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Abstract
In this paper, we develop high-order bound-preserving (BP) local discontinuous Galerkin
methods for incompressible and immiscible two-phase flows in porous media, and employ
implicit pressure explicit saturation (IMPES)methods for time discretization,which is locally
mass conservative for both phases. Physically, the saturations of the two phases, Sw and Sn ,
should belong to the range of [0, 1]. Nonphysical numerical approximations may result in
instability of the simulation. Therefore, it is necessary to construct a BP technique to obtain
physically relevant numerical approximations. However, the saturation does not satisfy the
maximum principle, so most of the existing BP techniques cannot be applied directly. The
main idea is to apply the positivity-preserving techniques to both Sw and Sn , respectively,
and enforce Sw + Sn = 1 simultaneously. Numerical examples are given to demonstrate the
high-order accuracy of the scheme and effectiveness of the BP technique.
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1 Introduction

Subsurface fluid flow problems have significant applications in hydrology, geosciences, oil
recovery, chemical and biomedical engineering. The comprehension of multiphase flows is
of vital importance for institutions concerned with energy, especially oil production. In this
paper, we study the model of incompressible and immiscible two-phase flows in porous
media with heterogeneous properties for wetting phases (such as water) and non-wetting
phases (such as oil). This mathematical model is also applied to soil infiltration problems [6,
47]. Effectively and accurately solving this problem is required to simulate more complicated
models, such as CO2 sequestration or increased oil recovery [11].

Numerical methods for two-phase flows in heterogeneous media have been studied inten-
sively. Among the industrial reservoir simulators currently available, finite volume (FV) [16]
and finite difference (FD) [38] methods are the typical frameworks for simulating the fluid
flows in practical issues [12, 28]. However, suchmethodsmay lose robustness on unstructured
meshes and are not optimal for complex geometries [4, 40]. In recent years, the discontin-
uous Galerkin (DG) methods have been widely used to simulate two-phase flows in porous
media [1, 2, 18, 20, 32, 35]. Moreover, Hoteit et al. [29] and Hou et al. [30] combined mixed
finite element (MFE) and DG methods in heterogeneous media. The DG method is locally
mass conservative, which is not influenced by grid distortions and has high accuracy and
robustness even in heterogeneous media.

In this paper, the local DG (LDG) methods are applied for both the pressure and satura-
tion equations. Motivated by [3], the LDG method was originally introduced in [14] as an
extension of the DG method [43] for the convection-diffusion equations. The main idea of
the LDG method is to rewrite the equation with high order derivatives into a system of first
order derivatives by introducing new auxiliary variables, and then discretize the system with
the DG method. The LDG method shares all the advantages of the DG methods.

The bound-preserving (BP) technique, as another important aspect of the LDG method,
has been developed to acquire physically relevant numerical approximations. Physically, the
saturation should be between 0 and 1. However, the approximation of the saturation obtained
by applying the LDG method may not fall within the range of [0, 1]. This is mainly due to
the overshoots and undershoots near the shocks in the saturation, leading to blow-up of the
approximations in someextremecases. This gapwill be bridgedby applying theBP technique.
In 2010, the genuinely maximum-principle-preserving (MPP) higher-order DG scheme was
first constructed byZhang et al. [55] for the conservation laws on rectangularmeshes. In 2012,
theMPP techniquewas extended successfully to the problemon triangularmeshes [58]. Later,
numerous problems have applied this technique, such as relativistic hydrodynamics [42],
shallowwater equations [49], pressureless Euler equations [50], hyperbolic equations with δ-
functions [51], compressible Euler equations [56, 57], and extended magneto-hydrodynamic
equations [60], etc. In the meantime, Shu et al. introduced the second-order MPP LDG
method in [59] for the convection-diffusion equation. In 2016, Chen et al. [7] developed
the third-order MPP direct DG methods for convection-diffusion equations on unstructured
triangular meshes. Subsequently, third-order MPP LDG methods on overlapping meshes for
parabolic equations were investigated by Du and Yang [17]. If the exact solution has only
one lower bound 0, then the technique is also called the positivity-preserving (PP) technique.
In recent years, the BP techniques were successfully extended to problems in petroleum
engineering. In [27], Guo and Yang first proposed a BP DG method for a two-component
compressible miscible displacements in porous media. Later, Chuenjarern et al. [10] applied
the idea to multi-component miscible displacements on triangular meshes. Recently, Guo
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et al. [26] applied BP technique to the incompressible miscible displacements in fractured
porousmedia. In 2020, Feng et al. [21] constructedBP interior penalty discontinuousGalerkin
(IPDG) methods with a second-order implicit pressure explicit concentration (SIPEC) time
marching for the coupled system of two-component compressible miscible displacements.
Afterwards, this work was extended to generalized coupled non-Darcy flow and transport
problems in petroleum engineering [22]. However, these works are all about single-phase
flow, and there are few studies on two-phase flows. For incompressible and immiscible
two-phase flows in porous media, Chen et al. considered fully mass-conservative IMPES
schemes [8] and a new efficient version [9]. The authors applied the lowest-order Raviart-
Thomas mixed finite element method for spatial discretization. In [34], Joshaghani et al.
proposed MPP DG methods with piecewise linear polynomials, where post-processing flux
and slope limiters are applied simultaneously, which made the algorithm more complicated
to implement. To the best knowledge of the authors, there are no high-order BP techniques
for two-phase flows available in the literature.

In this paper, we propose the high-order BP LDGmethod for incompressible and immisci-
ble two-phase flows. The whole procedure is as follows: (1) We design the LDG schemes for
both the pressure and saturation equations. In the pressure equation, the non-wetting phase
pressure is substituted by the wetting phase pressure and the capillary pressure, thus the
numerical fluxes of both (see (2.15), (2.16)) should be chosen consistently. (2) We implicitly
solve the pressure equation and explicitly for the saturation, leading to the IMPES method.
(3) We perform theoretical analysis of the BP technique for the saturation. The main idea
of this paper is to apply the PP technique for the saturation of each phase, respectively, and
enforce Sw+Sn = 1 numerically. TheBP technique studied in this paper keeps the high-order
accuracy and only requires a slope limiter, which is rather straightforward to implement. (4)
Finally, the time integration follows from the explicit high-order strong-stability-preserving
(SSP) Runge–Kutta (RK) method [24, 25]. We implicitly solve the pressure equation and
then explicitly update the wetting and non-wetting phase saturation.

The organization of this paper is as follows. In Sect. 2, we introduce the model of incom-
pressible and immiscible two-phase flows in porous media, and derive the LDG scheme for
both the pressure and saturation equations. In Sect. 3, we discuss the BP techniques and verify
that the approximate saturations of both phases satisfy the localmass conservation.Numerical
experiments are given in Sect. 4. Finally, we end in Sect. 5 with concluding remarks.

2 Mathematical Model and LDG Scheme

2.1 Mathematical Model

We now introduce the mathematical model for incompressible and immiscible two-phase
flows in porous media. The wetting and non-wetting phases are denoted by the subscripts
w and n, respectively. Then the governing equations over the computational domain � ⊂
Rd(d = 1, 2) read

φ
∂Sα

∂t
+ ∇ · uα = qα, in �, α = w, n, (2.1)

uα = −krα
μα

K∇ pα, in �, α = w, n, (2.2)

Sn + Sw = 1, in �, (2.3)
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pc(Sw) = pn − pw, in �, (2.4)

whereφ is the porosity of themedium,K denotes the absolute permeability tensor, Sα ,uα , pα ,
qα are the saturation, Darcy’s velocity, pressure and the source term of phase α, respectively.
pc is the capillary pressure. In (2.2), krα , μα are relative permeability and viscosity of phase
α, respectively. The phase mobility is defined by λα = krα

μα
, and the total mobility is given by

λt = λw + λn . The fractional flow functions are also defined as fw = λw/λt , fn = λn/λt .
Relative permeability krα and capillary pressure pc are given functions of Sw .

Let � = ∂� be composed of �D and �N such that � = �D ∪ �N and �D ∩ �N = ∅,
where �D denotes the Dirichlet part of the boundary and �N is the Neumann part. We also
denote by � = �in ∪ �out . Here �in = {x ∈ � : ut (x) · n(x) ≤ 0} is the inflow boundary
and �out = {x ∈ � : ut (x) · n(x) > 0} is the outflow boundary, where ut = uw + un is
the total velocity and n is the unit outward normal of �. We impose the initial and boundary
conditions to (2.1)–(2.4) as follows:

Sα = S0α, t = 0, α = w, n, (2.5)

pα = pBα , on �D, α = w, n, (2.6)

uα · n = gNα , on �N , α = w, n, (2.7)

Sα = SB
α , on �in, α = w, n. (2.8)

We also assume that the absolute permeability tensor K is symmetric positive definite, the
porosity φ is assumed to be a constant. In case that φ is not a constant but uniformly bounded,
the analysis can be obtained following [10] and [27]. We use the subscript α to specifically
denote the wetting phase or non-wetting phase, α = w, n.

2.2 Basic Notations

In this paper, the analysis we present below is based on the two-dimensional case. Let
� = [0, 1] × [0, 1] be a bounded rectangular domain in R2. Denote the grid points in x
and y directions by 0 = x 1

2
< x 3

2
< · · · < xNx− 1

2
< xNx+ 1

2
= 1 and 0 = y 1

2
< y 3

2
<

· · · < yNy− 1
2

< yNy+ 1
2

= 1, respectively. Define Ii = [xi− 1
2
, xi+ 1

2
], J j = [y j− 1

2
, y j+ 1

2
].

Let Ki j = Ii × J j be a quasi-uniform partition of � and denote �h = {Ki j }. For simplicity,
we assume uniform meshes. However, this assumption is not essential. We use K to denote a
typical cell, and themesh sizes in x and y directions are given as	x and	y, respectively.We
further define h = max{	x,	y}. The idea for triangular meshes can be otained following
[10], and we skip the details.

We define the following finite element spaces:

Wh = {w ∈ L2(�) : w|K ∈ Pk(K ),∀K ∈ �h}, Vh = [Wh]2,
where Pk(K ) denotes the space of polynomials of degree at most k in K . It is possible to use
the following finite element spaces:

Wh = {w ∈ L2(�) : w|K ∈ Qk(K ),∀K ∈ �h}, V h = [Wh]2,
where Qk(K ) denotes the space of tensor product polynomials of degree at most k in K .

Let β = (1, 1)T be a fixed vector.We define the left element KL and right element KR that
share the same element interface e, such that β · nKL |e > 0, β · nKR |e < 0, where nK is the
external normal vector of element K . For any u ∈ Wh and e ∈ ∂K , we define u+ = (u|KR )|e
and u− = (u|KL )|e, respectively. In addition, we use ∂−

K = {e ∈ ∂K : β · nK |e < 0}
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and ∂+
K = {e ∈ ∂K : β · nK |e > 0} to denote the inflow and outflow boundaries of K ,

respectively. Moreover, we define ne = (1, 0) if e is parallel to the y-axis while ne = (0, 1)
if e is parallel to the x-axis. Finally, we denote �h as the set of all element interfaces and
�0 = �h \ ∂�.

2.3 The LDG Scheme

In this section, wewill construct the LDG scheme for (2.1)–(2.4). The total mass conservation
can be obtained by summing up (2.1) over α and applying the constraint of the saturations
(2.3). Firstly, summing the mass conservation equations of the two phases, we have

φ
∂Sw

∂t
+ φ

∂Sn
∂t

+ ∇ · uw + ∇ · un = qw + qn .

Then applying Sw + Sn = 1, we can get

∇ · uw + ∇ · un = qw + qn . (2.9)

By the Darcy law (2.2) and the equation of capillary pressure (2.4), we can rewrite (2.9) as

− ∇ · (λw(Sw)K∇ pw) − ∇ · (λn(Sw)K∇ pw) = qw + qn + ∇ · (λn(Sw)K∇ pc(Sw))

(2.10)

which is known as the pressure equation. For the wetting phase, substituting (2.2) with α = w

into (2.1), we get the saturation equation:

φ
∂Sw

∂t
= qw + ∇ · (λw(Sw)K∇ pw) . (2.11)

In this paper, we choose the saturation of the wetting phase and pressure (S, p) = (Sw, pw)

as the primary unknowns.
Define σ α = ∇ pα and σ c = σ n − σw = ∇ pc(S), then (2.10), (2.11) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− ∇ · (λw(S)Kσw) − ∇ · (λn(S)Kσw) = qw + qn + ∇ · (λn(S)Kσ c) ,

σw = ∇ p,

σ c = ∇ pc(S),

φ
∂S

∂t
= qw + ∇ · (λw(S)Kσw) .

(2.12)

For simplicity, if not otherwise stated, we use p, S, σw, σ c as the numerical approximations
from now on, then the LDG scheme for (2.12) is to find (p, S, σw, σ c) ∈ Wh × Wh ×
Vh ×Vh , such that the following equations hold for arbitrary cell K ∈ �h and test function
(ς, ξ, η, ζ ) ∈ Wh × Wh × Vh × Vh :

−Gw(S, σw, ς) − Gn(S, σw, ς) = Gn(S, σ c, ς) +
∫

K
(qw + qn) ςdxdy,

(2.13a)
∫

K
σw · ηdxdy = Lw(p, η), (2.13b)

∫

K
σ c · ζdxdy = Lc(pc(S), ζ ), (2.13c)

∫

K
φ

∂S

∂t
ξdxdy = Gw(S, σw, ξ) +

∫

K
qwξdxdy, (2.13d)
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where

Gα(S, σw, ς) = −
∫

K
K(λα(S)σw) · ∇ςdxdy +

∫

∂K
K ̂(λα(S)σw) · nKςds,

(2.14a)

Gn(S, σ c, ς) = −
∫

K
K(λn(S)σ c) · ∇ςdxdy +

∫

∂K
K ̂(λn(S)σ c) · nKςds, (2.14b)

Lw(p, η) = −
∫

K
p∇ · ηdxdy +

∫

∂K
p̂η · nK ds, (2.14c)

Lc(pc, ζ ) = −
∫

K
pc(S)∇ · ζdxdy +

∫

∂K
pc(Ŝ)ζ · nK ds. (2.14d)

The “hat” terms are the numerical fluxes at the cell interfaces. For any e = ∂KL ∩ ∂KR :

K ̂(λα(S)σw) · ne = K
(
λα(S−)σ−

w

) ·ne + CLF (S+
α − S−

α ), p̂ = p+, (2.15)

where CLF ≥ 0 is a constant independent of h and is chosen by the BP technique. The flux
of (λn(S)σ c) should be selected in the same way as (λn(S)σw):

K ̂(λn(S)σ c) · ne = K
(
λn(S

−)σ−
c

) · ne, pc(Ŝ) = pc(S
+). (2.16)

Moreover, −K ̂(λα(S)σα) · n = gNα on e = ∂K ∩ �N , p̂ = pBw on e = ∂K ∩ �D and
pc(Ŝ) = pc(SB

w) on e = ∂K ∩ �in , where n is the unit outward normal vector of �.

Remark 2.1 In practice the direction of fluid flow is from bottom left to top right, so we use
the above mentioned numerical fluxes. It is possible to use the following Lax-Friedrich flux

K ̂(λα(S)σα) · ne = 1

2

(
K

(
λα(S+)σ+

w

) · ne + K
(
λα(S−)σ−

w

) · ne
) + CLF

(
S+
α − S−

α

)
,

p̂ = 1

2

(
p+ + p−)

, pc(Ŝ) = 1

2

(
pc(S

+) + pc(S
−)

)
,

K ̂(λn(S)σ c) · ne = 1

2

(
K

(
λn(S

+)σ+
c

) · ne + K
(
λn(S

−)σ−
c

) · ne
)
.

Note that if the direction of fluid flow is fixed, we use the upwind flux; otherwise, apply the
Lax-Friedrich flux.

3 Bound-Preserving Technique

In this section, we describe how to apply the BP technique to the LDG scheme. We only
discuss the first-order Euler forward time discretization, and the high-order ones are straight-
forward extendable. We use oi j to denote the numerical approximation o in Ki j and use ōi j
to denote its cell average. Moreover, we use on to represent the solution o at time level n.
For simplicity, if we consider two time levels n and n+1, and the numerical approximations
are at time level n, then the corresponding indices will be omitted. The key ingredients in
constructing the BP LDG scheme are:

• Given numerical approximations of S at time level n, such that 0 ≤ S ≤ 1. The cell
average at the next time level by Euler forward time stepping remains in [0, 1] under a
suitable CFL condition.

• Construct a slope limiter to modify the numerical approximations of Si j into S̃i j such
that 0 ≤ S̃i j ≤ 1 without changing its cell average.
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3.1 Bound-Preserving LDG Scheme

In this subsection, we will demonstrate the first ingredient. We only discuss the techniques
for cells away from ∂�, and the boundary cells can be analyzed following the same lines.
We propose three reasonable assumptions [8]:

• There exists a positive constant χα such that

λα(Sα) ≤ χαSα. (3.1)

• If qα ≤ 0, then there exist two positive constants r1 and r2 such that

r1Sα ≤ |qα| ≤ r2Sα. (3.2)

• There exists a positive constant κα such that

|gNα | ≤ καSα. (3.3)

In fact, the above three assumptions are reasonable. For example, when applying the Brooks-
Corey model [5] to the two-phase flow in porous media, the phase mobilities are nonlinear

functions and defined as λw(S) = 1
μw

S
2+3θ

θ
e , λn(S) = 1

μn
(1 − Se)2(1 − S

2+θ
θ

e ), where θ is
the parameter associated with pore size distribution, Se is the effective saturation defined as

Se = (S − Srw)/(1 − Srn − Srw). (3.4)

Here, Srα, α = w, n, is the residual phase saturation, namely, Sα ≥ Srα > 0. Let η =
2+3θ

θ
> 1, then we can easily derive that λw(S) ≤ 1

μw
(2 S)η ≤ 2η

μw
S. Thus we can choose

χw = 2η

μw
in (3.1). Similarly, we can also assume there exists a positive constant χn such that

λn(Sn) ≤ χn Sn . For the estimate (3.2) in the second assumption, this is also reasonable since
the sink term qα is derived from the internal flow rate. It is legitimate for the third assumption
as well by the fact that the flux gNα is related to the velocity uα and the saturation Sα , where
the velocity is bounded.

We consider Euler forward time stepping and find the suitable CFL condition. In (2.13d),
we take ξ = 1 in Ki j (Ki j away from ∂�) to obtain the equation

φ S̄n+1
i j = Hc

x (S, σw) + Hc
y (S, σw) + Hs(S, qw), (3.5)

where

Hc
x (S, σw) = 1

3
φ S̄i j + λ

∫

J j

(
K ̂λw(S)σw · ne

)

i+ 1
2 , j

−
(
K ̂λw(S)σw · ne

)

i− 1
2 , j

dy,

Hc
y (S, σw) = 1

3
φ S̄i j + λ

∫

Ii

(
K ̂λw(S)σw · ne

)

i, j+ 1
2

−
(
K ̂λw(S)σw · ne

)

i, j− 1
2

dx,

Hs(S, qw) = 1

3
φ S̄i j + λ

∫

Ki j

qwdxdy.

Here 	t is the time mesh size, λ = 	t
	x	y . Let us assume Sxi = {xβ

i : β = 1, · · ·, L} to be

the Gaussian quadrature points on Ii , and Syj = {yβ
j : β = 1, · · ·, L} to be those on J j . Also,

we use wβ for the corresponding quadrature weight on [− 1
2 ,

1
2 ], so that

∑L
β=1 wβ = 1. We

will also need the N -point Gauss-Lobatto quadrature rule. We distinguish the two quadrature
rules by adding hats to the Gauss-Lobatto points, i.e., Ŝxi = {̂xγ

i : γ = 1, · · ·, N } gives the
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Gauss-Lobatto quadrature points on Ii , and Ŝ yj = {ŷγ

j : γ = 1, · · ·, N } gives those on J j . Let

ŵγ be the quadrature weights on [− 1
2 ,

1
2 ] such that

∑N
γ=1 ŵγ = 1. Subscripts or superscripts

β will be used only for Gaussian quadrature points and γ only for Gauss-Lobatto points.
We define o+

i− 1
2 ,β

= oi j (x
+
i− 1

2
, yβ

j ) and oγ,β = oi j (̂x
γ

i , yβ
j ). Likewise for the other function

values. We will prove that if 	t is sufficiently small, then Hc
x , H

c
y , H

s are all positive, and
the results are given in the following two lemmas.

Lemma 3.1 Suppose S ≥ 0, then Hc
x (S, σw) ≥ 0 and Hc

y (S, σw) ≥ 0 under the conditions

CLF ≥ max
i, j,β

{χα|Kσ∓
α · ne|i± 1

2 ,β , χα|Kσ∓
α · ne|β, j± 1

2
}, (3.6)

λ1CLF ≤ φ

6
min

γ=1,···,N ŵγ , λ2CLF ≤ φ

6
min

γ=1,···,N ŵγ , (3.7)

where λ1 = 	t
	x , λ2 = 	t

	y .

Proof Let S̄i,β denote the average of Si j (x, y
β
j ) over Ii , then the cell average S̄i j is

S̄i j = 1

	x	y

∫

Ii

∫

J j
Si j (x, y)dxdy = 1

	x	y

∫

Ii

⎛

⎝
L∑

β=1

wβ Si j (x, y
β
j )	y

⎞

⎠ dx

=
L∑

β=1

wβ

(
1

	x

∫

Ii
Si j (x, y

β
j )dx

)

=
L∑

β=1

wβ S̄i,β .

(3.8)

By (3.8), we rewrite Hc
x (S, σw) as

Hc
x (S, σw) = 1

3
φ S̄i j + λ

∫

J j

(
K ̂λw(S)σw · ne

)

i+ 1
2 , j

−
(
K ̂λw(S)σw · ne

)

i− 1
2 , j

dy

= 1

3
φ

L∑

β=1

wβ S̄i,β + λ1

L∑

β=1

wβ

((
K ̂λw(S)σw · ne

)

i+ 1
2 ,β

−
(
K ̂λw(S)σw · ne

)

i− 1
2 ,β

)

=
L∑

β=1

wβ

⎛

⎝
N−1∑

γ=2

1

3
φŵγ Sγ,β + R1 + R2

⎞

⎠ ,

(3.9)

where

R1 = λ1

(

λw(S−
i+ 1

2 ,β
)
(
Kσ−

w · ne
)

i+ 1
2 ,β

+ CLF

(

S+
i+ 1

2 ,β
− S−

i+ 1
2 ,β

))

+ 1

3
φŵN S

−
i+ 1

2 ,β
,

R2 = −λ1

(

λw(S−
i− 1

2 ,β
)
(
Kσ−

w · ne
)

i− 1
2 ,β

+ CLF

(

S+
i− 1

2 ,β
− S−

i− 1
2 ,β

))

+ 1

3
φŵ1S

+
i− 1

2 ,β
.
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Since Sγ,β ≥ 0, we only need to prove R1 ≥ 0 and R2 ≥ 0. By (3.1), each of these two parts
can be organized as

R1 = λ1

(

λw(S−
i+ 1

2 ,β
)
(
Kσ−

w · ne
)

i+ 1
2 ,β

− CLF S
−
i+ 1

2 ,β

)

+ 1

3
φŵN S

−
i+ 1

2 ,β
+ λ1CLF S

+
i+ 1

2 ,β
,

=
(
1

3
φŵN − λ1CLF

)

S−
i+ 1

2 ,β
+ λ1λw(S−

i+ 1
2 ,β

)
(
Kσ−

w · ne
)

i+ 1
2 ,β

+ λ1CLF S
+
i+ 1

2 ,β

≥
(
1

3
φŵN − λ1CLF

)

S−
i+ 1

2 ,β
− λ1λw(S−

i+ 1
2 ,β

)
∣
∣Kσ−

w · ne
∣
∣
i+ 1

2 ,β
+ λ1CLF S

+
i+ 1

2 ,β

≥
(
1

3
φŵN − λ1

(
CLF + χw

∣
∣Kσ−

w · ne
∣
∣
i+ 1

2 ,β

))

S−
i+ 1

2 ,β
+ λ1CLF S

+
i+ 1

2 ,β
,

R2 = −λ1CLF S
+
i− 1

2 ,β
+1

3
φŵ1S

+
i− 1

2 ,β
+λ1

(

−λw(S−
i− 1

2 ,β
)
(
Kσ−

w · ne
)

i− 1
2 ,β

+CLF S
−
i− 1

2 ,β

)

≥
(
1

3
φŵ1 − λ1CLF

)

S+
i− 1

2 ,β
+ λ1

(

−λw(S−
i− 1

2 ,β
)
∣
∣Kσ−

w · ne
∣
∣
i− 1

2 ,β
+ CLF S

−
i− 1

2 ,β

)

≥
(
1

3
φŵ1 − λ1CLF

)

S+
i− 1

2 ,β
+ λ1

(
−χw

∣
∣Kσ−

w · ne
∣
∣
i− 1

2 ,β
+ CLF

)
S−
i− 1

2 ,β
.

Using (3.6) and (3.7),

1

3
φŵN − λ1

(
CLF + χw

∣
∣Kσ−

w · ne
∣
∣
i+ 1

2 ,β

)
≥ 0,

1

3
φŵ1 − λ1CLF ≥ 0, −χw

∣
∣Kσ−

w · ne
∣
∣
i− 1

2 ,β
+ CLF ≥ 0.

So we can obtain Hc
x (S, σw) ≥ 0. The proof for Hc

y (S, σw) ≥ 0 is similar, so we skip it. �


Finally we proceed to prove Hs(S, qw) ≥ 0.

Lemma 3.2 Suppose S ≥ 0, then Hs(S, qw) ≥ 0 under the following condition

	t ≤ φ

3

1

r2
. (3.10)

Proof Based on assumption (3.2), if qw ≤ 0,

Hs(S, qw) = 1

3
φ S̄i j + λ

∫

Ki j

qwdxdy

= 1

3
φ S̄i j − λ

∫

Ki j

|qw|dxdy

≥
N∑

γ=1

ŵγ

L∑

β=1

wβ

(

(
1

3
φ − 	tr2)Sγ,β

)

.

Under the condition (3.10), Hs(S, qw) ≥ 0. If qw > 0, then Hs(S, qw) ≥ 0 can be obtained
directly. �


Theorem 3.1 Consider the LDG scheme (2.13d) with first-order Euler forward time dis-
cretization. Suppose S ≥ 0, then S̄n+1 ≥ 0 under the conditions (3.6), (3.7) and (3.10).
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To obtain S̄n+1 ≤ 1, we only need to prove non-wetting phase saturation S̄n+1
n = 1− S̄n+1 ≥

0. Let ς = 1 in (2.13a) and ξ = 1 in (2.13d), then subtracting (2.13d) from (2.13a) as well
as using σ n = σw + σ c and (2.3), we can get

−
∫

K
φ

∂S

∂t
dxdy = Gn(S, σ n, 1) +

∫

K
qndxdy.

Then applying Sw + Sn = 1, we have
∫

K
φ

∂Sn
∂t

dxdy = Gn(S, σ n, 1) +
∫

K
qndxdy. (3.11)

Similar to (3.5), we can rewrite the above equation as

φ S̄n+1
ni j = Hc

x (Sn, σ n) + Hc
y (Sn, σ n) + Hs(Sn, qn), (3.12)

where

Hc
x (Sn, σ n) = 1

3
φ S̄ni j + λ

∫

J j

(
K ̂λn(S)σ n · ne

)

i+ 1
2 , j

−
(
K ̂λn(S)σ n · ne

)

i− 1
2 , j

dy,

Hc
y (Sn, σ n) = 1

3
φ S̄ni j + λ

∫

Ii

(
K ̂λn(S)σ n · ne

)

i, j+ 1
2

−
(
K ̂λn(S)σ n · ne

)

i, j− 1
2

dx,

Hs(Sn, qn) = 1

3
φ S̄n i j + λ

∫

Ki j

qndxdy.

Then S̄n+1
ni j ≥ 0 can also be derived follow the same lines, and the result is given below.

Theorem 3.2 Suppose 0 ≤ S ≤ 1, and the conditions in Theorem 3.1 are satisfied, then
0 ≤ S̄n+1 ≤ 1.

Next we study the cells near ∂�. The boundary cells can be analyzed following the same
lines with some minor changes except that the convection term is treated slightly differently
because of the existence of the boundary. Without loss of generality, we consider the bottom
left cell, denoted as K , as an example to illustrate the technique.

In (2.13d), we take ξ = 1 in K to obtain the equation satisfied by the cell average of S,

φ S̄n+1
K = HBc

x (S, σw) + HBc
y (S, σw) + Hs(S, qw), (3.13)

where

HBc
x (S, σw) = 1

3
φ S̄i j + λ

∫

J j

(
K ̂λw(S)σw · ne

)

i+ 1
2 , j

− (gNw )i− 1
2 , j dy,

HBc
y (S, σw) = 1

3
φ S̄i j + λ

∫

Ii

(
K ̂λw(S)σw · ne

)

i, j+ 1
2

− (gNw )i, j− 1
2
dx,

Hs(S, qw) = 1

3
φ S̄i j + λ

∫

K
qwdxdy,

with i = 1, j = 1.
The positivity of source term was given in Lemma 3.2. Hence we only focus on the

convection part, and we have the following conclusion.

Lemma 3.3 Suppose S ≥ 0, then H Bc
x (S, σw) ≥ 0 and H Bc

y (S, σw) ≥ 0 under the condi-
tions

CLF ≥ max
β

{χα|Kσ−
α · ne|i+ 1

2 ,β , χα|Kσ−
α · ne|β, j+ 1

2
}, (3.14)
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λ1A ≤ φ

6
min

γ=1,···,N ŵγ , λ2A ≤ φ

6
min

γ=1,···,N ŵγ , (3.15)

where λ1 = 	t
	x , λ2 = 	t

	y , A = max{CLF , κα}.
Proof

HBc
x (S, σw) =

L∑

β=1

wβ(

N−1∑

γ=2

1

3
φŵγ Sγ,β + R1 + R2), (3.16)

where

R1 = λ1

(

λw(S−
i+ 1

2 ,β
)
(
Kσ−

w · ne
)

i+ 1
2 ,β

+ CLF

(

S+
i+ 1

2 ,β
− S−

i+ 1
2 ,β

))

+ 1

3
φŵN S

−
i+ 1

2 ,β
,

R2 = −λ1(g
N
w )i− 1

2 ,β + 1

3
φŵ1S

+
i− 1

2 ,β
.

The analysis of R1 is the same as above. By (3.3),

R2 ≥ −λ1|gNw |i− 1
2 ,β + 1

3
φŵ1S

+
i− 1

2 ,β

≥
(

−λ1κw + 1

3
φŵ1

)

S+
i− 1

2 ,β
.

Obviously, R2 ≥ 0 by (3.15). So we can obtain HBc
x (S, σw) ≥ 0. The proof for

HBc
y (S, σw) ≥ 0 is similar, so we skip it. Moreover, we can conclude that the cell aver-

age expression for Sn is similar to the cell average for S. Therefore, 0 ≤ S̄n+1
α ≤ 1 for

boundary cells. �

Remark 3.1 If we use the Lax-Friedrich flux given in Remark 2.1, the proofs are basically
the same with some minor changes.

Lemma 3.4 For any K ∈ �h, taking ξ = 1 in (2.13d), similar to (3.11), the approximate
saturations of both phases satisfy the local mass-conservation property on K as follows:

∫

K
φ
Sn+1
α − Snα

	t
−

∫

∂K
K ̂(λα(S)σ α) · nK ds =

∫

K
qαdxdy.

3.2 Slope Limiter

Under the CFL conditions introduced in Sect. 3.1, we can guarantee the numerical cell
averages S̄ to be physically relevant. However, the numerical solutions of the LDG scheme
may still be negative or larger than 1. Therefore, a slope limiter is proposed to modify Si j .

We substitute S̃i j for Si j , where

S̃i j = θ(Si j − S̄i j ) + S̄i j , (3.17)

with

θ = min{| 1 − S̄i j
Mi j − S̄i j

|, | −S̄i j
mi j−S̄i j

|, 1},
Mi j = max

(x,y)∈Ki j
Si j (x, y), mi j = min(x,y)∈Ki j Si j (x, y).
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Then the IMPES scheme with the BP technique is briefly summarized as follows:

Step1 Given S from the time step n, seek pn+1 by (2.13a)–(2.13c):

−Gw(S, σ n+1
w , ς) − Gn(S, σ n+1

w , ς) = Gn(S, σ n+1
c , ς) +

∫

K
(qw + qn) ςdxdy,

∫

K
σ n+1

w · ηdxdy = Lw(pn+1, η),

∫

K
σ n+1
c · ζdxdy = Lc(pc(S), ζ ).

Then the non-wetting phase pressure pn+1
n can be updated by

pn+1
n = pn+1 + pc(S).

Step2 Given S, pn+1, seek Sn+1 by (2.13d) and modify Sn+1
i j by (3.17).

Step3 The non-wetting phase saturation Sn+1
n is updated by

Sn+1
n = 1 − Sn+1.

3.3 High-Order Time Integration

In this subsection, we introduce third-order SSP-RK [24, 25] time discretization to solve the
ODE system ot = L(o), which is a convex combination of Euler forward time discretization.
We consider the third-order SSP-RK method

o(1) = on + 	tL(on, tn),

o(2) = 3

4
on + 1

4
(o(1) + 	tL(o(1), tn + 	t),

on+1 = 1

3
on + 2

3
(o(2) + 	tL(o(2), tn + 	t

2
).

We can rewrite (2.11) as follows:

φ
∂S

∂t
= L(S, p, t). (3.18)

For three-order IMPES method, see Algorithm 1 below.

Algorithm 1: Three-order IMPES method

1: Compute the initial approximation:Sn

2: Given Sn , compute p(1) by (2.13a), the non-wetting phase pressure
p(1)
n = p(1) + pc(Sn)

3: Compute S(1) = Sn + 	tL(Sn, p(1), tn) and apply the slope limiter (3.17)
4: Given S(1), compute p(2) by (2.13a), the non-wetting phase pressure

p(2)
n = p(2) + pc(S(1))

5: Compute S(2) = 3
4 S

n + 1
4

(
S(1) + 	tL(S(1), p(2), tn + 	t)

)
and apply the slope

limiter (3.17)
6: Given S(2), compute pn+1 by (2.13a), the non-wetting phase pressure

pn+1
n = pn+1 + pc(S(2))

7: Compute Sn+1 = 1
3 S

n + 2
3

(
S(2) + 	tL(S(2), pn+1, tn + 	t

2 )
)
and apply the slope

limiter (3.17)
8: Compute Sn+1

n by Sn+1
n = 1 − Sn+1
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4 Numerical Experiments

In this section, we provide numerical examples to illustrate the performance of the numerical
method. We assume K is a diagonal matrix and K = kE , where k > 0 and E is the identity
matrix. For simplicity, the flows in these tests are driven by boundary conditions in place of
source terms, i.e., qα = 0.

We first test our numerical model with known analytical solutions in 1D and 2D space.
In Example 4.1, we use P2 and P3 polynomials in the 1D finite element space and test the
accuracy of LDG schemes with/without the BP technique. In Example 4.2, we use P2, Q2

and Q3 polynomials in the 2D finite element space. To verify the effectiveness of the BP
technique, we simulate the example with/without the BP technique for incompressible and
immiscible two-phase flows in porous media and compare the results. Examples 4.3- 4.5 are
realistic cases in [29].

Example 4.1 Accuracy test in 1D

In this example, we test the accuracy of the LDG method with P2 and P3 polynomials,
respectively. The exact solutions of the wetting phase saturation and pressure are given as

S(x, t) = e−t−ε cos(x), p(x) = cos(x), x ∈ � = [0, π

2
],

where ε = 1×10−6 is a constant. We use uniformmeshes with N elements. The correspond-
ingDirichlet boundary condition is prescribed at the right boundary x = π

2 , and theNeumann
boundary condition is prescribed at the left boundary x = 0. The relative permeabilities are
given by:

krw = Sme , krn = (1 − Se)
m, (4.1)

where m = 2, Se is given in (3.4). The rock porosity is 0.2, and the capillary pressure is
neglected. The viscosity of the wetting phase is set as μw = 1cP and that of the non-wetting
phase is μn = 0.45cP . The residual saturations are set as Srw = 0, Srn = 0. The absolute
permeability K = 1.

The source terms qw and qn are taken as

qw = q̃wS(x, t), qn = q̃n(1 − S(x, t)),

respectively, where q̃w = −0.2 + e−t−ε cos(x)2 − 2e−t−ε sin(x)2, q̃n = −0.2 +
0.2

1−e−t−ε cos(x) + 1
0.45 (1− e−t−ε cos(x)) cos(x)+ 2

0.45e
−t−ε sin(x)2. q̃w and q̃n are uniformly

bounded from below and above for a given time t .
We compute the saturation S and pressure p at time T = 0.1 with 	t = 0.01h. The

accuracy test resultswith/without theBP technique are shown in Tables 1, 2, 3, 4, respectively,
from which we can observe that the BP technique can make the numerical solutions between
[0,1] without degenerating the high-order accuracy. In Tables 3, 4, the number of meshes is
chosen densely since the accuracy of P3 polynomials drops too quickly. As the result shown
in Table 3, the numerical solution may not be larger than 1 in the case of P3 polynomials
since the choice of exact solutions, which is reasonable.

Example 4.2 Accuracy test in 2D

In this example, we test the accuracy of LDG method with P2, Q2 and Q3 polynomials,
respectively. The exact solutions of the wetting phase saturation and pressure are given as
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Table 1 Example 4.1: accuracy test by using P2 polynomials without the BP technique

N ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 7.7529e−04 – 3.4915e−04 – −4.963561e−04 1.000084e+00

8 1.0155e−04 2.9324 4.4852e−05 2.9606 −6.282213e−05 1.000005e+00

16 1.2157e−05 3.0623 5.7336e−06 2.9676 −7.877163e−06 1.000000e+00

32 1.4449e−06 3.0727 7.2347e−07 2.9864 −9.854085e−07 1.000000e+00

64 1.7502e−07 3.0453 9.0609e−08 2.9972 −1.231999e−07 1.000000e+00

Table 2 Example 4.1: accuracy test by using P2 polynomials with the BP technique

N ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 7.7422e−04 – 3.4724e−04 – 1.800621e−14 1.000000e+00

8 1.0131e−04 2.9338 4.4766e−05 2.9554 9.417082e−15 1.000000e+00

16 1.2149e−05 3.0599 5.7301e−06 2.9657 4.797964e−15 1.000000e+00

32 1.4446e−06 3.0720 7.2334e−07 2.9858 2.417944e−15 1.000000e+00

64 1.7501e−07 3.0451 9.0604e−08 2.9970 1.214801e−15 1.000000e+00

Table 3 Example 4.1: accuracy test by using P3 polynomials without the BP technique

N ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 1.5382e−05 – 9.4500e−06 – −1.136410e−05 9.999860e−01

6 2.5269e−06 4.4546 1.7648e−06 4.1383 −1.784049e−06 9.999972e−01

8 7.6296e−07 4.1627 5.7748e−07 3.8832 −3.978351e−07 9.999991e−01

10 3.2382e−07 3.8406 2.3520e−07 4.0252 −1.343817e−07 9.999996e−01

12 1.6298e−07 3.7656 1.1350e−07 3.9965 −5.461240e−08 9.999998e−01

14 9.0959e−08 3.8451 6.1102e−08 4.0172 −2.626176e−08 9.999999e−01

Table 4 Example 4.1: accuracy test by using P3 polynomials with the BP technique

N ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 1.4275e−05 – 9.3564e−06 – 1.914354e−14 9.999860e−01

6 2.4334e−06 4.3663 1.7586e−06 4.1224 1.284696e−14 9.999972e−01

8 7.7012e−07 3.9993 5.7616e−07 3.8789 9.661705e−15 9.999991e−01

10 3.2401e−07 3.8797 2.3495e−07 4.0197 7.726770e−15 9.999996e−01

12 1.6163e−07 3.8144 1.1341e−07 3.9940 6.441499e−15 9.999998e−01

14 8.9671e−08 3.8221 6.1073e−08 4.0154 5.524151e−15 9.999999e−01

S(x, y, t) = e−t−ε cos(x) cos(y), p(x, y) = cos(x) cos(y),

(x, y) ∈ � = [0, π

2
] × [0, π

2
],

where ε = 1 × 10−6 is a constant. We use uniform meshes with Nx × Ny elements. The
correspondingDirichlet boundary condition is prescribed at the right boundary x = π

2 and the
upper boundary y = π

2 . The Neumann boundary condition is prescribed at the left boundary
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Table 5 Example 4.2: accuracy test by using Q2 polynomials without the BP technique

Nx × Ny ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 × 4 1.9930e−03 – 3.1755e−04 – −5.503507e−04 1.000148e+00

8 × 8 3.6182e−04 2.4616 3.9017e−05 3.0247 −7.052766e−05 1.000009e+00

16 × 16 6.0311e−05 2.5847 4.8250e−06 3.0155 −8.905745e−06 1.000001e+00

32 × 32 9.0154e−06 2.7419 5.9911e−07 3.0096 −1.116862e−06 1.000000e+00

64 × 64 1.2415e−06 2.8602 7.4596e−08 3.0056 −1.397740e−07 1.000000e+00

Table 6 Example 4.2: accuracy test by using Q2 polynomials with the BP technique

Nx × Ny ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 × 4 2.1677e−03 – 3.0429e−04 – 9.753672e−15 1.000000e+00

8 × 8 3.7810e−04 2.5193 3.7292e−05 3.0285 2.555886e−15 1.000000e+00

16 × 16 6.1802e−05 2.6130 4.6584e−06 3.0009 1.075244e−15 1.000000e+00

32 × 32 9.1441e−06 2.7567 5.8479e−07 2.9938 2.732247e−16 1.000000e+00

64 × 64 1.2524e−06 2.8680 7.3438e−08 2.9933 9.664385e−17 1.000000e+00

Table 7 Example 4.2: accuracy test by using P2 polynomials without the BP technique

Nx × Ny ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 × 4 3.4563e−03 – 1.6434e−03 – −6.819774e−03 1.000613e+00

8 × 8 8.2517e−04 2.0664 2.0719e−04 2.9877 −2.209161e−03 1.000007e+00

16 × 16 1.7497e−04 2.2375 2.5981e−05 2.9954 −6.337623e−04 9.999925e−01

32 × 32 3.4904e−05 2.3256 3.2501e−06 2.9988 −1.766163e−04 9.999975e−01

64 × 64 6.7469e−06 2.3710 4.0634e−07 2.9997 −4.886019e−05 9.999993e−01

x = 0 and the lower boundary y = 0. The absolute permeability tensor K = diag(1, 1).
Other parameters are same as in Example 4.1.

The source terms qw and qn are taken as

qw = q̃wS(x, y, t), qn = q̃n(1 − S(x, y, t)),

respectively,where q̃w = −0.2+2e−t cos(x)2 cos(y)2−2e−t sin(x)2 cos(y)2−2e−t cos(x)2

sin(y)2, q̃n = −0.2 + 0.2
1−e−t−ε cos(x) cos(y) + 2

0.45 (1 − e−t−ε cos(x) cos(y)) cos(x) cos(y) +
2

0.45e
−t−ε sin(x)2 cos(y)2 + 2

0.45e
−t−ε cos(x)2 sin(y)2. q̃w and q̃n are uniformly bounded

from below and above for a given time t .
We compute the saturation S and pressure p at time T = 0.1 with 	t = 0.001h. The

accuracy test results of Q2 polynomials are shown in Tables 5, 6, and we can observe opti-
mal convergence rates. Compared with the Q2 polynomials, the accuracy test results of P2
polynomials in Tables 7, 8 fail to reach the optimal convergence rates. In Tables 9, 10, we
use the Q3 polynomials and the accuracy test results work to fourth order. From Tables 5, 6,
7, 8, 9, 10, we can observe that the BP technique is effective.

123



71 Page 16 of 26 Journal of Scientific Computing (2024) 99 :71

Table 8 Example 4.2: accuracy test by using P2 polynomials with the BP technique

Nx × Ny ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 × 4 2.5766e−03 – 3.9978e−04 – 1.914744e−14 1.000000e+00

8 × 8 6.4324e−04 2.0020 5.7212e−05 2.8048 9.758850e−15 1.000000e+00

16 × 16 1.4349e−04 2.1643 7.5832e−06 2.9154 4.904422e−15 9.999925e−01

32 × 32 2.9646e−05 2.2750 9.7175e−07 2.9641 2.453112e−15 9.999975e−01

64 × 64 5.8716e−06 2.3359 1.2259e−07 2.9867 1.228410e−15 9.999993e−01

Table 9 Example 4.2: accuracy test by using Q3 polynomials without the BP technique

Nx × Ny ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 × 4 1.1322e−05 – 7.6826e−06 – −2.212130e−06 9.999720e−01

6 × 6 2.0376e−06 4.2297 1.4643e−06 4.0880 −2.929831e−07 9.999944e−01

8 × 8 6.2575e−07 4.1038 4.5123e−07 4.0919 −6.872598e−08 9.999982e−01

10 × 10 2.5428e−07 4.0355 1.7876e−07 4.1494 −2.627583e−08 9.999992e−01

12 × 12 1.2457e−07 3.9135 8.1903e−08 4.2810 −3.193944e−08 9.999996e−01

14 × 14 7.1011e−08 3.6462 4.3530e−08 4.1004 −2.103845e−08 9.999997e−01

Table 10 Example 4.2: accuracy test by using Q3 polynomials with the BP technique

Nx × Ny ||S − Sh ||L1 Order ||p − ph ||L1 Order minS maxS

4 × 4 1.4226e−05 – 8.0535e−06 – 1.890033e−14 9.999720e−01

6 × 6 2.6130e−06 4.1793 1.5176e−06 4.1162 1.286633e−14 9.999944e−01

8 × 8 8.1715e−07 4.0407 4.6556e−07 4.1074 9.711720e−15 9.999982e−01

10 × 10 3.3926e−07 3.9393 1.8438e−07 4.1508 7.807912e−15 9.999992e−01

12 × 12 1.6899e−07 3.8225 8.4846e−08 4.2571 6.413843e−15 9.999996e−01

14 × 14 9.5423e−08 3.7078 4.3007e−08 4.4077 4.321924e−15 9.999997e−01

Example 4.3 Bukely-Leverett problem

Weconsider a 1Dhorizontal homogeneous domainwith the length of 300m, initially saturated
with oil (non-wetting phase). Water (wetted phase) from one end is injected with a constant
flow rate to displace the oil to the other end. The pressure at the production end is kept
constant. The linear and nonlinear relative permeability functions are used and the capillary
pressure is neglected.We use the time step size as 1 day, and the relevant data for this problem
are provided in Table 11.

In this example, we observe the effect of the viscosities of the oil and water phases for
the fluid flow. The simulation results for the buckley - leverett problem are given in Fig. 1
and Fig. 2, which are similar to those given in [29]. We assume that the viscosities of the two
phases are the same in case 1, i.e., the viscosity ratio is μw/μn = 1/1 and use the linear
permeabilities given in (4.1) with m = 1. In Fig. 1a we can observe that since the residual
saturation of oil Srw is 0.2, the saturation of water at the left end of the domain is 0.8. After
300 days, the saturation of water falls rapidly at the approximately 50m from the left, and
this phenomenon occurs at the approximately 200m after 1100 days. As shown in Fig. 1b,
μw/μn = 2/1, the viscosity of the displaced fluid is higher than that of the fluid being
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Table 11 Relevant data for
Example 4.3 Domain demensions 300m × 1m × 1m

Rock properties φ = 0.2, k = 1 md

Fluid properties μw(cP)/μn(cP) = 1/1, 2/1, 2/3

Relative permeabilities Linear, quadratic(eq. (4.1))

Capillary pressure Neglected

Residual saturations Srw = 0, Srn = 0.2

Injection rate 5 × 10−4PV/day

Mesh size 80 cells

Fig. 1 Example 4.3: Wetting phase saturation without the BP technique. a Linear relative permeabilities,
μw/μn = 1/1, b Linear relative permeabilities, μw/μn = 2/1, c Linear relative permeabilities, μw/μn =
2/3, d Quadratic relative permeabilities, μw/μn = 2/3

displaced and linear relative permeabilities are used, the solution has one shock similar to the
previous case. In Fig. 1c, the viscosity ratio isμw/μn = 2/3 and the linear permeabilities are
used, in this case the solution has no shock. In Fig. 1d, the viscosity ratio is μw/μn = 2/3
and we use the quadratic permeabilities given in (4.1) with m = 2. As shown in this figure,
the saturation of water decreases slowly and then followed by a shock. In all cases (Fig. 1)
the numerical solutions of the saturation do not satisfy the maximum principle and we can
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Fig. 2 Example 4.3: Wetting phase saturation with the BP technique. a Linear relative permeabilities,
μw/μn = 1/1, b Linear relative permeabilities, μw/μn = 2/1, c Linear relative permeabilities, μw/μn =
2/3, d Quadratic relative permeabilities, μw/μn = 2/3

observe local oscillations. Figure2 demonstrates that the BP technique is indispensable. It
can be seen that the oscillations disappear and the saturation belongs to the interval [0,1]
with the application of limiter.

Example 4.4 Van Duijn-De Neef problem

This example considers two-phase flow in a 1D horizontal domain with length of 200m. The
horizontal domain consists of two permeable media of equal length and different permeabil-
ities. The two ends of the domain are set to be closed. The left side (Part 1) and the right side
(Part 2) are initially saturated by the wetting fluid and the non-wetting fluid, respectively.
Due to the contrast in capillary pressure at the interface, there is a redistribution of the fluid
that occurs from counter-current displacement. The total velocity ut is equal to zero.

The relative permeability and capillary pressure are described as

krw = S4e , krn = (1 − Se)
2(1 − S2e ), pc = pt S

−1/2
e , (4.2)

where Se is given in (3.4) and pt is the threshold capillary pressure. Let (kl , kr ) and (pt,l , pt,r )
be the relative permeabilities and the threshold pressures in Part 1 (left) and Part 2 (right),
respectively. Other relevant data are provided in Table 12.
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Table 12 Relevant data for Example 4.4

Domain demensions 200m × 1m × 1m

Rock properties φ = 0.25, kl (md)/kr (md) = 858/858

Fluid properties μw(cP) = μn(cP) = 1

Relative permeabilities Eq. (4.2)

Capillary pressure Eq. (4.2), pt,l (bar)/pt,r (bar) = 0.1/0.1

Residual saturations Srw = 0, Srn = 0

Injection rate 0

Mesh size 100 cells

Fig. 3 Example 4.4: Wetting-phase saturation with different time steps

We compute the saturation Sw at time T = 30, 120, 300 with 	t = 0.0005, 0.0015.
The numerical results are shown as Fig. 3, fluid redistribution occurs during countercurrent
displacement due to the effect of pressure and capillary pressure. The results are similar to
those given in [29]. Figure3a and b are used to compare the effect of the BP technique.
In Fig. 3a, we can obviously observe that the numerical solution has significant oscillations
beyond the range of 0–1 without the BP technique. As shown in Fig. 3b, accurate numerical
solutions can be obtained in larger time steps with the BP technique, in which the oscillations
disappear and the numerical solution falls exactly within the interval [0,1]. Actually, a larger
time step size (	t = 0.002) can not be used. This is because larger 	t may break the BP
technique.

Example 4.5 Effect of capillarity on flow in heterogeneous media

In this example, we consider a 2D horizontal domain of 500m× 270m. We demonstrate the
importance of capillary pressure in a heterogeneous media. This domain consists of layers
with alternating permeabilities (1 md and 100 md), as shown in Fig. 4. Water (wetting phase)
is injected uniformly into the left side of the layered domain, which is initially saturated with
oil (non-wetting phase). The production is on the right side. Other relevant data are provided
in Table 13.
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Fig. 4 Example 4.5: permeability

Table 13 Relevant data for
Example 4.5 Domain demensions 500m × 270m × 1m

Rock properties φ = 0.2, k = 1, 100md

Fluid properties μw(cP) = 1, μn(cP) = 0.45

Relative permeabilities Quadratic (Eq. (4.2))

Capillary pressure Bc = 5, 50bar, (Eq. (4.3))

Residual saturations Srw = 0, Srn = 0

Injection rate 0.06, 0.11PV/year

Mesh size 100 × 45 cells

The capillary pressure function is given by:

pc(S) = −Bc log Se, (4.3)

where Se is given in (3.4) and Bc is the capillary pressure parameter. Firstly, we test the
problem in a heterogeneous porous media without capillary pressure, and compare the speed
of pushing the wetting phase to the right with different injection rates. We compute the
saturation of wetting phase at time T = 2, 3, 4, 5 with 	t = 0.001, and the injection rate is
0.06PV/year, 0.11PV/year, respectively. The bound-preserving will fail if we apply a larger
time step (	t = 0.002). We apply the BP limiter and the numerical results are shown as
Figs. 5 and 6. The wetting phase pushes to the right at a rapid speed when the injection rate
becomes higher. We repeat the test in a heterogeneous porous media with capillary pressure
and apply the BP limiter. Since pc(S) given in (4.3) is infinite with S = 0, the capillary
pressure is calculated by making S = 1 × 10−10 for S < 1 × 10−10. Actually, this cut-off
is reasonable, since in practice the saturation is greater than a non-zero residual saturation.
The result is shown in Fig. 7, where 	t = 0.0005 and the injection rate is 0.11PV/year. In
Fig. 7, we consider the capillary pressure, where the speed of flow slows down in the more
permeable layers due to cross-flow between layers thanks to the contrast of capillary pressure.
The results are similar to those given in [29]. Unfortunately, we cannot plot the numerical
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Fig. 5 Example 4.5: Wetting-phase saturation with zero capillary pressure and the injection rate is
0.06PV /year

solutions without the BP limiter due to the instability of the numerical simulation process.
Therefore, the application of the BP limiter is essential.

5 Concluding Remarks

In this paper, we first constructed the high-order BP LDG scheme for incompressible and
immiscible two-phase flow in porous media on rectangular meshes. We derived the LDG
scheme for the pressure-saturation equation and applied the IMPES method to solve the
pressure implicitly and update the saturation explicitly, which is locally mass conservative
for both phases. Moreover, we applied the BP technique for the problem to maintain that
the saturations to be between 0 and 1. Numerical experiments showed the high accuarcy and
effectiveness of the BP technique.
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Fig. 6 Example 4.5: Wetting-phase saturation with zero capillary pressure and the injection rate is
0.11PV /year
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Fig. 7 Example 4.5: Wetting-phase saturation with nonzero capillary pressure and the injection rate is
0.11PV /year
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