖Fn,s−1‖L2(I) ≤ C

[
hk+1

∥∥∥U
n+1 −Un

τ

∥∥∥
H �(I)

+ τ r
∥∥∥U

n+1 −Un

τ

∥∥∥
Hr (I)

]
.

Since U (x, t) = U0(x − βt) and Un+1 − Un = ∫ tn+1

tn Ut (x, t ′)dt ′, we can obtain from the
above inequality that

‖Fn,s−1‖L2(I) ≤ C
[
hk+1‖U0‖H �+1(I) + τ r‖U0‖Hr+1(I)

]
. (4.15)

Since � = max(k + 1, r), now we yield ‖ξ N‖L2(I) ≤ C(hk+1 + τ r)‖U0‖H �+1(I) by
substituting (4.13) and (4.15) into (4.12). It follows from Lemma 4.1 that

‖UN − χN ,0‖L2(I) ≤ C(hk+1 + τ r)‖U0‖H �(I).

123

Journal of Scientific Computing (2024) 100 :64 Page 25 of 47 64

Since uN −UN = ξ N − (UN −χN ,0), the above two inequalities and the triangle inequality
complete the proof of Theorem 4.1.

Remark 4.2 Due to (4.13), the initial solution is admitted to be any function satisfying ‖U0 −
u0‖L2(I) ≤ C‖U0‖H �(I)h

k+1.

Remark 4.3 In this paper the proof of inequality (4.15) strongly depends on the property
(4.14), which only holds for the uniform time step. Till now we have not found a good way to
rigorously prove this inequality for nonuniform time step size. How to address this difficulty
is left for our further work.

4.2 Proof of Lemma 4.1

In this subsection we want to prove Lemma 4.1. Since the total number of the restrictions
proposed by Definition 4.1 is equal to the unknowns’ degrees of freedom, it is sufficient and
necessary to prove the uniqueness and existence by verifying that there is only one trivial
solution W 0

h = · · · = Ws
h = 0 for W = 0. The proof line of this topic is almost the same

as that for the optimal estimate, so we would like to solely present the proof of (4.8) in this
subsection.

In the next analysis, we will use the GGR projection and the flux lifting function for any
given parameter ϑ
= 1/2. For convenience, we first give the definitions for k ≥ 1 and then
a remark for k = 0 later on.

Definition 4.2 Let w be a periodic function belonging to H1(I j) for j = 1, 2, . . . , J . The
GGR projection, denoted by Gϑw, is defined as the unique function in Vh such that for
j = 1, 2, . . . , J ,

∫

I j
(Gϑw)vdx =

∫

I j
wvdx ∀ v ∈ Pk−1(I j), and {{Gϑw}}ϑ

j+ 1
2

= {{w}}ϑ
j+ 1

2
. (4.16)

Definition 4.3 Let wb be a single-valued periodic function defined on all element endpoints.
The flux lifting function, denoted by Lϑwb, is defined as the unique function in Vh such that
for j = 1, 2, . . . , J ,

∫

I j
(Lϑw

b)vdx = 0 ∀ v ∈ Pk−1(I j), and {{Lϑwb}}ϑ
j+ 1

2
= wb

j+ 1
2
. (4.17)

It has been proved in [3, Lemma 3.2] that the GGR projection is well-defined and the
projection error G⊥

ϑ w = w − Gϑw satisfies

‖G⊥
ϑ w‖L2(I) + h

1
2 ‖(G⊥

ϑ w)
±‖L2(Γh)

≤ Chmin(ℵ,k+1)‖w‖Hℵ(I), (4.18)

where ℵ ≥ 1 is the smoothness requirement. Actually, the proof therein has implicitly used
Gϑw = Phw + Lϑ {{w − Phw}}ϑ and has shown that the flux lifting function is well-defined
and satisfies

‖Lϑwb‖L2(I) ≤ Ch
1
2 ‖wb‖L2(Γh)

. (4.19)

Furthermore, a direct application of Definitions 4.2 and 4.3 yields for any v ∈ Vh ,

Hϑ(G⊥
ϑ w, v) = 0 and Hϑ(Lϑw

b, v) = β
〈
wb, [[v]]

〉
Γh
, (4.20)

123

64 Page 26 of 47 Journal of Scientific Computing (2024) 100 :64

as well as the property on the overall mean
(
G

⊥
ϑ w, 1

)
Ih

= 0 and
(
Lϑw

b, 1
)
Ih

= 0. (4.21)

Remark 4.4 The above two definitions can be extended to k = 0 with some minor
modifications. The process is divided into two steps:

– Define two piecewise constant functions by the second condition in (4.16) and (4.17),
respectively.

– Respectively subtract a constant to get two modified functions such that (4.21) holds.

It is easy to verify that the conclusions from (4.18) to (4.20) also hold.

Since r ≤ s, we would like to adopt the cutting-off technique [26, 27] and define a series
of functions

∂�W =
{
(−τβ∂x)�W , 0 ≤ � ≤ r − 1,

0, r ≤ � ≤ s.
(4.22)

By this treatment, the smoothness assumption can be well controlled and we can get rid of
the effect of the stage number.

Since W (x) ∈ Hr+1(I), we know every ∂�W ∈ H2(I) and hence is continuous every-
where by an application of the Sobolev embedding theorem. Using integration by parts, after
some manipulations we can get the consistency property

τHϑ(∂�W , v) =
(
(−τβ∂x)∂�W , v

)
Ih
, ∀ v ∈ Vh . (4.23)

Furthermore, the approximation property (4.18)withℵ = max(k+1−�, 1) and the definition
(4.22) show

‖G⊥
ϑ (∂�W)‖L2(I) + h

1
2 ‖(G⊥

ϑ (∂�W))±‖L2(Γh)
≤ Chk+1‖W‖H �(I), (4.24)

no matter whether k + 1 ≥ r or not. Here and below we assume λ ≤ 1 without losing
generality, since it is small enough.

For 0 ≤ � ≤ s, we define a series of error function in the finite element space

Ξϑ
� = D�Wh − Gϑ(∂�W) ∈ Vh, (4.25)

which leads to the decomposition D�Wh − ∂�W = Ξϑ
� − G

⊥
ϑ (∂�W) as usual. Due to the

triangle inequality and (4.24), it is sufficient to obtain (4.8) by proving

‖Ξϑ
0 ‖L2(I) ≤ C

[
hk+1‖W‖H �(I) + τ r‖W‖Hr (I)

]
, (4.26)

with a special choice ϑ = Θ .
To do that, we have to set up two relationships among ‖Ξϑ

� ‖L2(I) for � = 0, 1, . . . , s, in
the forward and reverse direction, respectively. For ease of reading, we would like to only
state them in the following two lemmas and put aside their proofs in the next two small
subsections.

Lemma 4.2 For any ϑ
= 1
2 , there exists a bounding constant C = C(ϑ) > 0 such that for

0 ≤ � ≤ s − 1 there holds

‖Ξϑ
�+1‖L2(I) ≤ Cλ‖Ξϑ

0 ‖L2(I) + C
[
hk+1‖W‖H �(I) + τ r‖W‖Hr (I)

]
. (4.27)

123

Journal of Scientific Computing (2024) 100 :64 Page 27 of 47 64

Lemma 4.3 For ϑ = Θ , there exists a bounding constant C > 0 such that

‖Ξϑ
0 ‖L2(I) ≤ C

∑
1≤�≤s−1

‖Ξϑ
� ‖L2(I) + C

[
hk+1‖W‖H �(I) + τ r‖W‖Hr (I)

]
. (4.28)

Till now (4.26) is implied by collecting Lemmas 4.2 and 4.3 if λ is small enough. This
completes the proof of Lemma 4.1 and ends this subsection.

4.2.1 Proof of Lemma 4.2

We can prove this lemma by (4.5), which is equivalent to condition (4.3a). By adding and
subtracting some terms involving Gϑ(∂iW) three times, we have

(
Ξϑ
�+1, v

)
Ih

= I1(v)+ I2(v)+ I3(v),

where
I1(v) = τHϑ

(
Ξϑ
� , v

) − τβ
∑

0≤κ≤�
q�,κ (ϑ)

〈
[[Ξϑ

κ]], [[v]]
〉
Γh
,

I2(v) = τHϑ(Gϑ(∂�W), v)−
(
Gϑ(∂�+1W), v

)
Ih
,

I3(v) = − τβ
∑

0≤κ≤�
q�,κ (ϑ)

〈
[[Gϑ(∂κW)]], [[v]]

〉
Γh
.

In what follows we estimate the above terms one by one.
Using (2.5c) for the first term, and using the Cauchy–Schwartz inequality and the inverse

inequality (2.2) for the second term, we have

I1(v) ≤ Cλ
∑

0≤κ≤�
‖Ξϑ

κ ‖L2(I)‖v‖L2(I). (4.29)

Due to (4.20) and (4.23), it follows from definition (4.22) that

I2(v) =
(
−τβ∂x (∂�W)− Gϑ(∂�+1W), v

)
Ih

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
G

⊥
ϑ (∂�+1W), v

)
Ih
, 0 ≤ � ≤ r − 2,(

−τβ∂x (∂�W), v
)
Ih
, � = r − 1,

0, otherwise.

Using (4.24) for the first case and (4.22) for the second case, respectively, an application of
Cauchy–Schwartz inequality yields a unified inequality

I2(v) ≤ C
[
hk+1‖W‖H �(I) + τ r‖W‖Hr (I)

]
‖v‖L2(I). (4.30)

Since [[∂κW]] = 0 and λ ≤ 1, we can use (4.24) and (2.2) to get

I3(v) = τβ
∑

0≤κ≤�
q�,κ (ϑ)

〈
[[G⊥

ϑ (∂κW)]], [[v]]
〉
Γh

≤ Chk+1‖W‖H �(I)‖v‖L2(I). (4.31)

Summing up the above three conclusions and taking v = Ξϑ
�+1 ∈ Vh , we finally obtain

‖Ξϑ
�+1‖L2(I) ≤ Cλ

∑
0≤κ≤�

‖Ξϑ
κ ‖L2(I) + C

[
hk+1‖W‖H �(I) + τ r‖W‖Hr (I)

]
,

for 0 ≤ � ≤ s − 1. This completes the proof of Lemma 4.2.

123

64 Page 28 of 47 Journal of Scientific Computing (2024) 100 :64

4.2.2 Proof of Lemma 4.3

We can prove this lemma by (4.6), which is mainly related to condition (4.3b). Substitute
(4.4) into the left hand side (LHS) of this condition and expand each term by the relationship
(4.5). By changing the summation orders for those terms involving qκ,�(ϑ), we can easily
get

LHS = τ
∑

0≤�≤s−1

α�+1Hϑ(D�Wh, v)− τβ
∑

0≤κ≤s−1

ψκ(ϑ)
〈
[[DκWh]], [[v]]

〉
Γh

= τHϑ

⎛
⎝ ∑

0≤�≤s−1

[
α�+1D�Wh − ψ�(ϑ)Lϑ [[D�Wh]]

]
, v

⎞
⎠ ,

(4.32)

where the second identity in (4.20) is used at the last step, and

ψ�(ϑ) =
∑

�≤κ≤s−1

ακ+1qκ,�(ϑ). (4.33)

Next we consider the right hand side (RHS) of condition (4.6). An application of the Taylor
expansion up to r th order derivative yields

W (x − τβ)− W (x) = (−τβ∂x)
⎡
⎣ ∑
0≤�≤r−1

1

(�+ 1)!∂�W (x)+ W̃ (x)

⎤
⎦ , (4.34)

with the truncation function

W̃ (x) = 1

r !(τβ)
∫ τβ

0
∂rxW (x − x̃)(x̃ − τβ)rdx̃ .

It is easy to see that (W̃ , 1)Ih = 0 and

‖W̃‖L2(I) ≤ Cτ r‖W‖Hr (I). (4.35)

By integration by part for the definition of W̃ (x), say,

W̃ (x) = 1

r !(τβ)
[∫ τβ

0
∂r−1
x W (x − x̃)(x̃ − τβ)r−1rdx̃ + ∂r−1

x W (x)(−τβ)r
]
,

the derivative order of W (·) is dropped to be r − 1. With this new formula and noticing the
relationship of integration and the norm in Hilbert space, we are able to get

‖W̃‖H �(I) ≤ Cτ r−1‖W‖H �(I), with � = max(k + 2 − r , 1). (4.36)

Substituting (4.34) into RHS and using the consistency property (4.23) for every ∂�W and
W̃ , we can obtain from the first identity in (4.20) that

RHS = τHϑ

⎛
⎝ ∑

0≤�≤s−1

α�+1Gϑ(∂�W)+ Gϑ W̃ , v

⎞
⎠ , (4.37)

where Lemma 3.1 has been used. Here the upper bound of summation index is raised from
r − 1 to s − 1, since ∂�W = 0 for � ≥ r , due to (4.22).

Due to (4.32) and (4.37), it follows from condition (4.6) that

�ϑ
def=

∑
0≤�≤s−1

[
α�+1Ξ

ϑ
� − ψ�(ϑ)Lϑ [[D�Wh]]

]
− Gϑ W̃ ∈ Vh (4.38)

123

Journal of Scientific Computing (2024) 100 :64 Page 29 of 47 64

satisfies the variational formHϑ(�ϑ , v) = 0 for any v ∈ Vh . By successively taking v = �ϑ

and v = ∂x�
ϑ here, we can see that �ϑ must be a constant. This concludes

�ϑ = 0, (4.39)

since the overall mean is equal to zero. In fact, it is trivial to verify (�ϑ , 1)Ih = 0 as following:

– By (4.21), we have (Lϑ [[D�Wh]], 1)Ih = 0 for � ≥ 0 and (Gϑ W̃ , 1)Ih = (W̃ , 1)Ih = 0.
– Furthermore, we also have (Ξϑ

� , 1)Ih = 0 for different cases:

– For � = 0, condition (4.3c) implies (W 0
h , 1)Ih = (W , 1)Ih = (GϑW , 1)Ih ;

– Otherwise, for � ≥ 1, the periodicity means (Gϑ(∂�W), 1)Ih = (∂�W , 1)Ih = 0, and
(4.7) shows (D�Wh, 1)Ih = 0.

Lemma 3.5 with m = 1 implies the main property

ψ0(Θ) =
∑

0≤κ≤s−1

ακ+1qκ,0(Θ) = 0. (4.40)

Thanks to this property, we can get rid of the trouble term Lϑ [[D0Wh]] in (4.38). At this
moment it follows from (4.39) and α1
= 0 (due to Lemma 3.1) that

‖Ξϑ
0 ‖L2(I) ≤ C

∑
1≤�≤s−1

[
‖Ξϑ

� ‖L2(I) + ‖Lϑ [[D�Wh]]‖L2(I)

]
+ C‖Gϑ W̃‖L2(I). (4.41)

Here and below ϑ is fixed to be Θ .
Due to the continuity of ∂�W , as mentioned after its definition, we have [[D�Wh]] =

[[D�Wh−∂�W]] = [[Ξϑ
�]]−[[G⊥

ϑ ∂�W]]. Then it follows from (4.19) and the triangle inequality
that

‖Lϑ [[D�Wh]]‖L2(I) ≤ Ch
1
2 ‖[[Ξϑ

�]]‖L2(Γh)
+ Ch

1
2 ‖[[G⊥

ϑ ∂�W]]‖L2(Γh)
.

Together with (2.2) and (4.24) for each term, this deduces

‖Lϑ [[D�Wh]]‖L2(I) ≤ C‖Ξϑ
� ‖L2(I) + Chk+1‖W‖H �(I). (4.42)

By the triangle inequality and (4.18), we have

‖Gϑ W̃‖L2(I) ≤ ‖W̃‖L2(I) + ‖G⊥
ϑ W̃‖L2(I) ≤ ‖W̃‖L2(I) + Ch�‖W̃‖H �(I).

The two terms on the right hand side are bounded by (4.35) and (4.36), respectively. Since
λ ≤ 1, we can get the unified inequality

‖Gϑ W̃‖L2(I) ≤ C
[
hk+1‖W‖H �(I) + τ r‖W‖Hr (I)

]
. (4.43)

Substituting (4.42) and (4.43) into (4.41) completes the proof of Lemma 4.3.

5 Numerical Experiments

In this section we present some numerical experiments to verify the proposed theoretical
results. Let β = 1 in (1.1) for all tests. All schemes are taken from the two examples given
in Sect. 3.

123

64 Page 30 of 47 Journal of Scientific Computing (2024) 100 :64

Fig. 1 The L2-norm amplification of the RKDG(4, 4, k) solutions every m-step: k = 1, 2, 3 from left to right.
Here ε = 0.25, 0.50, 0.75, z = 1 and y = 3

5.1 Verification on Stability Results

Take the uniform meshes with J = 64, as an example. With standard orthogonal basis
functions of the discontinuous finite element space, the ESTDG method can be written into
ũn+1 = Kũn , where ũn is the solution vector made up of the expansion coefficients of un .
The spectral norm ‖Km‖2 describes the L2-norm amplification every m step time marching
[29].

5.1.1 The RKDGMethod

Consider the RKDG(4, 4, k) method with the numerical flux parameters (3.38), where ε =
0.25, 0.50, 0.75 and z = 1. For y = 3 and y = 1, we respectively plot in Figs. 1 and 2 the
quantity

max(‖Km‖22 − 1, 10−16) (5.1)

for different CFL number λ in the logarithmic coordinates, with k = 1, 2, 3 from left to right.

– For y = 3, this quantity is always close to 10−16 and thus implies the monotonicity
stability.

– For y = 1, the data points increase along the line of slope 5 only for k ≥ 2 and m = 1.
These numerical results show the strong(2) stability at least and themonotonicity stability
for k ≤ 1.

These observation verify what we have stated in Sect. 3.2.1.
To show the difference between the strong stability and the monotonicity stability, we

take k = 3 as an example and plot in Fig. 3 the L2-norm evolution at the first twelve steps,
where λ = 0.02 and ε = 0.50. The initial solution is taken as the first unit singular vector
of K. For y = 1, we can see in the left picture that the L2-norm overshoots at the first step
and decreases every two and three steps. But for y = 3, the monotonicity stability is clearly
observed in the right picture. This sharply verifies our theoretical results given in Sect. 3.2.1.

5.1.2 The LWDGMethod

Consider the LWDG(2, k) method. As an example, the numerical flux parameters are defined
as θ00 = θ10 = 1/2 + ε and θ11 = 1/2 − ε, with ε = 0.25, 0.50, 0.75. We plot in Fig. 4
some pictures about the quantity (5.1) for k = 0, 1, 2 and m = 1, 2, 3, 4, 5.

– If k = 0, this quantity is close to 10−16 and shows the monotonicity stability.

123

Journal of Scientific Computing (2024) 100 :64 Page 31 of 47 64

Fig. 2 The L2-norm amplification of the RKDG(4, 4, k) solutions every m-step: k = 1, 2, 3 from left to right.
Here ε = 0.25, 0.50, 0.75, z = 1 and y = 1

Fig. 3 The L2-norm evolution for the RKDG(4, 4, 3)method. Left: y = 1; Right: y = 3. Here z = 1, λ = 0.02
and ε = 0.50

– If k = 1, the data points increase along the line of slope 3 for m ≤ 2 and are close to
10−16 for m ≥ 3. This verifies the strong(3) stability for k = 1.

– If k = 2, the data points increase with slope 3 (odd) for m ≤ 2 and with slope 4 (even)
for m ≥ 3. This shows the weak(4) stability.

The above observations well support the results listed in Table 1.

123

64 Page 32 of 47 Journal of Scientific Computing (2024) 100 :64

Fig. 4 The L2-norm amplification of the LWDG(2, k) solution every m-step: θ00 = θ10 = 1/2 + ε and
θ11 = 1/2 − ε. Here k = 0, 1, 2 from left to right and ε = 0.25, 0.50, 0.75

123

Journal of Scientific Computing (2024) 100 :64 Page 33 of 47 64

Fig. 5 The L2-norm evolution for the LWDG(2, 1) method. Left: θ11 = 0; Right: θ11 = 1. Here λ = 0.02
and θ00 = θ10 = 1

In Fig. 5, the left picture plots the L2-norm evolution of the LWDG(2, 1) solution at the
previous twelve steps, where λ = 0.02 and ε = 0.50. The initial solution vector is taken as
the first unit singular vector of K2. We can see that the monotonicity decreasing is lost at
the first two steps and conclude that the scheme can not have the strong(2) stability. As a
comparison, we also plot in the right picture for the LWDG(2,1) method with θ11 = 1/2+ ε

and the others are kept the same. We can see the monotonicity stability for this case, as we
have predicted in theory.

5.2 Verification on the Error Estimate

In this subsectionwe investigate the numerical accuracyof theESTDGmethodwith two initial
solutions. Since the numerical results are almost the same, we only present the experiment
data for the RKDG(4,4,k) method on nonuniform mesh, which is constructed by perturbing
the uniform mesh nodes randomly by at most 10%. Take the final time T = 1, and the time
step τ = 0.05hmin in what follows, where hmin is the minimal length.

First we take a sufficiently smooth initial solution, for example,

U0(x) = sin(2πx).

In Tables 5 and 6, we give the error and convergence order in the L2-norm for y = 3 and
y = 1 respectively. We can clearly observe the optimal convergence order, which supports
the result in Theorem 4.1.

Next we investigate the smoothness requirement proposed in this paper. To do that, we
take k = 3 and the initial solution

U0(x) = [sin(2πx)]ε+2/3,

and ε is a positive integer. This function belongs to H ε+1(I), but not H ε+2(I). In Table 7, the
optimal convergence order is clearly observed when ε = r , but not ε = r − 1. This indicates
that the regularity requirement in Theorem 4.1 appears to be sharp.

5.3 Discussions on2 = 1/2

In this subsection we give some discussions on the stability performance and the convergence
order when Θ = 1/2. As an example, we consider the standard RKDG(3, 3, k) method
[32] with numerical flux parameters θ00, θ11 and θ22, for which the average numerical flux

123

64 Page 34 of 47 Journal of Scientific Computing (2024) 100 :64

Table 5 The L2-norm errors and convergence orders of the RKDG(4, 4, k) method with the numerical flux
parameter (3.38) and y = 3

k J ε = 0.25 ε = 0.50 ε = 0.75
Error Order Error Order Error Order

1 160 7.32E−05 5.28E−05 4.90E−05

320 1.83E−05 2.00 1.31E−05 2.01 1.24E−05 1.98

640 4.56E−06 2.00 3.32E−06 1.99 3.09E−06 2.00

1280 1.14E−06 2.00 8.27E−07 2.00 7.73E−07 2.00

2560 2.85E−07 2.00 2.07E−07 2.00 1.93E−07 2.00

2 160 2.11E−07 3.42E−07 4.91E−07

320 2.67E−08 2.98 4.27E−08 3.00 6.17E−08 2.99

640 3.34E−09 3.00 5.32E−09 3.01 7.68E−09 3.01

1280 4.18E−10 3.00 6.66E−10 3.00 9.60E−10 3.00

2560 5.23E−11 3.00 8.32E−11 3.00 1.20E−10 3.00

3 160 6.03E−10 4.88E−10 5.21E−10

320 3.71E−11 4.02 2.99E−11 4.03 2.96E−11 4.14

640 2.31E−12 4.01 1.90E−12 3.98 1.83E−12 4.01

1280 1.44E−13 4.00 1.16E−13 4.03 1.16E−13 3.98

2560 8.95E−15 4.01 7.26E−15 4.00 7.34E−15 3.98

Nonuniform mesh

Table 6 The L2-norm errors and convergence orders of the RKDG(4, 4, k) method with the numerical flux
parameter (3.38) and y = 1

k J ε = 0.25 ε = 0.50 ε = 0.75
Error Order Error Order Error Order

1 160 8.03E−05 5.55E−05 4.99E−05

320 2.01E−05 2.00 1.39E−05 2.00 1.24E−05 2.01

640 5.01E−06 2.00 3.47E−06 2.00 3.13E−06 1.98

1280 1.25E−06 2.00 8.67E−07 2.00 7.87E−07 1.99

2560 3.13E−07 2.00 2.17E−07 2.00 1.97E−07 2.00

2 160 2.03E−07 4.83E−10 4.22E−07

320 2.49E−08 3.03 3.03E−11 3.99 5.31E−08 2.99

640 3.13E−09 2.99 1.91E−12 3.99 6.64E−09 3.00

1280 3.91E−10 3.00 1.18E−13 4.01 8.30E−10 3.00

2560 4.94E−11 2.99 7.44E−15 3.99 1.04E−10 3.00

3 160 6.48E−10 4.83E−10 4.78E−10

320 3.92E−11 4.05 3.03E−11 3.99 2.91E−11 4.04

640 2.49E−12 3.98 1.91E−12 3.99 1.86E−12 3.97

1280 1.58E−13 3.98 1.18E−13 4.01 1.15E−13 4.02

2560 9.78E−15 4.01 7.44E−15 3.99 7.23E−15 3.99

Nonuniform mesh

123

Journal of Scientific Computing (2024) 100 :64 Page 35 of 47 64

Table 7 The L2-norm errors and convergence orders of the RKDG(4, 4, 3) method on nonuniform mesh

ε J RKDG(4, 4, 3), y = 3 RKDG(4, 4, 3), y = 1
Error Order Error Order Error Order Error Order

0.25 160 3.87E−08 2.20E−08 3.70E−08 2.43E−08

320 3.06E−09 3.66 1.37E−09 4.00 2.92E−09 3.66 1.52E−09 4.00

640 2.45E−10 3.64 8.57E−11 4.00 2.35E−10 3.64 9.51E−11 4.00

1280 1.97E−11 3.64 5.35E−12 4.00 1.91E−11 3.62 5.94E−12 4.00

2560 1.59E−12 3.63 3.34E−13 4.00 1.55E−12 3.62 3.71E−13 4.00

0.50 160 5.24E−08 1.66E−08 4.82E−08 1.74E−08

320 4.05E−09 3.69 1.02E−09 4.02 3.76E−09 3.68 1.08E−09 4.01

640 3.12E−10 3.70 6.36E−11 4.01 2.93E−10 3.68 6.72E−11 4.01

1280 2.41E−11 3.70 3.97E−12 4.00 2.28E−11 3.68 4.19E−12 4.00

2560 1.85E−12 3.70 2.48E−13 4.00 1.77E−12 3.68 2.62E−13 4.00

0.75 160 6.45E−08 1.56E−08 5.82E−08 1.59E−08

320 4.82E−09 3.74 9.55E−10 4.03 4.43E−09 3.72 9.78E−10 4.03

640 3.62E−10 3.74 5.91E−11 4.01 3.37E−10 3.72 6.07E−11 4.01

1280 2.73E−11 3.73 3.68E−12 4.01 2.56E−11 3.71 3.78E−12 4.00

2560 2.07E−12 3.72 2.30E−13 4.00 1.96E−12 3.71 2.36E−13 4.00

Here ε = r − 1 on the left column and ε = r on the right column

Table 8 The L2-norm errors and convergence orders of the RKDG(3, 3, k) method with different triplets
(θ00, θ11, θ22) satisfying Θ = 1/2: regular nonuniform mesh

k J (0.5, 0.5, 0.5) (0.52, 0.48, 0.5) (1, 0, 0.5)
Error Order Error Order Error Order

1 160 3.99E−03 3.31E−03 6.27E−04

320 1.98E−03 1.01 1.42E−03 1.22 1.59E−04 1.98

640 9.91E−04 1.00 5.90E−04 1.26 4.00E−05 1.99

1280 4.95E−04 1.00 2.61E−04 1.18 1.01E−05 1.99

2560 2.48E−04 1.00 1.27E−04 1.04 2.50E−06 2.01

2 160 1.96E−06 1.84E−06 3.39E−07

320 4.70E−07 2.06 4.98E−07 1.89 4.28E−08 2.99

640 1.16E−07 2.01 1.28E−07 1.96 5.40E−09 2.99

1280 2.90E−08 2.00 3.19E−08 2.00 6.81E−10 2.99

2560 7.25E−09 2.00 7.86E−09 2.02 8.39E−11 3.02

parameter is

Θ = 1

6
(θ00 + θ11 + 4θ22).

In Table 8 we give three examples that the related schemes convergent with different
convergence orders. In this test, we take the final time T = π , and the regular nonuniform
mesh [14]

x j+ 1
2

=
{
j/J , j is even,

j/J + 0.1/J , j is odd.
(5.2)

123

64 Page 36 of 47 Journal of Scientific Computing (2024) 100 :64

Fig. 6 The L2-norm evolution of
numerical solution of the
RKDG(3, 3, 2) method with
(θ00, θ11, θ22) = (1, 1, 0.25).
Here λ = 0.001 and J = 64

The time step is set as τ = 0.1hmin. Different to the same numerical flux parameter, the last
parameter triplet (θ00, θ11, θ22) = (1, 0, 0.5) gives the optimal order even when the mesh is
nonuniform for k = 1 and k = 2.

For the above three schemes, the stability under the CFL condition is implied by the
convergence. However, the stability conclusion is inconclusive when Θ = 1/2. Below we
give an example that the RKDG(3, 3, 2) scheme with (θ00, θ11, θ22) = (1, 1, 0.25) seems
to be linearly unstable. To this end we take the uniform mesh with J = 64, and take the
initial solution as the local L2 projection of

√
2 sin(8πx). Even with a very small CFL

number, λ = 0.001, one can clearly observe in Fig. 6 that the L2-norm of numerical solution
exponentially increases, which indicates a possible instability.

6 Conclusion

In this paper we have presented the L2-norm stability analysis and optimal error estimate
for the ESTDG method, which adopts the explicit single-step time-marching and the spatial
DG discretization with stage-dependent numerical flux parameters. By a unified analysis
framework, we successfully address many difficulties in theoretical analysis and then set
up the detailed L2-norm stability stability results for the RKDG method with downwind
treatments and the LWDGmethod with different numerical flux parameters for the auxiliary
variables. The main technique used in this paper is the matrix transferring process based on
temporal differences of stage solutions, in order to achieve a good energy equation with some
important indices to carry out the energy analysis. Motivated by the studies for the RKDG
methods with the same numerical flux parameters, the averaged numerical flux parameter is
proposed in this paper to measure the upwind effect in the fully discrete ESTDG method.
In order to obtain the optimal error estimate for the ESTDG method with stage-dependent
numerical flux parameters, we put forward a new proof framework by proposing a series of
space–time approximation functions for any given spatial function. During this procedure,
many techniques proposed in the matrix transferring process, together with the averaged
numerical flux parameter, still play essential roles to establish the corresponding approxima-
tion property. In future work, we will extend the above works to variable-coefficient linear
hyperbolic problems and nonlinear conservation laws in one and/or multidimensional cases.

123

Journal of Scientific Computing (2024) 100 :64 Page 37 of 47 64

7 Appendix

In this sectionwe give some supplementalmaterials for those conclusions unproved in Sect. 3.
This process involves many notations and manipulations of matrices.

To do that, we give some elemental notations here. Associated with the multistep number
m and the stage number s, we introduce some column vectors and square matrices of size
ms, whose component is either 0 or 1. More specifically, we denote 1(m, s) = (1, 1, . . . , 1)�
and let ei (m, s), for 0 ≤ i ≤ ms − 1, be the unit vector which has 1 at the i-th position. Let
I(m, s) be the identity matrix and E(m, s) be the shifting matrix which has 1 at the lower
second diagonal line. Then we define

L(m, s) =
[
I(m, s)− E(m, s)

]−1 − I(m, s) =
∑

1≤κ≤ms−1

E(m, s)κ , (7.1)

which has 1 at the strictly lower region. For simplicity of notations, we would like to denote,
for example

1(m) = 1(m, s), 1 = 1(1, s), 1̂ = 1(m, 1).

This notation rule will be used throughout the entire section.

7.1 Matrix Description of the Ultimate Spatial Matrix

In this subsection we devote to presenting a matrix description of how to get the ultimate
spatial matrix. To do that, we define the ms order matrices

C(m) = {ci j (m)}, D(m) = {di j (m)}, W(m;ϑ) = {di j (m)(θi j (m)− ϑ)}, (7.2a)

related to the description of the ESTDG method, and

Σ(m) = {σi j (m)}, Φ(m) = {φi j (m)}, Q(m;ϑ) = {qi j (m;ϑ)}, (7.2b)

related to the definition of temporal differences of stage solutions. Here all indices i and j
are taken from 0 to ms − 1, and ϑ is the parameter as mentioned in subsection 3.1.1. We
would like to remark that all data in the above matrices are set to be zero, if they are not
clearly stated or defined.

7.1.1 Elemental Formula

The ultimate spatial matrix is obtained by running Algorithm 1 for � = 1, 2, . . . , ζ , where
the crucial calculation is the increment accumulation in Step 2.

To do that, we define a lower triangle matrix A�(m) = {a�i j (m)}0≤i, j≤ms−1, whose entries
are all defined to be zero except

a�i j (m) = (1 − δi j/2)a
(j)
i+1, j (m), for j ≤ i ≤ ms − 1 and 0 ≤ j ≤ ζ − 1.

Since {q̃i j (m)}0≤i, j≤ms−1 is a lower triangle matrix, all summation ranges in Step 2 can be
enlarged to {0, 1, . . . ,ms − 1}. Gathering up the related operation till the matrix transferring
process stops, we can obtain a unified description for the increment procedure at any fixed
position.More specifically, the integrated calculation at every (i ′, j ′) position reads (dropping
(m) here for convenience)

gi ′ j ′ ← gi ′ j ′ − a�i ′ j ′ ; gi ′ j ′ ← gi ′ j ′ + a�κ ′ j ′ q̃κ ′i ′ , gi ′ j ′ ← gi ′ j ′ + a�i ′κ ′ q̃κ ′ j ′ ,

123

64 Page 38 of 47 Journal of Scientific Computing (2024) 100 :64

where i ′, j ′ and κ ′ go through {0, 1, . . . ,ms − 1}. As a result, the total increment at Step 2
of Algorithm 1 can be expressed in the matrix form

G(m) = (2ϑ − 1)A�(m)+ Q(m;ϑ)�A�(m)+ A�(m)Q(m;ϑ),
where the definition (3.16), i.e., q̃i j (m) = qi j (m;ϑ)+ ϑδi j is used.

From Step 3 of Algorithm 1, we have the ultimate spatial matrix (below the last row and
column is dropped, since they are always zero)

B(m) = G(m)+ G(m)�

=
(
ϑ − 1

2

)
B�(m)+ 1

2

[
B�(m)Q(m;ϑ)+ Q(m;ϑ)�B�(m)

]
,

(7.3)

with the symmetric matrix

B�(m) = 2A�(m)+ 2A�(m)� = {b�i j (m)}0≤i, j≤ms−1. (7.4)

The entry at the lower triangular zone is defined as

b�i j (m) =
{
2a(j)i+1, j (m), 0 ≤ j ≤ ζ − 1 and j ≤ i ≤ ms − 1,

0, otherwise,
(7.5)

as the same as in the ultimate spatial matrix in [26] for the RKDG methods with a fixed
numerical flux parameter.

To investigate the property of the second term in (7.3),we just need to study the perturbation
matrix

Z(m;ϑ) = B�(m)Q(m;ϑ) = {zi j (m;ϑ)}0≤i, j≤ms−1. (7.6)

Taking into account on definition of the contribution index, we only pay attention on those
left-top entries in (7.6). In what follows we try to deduce a convenient and unified formula
for

zi j (m;ϑ) =
∑

0≤�≤ms−1

b�i�(m)q�, j (m;ϑ), 0 ≤ i, j ≤ ζ − 1. (7.7)

The formula of every b�i�(m) has been given in [26], but is variant according to the size
relationship of i and �. In this paper we have to rebuild an equivalent and unified formula, as
stated in the next lemma.

Lemma 7.1 For 0 ≤ i ≤ ζ − 1, there holds

b�i�(m) = 2
∑

0≤κ≤i

(−1)καi−κ (m)α�+1+κ (m), 0 ≤ � ≤ ms − 1. (7.8)

Here and below we define αi ′(m) = 0 if i ′ > ms for simplicity.

We put aside the proof of this lemma in Sect. 7.1.3. Substituting (7.8) into (7.7) deduces
for any 0 ≤ i, j ≤ ζ − 1 that

zi j (m;ϑ) =
∑

0≤κ≤i

2(−1)καi−κ (m)
∑

0≤�≤ms−1

α�+1+κ (m)q�, j (m;ϑ)
︸ ︷︷ ︸

πκ, j (m;ϑ)

. (7.9)

In what follows we would like to set up a useful formula of πκ, j (m;ϑ) by those data to define
the ESTDG method.

123

Journal of Scientific Computing (2024) 100 :64 Page 39 of 47 64

7.1.2 Formula of��,j(m;#)

Due to (3.13) and (3.8), we can respectively obtain

Q(m;ϑ)Σ(m) = Φ(m)W(m;ϑ), Φ(m)D(m) = Σ(m). (7.10)

This implies Q(m;ϑ) = Σ(m)D(m)−1W(m;ϑ)Σ(m)−1. With the short notation

y�(m) =
∑

0≤�≤ms−1

α�+1+κ (m)e�
� (m)Σ(m), (7.11)

it follows from (7.9) and q�, j (m;ϑ) = e�
� (m)Q(m;ϑ)e j (m) that

πκ, j (m;ϑ) = y�(m) ·
[
D−1(m)W(m;ϑ)

]
·
[
Σ(m)−1e j (m)

]
. (7.12)

Below we are going to express three terms in (7.12). To that end, we start this work from the
calculation of Σ(m)−1.

By denoting (here and below we omit (m) for the matrix entry)

S(m) = I(m)− C(m)E(m) =

⎛
⎜⎜⎜⎜⎜⎝

1
−c11 1
−c21 −c22 1
...

...
. . .

−cms−1,1 −cms−1,2 · · · −cms−1,ms−1 1

⎞
⎟⎟⎟⎟⎟⎠
,

the definition procedure of the temporal differences of stage solutions can be written into the
matrix form

⎛
⎜⎝ Σ(m)

σms,0 · · ·σms,ms−1 σms,ms

⎞
⎟⎠ =

⎛
⎜⎝
1

Φ(m)

⎞
⎟⎠

⎛
⎜⎝

1

−C(m)e0(m) S(m)

⎞
⎟⎠ .

Recalling the definition of the evolution identity, the matrix inversion on both sides of the
above identity yields

⎛
⎜⎜⎝

Σ(m)−1

α0 · · ·αms−1 αms

⎞
⎟⎟⎠ =

⎛
⎜⎝

1

S(m)−1C(m)e0(m) S(m)−1D(m)Σ(m)−1

⎞
⎟⎠ ,

where we have used (7.10) to get Φ(m)−1 = D(m)Σ(m)−1. Comparing with the matrices
entries on both sides, we can achieve the following equalities for every column in the matrix
Σ(m)−1,

Σ(m)−1e0(m) = [I(m)+ E(m)S(m)−1C(m)]e0(m) def= q(m), (7.13a)

Σ(m)−1e j (m) = E(m)S(m)−1D(m)︸ ︷︷ ︸
K (m)

Σ(m)−1e j−1(m), j ≥ 1, (7.13b)

and for every evolution coefficient in (3.11),

α0(m) = ems−1(m)
�S(m)−1C(m)e0(m), (7.14a)

123

64 Page 40 of 47 Journal of Scientific Computing (2024) 100 :64

α j (m) = ems−1(m)
�S(m)−1D(m)︸ ︷︷ ︸
p�(m)

Σ(m)−1e j−1(m), j ≥ 1. (7.14b)

Then, an induction process for (7.13) yields that

Σ(m)−1e j (m) = K (m) jq(m), j ≥ 0, (7.15)

and the matrix identity
Σ(m)−1E(m) = K (m)Σ(m)−1. (7.16)

For any κ ≥ 0, substituting (7.14b) into (7.11) yields

y�(m) = p(m)�Σ(m)−1

⎡
⎣ ∑
0≤�≤ms−1

e�+κ (m)e�(m)�
⎤
⎦Σ(m)

= p(m)�Σ(m)−1E(m)κΣ(m)

= p(m)�[Σ(m)−1E(m)Σ(m)]κ = p(m)�K (m)κ ,

(7.17)

where (7.16) is used at the last step. Substituting (7.17) and (7.15) into (7.12), we finally have

πκ, j (m;ϑ) = p(m)�K (m)κ D−1(m)W(m;ϑ)K (m) jq(m). (7.18)

In order to investigate the relationship between this quantity and the multistep number, we
would like to make some (right) Kronecker product of matrices [25] to simplify each term
in (7.18). For example, we will use

e0(m) = ê0 ⊗ e0, ems−1(m)
� = ê�

m−1 ⊗ e�
s−1, I(m) = Î ⊗ I, (7.19)

which implies
E(m) = Î ⊗ E + Ê ⊗ e0e�

s−1. (7.20)

Due to the definition (3.3), we derive

C(m) = Î ⊗ C, D(m) = 1

m
Î ⊗ D, W(m;ϑ) = 1

m
Î ⊗ W(ϑ), (7.21)

where W(ϑ) = W(1;ϑ). Based on these identities, by some lengthy and tedious matrices
manipulations, we can get the following important conclusions

S(m)−1 = L̂ ⊗ S−1Ce0e�
s−1S

−1 + Î ⊗ S−1, (7.22a)

K (m) = 1

m

[
L̂ ⊗ q p� + Î ⊗ E S−1D

]
, (7.22b)

p(m)� = 1

m
1̂
� ⊗ p�, (7.22c)

q(m) = 1̂ ⊗ q. (7.22d)

In this process, we have used the following simple conclusions

Ê + Ê L̂ = L̂, ê�
m−1 + ê�

m−1 L̂ = 1̂
�
, ê0 + L̂ ê0 = 1̂, (7.23)

and an important identity as a corollary of (7.14a) and α0(m) = 1,

e�
ms−1(m)S(m)

−1C(m)e0(m) = 1. (7.24)

For ease of reading, we present the verifications of (7.22) in Sect. 7.1.4.

123

Journal of Scientific Computing (2024) 100 :64 Page 41 of 47 64

With the help of (7.21), substituting (7.22c) and (7.22d) into (7.18) yields the final
simplification expression

πκ, j (m;ϑ) = 1

m

(
1̂
� ⊗ p�)K (m)κ

(
Î ⊗ D−1W(ϑ)

)
K (m) j

(
1 ⊗ q

)
. (7.25)

If needed, we can use (7.22b) to further deal with K (m).

7.1.3 Proof of Lemma 7.1

To end this subsection, we need to prove the skipped Lemma 7.1. Since all related manipu-
lation does not depend on the spatial discretization, the results given in [26, Lemma 3.1] still
hold. Hence, for 0 ≤ j ′ ≤ ζ and j ′ < i ′ ≤ ms we have

a(j
′)

i ′ j ′ (m) =
∑

0≤κ≤ j ′
(−1)καi ′+κ (m)α j ′−κ (m), (7.26a)

and for 1 ≤ i ′ ≤ ζ we have

a(i
′)

i ′i ′ (m) =
∑

−i ′≤κ≤i ′
(−1)καi ′+κ (m)αi ′−κ (m). (7.26b)

Based on the formulas in (7.26), we can prove this lemma by simple discussions for different
cases of �.

If � > i , since B�(m) is symmetric, it follows from (7.5) that

b�i�(m) = b��i (m) = 2a(i)�+1,i (m).

This proves (7.8) by using (7.26a) with i ′ = �+ 1 and j ′ = i .
Otherwise, if � ≤ i , we similarly have from (7.26a) that

b�i�(m) = 2a(�)i+1,�(m) = 2
∑

0≤κ≤�
(−1)καi+1+κ (m)α�−κ (m).

To show it can be written in (7.8), we just need to show Υ = 0, with

Υ
def=

∑
0≤κ≤�

(−1)καi+1+κ (m)α�−κ (m)−
∑

0≤κ≤i

(−1)καi−κ (m)α�+1+κ (m)

=
∑

0≤κ≤�+i+1

(−1)�−κακ(m)α�+i+1−κ (m).

Here we have respectively used the replacements of index κ ′ = �− κ and κ ′ = �+ 1+ κ in
two summations of the first equality. The verification is easy as follows.

– If �+ i + 1 is odd, the replacement κ ′ = i + �+ 1 − κ implies Υ = (−1)i+�+1Υ and
hence Υ = 0.

– Otherwise, if �+ i +1 is even, denoted by 2L , a simple replacement of summation index
again reduces

(−1)�−LΥ =
∑

−L≤κ≤L

(−1)καL+κ (m)αL−κ (m) = a(L)L,L(m),

where the last step uses (7.26b). Since L < ζ , it follows a(L)L,L(m) = 0 from the definition
of ζ . This implies Υ = 0 also.

Till now we sum up the above conclusions and complete the proof of this lemma.

123

64 Page 42 of 47 Journal of Scientific Computing (2024) 100 :64

7.1.4 Verifications of (7.22)

To verify the first identity (7.22a), we start from the definition of S(m). Substituting the
identities (7.19), (7.21) and (7.20), we have

S(m) = I(m)− C(m)E(m) = Î ⊗ I − (Î ⊗ C)(Î ⊗ E + Ê ⊗ e0e�
s−1).

Expanding the right-hand side and using the definition of S, after some manipulations we
have

S(m) = Î ⊗ (I − C E)− Ê ⊗ Ce0e�
s−1

= Î ⊗ S − Ê ⊗ Ce0e�
s−1 = (Î ⊗ I − Ê ⊗ Ce0e�

s−1S
−1)(Î ⊗ S).

Since (Ê)m is a zero matrix, the inverse of the first matrix is expressed by

Î ⊗ I +
∑

1≤i≤m−1

(Ê)i ⊗ (Ce0e�
s−1S

−1)i .

Using (7.24), we have for any i ≥ 1 that

(Ce0e�
s−1S

−1)i = Ce0(e�
s−1S

−1Ce0)i−1e�
s−1S

−1 = Ce0e�
s−1S

−1.

Summing up the above identities, we have

S(m)−1 = (Î ⊗ S−1)
[
Î ⊗ I +

∑
1≤i≤m−1

(Ê)i ⊗ Ce0e�
s−1S

−1
]

= (Î ⊗ S−1)
(
Î ⊗ I + L̂ ⊗ Ce0e�

s−1S
−1
)

= Î ⊗ S−1 + L̂ ⊗ S−1Ce0e�
s−1S

−1,

wherewe have used the definition (7.1) of L̂ at the second step. This completes the verification
of (7.22a).

We start the verification of (7.22b) from the definition (7.13b) of K (m). Substituting the
identities (7.20), (7.22a) and (7.21), we have

mK (m) = mE(m)S(m)−1D(m)

= (Î ⊗ E + Ê ⊗ e0e�
s−1)(Î ⊗ S−1 + L̂ ⊗ S−1Ce0e�

s−1S
−1)(Î ⊗ D).

Expanding the right-hand side, using (7.24) and the first identity in (7.23), we achieve

mK (m) = Î ⊗ E S−1D + L̂ ⊗ E S−1Ce0e�
s−1S

−1D + L̂ ⊗ e0e�
s−1S

−1D

= Î ⊗ E S−1D + L̂ ⊗ (I + E S−1C)e0e�
s−1S

−1D

= Î ⊗ E S−1D + L̂ ⊗ q p�,

where at the last step we have used the definitions of q and p� in (7.13a) and (7.14b). This
completes the verification of (7.22b).

The third identity (7.22c) is verified along the same line. Starting from the definition of
p(m)� in (7.14b), and substituting the identities (7.19), (7.22a) and (7.21), we have

m p(m)� = mems−1(m)
�S(m)−1D(m)

= (ê�
m−1 ⊗ e�

s−1)(Î ⊗ S−1 + L̂ ⊗ S−1Ce0e�
s−1S

−1)(Î ⊗ D).

123

Journal of Scientific Computing (2024) 100 :64 Page 43 of 47 64

Expanding the above expression and using (7.24), we have

m p(m)� = ê�
m−1 ⊗ e�

s−1S
−1D + ê�

m−1 L̂ ⊗ e�
s−1S

−1Ce0e�
s−1S

−1D

= ê�
m−1 ⊗ e�

s−1S
−1D + ê�

m−1 L̂ ⊗ e�
s−1S

−1D

= (ê�
m−1 + ê�

m−1 L̂)⊗ e�
s−1S

−1D = 1̂
� ⊗ p�,

where at the last step we have used the second identity in (7.23) and the definition of p� in
(7.14b). This proves (7.22c).

The fourth identity (7.22d) is verified similarly. To save the length of this paper, we omit
the detailed procedure.

7.2 Some Proofs

In this subsection we would like to prove Lemmas 3.6 and 3.7, as well as Propositions 3.1
and 3.2.

7.2.1 Proof of Lemma 3.6

Recalling the definition of πκ, j (m;ϑ), given in (7.9), it follows from (3.16) and (3.27) that
Θ(m) = ϑ + π00(m;ϑ). Substituting (7.25) implies that

Θ(m) = ϑ + 1

m

(
1̂
� ⊗ p�)(Î ⊗ D−1W(ϑ)

)(
1̂ ⊗ q

)
= ϑ + p�D−1W(ϑ)q, (7.27)

where the simple fact 1̂
�
Î 1̂ = m is used. This completes the proof of Lemma 3.6.

Remark 7.1 Taking m = 1 and ϑ = Θ in (7.27), we use Lemma 3.6 to get

p�D−1W(Θ)q = 0. (7.28)

This is just the conclusion in Lemma 3.5 withm = 1. As an essence property of the averaged
numerical flux parameter, it plays an important role in the proof of Lemma 3.7.

7.2.2 Proof of Lemma 3.7

For convenience of notations, in what follows we use a generic notation C to denote a
positive constant independent of m. Recalling the proof of [26, Proposition 3.3], we have for
0 ≤ i, j ≤ ζ − 1 that ∣∣∣∣b�i j (m)− 2

i ! j !(i + j + 1)

∣∣∣∣ ≤ C

m
, (7.29)

where { 2
i ! j !(i+ j+1) }0≤i, j≤ζ−1 forms a symmetric positive definite matrix congruent to an

Hilbert matrix. SinceΘ > 1/2, it follows from (7.3) and (7.6) with ϑ = Θ that we can prove
this lemma by showing that zi j (m;Θ) for 0 ≤ i, j ≤ ζ − 1 all tends to zero as m goes to
infinity. By (7.9), it is sufficient to prove

|πκ, j (m;Θ)| ≤ C

m
, 0 ≤ κ, j ≤ ζ − 1, (7.30)

since [26, inequality (3.16)] shows that αi−κ (m) is bounded independent of m.

123

64 Page 44 of 47 Journal of Scientific Computing (2024) 100 :64

Denote πκ, j = πκ, j (m;Θ) and W = W(Θ) for simplicity. Below we are going to prove
(7.30) for different cases of κ and j , where (7.28) plays an important role to well control the
accumulation and growth as m goes to infinity.

– If κ = j = 0, we have π0,0 = (1̂
�
Î 1̂)⊗ (p�D−1Wq) = 0, due to (7.28).

– If κ > 0 and j > 0, we have

πκ, j = 1

m

(
1̂
� ⊗ p�)[K (m)]κ−1Πκ, j (m)[K (m)] j−1

(
1̂ ⊗ q

)
, (7.31)

where Πκ, j (m) = K (m)
(
Î ⊗ D−1W

)
K (m). Substituting (7.22b) into this formula and

then using (7.28) to eliminate the term involving L̂
2
. After some manipulations we yield

Πκ, j (m) = 1

m2 L̂ ⊗ [q p�D−1WES−1D + ES−1Wq p�]

+ 1

m2 Î ⊗ ES−1WES−1D.

The row norms for all matrices (including the row vectors and column vectors) do not
depend on m, except that ‖L̂‖∞ = m − 1. Hence we have

‖Πκ, j (m)‖∞ ≤ C

m
.

Noticing ‖ 1
m (1̂

� ⊗ p�)‖∞ ≤ C and ‖K (m)‖∞ ≤ C , we get from (7.31) what we want
to prove.

– If κ = 0 and j > 0, we have π0, j = 1
mΠ0, j (m)[K (m)] j−1(1̂ ⊗ q) with

Π0, j (m) =
(
1̂
� ⊗ p�)(Î ⊗ D−1W

)
K (m) = 1

m
1̂
� ⊗ p�D−1WES−1D,

by some manipulations with the help of (7.22b) and (7.28). The remaining proof follows
the same line as above, hence is omitted.

– If κ > 0 and j = 0, we have πκ,0 = 1
m (1̂

� ⊗ p�)[K (m)]κ−1Πκ,0(m), where

Πκ,0(m) = K (m)(Î ⊗ D−1W)(1̂ ⊗ q) = 1̂ ⊗ ES−1Wq,

with the help of (7.22b) and (7.28). Then we can prove (7.31) as above.

Summing up the above conclusions, we verify (7.30) and then prove this lemma.

7.2.3 Proof of Propositions 3.1 and 3.2

Taking ϑ = 0 in (7.27) and substituting the definition of p� and q, we have

Θ = e�
s−1S

−1W(0)(I + ES−1C)e0. (7.32)

This identity will be used to prove these propositions.
Since we have assumed c�κ ≥ 0 for any � and κ in this paper, all entries of S−1 are

non-negative due to the simple fact

S−1 = (I − EC)−1 = I +
∑

1≤i≤s−1

(EC)i .

123

Journal of Scientific Computing (2024) 100 :64 Page 45 of 47 64

Hence we can conclude from (7.32) thatΘ is a non-negative linear combination of the entries
ofW(0) = {d�κθ�κ }0≤�,κ≤s−1. As a trivial conclusion for special case that all numerical flux
parameters are the same, it is easy to conclude that Θ is a weighted average of θ�κ . This
proves Proposition 3.1.

Remark 7.2 This is the only place that the condition c�κ ≥ 0 is used in this paper.

For the LWDG method with the time marching coefficients (2.10), we have S = I and
then get from (7.32) that

Θ = e�
s−1W(0)e0 = ds−1,0θs−1,0 = θs−1,0,

since I + ES−1C = I + EC = I . This completes the proof of Proposition 3.2.

Funding Yuan Xu is supported by NSFC Grant 12301513, Natural Science Foundation of Jiangsu Province
Grant BK20230374 and Natural Science Foundation of Jiangsu Higher Education Institutions of China Grant
23KJB110019. Chi-Wang Shu is supported by NSF grant DMS-2309249. Qiang Zhang is supported by NSFC
Grant 12071214.

Data Availability The datasets generated during the current study are available from the corresponding author
upon reasonable request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

1. Ai, J., Xu, Y., Shu, C.W., Zhang, Q.: L2 error estimate to smooth solutions of high order Runge–Kutta
discontinuous Galerkin method for scalar nonlinear conservation laws with and without sonic points.
SIAM J. Numer. Anal. 60(4), 1741–1773 (2022). https://doi.org/10.1137/21M1435495

2. Chavent, G., Cockburn, B.: The local projection P0P1-discontinuous-Galerkin finite element method for
scalar conservation laws. RAIROModél. Math. Anal. Numér. 23(4), 565–592 (1989). https://doi.org/10.
1051/m2an/1989230405651

3. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss–Radau projections for the local
discontinuous Galerkin method for linear convection–diffusion equations. Math. Comp. 86(305), 1233–
1267 (2017). https://doi.org/10.1090/mcom/3141

4. Ciarlet, P.G.: The finite element method for elliptic problems. In: Studies in Mathematics and its
Applications, vol. 4. North-Holland Publishing Co., New York (1978)

5. Cockburn,B.,Hou, S., Shu,C.W.:TheRunge–Kutta local projection discontinuousGalerkinfinite element
method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990).
https://doi.org/10.2307/2008501

6. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite
element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113
(1989). https://doi.org/10.1016/0021-9991(89)90183-6

7. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element
method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989). https://
doi.org/10.2307/2008474

8. Cockburn, B., Shu, C.W.: The Runge–Kutta local projection P1-discontinuous-Galerkin finite element
method for scalar conservation laws. RAIROModél. Math. Anal. Numér. 25(3), 337–361 (1991). https://
doi.org/10.1051/m2an/1991250303371

9. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V.
Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998). https://doi.org/10.1006/jcph.1998.
5892

10. Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated
problems. J. Sci. Comput. 16(3), 173–261 (2001). https://doi.org/10.1023/A:1012873910884

123

https://doi.org/10.1137/21M1435495
https://doi.org/10.1051/m2an/1989230405651
https://doi.org/10.1051/m2an/1989230405651
https://doi.org/10.1090/mcom/3141
https://doi.org/10.2307/2008501
https://doi.org/10.1016/0021-9991(89)90183-6
https://doi.org/10.2307/2008474
https://doi.org/10.2307/2008474
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/10.1051/m2an/1991250303371
https://doi.org/10.1006/jcph.1998.5892
https://doi.org/10.1006/jcph.1998.5892
https://doi.org/10.1023/A:1012873910884

64 Page 46 of 47 Journal of Scientific Computing (2024) 100 :64

11. Gottlieb, S., Ruuth, S.J.: Optimal strong-stability-preserving time-stepping schemes with fast downwind
spatial discretizations. J. Sci. Comput. 27(1–3), 289–303 (2006). https://doi.org/10.1007/s10915-005-
9054-8

12. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221),
73–85 (1998). https://doi.org/10.1090/S0025-5718-98-00913-2

13. Guo, W., Qiu, J., Qiu, J.: A new Lax–Wendroff discontinuous Galerkin method with superconvergence.
J. Sci. Comput. 65(1), 299–326 (2015). https://doi.org/10.1007/s10915-014-9968-0

14. Liu, Y., Shu, C.W., Zhang, M.: Sub-optimal convergence of discontinuous Galerkin methods with central
fluxes for linear hyperbolic equations with even degree polynomial approximations. J. Comput. Math.
39(4), 518–537 (2021). https://doi.org/10.4208/jcm.2002-m2019-0305

15. Qiu, J., Zhang, Q.: Stability, error estimate and limiters of discontinuous Galerkin methods. In: Handbook
of Numerical Methods for Hyperbolic Problems, Handbook of Numerical Analysis, vol. 17, pp. 147–171.
Elsevier, Amsterdam (2016). https://doi.org/10.1016/bs.hna.2016.06.001

16. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math.
Comput. 75(253), 183–207 (2006). https://doi.org/10.1090/S0025-5718-05-01772-2

17. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci.
Comput. 17(1–4), 211–220 (2002). https://doi.org/10.1023/A:1015156832269

18. Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge–Kutta methods with downwind-
biased spatial discretizations. SIAM J. Numer. Anal. 42(3), 974–996 (2004). https://doi.org/10.1137/
S0036142902419284

19. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084
(1988). https://doi.org/10.1137/0909073

20. Shu, C.W.: Discontinuous Galerkin methods: general approach and stability. In: Numerical Solutions
of Partial Differential Equations, Adv. Courses Math. CRM Barcelona, pp. 149–201. Birkhäuser, Basel
(2009)

21. Shu, C.W.: Discontinuous Galerkin methods for time-dependent convection dominated problems: basics,
recent developments and comparison with other methods. In: Building Bridges: Connections and Chal-
lenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes in Computer
Science Engineering, vol. 114, pp. 369–397. Springer, New York (2016)

22. Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J.
Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

23. Sun, Z., Shu, C.W.: Stability analysis and error estimates of Lax–Wendroff discontinuous Galerkin meth-
ods for linear conservation laws. ESAIM Math. Model. Numer. Anal. 51(3), 1063–1087 (2017). https://
doi.org/10.1051/m2an/2016049

24. Sun, Z., Shu, C.W.: Strong stability of explicit Runge–Kutta time discretizations. SIAM J. Numer. Anal.
57(3), 1158–1182 (2019). https://doi.org/10.1137/18M122892X

25. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123(1–2), 85–100 (2000).
https://doi.org/10.1016/S0377-0427(00)00393-9

26. Xu, Y., Meng, X., Shu, C.W., Zhang, Q.: Superconvergence analysis of the Runge–Kutta discontinuous
Galerkin methods for a linear hyperbolic equation. J. Sci. Comput. 84, 23 (2020). https://doi.org/10.1007/
s10915-020-01274-1

27. Xu, Y., Shu, C.W., Zhang, Q.: Error estimate of the fourth-order Runge–Kutta discontinuous Galerkin
methods for linear hyperbolic equations. SIAM J. Numer. Anal. 58(5), 2885–2914 (2020). https://doi.
org/10.1137/19M1280077

28. Xu, Y., Zhang, Q.: Superconvergence analysis of the Runge–Kutta discontinuous Galerkin method with
upwind-biased numerical flux for two dimensional linear hyperbolic equation. Commun. Appl. Math.
Comput. 4, 319–352 (2022). https://doi.org/10.1007/s42967-020-00116-z

29. Xu, Y., Zhang, Q., Shu, C.W., Wang, H.: The L2-norm stability analysis of Runge–Kutta discontinuous
Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019).
https://doi.org/10.1137/18M1230700

30. Xu, Y., Zhao, D., Zhang, Q.: Local error estimates for Runge–Kutta discontinuous Galerkin methods with
upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimension with discontinuous
initial data. J. Sci. Comput. 91, 11 (2022). https://doi.org/10.1007/s10915-022-01793-z

31. Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin meth-
ods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004). https://doi.org/10.1137/
S0036142902404182

32. Zhang, Q., Shu, C.W.: Stability analysis and a priori error estimates of the third order explicit Runge–Kutta
discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(3), 1038–1063
(2010). https://doi.org/10.1137/090771363

123

https://doi.org/10.1007/s10915-005-9054-8
https://doi.org/10.1007/s10915-005-9054-8
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1007/s10915-014-9968-0
https://doi.org/10.4208/jcm.2002-m2019-0305
https://doi.org/10.1016/bs.hna.2016.06.001
https://doi.org/10.1090/S0025-5718-05-01772-2
https://doi.org/10.1023/A:1015156832269
https://doi.org/10.1137/S0036142902419284
https://doi.org/10.1137/S0036142902419284
https://doi.org/10.1137/0909073
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1051/m2an/2016049
https://doi.org/10.1051/m2an/2016049
https://doi.org/10.1137/18M122892X
https://doi.org/10.1016/S0377-0427(00)00393-9
https://doi.org/10.1007/s10915-020-01274-1
https://doi.org/10.1007/s10915-020-01274-1
https://doi.org/10.1137/19M1280077
https://doi.org/10.1137/19M1280077
https://doi.org/10.1007/s42967-020-00116-z
https://doi.org/10.1137/18M1230700
https://doi.org/10.1007/s10915-022-01793-z
https://doi.org/10.1137/S0036142902404182
https://doi.org/10.1137/S0036142902404182
https://doi.org/10.1137/090771363

Journal of Scientific Computing (2024) 100 :64 Page 47 of 47 64

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Stability Analysis and Error Estimate of the Explicit Single-Step Time-Marching Discontinuous Galerkin Methods with Stage-Dependent Numerical Flux Parameters for a Linear Hyperbolic Equation in One Dimension
	Abstract
	1 Introduction
	2 The ESTDG Method
	2.1 The Semidiscrete DG Method
	2.2 The Fully Discrete ESTDG Methods

	3 Stability Analysis
	3.1 The Matrix Transferring Process
	3.1.1 Temporal Differences of Stage Solutions and Evolution Identity
	3.1.2 Relationship Among Temporal Differences of Stage Solutions
	3.1.3 Derivation of Energy Equations
	3.1.4 Discussion on Three Important Quantities

	3.2 Energy Analysis and Stability Conclusions
	3.2.1 The RKDG Method
	3.2.2 The LWDG Method

	4 Optimal Error Estimate
	4.1 Proof of Theorem 4.1
	4.2 Proof of Lemma 4.1
	4.2.1 Proof of Lemma 4.2
	4.2.2 Proof of Lemma 4.3

	5 Numerical Experiments
	5.1 Verification on Stability Results
	5.1.1 The RKDG Method
	5.1.2 The LWDG Method

	5.2 Verification on the Error Estimate
	5.3 Discussions on Θ=1/2

	6 Conclusion
	7 Appendix
	7.1 Matrix Description of the Ultimate Spatial Matrix
	7.1.1 Elemental Formula
	7.1.2 Formula of πκ,j(m;)
	7.1.3 Proof of Lemma 7.1
	7.1.4 Verifications of (7.22)

	7.2 Some Proofs
	7.2.1 Proof of Lemma 3.6
	7.2.2 Proof of Lemma 3.7
	7.2.3 Proof of Propositions 3.1 and 3.2

	References

