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Abstract
This paper studies a statistical learning model where the model coefficients have a pre-
determined non-overlapping group sparsity structure. We consider a combination of a loss
function and a regularizer to recover the desired group sparsity patterns, which can embrace
many existingworks.Weanalyze directional stationary solutions of the proposed formulation,
obtaining a sufficient condition for a directional stationary solution to achieve optimality and
establishing a bound of the distance from the solution to a reference point. We develop
an efficient algorithm that adopts an alternating direction method of multiplier (ADMM),
showing that the iterates converge to a directional stationary solution under certain conditions.
In the numerical experiment, we implement the algorithm for generalized linear models with
convex and nonconvex group regularizers to evaluate the model performance on various data
types, noise levels, and sparsity settings.
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1 Introduction

Statistical learningmodels have been extensively used for data interpretations and predictions
in many fields collecting a large amount of data, such as computer vision and computational
biology. Given a dataset, a statistical learning model is utilized to estimate unknown model
coefficients by minimizing a certain loss function such as mean squared error and cross-
entropy [17]. With a wide range of features, only a small subset of them actually corresponds
to nonzero model coefficients; as a result, fitting a model by blindly incorporating all the
available features may cause a misleading interpretation of contributing features and an inac-
curate prediction. In an attempt to select meaningful features automatically, feature selection
techniques [4, 16, 21] have been developed to produce a sparsely fitted model with many zero
coefficients. For example, regularization methods, appending a penalty function to the loss
function, discard insignificant features by setting small model coefficients to zero. A well-
known regularization term is the �1-norm of the model coefficients, known as least absolute
shrinkage and selection operator (LASSO) [53]. LASSO has been widely used in diverse
settings to tackle practical problems such as forecasting corporate bankruptcy and assessing
drug efficacy [52, 54]. However, the convex �1 penalty may mistakenly suppress large coef-
ficients while shrinking small coefficients to zero, which is referred to as biasedness [14].
To alleviate this issue, nonconvex regularization functions have been proposed, including
smoothly clipped absolute deviation (SCAD) [14], minimax concave penalty (MCP) [68],
transformed �1 (TL1) [37, 70], �1/2 penalty [26, 65], scale-invariant �1 [45, 56], and log-
arithm penalty [9]. These nonconvex regularizers try to retain the large model coefficients
while applying a similar shrinkage of smaller coefficients as the convex �1-norm.

Group selection is a variant of feature selection when features have a group structure;
specifically, each feature belongs to one ormore groups. A group structure is non-overlapping
if each feature is assigned to exactly one group. In the non-overlapping group selection, the
features in the same group are required to have the corresponding coefficients altogether
nonzero or zero, which is called group sparsity. The group structure of the features is reason-
able in many applications. For example, a categorical variable should be converted to a group
of several binary dummy variables prior to model fitting. Group sparsity can be enforced into
a model by extending regularization techniques to a group setting. Group LASSO [35, 67]
achieves group sparsity with the convex �2,1 norm, i.e., the sum of the �2 norms of the coef-
ficients from the same group. Exploiting the convexity, many algorithms were applied and
developed to solve for the group LASSO, including the gradient descent [72], the coordinate
descent [25, 46], the second-order cone program [28], the semismoothNewton’smethod [71],
the subspace acceleration method [11], and the alternating direction method of multipliers
(ADMM) [6, 12]. However, group LASSO may inherently have bias in the same way as
LASSO [21]. Consequently, nonconvex regularizers such as �0,2 penalty [22], group capped-
�1 [38, 44], group MCP [21], group SCAD [57], and group LOG [23], were introduced.
A variety of numerical algorithms are considered to solve for the nonconvex optimization,
including primal dual active set algorithm [22], smoothing penalty algorithm [38], difference-
of-convex algorithm [44], coordinate descent algorithms [42, 60], group descent algorithm
[8], coordinate majorization descent algorithm [59], and iterative reweighted algorithm [23].

We propose a generalized formulation for fitting a statistical learning model with a non-
overlapping group structure. For example, we establish the connection of loss functions under
our setting to generalized linear models (GLMs) [34]. Many existing regularizations can be
regarded as special cases of our generalized framework; we consider the group variants of
�1 penalty, SCAD, MCP, and TL1 as case studies. Our optimization problem is nonconvex
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if we use nonconvex regularization terms. Instead of a global optimum that might be hard
to obtain, our analysis is based on the directional stationary solution, which can be provably
achieved by using our algorithm. Directional stationary solutions were studied for nonconvex
programming analyses, especially for the difference of convex (DC) problems [33, 39, 55].
In the DC literature, it has been shown that such stationarity is a necessary condition for local
optimality [39]. Furthermore, the directional stationary solution can achieve local and even
global optimality [3] under suitable conditions. In this paper, we identify such conditions
based on a restricted strong convexity (RSC) assumption [18]. RSC was originally analyzed
for the convex LASSO problem where the global minimizer is compared to the ground-truth.
We relax the requirement of having the ground-truth vector by a reference point that can be
tied to the ground-truth in a probabilistic interpretation. We further provide a bound for the
distance from the stationary solution obtained by our approach to this reference point.

To solve our proposed model, we design an iterative scheme based on the ADMM frame-
work, which is an efficient method for solving large-scale optimization problems in statistics,
machine learning, and related fields [10, 15, 49, 63, 73]. Although ADMM is originally
designed for convex optimization, it can be extended to nonconvex problems, and its global
convergence can be proved under certain conditions [19, 40, 58]. In our problem formulation,
ADMM provides an iterative scheme that involves two subproblems that can be minimized
sequentially. One subproblem involving the loss function is assumed to be convex, and hence
it can be solved efficiently by closed-form solution or iterative methods. The other subprob-
lem is related to the nonconvex regularization terms. We rely on proximal operators [41]
to produce a stationary solution and characterize conditions for the global optimality of the
directional stationary solutions. Theoretically, we prove the subsequence convergence of the
ADMMframework. In otherwords, the sequence generated by theADMMhas a subsequence
convergence to a directional stationary point of our proposed model.

We conduct in-depth experiments on various datasets under different learning settings.
We use synthetic datasets for linear regression and Poisson regression, and one real dataset
for logistic regression. With hyperparameters tuned by cross-validation, our framework with
various group regularization terms is applied to those datasets. An overall evaluation indicates
that nonconvex penalty functions consistently outperform convex penalty functions.

We summarize our major contributions as follows,

(1) We introduce a generalized formulation for a non-overlapping group sparsity problem
that can be reduced to many existing works;

(2) We investigate properties of the directional stationary solutions of the problem to achieve
optimality as well as the bound on the distance from the solution to a reference point
which is closely related to the optima of the loss function;

(3) We prove the subsequence convergence of ADMM iterates to a directional stationary
point of our proposed model;

(4) Our numerical experiments on various models under different group structure settings
evaluate the performance of existing group sparsity functions under the proposed formu-
lation, showing the advantages of nonconvex penalties over convex ones.

The rest of the paper is organized as follows. In Sect. 2, we introduce a generalized
formulation for non-overlapping group selection. Section3 analyzes the conditions for global
optimality of directional stationary solutions to our optimization problem and their properties
under the RSC assumption on the loss function. In Sect. 4, we present the ADMM framework
forminimizing the proposedmodel with convergence analysis. In Sect. 5, we present in-depth
numerical experiments on both synthetic and real datasets for linear, Poisson, and logistic
regressions. Section6 concludes the paper.
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2 The Proposed Framework

We consider a statistical learning problem defined by a coefficient vector x ∈ R
d with a pre-

determined group structure. We restrict our attention to a non-overlapping group selection by
assuming that components of the variable x are from m non-overlapping groups, denoted by
Gk for k ∈ {1, . . . ,m}. Specifically Gk is a set of indices of x that belong to the kth group. The
setting of non-overlapping groups implies that all Gk’s are mutually exclusive. The notation
|Gk | represents the cardinality of the set Gk , and xGk ∈ R

|Gk | is defined as a subvector of x
that only consists of the coefficients in the group Gk . For the rest of the paper, we denote
Gmax � max

1≤k≤m

√|Gk |.
We aim to penalize the complexity of the group structure while minimizing the loss of the

model simultaneously. To this end, we propose a general framework

min
x

Fλ(x) � L(x) + λ

m∑

k=1

√|Gk | p(‖xGk‖2)︸ ︷︷ ︸
�Pk (xGk

)

,
(1)

where the loss function L(·)measures the fit of themodel to the observed data, the regularizer
Pk(·) determines the group complexity for the kth group of the model coefficients, and a
hyperparameter λ > 0 balances between the model fitting and the group complexity. Note
that Pk : R

|Gk | → R is a composite function consisting of a univariate sparsity function
p : R → R and the norm of the coefficients corresponding to Gk . The following set of
assumptions is considered on p(·):
(P1). p is symmetric about zero on R, i.e., p(t) = p(−t), concave and non-decreasing on

[0,∞) with p(0) = 0.
(P2). The derivative of p is well-defined except at 0, finite with p′(t) ≥ 0, and u � sup

t
p′(t)

for any t > 0.
(P3).There exists a constant Lipp > 0 such that

|p′(t1) − p′(t2)| ≤ Lipp|t1 − t2| ∀ t1, t2 > 0.

It is straightforward to verify that many popular sparsity-promoting functions, including
SCAD [14], MCP [68], transformed �1 [37, 70], and logarithm penalty [9], satisfy all the
assumptions.We assume (P1) throughout this paper and impose (P2) or (P3)wherever needed.

The assumptions on the loss function are summarized as follows.

(A1). L(·) is lower-bounded.
(A2). There exists a constant LipL > 0 such that

‖∇L(x1) − ∇L(x2)‖2 ≤ LipL‖x1 − x2‖2 ∀x1, x2.
(A3). L(·) is convex with modulus σ, i.e., there exists a constant σ ≥ 0 such that

L(x1) − L(x2) − 〈∇L(x2), x1 − x2〉 ≥ σ

2
‖x1 − x2‖22 ∀x1, x2.

If σ is strictly positive, L(·) is strongly convex.

Some sparsity functions in the literature have been written as DC functions [3, 32, 66, 70].
Using a unified DC representation [3] of p with a convex loss, the problem (1) can be written
as a DC formulation, e.g., Fλ(x) = g(x) − h(x) where both g and h are convex functions.
Subsequently, existing algorithms [24, 27, 29, 43] can be applied to compute a critical point,
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e.g., x̄ with 0 ∈ ∂Fλ(x̄). Our approach bypasses the use of a DC representation of (1) and
introduces a numerical method that computes a directional stationary point.

The loss function used in our optimization problem (1) can be specified by generalized
linear models (GLMs) that are widely used for supervised learning, where input features
explain a response [34].GLMs are an extension of ordinary linear regression beyondGaussian
response variables, where the responses bi , i = 1, . . . , n, follow any exponential family
distribution with a parameter θi . Specifically, the probability density function of bi takes the
following canonical form:

f (bi ; θi ) = φ(bi )exp

{
biθi − ψ(θi )

}
, (2)

where ψ is a cumulant function and φ is a function that is independent of θi [34, 64]. Both
ψ and φ are given functions by the exponential family distribution in consideration, and the
first-order derivative of the cumulant function ψ ′(θi ) is the expected value of bi [30, 34].

Taking aGaussian distributionwithmean θi and variance 1, for example, one setsψ(θi ) = θ2i
2

and φ(bi ) = exp(−b2i /2)√
2π

.

Denote the i th observation of the input features by a row vector Ai ∈ R
d of the matrix

A ∈ R
n×d . A GLM associates ψ ′(θi ) with a linear function of the features Aix such that

θi = Aix. Omitting φ(bi ) that is free of θi , the loss function L for the GLM is written by
summing the negative exponent in (2) for all the observations (Ai , bi ), i = 1, . . . , n, i.e.,

1

n

n∑

i=1

{ψ(θi ) − biθi } = 1

n

n∑

i=1

{ψ(Aix) − bi Aix}.

For example, the logistic regression models binary responses bi ∈ {0, 1} by

ψ(θi ) = log(1 + exp(θi )) = log{1 + exp(Aix)}.

The Poisson regression for count data bi ∈ {0, 1, 2, . . .} has ψ(θi ) = exp(θi ) = exp(Aix).
Under the assumptions that the second-order derivative ψ ′′ is continuous, positive, and
bounded above by a constant, we establish the Lipschitz continuity of the gradient of the
loss function in (A2) and the convexity in (A3). The boundedness assumption on ψ ′′ holds
for loss functions of most GLMs such as ordinary linear regression, logistic regression, and
multinomial regression [30], but not Poisson regression.

3 Theoretical Analysis

Wepresent two theoretical results of the proposedmodel (1). Specifically, Sect. 3.1 establishes
the global optimality of a directional stationary solution of (1) when the loss function is
strongly convex. In Sect. 3.2, we define restricted strong convexity (RSC), under which the
loss function is strongly convex over a subset of the feasible space, followed by providing
an upper bound of the distance from the directional stationary solution to a reference point
which we define in Sect. 3.2.
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3.1 Optimality of Directional Stationary Solutions

Notations: For a function f : R → R, its derivative at a point t is denoted as f ′(t). The
notation f ′(t+) represents the right-side derivative at t , i.e.,

f ′(t+) � lim
h→0+

f (t + h) − f (t)

h
.

The notation F ′(x;d), for F : Rd → R, is the directional derivative of F at a point x along
the direction d, which is formally defined in Definition 1.

Definition 1 Given a function F : Rd → R, the directional derivative of F at point x ∈ R
d

along direction d ∈ R
d is denoted as F ′(x;d) and defined by

F ′(x;d) � lim
h→0+

F(x + hd) − F(x)
h

.

Next, we provide the definition of a directional stationary point used in this paper.

Definition 2 The point x∗ be a directional stationary point of an unconstrained optimization
problem with an objective function F : Rd → R if F ′(x∗; x − x∗) ≥ 0, ∀x ∈ R

d .

Our analysis is built on the directional stationary solutions. Hereafter, we simply denote
a directional stationary solution as a stationary solution. It has been shown that directional
stationarity is a necessary condition for a point to be a localminimum for certainDCprograms
[39].

We establish in Theorem 2 that a stationary solution of (1) is a global minimizer under
certain conditions. The proof of Theorem 2 requires Lemma 1.

Lemma 1 If p satisfies Assumption (P3), we have

p(‖y‖2) − p(‖x‖2) ≥ P ′(x; y − x) − Lipp
2

‖x − y‖22 ∀x, y ∈ R
n, (3)

where P(x) � p(‖x‖2) and n is an ambient dimension of x and y.

Proof Let G(x) � p(‖x‖2) + Lipp
2

‖x‖22. Observe that G(x) = G1 ◦ G2(x) where G1(t) �

p(t) + Lipp
2

t2 and G2(x) � ‖x‖2. Then for any 0 < t1 ≤ t2, we have

G ′
1(t1) − G ′

1(t2) = p′(t1) − p′(t2) + Lipp(t1 − t2)

≤ |p′(t1) − p′(t2)| − Lipp|t2 − t1| since t1 ≤ t2

≤ Lipp|t1 − t2| − Lipp|t1 − t2| = 0 by (P3),

which implies that G ′
1(t) is monotonically non-decreasing on (0,∞). By choosing suffi-

ciently small 0 < t1 ≤ t2 and taking limit on t1 to 0, we obtain |p′(0+) − p′(t2)| ≤ Lipp t2
from (P3). This implies G ′

1(0
+) = p′(0+) ≤ p′(t2) + Lipp t2 = G ′

2(t2). Therefore, G1(t)
is a convex function on the interval [0,∞). Since G1,G2 are both convex and G1 is non-
decreasing on [0,∞) by (P1), we conclude that their composite function G(x) is also a
convex function. Using the first order condition, i.e., G(y) ≥ G(x) + G ′(x; y − x), we have

p(‖y‖2) + Lipp
2

‖y‖22 ≥ p(‖x‖2) + Lipp
2

‖x‖22 + Lipp〈x, y − x〉 + P ′(x; y − x).

After simple manipulations, we deduce the desired inequality (3). ��
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Theorem 2 Let Assumptions (P3) and (A3) hold with σ > 0. If σ ≥ λLippGmax, then any
stationary solution of (1) is a global minimizer.

Proof Denote x∗ as a stationary solution of (1). By Assumption (A3) and applying Lemma
1, we have

Fλ(x) − Fλ(x∗) = L(x) + λ

m∑

k=1

√|Gk | p(‖xGk
‖2) − L(x∗) − λ

m∑

k=1

√|Gk | p(‖x∗
Gk

‖2) ∀x ∈ R
d

≥ σ

2
‖x − x∗‖22 + 〈∇L(x∗), x − x∗〉 + λ

m∑

k=1

√|Gk |
{
p(‖xGk

‖2) − p(‖x∗
Gk

‖2)
}

≥ σ

2
‖x − x∗‖22 + 〈∇L(x∗), x − x∗〉

+ λ

m∑

k=1

√|Gk |
{
P ′
k(x

∗
Gk

; xGk
− x∗

Gk
) − Lipp

2
‖xGk

− x∗
Gk

‖22
}
. (4)

Due to the stationarity (Definition 2), x∗ satisfies

〈∇L(x∗), x − x∗〉 + λ

m∑

k=1

√|Gk | P ′
k(x

∗
Gk

; xGk − x∗
Gk

) ≥ 0.

Consequently, the inequality (4) can be simplified as

Fλ(x) − Fλ(x∗) ≥ σ

2
‖x − x∗‖22 − λLipp

2

m∑

k=1

√|Gk | ‖xGk − x∗
Gk

‖22

≥ σ

2
‖x − x∗‖22 − λLipp

2
Gmax ‖x − x∗‖22 = ζ

2
‖x − x∗‖22,

where we define ζ � σ − λLippGmax. If σ − λLippGmax ≥ 0, then ζ ≥ 0 and hence
Fλ(x) ≥ Fλ(x∗) ∀x, which implies that any stationary solution x∗ is a global minimizer. ��

Our result identifies the condition on the hyperparamter λ which guarantees the global
optimality of any stationary solutions. This is a generalization of [23, Theorem 2.2] which
is for a special case of the group-LOG regularizer.

3.2 Stationarity Under Restricted Strong Convexity

Before discussing the concept of restricted strong convexity, we first consider two related
problems of (1). In the first problem, we assume there exist data points ξ̃ that are generated
by an unknown distribution D. The following problem minimizes the loss of the model
associated with the model coefficient x with respect to the data distribution:

min
x

IE
ξ̃∼D L(x; ξ̃) � L̃(x). (5)

With a set of observed data points {ξ i }ni=1, we can also minimize the loss over the observed
data points by solving the following sample average approximation problem:

min
x

1

n

n∑

i=1

L(x; ξ i ) � L̂n(x). (6)
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Some works investigate the relationships between (5) and (6). For example, [48, Theo-
rem 7.77] states that under suitable conditions, for any ε′ > 0, there exists positive constants
α and β independent of n such that

P
(

sup
‖d‖=1

∣∣∣ 〈∇ L̂n(x̄),d〉 − 〈∇ L̃(x̄),d〉
∣∣∣ ≤ ε′ ) > 1 − α e−n β,

for any given vector x̄. The problem (1) is considered as sample average approximation
which employs regularizers to help recover groupwise sparsity structure in the variables. The
connection between the sample average approximation and the population risk motivates our
analysis. If the ground-truth is the unique solution for (5), then the gradient of L̃ at that point
is zero, and the above result yields a probability involving the gradient of the sample average
approximation function L̂n at the ground-truth. However, since the ground-truth is unlikely
to be attained in practice, we consider a reference point, denoted as xε , which satisfies

‖∇L(xε)‖2 ≤ ε (7)

for a given ε > 0. Our analysis is based on the reference point and we compare it to the
stationary solutions of (1).

The assumption of strong convexity may not hold for some loss functions, e.g., ordinary
linear regression with an under-determined system of linear equations. As a remedy, we
consider a setting where strong convexity only holds over a smaller region rather than the
entire domain of the loss function. Since the scope of the strong convexity is limited, such
an assumption is referred to as the restricted strong convexity (RSC) [18]. In statistics, the
RSC condition for a subset of possible vector differences between the ground-truth and an
estimator is imposed [36].

We first derive a region for RSC to hold, then provide a bound of the distance from a
stationary solution to a reference point. Let S be the group-wise support set of the reference
point xε , i.e., S � { k ∈ {1, . . . ,m} | ‖xε

Gk
‖2 �= 0}. Given δ > 0, define the set Vδ(S) as

Vδ(S) �
{

ν

∣∣∣∣∣
∑

k /∈S
‖νGk‖2 ≤ δ

∑

k∈S
‖νGk‖2

}
.

It is not difficult to verify thatVδ(S) is a cone; i.e., if x ∈ Vδ(S) thenαx ∈ Vδ(S) for anyα ≥ 0.
Furthermore, the set is a nonconvex cone. For example, let δ = 0.5,G1 = {1, 2},G2 = {3, 4}
and S = {2}. For two points ν1 = (1, 1, 1, 3)T and ν2 = (1, 2, 4, 2)T , we have ν1, ν2 ∈ Vδ(S)

but 0.5ν1 + 0.5ν2 /∈ Vδ(S).
Given a reference pointxε , there exists a region that includes the vector differences between

the stationary solutions of (1) and xε under certain conditions; refer to the following lemma.

Lemma 3 Let Assumptions (A3) and (P2) hold. Let xε be a vector such that, for a given
ε > 0, ‖∇L(xε)‖2 ≤ ε. If x∗ is a stationary solution of (1) with

ε < min
k /∈S

√|Gk | λ p′(‖x∗
Gk

‖2), (8)

then there exists δ∗ > 0 such that (xε − x∗) ∈ Vδ∗(S).

Proof For any stationary solution x∗, one has

〈∇L(x∗), xε − x∗〉 + λ

m∑

k=1

√|Gk | P ′
k(x

∗
Gk

; xε
Gk

− x∗
Gk

) ≥ 0. (9)
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Since the support of xε may not be the same as that of x∗, the four possible cases for each
summand of (9) are considered. If x∗

Gk
�= 0, we use (P2) to obtain

P ′
k(x

∗
Gk

; xε
Gk

− x∗
Gk

)

=
〈
p′(‖x∗

Gk
‖2)

x∗
Gk

‖x∗
Gk

‖2 , xε
Gk

− x∗
Gk

〉 {≤ p′(‖x∗
Gk

‖2)‖xε
Gk

− x∗
Gk

‖2, if k ∈ S

= −p′(‖x∗
Gk

‖2)‖x∗
Gk

‖2, if k /∈ S.
(10)

If x∗
Gk

= 0, it follows from the definition of the directional derivative that

P ′
k(0; xε

Gk
) = p′(0+)‖xε

Gk
‖2. (11)

The above captures the cases k ∈ S and k /∈ S. By (7) and the convexity of L , we obtain

〈∇L(x∗), xε − x∗〉 ≤ 〈∇L(xε), xε − x∗〉

≤ ‖∇L(xε)‖2‖xε − x∗‖2 ≤ ε

m∑

k=1

‖xε
Gk

− x∗
Gk

‖2. (12)

Substituting (10)-(12) into (9) yields

∑

k /∈S

√|Gk |p′(‖x∗
Gk

‖2)‖x∗
Gk

‖2 − ε

λ

m∑

k=1

‖xε
Gk

− x∗
Gk

‖2

≤
∑

k∈S,
x∗
Gk

�=0

√|Gk |p′(‖x∗
Gk

‖2)‖xε
Gk

− x∗
Gk

‖2 +
∑

k∈S,
x∗
Gk

=0

√|Gk |p′(0+)‖xε
Gk

‖2.

By the assumption (P2) where u is defined, we deduce
∑

k /∈S

(√|Gk | p′(‖x∗
Gk

‖2) − ε

λ

)
‖xε

Gk
− x∗

Gk
‖2 ≤

∑

k∈S

( ε

λ
+ u

√|Gk |
)

‖xε
Gk

− x∗
Gk

‖2.

The condition (8) guarantees the nonnegativity of the left-hand side of the inequality, which
validates the existence of δ∗. ��

Lemma 3 can be interpreted as, if there is a stationary solution that is sufficiently close to
xε , then there exists a nonconvex cone which includes the direction xε − x∗. This is because
a stationary solution x∗

Gk
is more likely to meet the condition (8) if ‖x∗

Gk
‖2 is near the origin

whenever the corresponding subvector of xε
Gk

is zero. We note that the scale of δ∗ in the
analysis is related to the model parameters and the stationary solution which may lead to a
strong assumption on the RSC.

We define the RSC assumption of L over the set Vδ∗(S):

(A4). There exists σ > 0 such that L(x1)−L(x2)−〈∇L(x2), x1−x2〉 ≥ σ

2
‖x1−x2‖22 ∀(x1−

x2) ∈ Vδ∗(S).

Under Assumption (A4), we provide a bound of the distance between a stationary solution
of (1) and the reference point xε .

Theorem 4 Let Assumptions (A4) and (P2) hold. Let xε be a vector such that ‖∇L(xε)‖2 ≤ ε

for a given 0 < ε < λu min
1≤k≤m

√|Gk |. Let x∗ be a stationary solution of (1) with

ε < min
k /∈S

√|Gk | λ p′(‖x∗
Gk

‖2). (13)
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Suppose (A4) holds over the set Vδ∗(S) � (xε − x∗). We have a bound

‖xε − x∗‖2 ≤ 4λu

σ
max
k∈S

√|Gk |
√∑

k∈S
|Gk |.

Proof By the RSC assumption (A4), there exists σ > 0 such that

σ

2
‖xε − x∗‖22 ≤ L(xε) − L(x∗) − 〈∇L(x∗), xε − x∗〉

≤ L(xε) − L(x∗) + λ

m∑

k=1

√|Gk | P ′
k(x

∗
Gk

; xε
Gk

− x∗
Gk

) by (9)

≤ 〈∇L(xε), xε − x∗〉 + λ

m∑

k=1

√|Gk | P ′
k(x

∗
Gk

; xε
Gk

− x∗
Gk

) by convexity of L

≤
∑

k /∈S

(
ε−λ

√|Gk |p′(‖x∗
Gk

‖2)
)
‖x∗

Gk
‖2+

∑

k∈S
(ε+λu

√|Gk |)‖xε
Gk

− x∗
Gk

‖2.

The last inequality is obtained by applying (10)-(12). Due to (13), the first term of the right-
hand side of the inequality is negative and ε < λu

√|Gk |, leading to

σ

2
‖xε − x∗‖22 ≤ 2 λumax

k∈S
√|Gk |

∑

k∈S
‖xε

Gk
− x∗

Gk
‖2

≤ 2 λumax
k∈S

√|Gk |‖xε
GS

− x∗
GS

‖1 where GS �
⋃

k∈S
Gk

≤ 2 λumax
k∈S

√|Gk |
√|GS |‖xε

GS
− x∗

GS
‖2

≤ 2 λumax
k∈S

√|Gk |
√|GS |‖xε − x∗‖2.

By dividing ‖xε − x∗‖2 on both sides and substituting |GS | = ∑
k∈S

|Gk |, we complete the

proof. ��

Theorem 3 is a generalization of existing bounds shown for individual sparsity problems
(without group structure) [2, 18], for which every group is a singleton such that G1 =
{1}, . . . ,Gd = {d}. For example, if we let p(t) = |t |, the problem (1) becomes LASSO
regularization, and Theorem3 exactly recovers the bound on the distance between the optimal
solution of LASSOand the ground-truth shown in [18, Theorem11.1]. The result also extends
the bound derived in [2, Theorem 1] for nonconvex sparsity functions such as SCAD, MCP,
and transformed �1.

4 Our Algorithm

We adopt the alternating direction method of multipliers (ADMM) [6] to minimize the prob-
lem (1). Specifically, we introduce an auxiliary variable z and rewrite (1) equivalently as

min
x,z

L(z) + λ

m∑

k=1

√|Gk | p(‖xGk‖2) s.t. x = z. (14)
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The corresponding augmented Lagrangian function is

L(x, z; v) � L(z) + λ

m∑

k=1

√|Gk | p(‖xGk‖2) + ρ〈v, x − z〉 + ρ

2
‖x − z‖22, (15)

where v is a Lagrangian multiplier (or dual variable) and ρ is a positive parameter. We
consider a scaled form [6] in (15) by multiplying ρ in front of 〈v, x − z〉. Consequently,
ADMM iterations proceed as follows:

⎧
⎨

⎩

xτ+1 ∈ argminx L(x, zτ ; vτ )

zτ+1 ∈ argminz L(xτ+1, z; vτ )

vτ+1 = vτ + xτ+1 − zτ+1,

(16)

where τ indexes the iteration number. The z-subproblem is written as

zτ+1 = argmin
z

L(z) + ρ

2
‖xτ+1 − z + vτ‖22,

which is convex under Assumption (A3) and hence can be solved efficiently by existing
convex programming algorithms. For example, a closed-form solution can be derived if the
loss function is the least squares for linear regression. In Appendix A, we provide details on
how the z-subproblem is solved for various GLM loss functions that are considered in the
numerical study in Sect. 5. In Sect. 4.1, we elaborate on how to solve x-subproblem in (16),
and the convergence analysis of the ADMM scheme (16) is conducted in Sect. 4.2.

4.1 x-subproblem

The x-subproblem can be decomposed into groups such that for each k ∈ {1, · · · ,m},
xτ+1
Gk

∈ argmin
x∈R|Gk |

λ
√|Gk |p(‖x‖2) + ρ

2
‖x − zτ

Gk
+ vτ

Gk
‖22 � Hλ,ρ(x). (17)

It is nonconvex due to Assumption (P1), by which a (global) optimal solution may be difficult
to obtain. Corollary 5 characterizes conditions under which a stationary solution of (17)
achieves the global optimality.

Corollary 5 Let Assumption (P3) hold. If ρ ≥ λLippGmax, then any stationary solution of
(17) is a global minimizer.

Proof Since ρ is the strong convexity modulus of the second term in (17), the statement
follows from Theorem 2. ��

To solve (17), we introduce a general update scheme based on a proximal operator [5,
Chapter 6], then discuss the stationarity of the obtained solution. The proximal operator of a
function f is defined by

prox f (y;μ) ∈ argmin
x

(
μ f (x) + 1

2
(x − y)2

)
, (18)

where f is a univariate function and μ is a positive parameter. The notation argmin we
use in (17) and (18) denotes a set of ordinary stationary solutions instead of the (global)
optimal solutions. Here, we define x̄ as an ordinary stationary solution to (18) if there exists
v̄ ∈ ∂ f (x̄) = {v | f (z) ≥ f (x̄) + v(z − x̄), ∀z } such that μv̄ + (x̄ − y) = 0. It has been
shown that (18) yields a global solution for certain sparsity functions such as transformed
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�1 function [69, Theorem 3.1]. Multiple stationary solutions are possible for �1-�2 function
[31].

We aim to find a closed-form solution to (17). By applying the change of variable x =
c(zτ

Gk
− vτ

Gk
), we rewrite the problem (17) to the following univariate problem:

min
c

λ
√|Gk |p(c‖zτ

Gk
− vτ

Gk
‖2) + ρ(c − 1)2

2
‖zτ

Gk
− vτ

Gk
‖22. (19)

The problem (19) can be solved by a proximal operator, i.e.,

c∗ = 1

‖zτ
Gk

− vτ
Gk

‖2 proxp

(
‖zτ

Gk
− vτ

Gk
‖2; λ

√|Gk |
ρ

)
, (20)

where c∗ is an ordinary stationary solution of (19). Applying the above to the x-subproblem
yields our x-update:

xτ+1
Gk

= zτ
Gk

− vτ
Gk

‖zτ
Gk

− vτ
Gk

‖2 proxp

(
‖zτ

Gk
− vτ

Gk
‖2; λ

√|Gk |
ρ

)
. (21)

In the proposition below, we show that the solution (21) is a stationary solution of (17).

Proposition 6 The solution xτ+1
Gk

in (21) is a stationary solution of the x-subproblem (17).

Proof We discuss the cases that xτ+1
Gk

to be zero and nonzero separately. Let c∗ be a solution
given by (20). If c∗ �= 0, then it satisfies

λ
√|Gk |p′(c∗‖zτ

Gk
− vτ

Gk
‖2) = ρ(1 − c∗)‖zτ

Gk
− vτ

Gk
‖2,

which implies that 0 < c∗ < 1. The corresponding x∗ = c∗(zτ
Gk

−vτ
Gk

) satisfies the stationary
condition of (17):

λ
√|Gk |p′(‖x∗‖2) x∗

‖x∗‖2 + ρ(x∗ − zτ
Gk

+ vτ
Gk

) = 0.

In the case of c∗ = 0, there exists ū ∈ ∂ p(0) such that λ
√|Gk |ū − ρ‖zτ

Gk
− vτ

Gk
‖2 = 0.

Here, the set ∂ p(0) is nonempty with 0 belonging to the set. To see this, recall the definition
of the subgradient: v ∈ ∂ p(0) if p(y) ≥ p(0) + v(y − 0) for all y, which is equivalent to
p(y) ≥ v y. Since p(y) ≥ 0 for any y by (P1), we have 0 ∈ ∂ p(0). Next, we observe the
directional derivative of Hλ,ρ in (17) at x∗ in the direction x − x∗ for any x, i.e.,

H ′
λ,ρ(x∗; x − x∗) = λ

√|Gk |P ′
k(x

∗; x − x∗) + ρ〈x∗ − zτ
Gk

+ vτ
Gk

, x − x∗〉
≥ λ

√|Gk | lim
h→0+

p(‖x∗ + h(x − x∗)‖2) − p(‖x∗‖2)
h

− ρ‖x∗ − zτ
Gk

+ vτ
Gk

‖2 ‖x − x∗‖2.

Letting x∗ = 0 with p(0) = 0, we have

H ′
λ,ρ(0; x) ≥ λ

√|Gk | lim
h→0+

p(h‖x‖2)
h

− ρ‖zτ
Gk

− vτ
Gk

‖2 ‖x‖2 (22)

= λ
√|Gk |p′(0+)‖x‖2 − ρ‖zτ

Gk
− vτ

Gk
‖2 ‖x‖2 by L’hôpital’s rule.

Combining (22) with the stationary condition of c∗ provides

H ′
λ,ρ(0; x) ≥ λ

√|Gk |‖x‖2
(
p′(0+) − ū

)
.
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Algorithm 1 Group ADMM Framework
Set hyperparameter λ > 0, maximal number of iterations τmax > 0, and ADMM penalty parameter ρ > 0;
Initialize x0, z0, v0, τ = 0.
repeat

for k = 1, 2, . . . ,m do
update xτ+1

Gk
by (21)

end

zτ+1 ∈ argmin
z

L(z) + ρ

2
‖xτ+1 − z + vτ ‖22

vτ+1 = vτ + xτ+1 − zτ+1

τ = τ + 1

until ‖xτ −zτ ‖2
max{‖xτ ‖2,‖zτ ‖2,10−16} < 10−6 or |Fλ(xτ−1) − Fλ(xτ )| < 10−4 or τ > τmax;

It remains to show that p′(0+) ≥ u for all u ∈ ∂ p(0). Suppose there exists û ∈ ∂ p(0) such
that p′(0+) < û. From the property of the subgradient, we have p(t) ≥ p(0) + û(t − 0) for
all t ∈ R. If we choose a strictly positive t̂ , then we must have p(t̂) ≥ p(0) + û(t̂ − 0) >

p(0) + p′(0+)(t̂ − 0). This contradicts the concavity of p on the domain [0,∞). Hence we
conclude that if c∗ = 0 is a stationary solution to (19), then H ′

λ,ρ(0; x) ≥ 0 for any x. ��
Proposition 6 andCorollary 5 indicate that if Assumption (P3) holdswithρ ≥ λLippGmax,

then xτ+1
Gk

is a global minimizer to the problem (17).

4.2 Convergence Analysis

The ADMM framework for minimizing (14) that involves both x- and z-subproblems is
described in Algorithm 1, where τmax is the maximal number of iterations. In this section,
we present its convergence analysis. We first show that each x- and z-update decreases its
objective value, followed by monotontic decreasing of {L(xτ , zτ ; vτ )}; refer to Lemmas 7,
8, and 10, respectively.

Lemma 7 Let Assumption (P3) hold. If ρ > λLippGmax, then for any xτ+1 given by (16),
there exists c̄1 > 0 independent of τ such that

L(xτ+1, zτ ; vτ ) − L(xτ , zτ ; vτ ) ≤ − c̄1
2

‖xτ+1 − xτ‖22. (23)

Proof By Proposition 6, xτ+1 is a stationary solution to (16) such that

λ

m∑

k=1

√|Gk | P ′(xτ+1
Gk

; xτ
Gk

− xτ+1
Gk

) + ρ〈xτ+1 − zτ + vτ , xτ − xτ+1〉 ≥ 0. (24)

It follows from Lemma 1 that

p(‖xτ+1
Gk

‖2) − p(‖xτ
Gk

‖2) ≤ Lipp
2

‖xτ+1
Gk

− xτ
Gk

‖22 − P ′(xτ+1
Gk

; xτ
Gk

− xτ+1
Gk

). (25)

Simple calculations lead to

L(xτ+1, zτ ; vτ ) − L(xτ , zτ ; vτ )

= λ

m∑

k=1

√|Gk |
(
p(‖xτ+1

Gk
‖2) − p(‖xτ

Gk
‖2)

)
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+ ρ

2

(
‖xτ+1 − zτ + vτ‖22 − ‖xτ − zτ + vτ‖22

)

≤ λLipp
2

m∑

k=1

√|Gk |‖xτ+1
Gk

− xτ
Gk

‖22 − λ

m∑

k=1

√|Gk | P ′(xτ+1
Gk

; xτ
Gk

− xτ+1
Gk

)

+ ρ

2
〈xτ+1 + xτ − 2zτ + 2vτ , xτ+1 − xτ 〉 by (25)

≤ λLipp
2

Gmax‖xτ+1 − xτ‖22 + ρ

2
〈xτ − xτ+1, xτ+1 − xτ 〉 by (24)

= −ρ − λLippGmax

2
‖xτ+1 − xτ‖22.

If ρ > λLippGmax, we choose c̄1 = 1
2 (ρ − λLippGmax) > 0 such that (23) holds. ��

Lemma 8 Let Assumption (A3) hold. There exists c̄2 > 0 independent of τ such that

L(xτ+1, zτ+1; vτ ) − L(xτ+1, zτ ; vτ ) ≤ − c̄2
2

‖zτ+1 − zτ‖22.

Proof The optimality condition of zτ+1 is

∇L(zτ+1) − ρ(xτ+1 − zτ+1 + vτ ) = 0. (26)

It follows from Assumption (A3) that

L(xτ+1, zτ+1; vτ ) − L(xτ+1, zτ ; vτ )

= L(zτ+1) − L(zτ ) + ρ

2

(
‖xτ+1 − zτ+1 + vτ‖22 − ‖xτ+1 − zτ + vτ‖22

)

≤ −〈∇L(zτ+1), zτ − zτ+1〉 − σ

2
‖zτ+1 − zτ‖22

+ ρ

2
〈2xτ+1 − zτ+1 − zτ + 2vτ , zτ − zτ+1〉 by (A3)

= −σ

2
‖zτ+1 − zτ‖22 + ρ

2
〈zτ+1 − zτ , zτ − zτ+1〉 by (26)

= −ρ + σ

2
‖zτ+1 − zτ‖22.

As ρ > 0 and σ ≥ 0, we choose c̄2 = ρ + σ > 0 that completes the proof. ��
Lemma 9 Let Assumption (A2) hold. We have

‖vτ+1 − vτ‖22 ≤ LipL2

ρ2 ‖zτ+1 − zτ‖22.

Proof Based on (26) and v-update formula vτ+1 = vτ + xτ+1 − zτ+1, we obtain

∇L(zτ+1) − ρvτ+1 = 0, (27)

or equivalently vτ+1 = ∇L(zτ+1)
ρ

. Similarly, we have vτ = ∇L(zτ )
ρ

. It follows from Assump-
tion (A2) that

‖vτ+1 − vτ‖2 = 1

ρ
‖∇L(zτ+1) − ∇L(zτ )‖2 ≤ LipL

ρ
‖zτ+1 − zτ‖2. (28)

��
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Combining Lemmas 7-9, we shown in Lemma 10 that every triplet (xτ+1, zτ+1; vτ+1) pro-
duced by (16) sufficiently decreases the objective value of (15).

Lemma 10 (sufficient descent) Let Assumptions (P3), (A2) and (A3) hold. If ρ in (15) satisfies

ρ > max

{
λLippGmax,

√
σ 2+8LipL2−σ

2

}
, then there exist two constants c1 > 0 and c2 > 0

such that

L(xτ+1, zτ+1; vτ+1) − L(xτ , zτ ; vτ ) ≤ −c1‖xτ+1 − xτ‖22 − c2‖zτ+1 − zτ‖22. (29)

Proof It follows from v-update formula vτ+1 − vτ = xτ+1 − zτ+1 that

L(xτ+1, zτ+1; vτ+1) − L(xτ+1, zτ+1; vτ ) =〈ρvτ+1, xτ+1 − zτ+1〉 − 〈ρvτ , xτ+1 − zτ+1〉
=ρ〈vτ+1 − vτ , xτ+1 − zτ+1〉

=ρ‖vτ+1 − vτ‖22 ≤ LipL2

ρ
‖zτ+1 − zτ‖22,

where the last inequality holds by Lemma 9. By applying Lemmas 7-8, we achieve the desired

inequality (29)with c1 = c̄1
2 and c2 = c̄2

2 − LipL2

ρ
, where c̄1 and c̄2 are defined in Lemma 7 and

Lemma 8, respectively. The condition ρ > λLippGmax is required for Lemma 7. Additionally

we require ρ >

√
σ 2+8LipL2−σ

2 such that c2 > 0. ��
Theorem 11 establishes the subsequence convergence of the iterates
under an assumption that the objective function Fλ(·) is coercive; refer to Definition 3.

If either the regularization function P or the loss function L is coercive, then the objective
function is coercive, which guarantees the boundedness of the minimizing sequence.

Definition 3 A function f (·) is coercive if f (x) → ∞ as ‖x‖2 → ∞.

Theorem 11 (convergence) Let Assumptions (P3), (A1)-(A3) hold. If either P or L is coer-

cive, and ρ in (15) satisfies ρ > max

{
λLippGmax,

√
σ 2+8LipL2−σ

2

}
, then the sequence

{(xτ , zτ , vτ )}∞τ=1 generated by (16) has a convergent subsequence. Moreover, its limit point
is a stationary solution of the problem (1).

Proof We first show the convergence of the sequence {(xτ , zτ , vτ )}∞τ=1. By telescoping sum-
mation of (29) from τ = 0 to T , we have

L(xT+1, zT+1; vT+1) ≤L(x0, z0; v0) − c1

T∑

τ=0

‖xτ+1 − xτ‖22 − c2

T∑

τ=0

‖zτ+1 − zτ‖22

≤L(x0, z0; v0),∀ T = 0, 1, . . . (30)

which implies that the sequence {L(xτ , zτ ; vτ )}∞τ=0 is upper-bounded. On the other hand, we
can estimate a lower bound for ∀ T = 0, 1, . . .

L(xT+1, zT+1; vT+1)

= L(zT+1) + Fλ(xT+1) − L(xT+1) + ρ〈vT+1, xT+1 − zT+1〉 + ρ

2
‖xT+1 − zT+1‖22

≥ Fλ(xT+1) + 〈ρvT+1 − ∇L(zT+1), xT+1 − zT+1〉 + ρ − LipL
2

‖xT+1 − zT+1‖22
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= Fλ(xT+1) + ρ − LipL
2

‖xT+1 − zT+1‖22, (31)

where we use (27) and Assumption (A2). It follows from (31) that the sequence {Fλ(xτ )}∞τ=0
is upper-bounded if ρ > LipL and thus {Fλ(xτ )}∞τ=0 is bounded by Assumption (A1). Note

that LipL ≤
√

σ 2+8LipL2−σ

2 , a constant stated in Lemma 10. Since Fλ(·) is coercive by the
coerciveness of P or L , {xτ }∞τ=1 is bounded, so is {zτ }∞τ=1 by (31). To show the boundedness
of {vτ }∞τ=1, we consider

‖vT+1 − v0‖2 ≤ LipL
ρ

‖zT+1 − z0‖2, ∀ T = 0, 1, . . .

which can be obtained similarly to (28). This implies that

‖vT+1‖2 ≤ ‖v0‖ + LipL
ρ

(‖zT+1‖2 + ‖z0‖2), ∀ T = 0, 1, . . . (32)

Together with the boundedness of {zτ }∞τ=1, we have {vτ }∞τ=1 bounded. By Bolzano-
Weierstrass theorem, the bounded sequence {(xτ , zτ , vτ )}∞τ=1 has a convergent subsequence,
denoted by (xτ j , zτ j , vτ j ) → (x∗, z∗, v∗) as τ j → ∞.

With the boundedness, L(xτ , zτ ; vτ ) converges due to the monotonic decreasing prop-
erty shown in Lemma 10. By letting T → ∞ in (30), we have

∑∞
τ=0 ‖xτ+1 − xτ‖22 and∑∞

τ=0 ‖zτ+1 − zτ‖22 are finite. Therefore, xτ+1 − xτ → 0 and zτ+1 − zτ → 0 as τ → ∞. It
further follows from Lemma 9 that vτ+1−vτ → 0 as well. As (xτ j , zτ j , vτ j ) → (x∗, z∗, v∗),
we have (xτ j+1, zτ j+1, vτ j+1) → (x∗, z∗, v∗) and x∗ = z∗ due to the v-update.

We next show that (x∗, z∗, v∗) is a stationary solution of (1). By the iterative scheme (16),
we have

L(xτ j+1, zτ j , vτ j ) ≤ L(x, zτ j , vτ j ) ∀x
L(xτ j+1, zτ j+1, vτ j ) ≤ L(xτ j+1, z, vτ j ) ∀z

Let τ j → ∞,wehaveL(x∗, z∗, v∗) ≤ L(x, z∗, v∗), ∀x andL(x∗, z∗, v∗) ≤ L(x∗, z, v∗), ∀z,
which implies that

λ

m∑

k=1

√|Gk | p(‖x∗
Gk

‖2) + ρ

2
‖v∗‖22 ≤ λ

m∑

k=1

√|Gk | p(‖xGk‖2) + ρ

2
‖x − z∗ + v∗‖22,∀x (33)

and

L(z∗) + ρ

2
‖v∗‖22 ≤ L(z) + ρ

2
‖x∗ − z + v∗‖22,∀z. (34)

Let us fix x in (33), and let z = x in (34). As x∗ = z∗, combining (33) and (34) yields

L(x∗) + λ

m∑

k=1

√|Gk | p(‖x∗
Gk

‖2) + ρ‖v∗‖22

≤ L(x) + λ

m∑

k=1

√|Gk | p(‖xGk‖2) + ρ

2
(‖x − x∗ + v∗‖22 + ‖x∗ − x + v∗‖22), (35)

for any x. Define F̂λ(x) � Fλ(x) + ρ‖x − x∗‖22. It follows from (35) that

F̂λ(x∗) = Fλ(x∗) ≤ Fλ(x) + ρ‖x − x∗‖22 = F̂λ(x), ∀x,
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implying x∗ is a global minimum for F̂λ(x) and hence a stationary point. We show Fλ and
F̂λ have the same directional derivative at the point x = x∗ by the following calculations,

F̂ ′
λ(x∗;d) = lim

h→0+
F̂λ(x∗ + hd) − F̂λ(x∗)

h

= lim
h→0+

Fλ(x∗ + hd) + ρ‖x∗ + hd − x∗‖22 − Fλ(x∗) − ρ‖x∗ − x∗‖22
h

= lim
h→0+

Fλ(x∗ + hd) − Fλ(x∗) + ρh2‖d‖22
h

= lim
h→0+

Fλ(x∗ + hd) − Fλ(x∗)
h

= F ′
λ(x

∗;d), ∀d.

Since x∗ is a stationary point of F̂λ(x), it is also a stationary point of Fλ(x). ��
If neither L nor P is coercive, then we need to assume the sequence generated by the

ADMM framework is bounded. In other words, the sequence either diverges or has a subse-
quence convergent to a stationary point; see Theorem 12.

Theorem 12 (convergence without coerciveness) Let Assumptions (P3), (A1)-(A3) hold. Let
ρ satisfy the condition given in Theorem 11. If the sequence {(xτ , zτ , vτ )}∞τ=1 is bounded,
then it has a subsequence convergent to a stationary point of problem (1).

Proof If {xτ }∞τ=1 is bounded, then {zτ }∞τ=1 and {vτ }∞τ=1 are bounded due to (31) and (32),
respectively. The rest of the proof is along the same lines as Theorem 11, thus is omitted. ��

Note that the Poisson regression does not have a global Lipschitz constant owing to
ψ ′′(θi ) = exp(θi ), and hence Assumption (A2) does not hold. As a result, Theorems 11-12
are not applicable to Poisson regression. Fortunately, we observe in the empirical studies of
Sect. 5 that ADMM with the Poisson loss function generally converges.

5 Numerical Experiments

In the numerical experiments, we examine group regularizationmethods that are widely used,
including group LOG, group MCP, group SCAD, group transformed �1, and group LASSO.
The definitions of the corresponding univariate regularization functions and the references
for their proximal operators are listed in Table 1.

A comparison to LASSO is added as a baseline method for feature selection without the
group structure. We consider three loss functions for linear regression, Poisson regression,
and logistic regression in Sects. 5.1-5.3, respectively. We generate synthetic data for linear
regression and Poisson regression, while applying logistic regression on a real dataset that
involves prostate cancer gene expression levels.

5.1 Synthetic Data for Linear Regression

We generate 50 triplets of a dataset that consists of 200 features and 200 observations
(A, x∗,b) for linear regression, where A ∈ R

200×200 is called the feature matrix, x∗ ∈ R
200

is the ground-truth vector, and b ∈ R
200 is the response vector. Each row of the feature

matrix A, denoted by Ai ∈ R
200, is randomly generated from multivariate Gaussian distri-

bution with zero mean 0 ∈ R
200 and covariance matrix Σ ∈ R

200×200 independently, i.e,
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Table 1 A list of sparsity-promoting regularization functions and their proximal operators

Name Definition Proximal operator

LASSO p(t) � |t | [21]

MCP (λ̃ > 0, a > 1) p(t; λ̃, a) �

⎧
⎪⎪⎨

⎪⎪⎩

λ̃|t | − t2

2a
|t | ≤ aλ̃

1

2
aλ̃2 |t | > aλ̃,

[21]

SCAD (λ̃ > 0, a > 2) p(t; λ̃, a) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ̃|t | |t | ≤ λ̃

2aλ̃|t | − t2 − λ̃2

2(a − 1)
λ̃ < |t | ≤ aλ̃

(a + 1)λ̃2

2
|t | > aλ̃

[21]

Transformed �1 (a > 0) p(t; a) � (a + 1)|t |
a + |t | , [69]

LOG (ε > 0) p(t; ε) � log(
√
t2 + ε + |t |) Appendix B

Ai
iid∼ N (0,Σ). We set the variances of all the features to be 1, i.e. Σ j j = 1, ∀ j . The

off-diagonal elements of the covariances Σ j j ′ , j �= j ′ are set as one of the following cases:

Case 1. Σ j j ′ = 0.
Case 2. Σ j j ′ = 0.2 when j, j ′ ∈ Gk , Σ j j ′ = 0 otherwise.
Case 3. Σ j j ′ = 0.5 when j, j ′ ∈ Gk , Σ j j ′ = 0.2 otherwise.

The three cases for the covariance matrix Σ consider various levels of correlations among
the features. Specifically, Case 1 considers features that are completely independent of each
other, while Cases 2-3 consider the features positively correlated in part or in whole. Pos-
itive correlations are introduced within a group in Case 2. In Case 3, all feature pairs have
positive correlations, and the within-group correlations are stronger than the across-group
correlations.

The ground-truth x∗ ∈ R
d (d = 200) consists of 40 equal-size groups with 5 coefficients

in each group that are simultaneously zero or nonzero. We assume without loss of generality
that x∗

1 , . . . , x
∗
s are nonzero coefficients (s < d), whose indices 1, . . . , s are grouped into the

first m′ distinct groups G1, . . . ,Gm′ (m′ < m). The indices in Gm′+1, . . . ,Gm correspond to
zero coefficients. We set the number of nonzero groups to be one, three, or five for Cases 1-3.
The coefficients in the nonzero group(s) are randomly generated from uniform distribution

between −5 and 5 independently, i.e, x∗
j
i id∼ U [−5, 5]. The response vector b is generated

by a linear regression model

b = Ax∗ + e, (36)

where the noise e ∈ R
200 follows Gaussian distribution, ei

iid∼ N (0, σ̃ 2). Here, σ̃ 2

is the empirical version of Var(Ax∗) such that σ̃ 2 = ∑
i (Aix∗ − Āx∗)2/199, where

Ā = ∑
i Ai/200.

Let x̂ ∈ R
d be a reconstructed solution fromanymethodwith its support Ŝ = { j : x̂ j �= 0}.

The complement of the support is denoted as Ŝc = { j : x̂ j = 0}. Let M̂ = {k : x̂ j �= 0,∀ j ∈
Gk} and N̂ = {k : x̂ j = 0,∀ j ∈ Gk} denote the index set of groups in which coefficients
being estimated as nonzero and the index set of groups whose coefficients being estimated as
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zero, respectively. To quantitatively evaluate the performance of each regularization method,
we consider the following standard metrics:

1. Relative error of x̂ � ‖x̂ − x∗‖2
‖x∗‖2 .

2. Precision of x̂ � |Ŝ ∩ {1, . . . , s}|
|Ŝ| .

3. Recall of x̂ � |Ŝ ∩ {1, . . . , s}|
s

.

4. Element accuracy of x̂ � |Ŝ ∩ {1, . . . , s}| + |Ŝc ∩ {s + 1, . . . , d}|
d

.

5. Group accuracy of x̂ � |M̂ ∩ {1, . . . ,m′}| + |N̂ ∩ {m′ + 1, . . . ,m}|
m

.

For tuning the hyperparameter λ, we split the dataset (A,b) into two equal-size datasets: a
training dataset (Atr ,btr ) ∈ R

100×200×R
100 and a validation dataset (Av,bv) ∈ R

100×200×
R
100. We solve the following optimization problem with the training dataset for different

penalty functions p(·):

min
x,x0

1

100
‖Atrx + x01 − btr‖22 + λ

40∑

k=1

√|Gk |p(‖xGk‖2). (37)

For the linear regression problem (37), there is a closed-form solution for the z-subproblem
as detailed in AppendixA. The hyperparameter settings for the different penalty functions are
summarized in Table 2. Specifically for group LOG, group transformed �1, group LASSO,
and LASSO, we tune the hyperparameter λwith 50 logarithmically spaced values (generated
by Matlab function logspace) from 10−4 to 10. For group MCP and group SCAD, we
tune the log-spaced hyperparameter λ̃ from 10−4 to 10 with λ = 1. By fixing λ = 1 for
group MCP and group SCAD, we conform to their standard formulations found in [14,
68]. Although we do not have the intercept x0 in generating data from (36), we include it
in the estimation to mimic the reality with no prior information about the intercept value.
The numerical experiments are performed without the regularization on the intercept to have
straightforward interpretations of the estimated solution.Wemay regularize the intercept term
by treating it as a standalone group, for which the convergence theory is easily extended.
Given a specific value of hyperparameters, we obtain an estimated vector x̂ and an intercept
x̂0 that can be used to compute the mean squared error (MSE) on the validation set, MSElin �
‖Av x̂ + x̂01 − bv‖22/100. The optimal value of the hyperparameter can be found with the
smallestMSE among the preset range of the hyperparameters.We do not tune the algorithmic
parameter ρ, as it only affects the convergence speed but not the performance. Generally,
a larger value of ρ results in a longer computation time. On the other hand, a very small
of ρ may cause our algorithm to be divergent, as the x-subproblem is nonconvex and thus
ill-posed. In practice, we choose ρ = 1 for group LASSO, and ρ = 2λLippGmax for group
LOG, MCP, SCAD, and TL1, which ensures the x-subproblem is convex.

Table 3 summarizes the results of all the eight methods (TL1 stands for transformed
�1) for the datasets with Case 1 covariance. Note that the overall performance of the various
models does not depend on the number of nonzero groups.We additionally consider the oracle
method that sets the zero coefficients in x∗ to be zero a priori and obtains the solution by least-
squares minimization without any regularization. The nonconvex regularizers outperform the
convex regularizers such as group LASSO and LASSO. The average relative errors of the
nonconvex regularizers are very close to those of the oracle method. In particular, group LOG
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Table 2 Hyperparameter settings for different penalty functions

Fixed parameters Tuned parameters

Group LOG ε = 0.01 λ from 10−4 to 10

Group MCP λ = 1, a = 2 λ̃ from 10−4 to 10

Group SCAD λ = 1, a = 3.7 λ̃ from 10−4 to 10

Group transformed �1 a = 1 λ from 10−4 to 10

Group LASSO – λ from 10−4 to 10

LASSO – λ from 10−4 to 10

Fig. 1 Convergence comparison of the ADMM for group LOG penalty to the BSUM algorithm [20] and an
iterative algorithm [23] in terms of the objective value (left) and the relative error to the ground-truth (right)
with respect to the computation time

is successful in recovering the sparsity and group structure and has smaller relative errors than
the oracle method on average. Although the sparsity and group structure of the oracle method
perfectly aligns with the ground-truth, the group LOG outperforms the oracle solution which
is undermined by a large signal-to-noise ratio. Both LASSO and group LASSO have low
average precision values but high average recall values, which indicates that both methods
tend to incorrectly estimate the zero coefficients at the ground-truth as nonzero. LASSO is
not successful in recovering the group structure as the group structure is not incorporated in
the model formulation. Note that the union of the group index sets M̂ and N̂ for the group
regularizers and the oracle method is the whole group index set {1, . . . ,m} while LASSO
may have some group indices not in any of the two sets. The estimation with a larger number
of nonzero groups is amore challenging task, as indicated by the increase in the relative errors
and the decrease in the precision, accuracy, and group accuracy metrics. Similar patterns are
obtained in the results with Case 2 and Case 3 covariances. Refer to Tables 6–7 in Appendix C
for more details.

Wecompare theADMMto ablock successive upper-boundminimization (BSUM)method
[20] and an iteratively reweighted algorithm in [23, Algorithm 1] for the group LOG penalty.
The last algorithm is a special case of the successive upper-bound minimization algorithm
[47] that solves a sequence of convex subproblems involving the weight of the current iterate;
we refer to the algorithm as the iteratively reweighted algorithm. We note that iterates of the
algorithms are shown to converge to the same type of stationary solution. We implement the
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algorithms on an identical computation environment with covariance matrix Σi j ′ = 0 (Case
1) and three nonzero groups in ground-truth. Figure1 plots the decrease in the objective values
and the relative errors of the iterates with respect to computation time. Although the methods
reach the same level of objective value and relative error in the end, Fig. 1 indicates that the
ADMM converges faster than the iteratively reweighted algorithm when both subproblems
in (16) have closed-form solutions. Both ADMM and iterative algorithm are much faster
compared to BSUM.

5.2 Synthetic Data for Poisson Regression

Poisson regression is a generalized linear model that takes count data as its response. We
generate 50 triples of (A, x∗,b), where x∗ ∈ R

200 is the ground-truth vector and b ∈ R
200

is the response vector generated by Poisson distribution, i.e.,

bi
iid∼ Poisson(Aix∗).

The feature matrix A ∈ R
200×200 is generated in the same manner as in Sect. 5.1 with Case 1,

2, 3 covariance settings. One, three, and five groups of 5 coefficients in the ground-truth x∗
are nonzero and the rest of the coefficients are zero. The nonzero coefficients are randomly

generated from uniform distribution between −0.5 and 0.5, i.e., x∗
j
i id∼ U [−0.5, 0.5]. Same

as in Sect. 5.1, we randomly split the dataset (A,b) into training and validation sets. For the
training dataset (Atr ,btr ), we consider the following optimization problem with different
penalty functions p(·):

min
x,x0

1

100

100∑

i=1

[
(btr )i

(
(Atr )ix + x0

)
− exp

(
(Atr )ix + x0

)]
+ λ

40∑

k=1

√|Gk |p(‖xGk‖2).

We adopt Newton’s method, described in Appendix A, to solve for the z-subproblem. The
Newton’s method terminates if the distance between the current iterate and the previous iter-
ate is less than 10−3. Note that our empirical study shows that the stopping tolerance in the
subproblem does not have a significant influence on the final results. We use 50 different
hyperparameter values from 10−4 to 10 (λ for group LOG, group transformed �1, group
LASSO, LASSO, and λ̃ for group MCP, group SCAD). Given a specific hyperparameter
value, we obtain the estimated coefficients x̂ and the intercept x̂0. For hyperparameter selec-
tion, we use mean squared error (MSE) on the validation set (Av,bv) for Poisson regression
defined as

MSEpois � ‖ exp(Av x̂ + x̂01) − bv‖22,
where the exp of a vector is a componentwise operation. The hyperparameter value giving
the smallest MSE is chosen. Note that there are alternatives to MSE for Poisson regression,
such as deviance and mean squared error of log response, to alleviate the sensitivity to large
predicted values. With the known ground-truth, the evaluation metrics are the same as in
linear regression.

Table 4 summarizes the results of the eight approaches with Case 1 covariance setting.
The five nonconvex regularizers show great performance, among which group LOG attains
the smallest relative error. Group LASSO and LASSO show poor performance in terms of
relative errors, precision, and group accuracy. Tables 8–9 in Appendix C present the results
for the Case 2 and Case 3 covariance settings, reporting a similar conclusion.
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5.3 Prostate Cancer Gene Expression Dataset for Logistic Regression

Prostate cancer is the most commonly diagnosed non-skin cancer and the second leading
cause of cancer death among men in the United States [7]. In order to identify prostate cancer
risk genes, we analyze gene expression levels of prostate samples collected from 102 study
participants [50]. Genetic expression levels of 6033 genes were measured from 52 prostate
cancer patients and 50 normal controls. For our model fittings, we choose the top 50 genes
with largemedian absolute deviation in the participants’ gene expression levels. The response
vector consists of binary values representing 0 = cancer patient and 1 = normal
control. We generate a feature matrix of dimension 102 × 150 for a cubic B-spline basis
function of the 50 genes, where each row is for one man and each of the three columns
corresponds to one gene.

To evaluate the performance of the seven regularizationmethods for the logistic regression
model, we perform 50 random splits of the dataset into a training set (Atr ,btr ) ∈ R

82×150 ×
R
82 and test set (Atest ,btest ) ∈ R

20×150×R
20. Themodel coefficients x̂ and x̂0 are estimated

from the logit loss function with regularization, i.e.,

min
x,x0

1

82

82∑

i=1

[
log

{
1 + exp

(
(Atr )ix + x0

)}
− (btr )i exp

(
(Atr )ix + x0

)]

+ λ

50∑

k=1

√|Gk |p(‖xGk‖2).g

As the Hessian matrix for this problem is nearly singular, we apply the standard gradient
descent for solving the z-subproblem. The gradient descent terminates if the distance between
the current iterate and the previous iterate is less than 10−3. The oraclemethod is not available
for this experiment since the ground-truth is not known. The performance metrics of each
method are given by

1. Prediction error � 1

20

20∑

i=1

∣∣∣1
(
(b̂test )i > 0.5

)
− (btest )i

∣∣∣,, where

(b̂test )i = 1

1 + exp(−x̂0 − (Atest )i x̂)

and 1(Ω) is the indicator function that returns 1 if condition Ω holds and 0 otherwise.

2. Area under a receiver operating characteristic curve (AUC) �
∫ 1

0
T PR(t) dt , where

T PR(t) � T P(t)

T P(t) + FN (t)
,

T P(t) �
20∑

i=1

1
(
(b̂test )i > t

)
(btest )i , and

FN (t) �
20∑

i=1

1
(
(b̂test )i ≤ t

)
(btest )i .

3. Coefficient selection rate � 1

d

d∑

j=1

1(x̂ j �= 0).
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Table 5 Results for prostate cancer gene dataset

Method Prediction error AUC Coefficient selection rate Group selection rate

Group LOG 0.4240 (0.1089) 0.6308 (0.1344) 0.5224 (0.2456) 0.5224 (0.2456)

Group MCP 0.4130 (0.1024) 0.6467 (0.1251) 0.9984 (0.0055) 0.9984 (0.0055)

Group SCAD 0.4080 (0.0804) 0.6528 (0.1112) 0.9944 (0.0162) 0.9944 (0.0162)

Group TL1 0.4530 (0.0992) 0.5965 (0.1238) 0.3580 (0.2188) 0.3580 (0.2188)

Group LASSO 0.4670 (0.1053) 0.5982 (0.1086) 0.3264 (0.2791) 0.3264 (0.2791)

LASSO 0.4410 (0.1077) 0.6324 (0.1175) 0.1891 (0.1535) 0.4172 (0.3083)

The averages are presented along with their standard deviations in parentheses

4. Group selection rate � 1

m

m∑

k=1

1(x̂Gk �= 0), where x̂Gk is a coefficient subvector corre-

sponding to the k-th group.

For all methods, we perform 5-fold cross-validation on the 50 training sets to tune the
hyperparameters (λ for group LOG, group transformed �1, group LASSO, LASSO, and λ̃ for
groupMCP, group SCAD) bymaximizing AUC. The other parameters are fixed as in Table 2,
except for ε = 1e-4 of group LOG. For group LOG, we tune the log-spaced hyperparameter
λ from 10−4 to 10−2. For group transformed �1 and group LASSO, we tune the log-spaced
hyperparameter λ from 10−3 to 10−1. For group MCP and group SCAD, we tune the log-
spaced hyperparameter λ̃ from 10−3 to 10−1 while fixing the hyperparameter λ = 1. With
the selected hyperparamter by cross-validation, the model coefficients x̂ and x̂0 are estimated
on the whole training set and their performances are evaluated on the corresponding test set.

Table 5 exhibits the performance of the seven regularization methods with logistic regres-
sion. The nonconvex group penalties except for group transformed �1 have smaller prediction
errors and higher AUCs than group LASSO. As seen in the coefficient and group selection
rates, both group MCP and group SCAD result in non-sparse coefficients with marginally
higher AUC values. LASSO, on average, has the smallest coefficient selection rate, but it
cannot retain the group structure by nature. Taking both prediction accuracy and group spar-
sity recovery into consideration, group LOG shows satisfactory results compared to the other
methods.

6 Conclusion

We study a generalized formulation of the non-overlapping group selection problem, which
encompasses many existing works by choosing a specific set of loss functions and sparsity-
promoting functions. We analyzed the properties of a directional stationary solution to our
proposed model, demonstrating its global optimality under certain conditions and providing
a bound of its distance to a reference point which is a proxy of the ground-truth in the view
of probability. We applied the ADMM framework with a proximal operator to iteratively
minimize the generalized formulation that is commonly nonconvex and nonsmooth. We also
proved the subsequence convergence of the algorithm to a stationary point. The global con-
vergence and inexact ADMM [61, 62] (when the subproblems are solved approximately),
which requires more conditions on the loss function, will be left for future work. In numerical
experiments, we tested our algorithm on synthetic datasets with linear and Poisson regres-
sion analysis, showing that nonconvex group regularization methods often outperform the
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convex approaches with respect to the recovery of the ground-truth. The analysis of prostate
cancer gene expression data confirmed that a solutionwith group sparsity structure is success-
fully produced by our proposed model, in which nonconvex group regularization methods
outperform group LASSO.

Appendix

A Common approaches to solving the z-subproblem

This section details three approaches regarding how to solve for the z-subproblem in (16).

– A closed-form solution can be derived for the least squares loss

L lin(z) � 1

n

n∑

i=1

(bi − Aiz)2 .

We shall consider an intercept, denoted by x0, and hence the least squares loss can be
expressed as

L lin(z, x0) � 1

n

n∑

i=1

(bi − Aiz − x0)
2 .

The z-update is given by

zτ+1 =
(1
n
AT A + ρ Id

)−1(1
n
AT (xτ

0 1 + b) + ρ(xτ+1 + vτ )
)
,

where 1 denotes the all-ones vector and Id is the d × d identity matrix. The x0-update is
made by

xτ+1
0 = 1

n

n∑

i=1

(bi − Aizτ+1).

– The Newton’s method is often used when any GLM loss has a continuous second-order
derivative. It is especially useful when there is no closed-form solution of z, such as
logistic regression and Poisson regression. The Newton’s method at the s-

zs+1 = zs−δs

{
∇2
zs L

glm(zs) + ρ Id
}−1

{
∇zs L

glm(zs) + ρ(zs − xτ+1 − vτ )
}
,

= zs−δs

{
ψ

′′
(Aizs)AT

i Ai + ρ Id
}−1

[
{ψ ′

(Aix) − bi }AT
i + ρ(zs − xτ+1 − vτ )

]
,

where δs > 0 is a step size. We define the logit loss as follows,

L logit(x, x0) � 1

n

n∑

i=1

[
log {1 + exp(Aix + x0)} − bi (Aix + x0)

]
.
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Its first and second derivatives with respect to each component of x can be obtained by

∂L logit

∂x j
= 1

n

n∑

i=1

[
ai j exp(Aix + x0)

1 + exp(Aix + x0)
− biai j

]
,

∂2L logit

∂x j∂xk
= 1

n

n∑

i=1

[
ai j aik exp(Aix + x0)

1 + exp(Aix + x0)
− ai j aik

(
exp(Aix + x0)

1 + exp(Aix + x0)

)2
]

,

for j, k = 1, . . . , d . Its derivatives with respect to x0 are

∂L logit

∂x0
= 1

n

n∑

i=1

[
exp(Aix + x0)

1 + exp(Aix + x0)
− bi

]
,

∂2L logit

∂x20
= 1

n

n∑

i=1

[
exp(Aix + x0)

1 + exp(Aix + x0)
−

(
exp(Aix + x0)

1 + exp(Aix + x0)

)2
]

,

For the Poisson loss, which is defined by

Lpois(x) � −1

n

n∑

i=1

{bi (Aix + x0) − exp(Aix + x0)} ,

its first and second derivatives with respect to each component of x are

∂Lpois

∂x j
= 1

n

n∑

i=1

[
ai j exp(Aix + x0) − biai j

]

∂2Lpois

∂x j∂xk
= 1

n

n∑

i=1

ai j aik exp(Aix + x0).

Its first and second derivatives with respect to x0 are given by

∂Lpois

∂x0
= 1

n

n∑

i=1

[
exp(Aix + x0) − bi

]
,

∂2Lpois

∂x20
= ∂2Lpois

∂x j∂xk
= 1

n

n∑

i=1

exp(Aix + x0),

– Gradient descent is considered when computing the Hessian matrix is infeasible or inef-
ficient. It is useful for analysis of high dimensional datasets or employing loss functions
that are not twice differentiable. The gradient descent at the s-th inner iteration is given
by

zs+1 = zs−δs

[
∇zs L

glm(zs) + ρ(zs − xτ+1 − vτ )
]

= zs−δs

[
{ψ ′

(Aix) − bi }AT
i + ρ(zs − xτ+1 − vτ )

]

where δs > 0 is a step size.

B Proximal operator for group LOG

Group LOG penalty was recently developed in [23] that can be solved by an iterative
reweighted algorithm. The high computational costs due to the double loop of the iterative
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scheme motivated us to derive the proximal operator of group LOG, followed by ADMM
leading to a single-loop algorithm.We derive a closed-form solution of the proximal operator
for group LOG under certain conditions and demonstrate the ADMM scheme equipped with
this proximal operator significantly reduces the computational time compared to our previous
iterative reweighted approach [23].

Let plog(x) denote the group LOG penalty, i.e, plog(x) = log(
√
x2 + ε + |x |). The

penalty function satisfies Assumptions (P1)-(P3). We define an objective function fy(x),
x ∈ R, corresponding to the LOG penalty function, i.e.,

proxlog(y;μ) ∈ argmin fy(x) � μplog(x) + 1

2
(x − y)2

= μ log(
√
x2 + ε + |x |) + 1

2
(x − y)2.

We are interested in the stationary points of fy(x), which can be 0 or any point x∗ �= 0 such
that f ′

y(x
∗) = 0. Since the first and second terms of fy are symmetric about the vertical

axis and y = x , a minimizer of fy must have the same sign as y. The first and second order
derivative of fy(x) in R\{0} are given by

f ′
y(x) = μ sign(x)√

x2 + ε
+ x − y, x �= 0,

f ′′
y (x) = − μ|x |

(x2 + ε)3/2
+ 1, x �= 0.

Instead of directly solving for f ′
y(x) = 0 to derive the proximal operator, we simply find

real roots of the quartic equation f ′
y(x)gy(x) = 0 with

gy(x) � μ sign(x)√
x2 + ε

− (x − y).

Specifically we first examine the quartic equation,

f ′
y(x)gy(x) = x4 − 2yx3 + (y2 + ε)x2 − 2yεx + y2ε − μ2 = 0, (38)

followed by the discussion on which of these roots corresponds to the solution of f ′
y(x) = 0.

According to [13, 51], the quartic equation (38) have the following four roots:

x1 = sign(y)
(√

t1 − (
√
t2 + √

t3)
) + y

2
,

x2 = sign(y)
(√

t1 + (
√
t2 + √

t3)
) + y

2
,

x3 = sign(y)
(−√

t1 − (
√
t2 − √

t3)
) + y

2
,

x4 = sign(y)
(−√

t1 + (
√
t2 − √

t3)
) + y

2
,

(39)

where

t1 = 3

√√√√−q

2
+

√
q2

4
+ p3

27
+ 3

√√√√−q

2
−

√
q2

4
+ p3

27
− 1

3

(
ε

2
− y2

4

)
,

t2 = −1 + √
3i

2

3

√√√√−q

2
+

√
q2

4
+ p3

27
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+
(

−1 + √
3i

2

)2
3

√√√√−q

2
−

√
q2

4
+ p3

27
− 1

3

(
ε

2
− y2

4

)
,

t3 = −1 − √
3i

2

3

√√√√−q

2
+

√
q2

4
+ p3

27

+
(

−1 − √
3i

2

)2
3

√√√√−q

2
−

√
q2

4
+ p3

27
− 1

3

(
ε

2
− y2

4

)
,

p =
(

μ2

4
+ ε2

16
− y2ε

8

)
− 1

3

(
ε

2
− y2

4

)2

,

q = 2

27

(
ε

2
− y2

4

)3

− 1

3

(
ε

2
− y2

4

)(
μ2

4
+ ε2

16
− y2ε

8

)
− y2ε2

64
.

In what follows, we show that the first solution (x1) given in (39) is the stationary solution
of fy(x) when certain conditions hold.

Lemma 13 Given ε > 0, if μ <
3
√
3

2
ε and

μ√
ε

< |y|, then x1 given in (39) satisfies

f ′
y(x1) = 0.

Proof By examining the derivative of f ′′
y , we verify that

inf
x �=0

f ′′
y (x) = f ′′

y (
√

ε/2) = − 2μ

3
√
3ε

+ 1 > 0, (40)

when μ < 3
√
3

2 ε. This implies that f ′
y(a) < f ′

y(b) for any a < b < 0 or b > a > 0. From

the assumption of |y| >
μ√
ε
, we discuss two cases: y >

μ√
ε
and y < − μ√

ε
.

In the first case, we have f ′
y(0

−), f ′
y(0

+) < 0. Since lim
x→∞ f ′

y(x) = ∞ and f ′
y is strictly

increasing on (0,∞) by (40), there exists exactly one root x̄1 > 0 such that f ′
y(x̄1) = 0.

Similarly, we verify that gy has exactly one root x̄2 > 0, i.e., g(x̄2) = 0. This implies that
the equation (38) has exactly two positive solutions. Furthermore, by examining f ′

y(x̄1) =
μ√
x̄21+ε

+ x̄1 − y = 0 and g(x̄2) = μ√
x̄22+ε

− x̄2 + y = 0, we deduce x̄1 < y < x̄2.

Next we identify x̄1 among the candidates shown in (39). Referring to [13, 51], t1, t2 and
t3 in (39) are three roots of the cubic equation

t3 +
(

ε

2
− y2

4

)
t2 +

(
μ2

4
+ ε2

16
− y2ε

8

)
t − y2ε2

64
= 0.

Since− y2ε2

64
< 0, there are only three cases for the roots of the above equation: (1) t1, t2, t3 >

0; (2) t1 > 0 and t2, t3 < 0; (3) t1 > 0, t2 and t3 are complex conjugate. As only two of
the solutions (38) are in R, we must have the third case. Referring to [1], we verify that√
t2 + √

t3 > 0. To see this, let t2 = a + bi and t3 = a − bi , where a, b ∈ R with b �= 0,
then we have

√
t2 + √

t3 =
√√

a2 + b2 + a

2
+ i sign(b)

√√
a2 + b2 − a

2

123



15 Page 30 of 37 Journal of Scientific Computing (2024) 100 :15

+
√√

a2 + b2 + a

2
− i sign(b)

√√
a2 + b2 − a

2

=
√
2(

√
a2 + b2 + a) > 0.

Similarly, we can show that
√
t2 − √

t3 /∈ R. Since x̄1 < x̄2, we have

x̄1 = sign(y)
(√

t1 − (
√
t2 + √

t3)
) + y

2
with f ′

y(x̄1) = 0,

x̄2 = sign(y)
(√

t1 + (
√
t2 + √

t3)
) + y

2
with gy(x̄2) = 0,

showing x̄1 is a stationary solution of fy(x). The proof for the remaining case of y < − μ√
ε

can be shown similarly. ��

Theorem 14 If μ <
3
√
3

2
ε, then the proximal operator of group LOG is given by

proxlog(y;μ) =

⎧
⎪⎨

⎪⎩

0, if |y| ≤ μ√
ε
,

sign(y)
(√

t1 − (
√
t2 + √

t3)
) + y

2
, if |y| >

μ√
ε
.

Proof The case of |y| >
μ√
ε
is shown by Lemma 13. For the other case, the definition of f ′

y

together with (40) yields f ′
y(x1) < f ′

y(0
−) ≤ 0 ≤ fy(0+) < f ′

y(x2),∀x1 < 0 < x2. Hence
fy obtains the minimum at 0. ��
Here we summarize the procedure regarding how to numerically compute the proximal

operator proxlog(y;μ), which can be either one point among the solutions in (39) or 0.

For any x �= 0, f ′
y(x) = 0 is equivalent to y − x = μsign(x)√

x̄21+ε
. This implies that, when

y > 0, a stationary solution x̄ of fy satisfies x̄ ∈ (0, y). Similarily, when y < 0, a stationary
solution x̄ of fy satisfies x̄ ∈ (y, 0). With the intervals for the real roots of f ′

y(x) = 0, we
present the following process to compute proxlog(y;μ):

1. Compute x1, x2, x3, x4 by (39) and define the set of roots for the quartic equation (38)
Q � {x1, x2, x3, x4};

2. Let P � {x ∈ Q | x ∈ R, |x | ∈ (0, |y|)}, which is the set of real roots for equation
f ′
y(x) = 0.

3. Find x̄ such that fy(x̄) ≤ fy(x) for any x ∈ P ∪ {0}, which is proxlog(y;μ).

C Additional tables
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