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Abstract
This paper presents Hamiltonian finite element methods for approximating semilinear wave
propagation problems, including the nonlinear Klein–Gordon and sine-Gordon equations.
The aim is to obtain accurate high-order approximations while conserving physical quantities
of interest such as energy. To achieve conservation properties at a discrete level, we propose
semidiscrete schemes based on two Hamiltonian structures of the equation. These include
Mixed finite element methods, discontinuous Galerkin methods, and hybridizable discontin-
uous Galerkin methods (HDG). In particular, we propose a new class of DG methods using
time operators to define the numerical traces, ultimately leading to an energy-conserving
scheme. Time discretization uses Symplectic explicit-partitioned and diagonally-implicit
Runge–Kutta schemes. Furthermore, the paper showcases several numerical examples that
demonstrate the accuracy and energy conservation properties of the approximations, along
with the simulation of soliton cloning.

Keywords Discontinuous Galerkin methods · Hybrid/mixed methods · Semilinear wave
equation Hamiltonian systems · Nonlinear Klein–Gordon equation · Sine-Gordon equation

1 Introduction

In this paper, we present several finite element methods for approximating a second-order
semilinear wave propagation problem. These includeMixed finite element methods (M), dis-
continuous Galerkin methods (DG), hybridizable discontinuous Galerkin methods (HDG),
and a straightforward example using standard continuous Galerkin methods. Our main objec-
tive is to obtain accurate high-order approximations while conserving physical quantities of
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interest such as energy. In order to describe our results, let us introduce the model second-
order semilinear wave equation on a polyhedral and bounded domain� ⊂ R

d , with Lipschitz
boundary �

ρ(x) ü(x, t) − ∇ · (κ(x)∇ u(x, t)) + g(u(x, t)) = f (x, t), x ∈ �, t ∈ (0, T ], (1a)

where κ = κ(x) is a symmetric and positive definite matrix-valued function, ρ = ρ(x)

and f = f (x, t) are scalar-valued functions, and g is a real-valued nonlinear functional
with notable examples g(u) = u − u3, (cubic Klein–Gordon equation) and g(u) = sin(u)

(sine-Gordon equation) The problem is subject to initial conditions

u(x, 0) = u0(x), u̇(x, 0) = v0(x), x ∈ �, (1b)

and periodic boundary conditions are assumed for the sake of the presentation; however, the
methods and their analysis can be adapted to Dirichlet and Neumann boundary conditions.

Perhaps the most notable examples of the semilinear wave model (1) are the sine-Gordon
and the nonlinear Klein–Gordon equations. The sine-Gordon equation has many applications
in modern physics, such as in sound propagation in crystal lattices, laser and particle physics,
and superconductivity, among others. See [4, 12] for more details about the applications. In
particular, in superconductivity, the sine-Gordon equation appears in the dynamics of mag-
netic flux in the Josephson junction where the kinks or antikinks, solitons of the sine-Gordon
equations, represent a quantum of magnetic flux (also known as fluxon or Josephson vortex),
quantity of interest in several experiments. In Gulevich and Kusmartsev [16] the authors
describe an experiment related to the birth of a single Josephson vortex in the Josephson
transmission line at a T-shaped junction. In Sect. 6, we replicate the experiment obtaining
similar results. The nonlinear Klein–Gordon equation also finds applications in physics, in
the fields of general relativity and quantum physics see [15, 20]. In both cases, the soliton
interaction has been intensively studied [12].

Finite element methods have been extensively used in linear wave propagation problems,
with mixed and discontinuous Galerkin (DG) methods showing advantages over continuous
finite element methods. The mixed, first-order velocity-stress [(velocity for the time deriva-
tive of the displacement/primal-variable and stress for the flux in (1)] formulation has been
widely considered for discretization, mixed methods [13], DG methods [6], symmetric inte-
rior penalty methods [14], local DG methods [30], HDG methods [10], HHO methods [5],
among others. For the two-dimensional sine-Gordon equation, the first local DG scheme
was introduced in [3] and is based on the velocity-stress formulation. This reference also
provides a complete list of numerical methods for approximating the sine-Gordon equation,
including finite differences and finite element methods. The LDGmethod in [2, 3] uses alter-
nating fluxes, and it is also energy-conserving. Our analysis in Sect. 4.2 includes this method.
Our contribution in this paper builds upon the recently introduced Hamiltonian finite element
methods [21] (see also the review article [8]), which combine finite elementmethods for space
discretization with symplectic methods for time discretization. Finite element methods dis-
cretize theHamiltonian systemof partial differential equations in away that results in a system
of ODEs that is also Hamiltonian. As a result, when the system is discretized by a symplectic
method, the conservation or non-drifting properties of the time integrators apply, making it
suitable for long-term simulations. This approach has been used for linear scalar wave [21],
elastodynamics [22], and electromagnetism [7, 27], see also the review article [8]. Thus, in
this paper, we focus on devising finite element methods for the model problem (1) which
preserve the Hamiltonian structure of the system. To do this, we consider two Hamiltonian
forms of the equations, namely, the displacement–velocity and displacement–velocity–stress
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Table 1 HDG and DG methods for the discretization of (1a)

Phase-space variables Method Numerical traces Hamiltonian structure

(uh , vh) HDG puh ∈ Mh Yes

pvh=None

pqh · n = qh · n + τ(uh − puh)

(uh , vh , qh) HDG puh=None No

pvh ∈ Mh

pqh · n = qh · n + τ(vh − pvh)

(uh , vh , qh) DG puh=None C11 = C22 = 0

pvh = {{vh}} + C12�vh� + C22�qh�

pqh = {{qh}} + C11�vh� − C12�qh�

(uh , vh) DG puh = {{uh}} + C12�uh� + C22�qh� Yes

pvh=None

pqh = {{qh}} + C11�uh� − C12�qh�

(uh , vh , qh) DG puh=None Yes

pvh = {{vh}} + C12�vh� + C22�q̇h�

pqh = {{qh}} + D11�uh� − C12�qh�

The first column indicates the phase-space variables, i.e., variables with time derivative, the second column is
the method family, and the third column indicates the form of the numerical fluxes

formulation. Note that, in contrast to the linear case, the displacement variable can not be
eliminated. In particular, we propose a new class of energy-conserving and Hamiltonian
structure-preserving DG schemes for the second formulation. These new methods follow the
ideas in [7], introducing time operators in the numerical traces. See Table 1 for a summary
of the methods discussed in the paper.

The paper is structured as follows. Section2 introduces the concept of a Hamiltonian sys-
tem and the two Hamiltonian formulations of the second-order semilinear wave propagation
model problem (1), namely the displacement–velocity and the displacement–velocity–stress
formulations. Section3 proposes several finite element methods for each formulation. Sec-
tion4 presents results corresponding to the Hamiltonian form of the method, specifically
in Sect. 4.1 the corresponding to the displacement–velocity formulation and in Sect. 4.2 the
results for the scheme based on the displacement–velocity–stress formulation. Section5 dis-
cusses the time discretization using symplectic explicit partitioned and diagonally implicit
Runge–Kutta schemes of the semidiscrete HDG schemes based on displacement–velocity
variables. We present three numerical experiments in Sect. 6, showcasing the optimal con-
vergence and superconvergence of the approximations and the energy-conserving properties
of the HDG scheme, including an example of the soliton cloning in a Josephson junction.
In addition, we include numerical results regarding the new DG schemes, showcasing their
energy-preserving properties. Finally, Sect. 7 provides the conclusions of this work.

2 Hamiltonian Form of the Semilinear Wave Equation

This section presents two Hamiltonian forms of the model problem (1). We will proceed to
write the second-order semilinear wave equations as a first-order system of equations. This
will result in two equivalent formulations at the continuous level, leading to two different
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Hamiltonian forms uponwhichwe base the derivation of the numerical schemes in Sect. 3. For
this purpose, we begin recalling the definition of a Hamiltonian system of partial differential
equations, see [8, 19].

Definition 2.1 A Hamiltonian system of partial differential equations is defined on a phase-
space M of smooth functions with suitable boundary conditions in terms of a Hamiltonian
functional H : M → R and a Poisson bracket {·, ·} by the system of equations

u̇ = {u,H}(u).

The Poisson bracket mentioned in the definition above is a general bilinear and skew-
adjoint operator acting on a pair of functionals on M, and it satisfies the so-called Jacobi
identity

{F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0,

forF,G,H functionalsmapping fromM toR. Poisson brackets are naturally defined through
structure skew-adjoint operators J in the following manner,

{F,G} =
∫

�

δF J δG.

Note that, as a consequence of the Poisson bracket’s properties, an autonomous Hamiltonian
system will conserve the Hamiltonian (often referred to as the energy) over time.

2.1 Two Hamiltonian Forms of theWave Equation

Nowwecan delve into theHamiltonian forms of thewaveEq. (1). For the sake of presentation,
we assume periodic boundary conditions. To derive the first formulation, we transform the
second-order model problem into a first-order system by introducing the velocity variable
v = u̇, obtaining the system

ρ u̇ = ρ v, in � × (0, T ], (2a)

ρ v̇ = f + ∇ · (κ∇u) − g(u), in � × (0, T ], (2b)

the Hamiltonian functional H = H[u, v] associated with these equations, which is also the
energy of the system, is given by

H[u, v] =
∫

�

(
1

2
ρv2 + 1

2
κ|∇u|2 + G(u)− f u

)
,

where the function G is such that G ′(u) = g(u), and the corresponding Poisson bracket to
the formulation is given, for functionals F = F[u, v] and G = G[u, v], by

{F,G} =
∫

�

ρ−1
(

δF
δu

δG
δv

− δF
δv

δG
δu

)
=
∫

�

δF J δG,

where J is the (canonical) skew-adjoint operator defined by

J = ρ−1
(

0 Id
−Id 0

)
,

and Id denotes the identity operator. A straightforward computation of the variations of the
Hamiltonian functional and applying the definition of the Hamiltonian system lead to the
first-order system above.
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Table 2 Conserved quantities for semilinear wave system (when f = 0 and periodic boundary conditions)

Name Symbol Definition

Energy E ∫ ( ρ
2 v2 + κ−1

2 |q|2 + G(u)
)

=: ∫ e(u, v, q)

Momenta M ∫
ρ v q

Angular momenta 1 A1
∫
(e(u, v, q) x + t v q)

Angular momenta 2 A2
∫
(x ⊗ q − q ⊗ x)v

A second Hamiltonian formulation can be derived by introducing the vector-valued (or
simply the gradient) variable q = −κ∇u, and adding the equation for its time derivative
q̇ = −κ∇v to the dynamics. In the linear case (g(u) = 0), this formulation results in a
dynamical system that only involves the velocity v and the vector-valued q variables, with
the displacement variable u being removed from the equations. However, due to the presence
of the nonlinear term g(u) in our model semilinear wave Eq. (1) this is no longer possible.
Hence the system including the vector-valued function q will read as follows

ρ u̇ = ρ v, in � × (0, T ],
ρ v̇ = f + ∇ · q − g(u), in � × (0, T ],

κ−1q̇ = −∇v, in � × (0, T ].
Note that in this formulation an element of the phase spaceM consists of three functions

(u, v, q), unlike the first formulation where elements of the phase space consist of two
functions. The Hamiltonian functional for this formulation also corresponds to the energy
and so we need to rewrite it in terms of the three variables (u, v, q), i.e.,

H[u, v, q] =
∫

�

(
1

2
ρv2 + 1

2
κ−1|q|2 + G(u)− f u

)
.

The corresponding Poisson bracket now is an operator applying to a pair functionals F =
F[u, v, q] and G = G[u, v, q], and given by

{F,G} =
∫

�

ρ−1
(

δF
δu

δG
δv

− δF
δv

δG
δu

+ ∇ · κ
δF
δq

δG
δv

− δF
δv

∇ · κ
δG
δq

)
=
∫

�

δF J δG,

where J is the skew-adjoint operator defined by

J = ρ−1

⎛
⎝ 0 Id 0

−Id 0 −∇ · κ

0 ∇ · κ 0

⎞
⎠ .

2.2 Conservation Laws

We end this section presenting some invariants of the model problem (1). These and other
invariants are derived in [25, 29] in amore general context. Here wewrite them in terms of the
three variables of our system u, v, q. Table 2 presents four physical quantities of interest, their
respective symbol, and their definition. Numerical experiments in Sect. 6 show the behavior
over time of their discrete approximations.
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3 Semidiscrete Methods

In this section, we introduce several finite element discretizations of the model semilinear
wave equation based on the Hamiltonian formulations discussed in the previous section. It
turns clear that conforming methods, such as continuous Galerkin and Mixed methods, nat-
urally inherit the Hamiltonian property of the equations, i.e., the corresponding semidiscrete
schemes can be interpreted as a generalized Hamiltonian system (or a Poisson system accord-
ing to [8]). On the other hand, non-conforming methods such as discontinuous Galerkin and
hybridizable discontinuous Galerkin methods, need an appropriate definition of the numer-
ical traces, a discrete Hamiltonian, or a discrete Poisson bracket in order to be cast as a
generalized Hamiltonian system.

3.1 Notation

Let Th = {K } be a family of conforming triangulations of the domain � using polyhedral
elements K and let Fh be the set of all faces F of the elements K ∈ Th . Here the parameter
h denotes the mesh size of the triangulation, that is, the maximum inner diameter of the
triangulation elements. For a domain X ⊂ R

d we define the volumetric L2 inner product for
scalar and vector-valued functions by

(v,w)X =
∫
X

v w dx, (r, q)X =
∫
X
r · q dx,

for (v,w) ∈ L2(X) and (r, q) ∈ L2(X)d . We extend these definitions for a subdomain
Y ⊂ R

d−1 and denote by 〈·, ·〉Y . For discontinuous Galerkin methods, we define the L2

inner products over the triangulation and the subsets of the set of faces for scalar-valued
functions v,w by

(v,w)Th
=
∑
K∈Th

(v,w)K , 〈v,w〉∂Th
=
∑
K∈Th

〈v,w〉∂K , 〈v, w〉Y =
∑
F∈Y

〈v,w〉F ,

where Y can denote the set of faces of an element of the triangulation, and the set of all faces,
∂K ,Fh , respectively. A similar notation is also employed for vector-valued functions.

Standard definitions of jumps and averages of discontinuous Galerkin functions are intro-
duced as follows. For an interior face F ∈ F0

h , such that F = ∂K+ ∩∂K− we define average
and normal jumps of scalar and vector-valued functions w and r , respectively, by

{{w}} = 1

2
(w+ + w−), �w� = w+n+ + w−n−,

{{r}} = 1

2
(r+ + r−), �r� = r+ · n+ + r− · n−,

where w± denotes the trace on F of a function w defined on K±.
Continuous, mixed, discontinuous, and trace finite element spaces are defined next

Xh = {w ∈ H1(�) : wK ∈ Pk(K ), ∀K ∈ Th},
VM

h = {r ∈ H(div,�) : r|K ∈ V (K ), ∀K ∈ Th},
VDG

h = {r ∈ [L2(�)
]d : r|K ∈ V (K ), ∀K ∈ Th},

Wh = {w ∈ L2(�) : w|K ∈ W (K ), ∀K ∈ Th},
Mh = {μ ∈ L2(Fh) : μ|F ∈ M(F), ∀F ∈ Fh},
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where Pk denotes the space of polynomial of degree k and V (K ), W (K ), M(F) are local
polynomial spaces.

We conclude this subsection by stating a well-established property used in DG methods
linking the product over ∂Th and Fh .

Lemma 3.1 Let w ∈ Wh and r ∈ VDG
h . Then, assuming periodic boundary conditions, we

have that

〈r · n, w〉∂Th
= 〈{{r}}, �w�

〉
Fh

+ 〈�r�, {{w}}〉Fh
.

3.2 Semi-discrete Methods for the Displacement u andVelocity v Formulation

We shall now proceed to derive the numerical methods based on the formulation (2) for the
displacement u and velocity v variables. Let us examine a straightforward example - the H1

conforming discretization of the first order formulation (2) using the piecewise continuous
polynomial finite element space Xh . We need to find uh and vh in Xh such that

(ρ u̇h, w)Th
= (ρvh, w)Th

, ∀w ∈ Xh,

(ρ v̇h, w)Th
= (κ∇uh,∇w)Th

− (g(uh), w)Th
+ ( f , w)Th

, ∀w ∈ Xh .

The Hamiltonian nature of the scheme was demonstrated in [8] for the linear case, i.e.
g(uh) = 0. The extension to the semilinear case follows a similar approach.

We now explore Mixed formulations of the semilinear wave equations. This involves the
addition of a vector-valued stress variable q = −κ∇u to the system, which can be treated
as a steady-state variable or a dynamic variable, that is with or without any time derivative
applied to q. Thus the first mixed method can be concisely summarized as follows: Find the
solution (uh, vh, qh) ∈ Wh × Wh × VM

h that satisfies:

(ρ u̇h, w)Th
= (ρ vh, w)Th

, ∀w ∈ Wh, (3a)

(ρ v̇h, w)Th
= − (∇ · qh, w

)
Th

− (g(uh), w)Th
+ ( f , w)Th

, ∀w ∈ Wh, (3b)

and where qh ∈ VM
h solves for each time t the system

(
κ−1 qh, r

)
Th

− (uh,∇ · r)Th
= −〈uD, r · n〉�, ∀r ∈ VM

h . (3c)

To define the discontinuous Galerkin and hybridizable discontinuous Galerkin methods
based on themixed formulation,we introduce the numerical traces puh and pqh , approximations
of the displacement u and the stress q. Their definition specifies a particular choice of
DG or HDG method. The general DG formulation is then obtained by relaxing the normal
continuity of the vector-valued function and introducing the numerical traces instead: Find
(uh, vh, qh) ∈ Wh × Wh × VDG

h solution of:

(ρ u̇h, w)Th
= (ρ vh, w)Th

, ∀w ∈ Wh,

(4a)

(ρ v̇h, w)Th
= (qh,∇w

)
Th

− 〈pqh · n, w
〉
∂Th

− (g(uh), w)Th
+ ( f , w)Th

, ∀w ∈ Wh,

(4b)

and where qh ∈ VDG
h solves for each time t the system

(
κ−1 qh, r

)
Th

− (uh,∇ · r)Th
+ 〈puh, r · n〉

∂Th
= 0, ∀r ∈ VDG

h . (4c)
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When using HDG methods, a trace approximation space Mh is used, and a new variable, the
scalar numerical trace puh ∈ Mh , is introduced. The vector-valued numerical trace is then
defined using a stabilization operator τ > 0 and the following definition,

pqh · n = qh · n + τ(uh − puh), on ∂Th .

The system is completed by weakly enforcing the continuity of the normal component of pqh〈
pqh · n, μ

〉
∂Th

= 0, ∀μ ∈ Mh .

On the other hand, discontinuous Galerkin methods use jumps and averages of the approx-
imations of uh and qh to define numerical traces explicitly,

pqh = {{qh}} + C11�uh� − C12�qh�, puh := {{uh}} + C12�uh� + C22�qh�,

on each face F ∈ Fh . Here we assumed periodic boundary conditions.

3.3 Semi-discrete Methods for the Displacement u, Velocity v and Stress q
Formulation

We will now discretize the time-dependent formulation for the three variables in the mixed
equations. Through a straightforward derivation, we arrive at the mixed method: Find the
solution (uh, vh, qh) ∈ Wh × Wh × VM

h that satisfies the equations

(ρ u̇h, w)Th
= (ρ vh, w)Th

, ∀w ∈ Wh, (5a)

(ρ v̇h, w)Th
= − (∇ · qh, w

)
Th

− (g(uh), w)Th
+ ( f , w)Th

, ∀w ∈ Wh, (5b)(
κ−1 q̇h, r

)
Th

= (vh,∇ · r)Th
, ∀r ∈ VM

h . (5c)

Note that, in the linear scalar wave equation, the displacement approximation uh can be
eliminated from the system. This results in evolution equations for the velocity vh and stress
qh variables, which was studied in [18].

Analogously, DG and HDG formulations can be derived by defining suitable numerical
traces. The general DG method for the three variables reads as follows: Find (uh, vh, qh) ∈
Wh × Wh × VDG

h satisfying that

(ρ u̇h, w)Th
= (ρ vh, w)Th

, ∀w ∈ Wh,

(6a)

(ρ v̇h, w)Th
= (qh,∇ w

)
Th

− 〈pqh · n, w
〉
∂Th

− (g(uh), w)Th
+ ( f , w)Th

, ∀w ∈ Wh,

(6b)(
κ−1 q̇h, r

)
Th

= (vh,∇ · r)Th
− 〈pvh, r · n〉

∂Th
, ∀r ∈ VDG

h .

(6c)

Similarly to the Mixed method, the displacement approximation uh can be removed from
the equations in the linear case, obtaining a numerical scheme for the velocity vh and the
stress qh . Hence, it is natural to introduce as a new variable to the system the numerical trace
approximation of the velocity pvh ∈ Mh for HDG methods and set pqh in terms of the normal
traces of qh and stabilization of the jumps of the velocity, i.e.,〈

pqh · n, μ
〉
∂Th

= 0, where pqh · n = qh · n + τ(vh − pvh), on ∂Th, (7)

for allμ ∈ Mh . This formulation was the first HDGmethod for the linear wave equation, and
its error analysis is given in [11], where they proved optimal error estimates. As it is observed
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in [8, 21], this method dissipates energy, and therefore it can not be written in Hamiltonian
form. In Theorem 4.2, we assert that the method is not Hamiltonian in the semilinear scenario
and then confirm that utilizing stabilization for the trace of the vector-valued function qh in
terms of the jumps of the velocity leads to a dissipative method.

For DG methods the standard definition of the numerical traces pqh and pvh , under periodic
boundary conditions, is given by

pqh = {{qh}} + C11�vh� − C12�qh�, pvh = {{vh}} + C12�vh� + C22�qh�. (8)

Unlike theHDGmethod, DGmethods can beHamiltonian and non-dissipativewhen using
numerical traces for the velocity and the stress. This is proven in Theorem 4.2 ii. An example
of such a scheme is the DG method with centered fluxes.

In Chung and Engquist [7] a new class of DGmethods that utilize time operators to define
the numerical traces were introduced for solving the time-dependent Maxwell equations. We
aim to incorporate these ideas to obtain new DG methods for the semilinear wave equation,
which possess the energy-conserving property and demonstrate that they are Hamiltonian.
Specifically, we introduce novel stabilization functions to define the numerical trace of the
vector-valued function pqh in terms of the displacement approximation uh instead of the
velocity. Thus, in the case of the DG method, we define the numerical traces pvh and pqh
appearing in (6) as follows:

pqh = {{qh}} + D11�uh� − C12�qh�, pvh := {{vh}} + C12�vh� + D22�q̇h�. (9)

After introducing these definitions into the DG formulation and rearranging the time deriva-
tives on the left-hand side, the following equations are obtained,

(ρ u̇h, w)Th
= (ρ vh, w)Th

, (10a)

(ρ v̇h, w)Th
= (qh,∇ w

)
Th

− (g(uh), w)Th
+ ( f , w)Th

(10b)

− 〈({{qh}} − C12�qh�) · n, w
〉
∂Th

− 〈D11�uh� · n, w
〉
∂Th

,(
κ−1 q̇h, r

)
Th

+ D22
〈
�q̇h�, r · n〉

∂Th
= (vh,∇ · r)Th

− 〈{{vh}} + C12�vh�, r · n〉
∂Th

,

(10c)

for all w ∈ Wh and r ∈ VDG
h . The energy-conserving property and the Hamiltonian form of

this new DG scheme are presented in Theorems 4.3 and 4.4 in Sect. 4.

Remark 1 In [26] and [28], researchers have previously introduced the use of time operators
in the definitions of numerical traces for Discontinuous Galerkin methods. These techniques
have been applied to address one-dimensional wave propagation problems within the context
of multi-symplectic schemes. As demonstrated in [26], the DG scheme outlined in Eq. (4)
adheres to the multi-symplectic structure in one-dimensional scenarios.

3.4 The Initial Conditions

To initialize the semidiscrete methods, we use the initial data u(t = 0) = u0 and v(t =
0) = v0. For methods written in mixed form, a corresponding discretized version, depending
on the method, of the equation q = −κ∇u is used to initialize qh (and puh in the case of
the HDG methods). This type of initial condition has been used, for instance, in mixed
methods for linear elastodynamics by Douglas et al. [1] and in HDG methods by Cockburn
et al. [9], Sanchez et al. [21] for the linear wave equation. In particular, in [21] a short study
examines the convergence properties of the method given different types of initial conditions,
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demonstrating that optimal convergence of the error is achieved under the initial condition
described above.

Assuming periodic boundary conditions, the HDG method is initialized by setting u0h ∈
Wh , q0h ∈ VDG

h , pu0h ∈ Mh , λ ∈ R approximations of the displacement, stress, trace of the
displacement and the average of the displacement over the domain, at time t = 0 by solving
the following system:

(
κ−1q0h, r

)
Th

− (u0h,∇ · r)Th
+ 〈pu0h, r · n〉

∂Th
= 0, (11a)

− (q0h,∇w
)
Th

+
〈
pq0h · n, w

〉
∂Th

+ (λ,w)Th
= (−
u0, w)Th

, (11b)
〈
pq0h · n, μ

〉
∂Th

= 0, (11c)
(
u0h, ν
)
Th

= (u0, ν)Th
, (11d)

for all (w, r, μ, ν) ∈ Wh ×VDG
h ×Mh ×R. The initial values of the velocity vh are obtained

using the L2 projection onto the finite-dimensional space Wh of the initial data v0, i.e.,
v0h = �v0.

4 Hamiltonian Finite Element Methods

The goal of this section is to demonstrate that the numerical schemes presented in Sect. 3 are
formulated in Hamiltonian form. As a consequence, the energy of the scheme is conserved
in time, and the semidiscrete methods are numerically stable. The analysis assumes periodic
boundary conditions, but the findings apply to other boundary conditions with data that do
not change over time.

4.1 Analysis of theMixed, DG, and HDGMethods for Displacement–Velocity
Formulation

Let us consider the mixed method (3), and the DG and HDG methods defined in (4), with
time evolution for the uh − vh variables and a steady-state equation for qh . The following
theorem explicitly shows the Hamiltonian form of these equations.

Theorem 4.1 Let H
h be the Hamiltonian functional, for  = M,DG,HDG, corresponding

to each method, defined by

H
h[uh, vh] = 1

2
(ρ vh, vh)Th

+ 1

2

(
κ−1 qh, qh

)
Th

+ (G(uh), 1)Th
− (uh, f )Th

+ S
h,

where S
h is a stabilization term given by SMh = 0 and

S
h = 1

2

〈
(pqh − qh) · n, uh − puh

〉
∂Th

, for  = DG,HDG,

where we use the respective definitions of the numerical traces for mixed, DG, HDGmethods.
Define the Poisson bracket for functionals F,G

{F,G} =
(

ρ−1 δF
δuh

,
δG
δvh

)
Th

−
(

ρ−1 δF
δvh

,
δG
δuh

)
Th

.
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Then, H
h, {·, ·} and the corresponding finite element spaces are Hamiltonian systems, for

 = M,DG,HDG.

Proof We start by defining the coordinate functionals associated with each dynamical vari-
able

Fuh = (ρ uh, w)Th
, Fvh = (ρ vh, w)Th

,

for w ∈ Wh . A simple calculation gives us the variations

ρ−1 δFuh

δuh
= w, ρ−1 δFuh

δvh
= 0, ρ−1 δFvh

δuh
= 0, ρ−1 δFvh

δvh
= w.

To prove theHamiltonian form of systems (3) and (4) with respect to the discrete Hamiltonian
H, for  = M,DG,HDG and the Poisson bracket {·, ·}, we need to verify the following
equations

(ρ u̇h, w)Th
= Ḟuh = {Fuh ,H

h} = (ρ vh, w)Th
,

(ρ v̇h, w)Th
= Ḟvh = {Fvh ,H

h} = (qh,∇w
)
Th

− 〈pqh · n, w
〉
∂Th

− (g(uh), w)Th
+ ( f , w)Th

,

and thus by definition of the Poisson bracket and the coordinate functionals, the proof reduces
to show that

{Fuh ,H
h} =

(
w,

δH
h

δvh

)
Th

= (ρ vh, w)Th
, (12)

{Fvh ,H
h} = −

(
w,

δH
h

δuh

)
Th

= (qh,∇w
)
Th

− 〈pqh · n, w
〉
∂Th

− (g(uh), w)Th
+ ( f , w)Th

.

(13)

We compute the variation of H
h according to the definition

δH
h := lim

ε→0

H
h[uh + εδuh, vh + εδvh] − H

h[uh, vh]
ε

=
(

δH
h

δuh
, δuh

)
Th

+
(

δH
h

δvh
, δvh

)
Th

.

A simple computation of the variation ofH
h with respect to vh implies (12). Meanwhile,

to derive (13), we need an expression of the variation ofH
h with respect to uh . This variation

corresponds to(
δH

h

δuh
, δuh

)
Th

= (κ−1 qh, δqh
)
Th

+ (g(uh), δuh)Th
− ( f , δuh)Th

+ δS
h .

Observe here that qh and puh are interpreted as functions of uh , and then we need to find
δqh and δpuh . For the first term, we use (4c),(

κ−1δqh, qh
)
Th

= (δuh,∇ · qh
)
Th

− 〈δpuh, qh · n〉
∂Th

= − (∇δuh, qh
)
Th

+ 〈δuh − δpuh, qh · n〉
∂Th

= − (∇δuh, qh
)
Th

+ 〈δuh, pqh · n〉
∂Th

− 〈δuh − δpuh, (pqh − qh) · n〉
∂Th

.

Moreover, note that the following identity holds〈
δ(pqh − qh) · n, uh − puh

〉
∂Th

= 〈(pqh − qh) · n, δuh − δpuh
〉
∂Th

.

This identity is straightforward for mixed and HDG methods. For DG method the argument
follows Lemma 4.1 in [27]. Thus

δS
h = 〈(pqh − qh) · n, δuh − δpuh

〉
∂Th

.
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Therefore, by replacing these terms we find that the variation of H
h with respect to uh is

(
δH

h

δuh
, δuh

)
Th

= − (∇δuh, qh
)
Th

+ 〈δuh, pqh · n〉
∂Th

+ (g(uh), δuh)Th
− ( f , δuh)Th

.

and hence it proves (13). �

4.2 Analysis of Methods for Displacement–Velocity–stress Formulation

The following theorem demonstrates that both the mixed and DGmethods are equivalent to a
Hamiltonian system, provided that the parameters defining the numerical traces satisfy certain
conditions. It’s important to note that HDG methods that use the velocity-based numerical
flux (7) are not Hamiltonian. To begin with, let’s introduce the Hamiltonian functionals

H
h[uh, vh, qh] = 1

2
(ρ vh, vh)Th

+ 1

2

(
κ−1 qh, qh

)
Th

+ (G(uh), 1)Th
− (uh, f )Th

,

for  = M,DG. Note that they differ in the finite element spaces in which they are defined,
that is, for  = M , the mixed method, (uh, vh, qh) ∈ Wh × Wh × VM

h , whilst for  = DG,
the DG method, (uh, vh, qh) ∈ Wh ×Wh ×VDG

h . In addition, we define the discrete Poisson
brackets listed below:

{F,G}Mh =
(

ρ−1 δF
δuh

,
δG
δvh

)
Th

−
(

ρ−1 δF
δvh

,
δG
δuh

)
Th

+
(

ρ−1∇ · κ
δF
δqh

,
δG
δvh

)
Th

−
(

ρ−1 δF
δvh

,∇ · κ
δG
δqh

)
Th

,

for functionals F,G defined for functions in the mixed finite element spaces, and

{F,G}DGh =
(

ρ−1 δF
δuh

,
δG
δvh

)
Th

−
(

ρ−1 δF
δvh

,
δG
δuh

)
Th

+
(

∇ · κ
δF
δqh

, ρ−1 δG
δvh

)
Th

−
(

ρ−1 δF
δvh

,∇ · κ
δG
δqh

)
Th

−
〈
κ

δF
δqh

· n, ρ−1
|δG
δvh

〉

∂Th

+
〈
ρ−1

|δF
δvh

, κ
δG
δqh

· n
〉

∂Th

,

for functionals F,G defined for functions in the DG spaces. Oberve here that the operator
(q·) is the numerical flux defined by qw = {{w}} + C12 · �w� (assuming periodic boundary
conditions). We are now in a position to state the Theorem.

Theorem 4.2 The Mixed, DG, HDG methods defined for the formulations involving the dis-
placement, velocity, and vector-valued variables satisfy:

i. The Mixed method (5) is Hamiltonian with Hamiltonian functional HM
h , and Poisson

bracket {·, ·}Mh and the mixed finite element spaces.
ii. The DG method (6), with numerical traces (8) and C11 = C22 = 0 is in Hamiltonian

form associated to the Hamiltonain functionalHDG
h , Poisson bracket {·, ·}DGh and the DG

spaces. If C11 �= 0 or C22 �= 0, then the previous does not hold.
iii. TheHDGmethod (6)with numerical trace pqh ·n = qh ·n+τ(vh−pvh) is not Hamiltonian.
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Proof Analogously to the proof of Theorem 4.1 we introduce coordinate functionals corre-
sponding to each dynamic equation of system (6), for uh, vh ∈ Wh and qh ∈ V 

h,  = M,DG

Fuh = (ρ uh, w)Th
, Fvh = (ρ vh, w)Th

, Fqh = (κ−1qh, r
)
Th

,

and compute their variations with respect to the variables uh, vh , and qh

ρ−1 δFuh

δuh
= w, ρ−1 δFvh

δvh
= w, κ

δFqh

δqh
= r,

variations with respect to other variables are zero by definition of the coordinate functional.
We first prove i ., the Hamiltonian form of the mixed method (5), that is, we want to prove
that

(ρ u̇h, w)Th
= Ḟuh = {Fuh ,HM

h }Mh = (ρ vh, w)Th
,

(ρ v̇h, w)Th
= Ḟvh = {Fvh ,HM

h }Mh = − (∇ · qh, w
)
Th

− (g(uh), w)Th
+ ( f , w)Th

,(
κ−1q̇h, r

)
Th

= Ḟqh = {Fqh ,H
M
h }Mh = (vh,∇ · r)Th

.

Computing the variation of HM
h and applying the Poisson bracket we obtain

{Fuh ,HM
h }Mh =

(
ρ−1 δFuh

δuh
,
δHM

h

δvh

)

Th

= (ρ vh, w)Th
,

{Fvh ,HM
h }Mh = −

(
ρ−1 δFvh

δvh
,
δHM

h

δuh
+ ∇ · κ

δHM
h

δqh

)

Th

= − (∇ · qh, w
)
Th

− (g(uh), w)Th
+ ( f , w)Th

,

{Fqh ,H
M
h }Mh =

(
∇ · κ

δFqh

δqh
, ρ−1 δHM

h

δvh

)

Th

= (vh,∇ · r)Th
.

Now, to prove i i ., we need to show that the DG system (6) is Hamiltonian, i.e.

(ρ u̇h, w)Th
= Ḟuh = {Fuh ,HDG

h }DGh = (ρ vh, w)Th
,

(ρ v̇h, w)Th
= Ḟvh = {Fvh ,HDG

h }DGh = (qh,∇w
)
Th

− 〈pqh · n, w
〉
∂Th

− (g(uh), w)Th
+ ( f , w)Th

,(
κ−1q̇h, r

)
Th

= Ḟqh = {Fqh ,H
DG
h }DGh = (vh,∇ · r)Th

− 〈pvh, r · n〉
∂Th

.

The first identity is simply a direct calculation

{Fuh ,HDG
h }DGh =

(
w,

δHDG
h

δvh

)

Th

= (ρvh, w)Th
.

For the second identity, we apply the Poisson bracket and the definition of the variations of
HDG

h to obtain

{Fvh ,HDG
h }DGh = −

(
w,

δHDG
h

δuh
+ ∇ · κ

δHDG
h

δqh

)

Th

+
〈
qw, κ

HDG
h

δqh
· n
〉

∂Th

= − (w, g(uh) − f + ∇ · qh
)
Th

+ 〈qw, qh · n〉
∂Th

= (qh,∇w
)
Th

+ 〈qh · n, qw − w
〉
∂Th

− (g(uh), w)Th
+ ( f , w)Th

,
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and then the identity follows from rewriting the second term using Lemma 3.1
〈
qh · n, qw − w

〉
∂Th

= 〈qh · n, {{w}} + C12 · �w� − w
〉
∂Th

= − 〈{{qh}}, �w�
〉
Fh

+ 〈�qh�, {{w}} + C12 · �w� − {{w}}〉Fh

= − 〈{{qh}} − C12�qh�, �w�
〉
Fh

= − 〈pqh · n, w
〉
∂Th

.

We observe here that the last step is due to the assumption C11 = C22 = 0. Finally, for the
third identity, we apply the definition of the Poisson bracket, the variations, and again using
that C11 = C22 = 0

{Fqh ,H
DG
h } = (∇ · r, vh)Th

− 〈r · n, qvh
〉
∂Th

= (vh,∇ · r)Th
− 〈pvh, r · n〉

∂Th
.

Finally, we prove i i i . Observe that the energy of the HDG method is

Eh = 1

2
(ρ vh, vh)Th

+ 1

2

(
κ−1 qh, qh

)
Th

+ (G(uh), 1)Th
− (uh, f )Th

.

A straightforward computation shows that the energy dissipates in time, and as a result, the
method is not Hamiltonian. This completes the proof. �

4.3 Analysis of New DGMethods for Displacement–Velocity–Stress

The Hamiltonian functional associated to the method (6) with numerical traces given by (9)
is the following:

H̃DG
h [uh, vh, qh] = 1

2
(ρvh, vh)Th

+ 1

2

(
κ−1qh, qh

)
Th

+ (G(uh), 1)Th
− ( f , uh)Th

+ 1

2
D11
〈
�uh�, �uh�

〉
Fh

+ 1

2
D22
〈
�qh�, �qh�

〉
Fh

. (14)

Theorem 4.3 The semidiscrete DG method (10) with numerical traces pqh and pvh defined in

(9) is energy-conserving, i.e., if f is zero in time then the energy defined by Eh = H̃DG
h , is

such that Ėh = 0.

Proof We test the Eqs. (10a), (10b) and (10c) withw = uh ,w = vh and r = qh , respectively,
and obtain

(ρ u̇h, uh)Th
= (ρ vh, uh)Th

,

(ρ v̇h, vh)Th
= (qh,∇ vh

)
Th

− (g(uh), vh)Th
+ ( f , vh)Th

− 〈({{qh}} − C12�qh�) · n, vh
〉
∂Th

− 〈D11�uh� · n, vh
〉
∂Th

,(
κ−1q̇h, qh

)
Th

+ D22
〈
�q̇h�, qh · n〉

∂Th
= (vh,∇ · qh

)
Th

− 〈{{vh}} + C12�vh�, qh · n〉
∂Th

.

Adding the last two equations above and observing that vh = u̇h and that

D11
〈
�uh�, vhn

〉
∂Th

= D11
〈
�uh�, �u̇h�

〉
Fh

,

D22
〈
�q̇h�, qh · n〉

∂Th
= D22

〈
�q̇h�, �qh�

〉
Fh

,

we obtain
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Ėh = (qh,∇vh
)
Th

− 〈({{qh}} − C12�qh�) · n, vh
〉
∂Th

+ (vh,∇ · qh
)
Th

− 〈{{vh}} + C12�vh�, qh · n〉
∂Th

= − 〈({{qh}} − C12�qh�) · n, vh
〉
∂Th

− 〈{{vh}} + C12 · �vh� − vh, qh · n〉
∂Th

= 0. �
Finally, we prove the Hamiltonian form of the new DG scheme (10). For the sake of

presentation, we follow the technique presented in [8] to prove the Hamiltonian form using
the coefficients of the finite element functions, recasting the semidiscrete method as a Hamil-
tonian ordinary differential equations system.

Theorem 4.4 The DG method (10) with numerical traces pqh and pvh defined in (9) is Hamil-
tonian, with Hamiltonian functional H̃DG

h , i.e., there exists a skew-symmetric matrix J such
that the semidiscrete scheme (10) is equivalent to a Hamiltonian ordinary differential equa-
tions system in terms of the unknowns u as u̇ = J (∂H̃DG/∂u).

Proof Let {ϕi } be an ρ-orthonormal basis of Wh and let ξ j be a basis of V
DG
h such that

(
κ−1ξ j , ξ j

)
Th

+ D22
〈
�ξ j �, �ξ i �

〉
Fh

= δi j , for i, j = 1, ..., dim(VDG
h ).

We now denote using sans serif typestyle the coefficients associated with the unknowns,
uh, vh, qh in these bases, i.e.

uh(x, t) =
∑
i

ui (t)ϕi (x), vh(x, t) =
∑
i

vi (t)ϕi (x), qh(x, t) =
∑
j

q j (t)ξ j (x).

Linear and nonlinear operators are defined next to express the DG method (6) in terms of the
coefficients,

Bi j = (∇ · ξ j , ϕi
)
Th

, Ci j = 〈ξ j · n, {{ϕi }} + C12 · �ϕi �
〉
∂Th

,

Eik = 〈�ϕi �, �ϕk�
〉
Fh

, g(u)i =
(
g

(∑
k

ukϕk

)
, ϕi

)

Th

,

for i = 1, ..., dim(Wh) and j = 1, ..., dim(VDG
h ). The Hamiltonian H̃DG

h can now be formu-
lated in terms of the coefficients as follows

H̃DG
h [u, v,q] = 1

2
v�v + 1

2
q�q + 1

2
D11u�Eu + G(u).

Variations of the Hamiltonian with respect to the coefficient are now straightforward com-
putations

δH̃DG
h

δu
= g(u) + D11Eu,

δH̃DG
h

δv
= v,

δH̃DG
h

δq
= q.

Thus, system (10) is equivalent to⎡
⎣u̇v̇
q̇

⎤
⎦ =
⎡
⎣ 0 Id 0

−Id 0 −B + C
0 B� − C� 0

⎤
⎦
⎡
⎣g(u) + D11Eu

v
q

⎤
⎦

=
⎡
⎣ 0 Id 0

−Id 0 −B + C
0 B� − C� 0

⎤
⎦
⎡
⎢⎣

δH̃DG
h /δu

δH̃DG
h /δv

δH̃DG
h /δq

⎤
⎥⎦
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from which we observe that the system is clearly Hamiltonian. �

5 Fully Discrete HDGMethods

This section presents the fully discrete schemes based on the time discretization of the
HamiltonianHDGmethod (4) by symplectic integrators. The extension to the other presented
methods can be extrapolated from the one presented in this section. To represent estimated
solutions at different times, we use the notation yn ≈ y(tn), an approximation of y at time
tn , where tn = t0 + n
t . For the sake of presentation, we assume that t0 = 0 and periodic
boundary conditions are prescribed. We will display the algorithms in their matrix form by
introducing bases of the finite element spaces. Let {φi } be a ρ-orthonormal basis of Wh , let
{ξ j } be a κ−1-orthonormal basis of VDG

h and {ηk} be a τ -orthonormal basis of Mh (assuming
that τ is constant on each face of Fh). Functions in the finite element spaces are represented
by their respective basis and employing coefficients, denoted by sans serif typeset. Hence,
the solutions of the HDG methods are written as

uh(x, t) =
∑
i=1

ui (t)ϕi (x), vh(x, t) =
∑
i=1

vi (t)ϕi (x),

qh(x, t) =
∑
j=1

q j (t)ξ j (x), puh(x, t) =
∑
m=1

pum(t)ηm(x),

for (x, t) ∈ � × [0, T ]. Now we introduce the linear and nonlinear operators associated
with the HDG scheme (4),

Bi j = (∇ · ξ j , ϕi
)
Th

, [Sτ ]i� = 〈τ ϕ�, ϕi 〉∂Th
, g(u)i =

(
g

(∑
l=1

ul(t)ϕl (x)

)
, ϕi

)

Th

,

[Eτ ]ik = 〈τ ηk , ϕi 〉∂Th
, C jk = 〈ηk , ξ j · n〉

∂Th
, fi = ( f , ϕi )Th

,

for i, � = 1, ..., dim(Wh), j = 1, ..., dim(VDG
h ), and k = 1, ..., dim(Mh). In the next

subsections, we introduce two classes of symplectic methods applied to the HDG system.

5.1 ESPRK-HDG

We first consider time-integrators in the class of symplectic partitioned Runge–Kutta meth-
ods [17]. These schemes effectively solve separable Hamiltonian such as the semidiscrete
HDG scheme (4), obtaining fully time-explicit time-steps. We refer to this class of symplec-
tic methods as explicit symplectic partitioned Runge–Kutta (ESPRK) methods. To define
the schemes we introduce two s-stages Runge–Kutta schemes associated with the following
Butcher tableaux

b1 b1 0 . . . 0
b1 + b2 b1 b2 . . . 0

...
...

...
. . .

...
s∑

i=1

bi b1 b2 . . . bs

b1 b2 . . . bs

,

0 0 0 . . . 0
B1 B1 0 . . . 0
...

...
...

. . .
...

s−1∑
i=1

Bi B1 B2 . . . 0

B1 B2 . . . Bs

. (15)
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It is important to note that these schemes, by design, satisfy the requirement of being sym-
plectic and are explicit time integrators for separable Hamiltonian systems.

Applying the ESPRK methods, with tableaux given by (15), to the semidiscrete HDG (4)
results in fully discrete schemes, with equations written in terms of the unknown coefficients
(vn, un,qn,pun) as follows

vn,i = vn,i−1 + 
t bi Lni−1(tn + Ci
t), (16a)

un,i = un,i−1 + 
t Bivn,i , (16b)

qn,i + Cpun,i = B�un,i , (16c)

C�qn,i − pun,i = −E�
τ u

n,i , (16d)

Lnj (t) = f(t) − Bqn, j − Sτun, j + Eτpu
n, j − g(un, j ), (16e)

for i = 1, ..., s. We organize the stages of the solver in Algorithm 1.

Algorithm 1: Single iteration of HDG-ESPRK for semilinear wave system

Input: (vn, un,qn,pun).
Output: (vn+1, un+1,qn+1

h ,pun+1
h ).

(vn,0, un,0) ← (vn, un).
for i = 1, . . . , s do

Compute vn,i with (16a) given (vn,i−1, un,i−1,qn,i−1,pun,i−1
, bi ,Ci ).

un,i ← un,i−1 + 
t Bi vn,i .
Solve the system formed by (16c) and (16d) for qn,i ,pun,i .

(vn+1, un+1,qn+1,pun+1
) ← (vn,s, un,s,qn,s,pun,s

).

5.2 SDIRK-HDG

Symplectic diagonally implicit Runge–Kutta (SDIRK) schemes are the second class of
methods considered in our discretization. Our interest in these methods is justified by the
outstanding behavior of the integration over time of quantities of interest, as it is shown
in [8, 21, 22, 27]. Symplectic diagonally implicit Runge–Kutta schemes of s-stages have the
following Butcher tableau

b1/2 b1/2 0 . . . 0
b2/2 + b1 b1 b2/2 . . . 0

...
...

...
. . .

...

bs/2 +∑s−1
i=1 bi b1 b2 . . . bs/2

b1 b2 . . . bs

.

Note that this structure arises from applying the symplecticity condition on a general diag-
onally implicit Runge–Kutta method. Now, discretizing using the SDIRK schemes and the
HDG semidiscrete method (4) gives the following equations in terms of the vector of coeffi-
cients y� = (u�, v�,q�,pu�

)

Aiyn,i + 
t
bi
2
G(yn,i ) = Li (tn + ci
t), i = 1, . . . , s (17a)

ki = 2


t bi
(yn,i − yn) − 2

i−1∑
j=1

b j

bi
k j , i = 1, . . . , s (17b)
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yn+1 = yn + 
t
s∑

i=1

biki , (17c)

where the matrix Ai , the linear form Li and the nonlinear term G are defined as:

Ai =

⎡
⎢⎢⎣

Id −
t (bi/2)Id

t (bi/2)Sτ Id 
t (bi/2)B −
t (bi/2)Eτ

−B� Id C
E�

τ C� −Gτ

⎤
⎥⎥⎦ , G(y) =

⎡
⎢⎢⎣

0
g(u)

0
0

⎤
⎥⎥⎦ ,

Li (t) =

⎡
⎢⎢⎣
un

vn

0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0

t (bi/2)f(t)

0
0

⎤
⎥⎥⎦+ 
t

i−1∑
j=1

b jk j ,

We solve the resulting nonlinear system (17) using a fixed point iteration based on the
inversion of the matrix Ai associated with the resulting system of the corresponding linear
wave equation. See Algorithm 2.

Algorithm 2: Fixed Point for each SDIRK step

Input: Initial point x(0).
F(x):=(Li (tn + ci
t) − 
t (bi/2)G(x)).
error = 1.
for k = 0, . . . do

Ai x(k+1) = F(x(k)).
error = ‖x(k+1) − x(k)‖2.
if error < tol then

Return x(k+1).

6 Numerical Experiments

This section showcases several numerical examples that illustrate the characteristics of the
HDG semidiscrete scheme (4). The scheme uses polynomial local spaces of degree k for all
variables and a constant stabilization function τ . For time discretization, we use a ESPRK
method and a SDIRK method, both of which exhibit sixth-order accuracy. See Appendix A
for the coefficients of the Runge–Kutta methods.We present three examples of our numerical
studies. The first example explores the convergence of errors and the number of iterations
required by the nonlinear solver in the implicit scheme. The second example provides numer-
ical evidence of the energy-conserving property of the HDG scheme when using periodic
boundary conditions, as well of the new DG scheme. Lastly, in the third example, we solve
a cloning soliton experiment called the Josephson transmission line, using the HDG scheme
and providing evidence of its energy conservation. All experiments in this section were
implemented using the open-source finite element software NETGEN/NGSolve [23, 24].

Example 1: Convergence Properties on Periodic Boundary

This example examines the convergence properties of the HDG methods (4) with the
sixth-order symplectic schemes HDGk-ESPRK6 and HDGk-SDIRK6, and with initial
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approximation obtained as described in Sect. 3.4. Structured diagonal triangulations were
used in the computations. We solve the semilinear wave problem (1) on the domain
� = (0, 1)2 with data ρ = κ = 1, g(u) = u2 and periodic boundary conditions. The
source term and the initial conditions are obtained from the manufactured exact solution

u(x, t) = sin(2π(x1 + x2 − √
2t)), � = (0, 1)2, 0 ≤ t ≤ T .

Tables 3 and 4 present the L2 errors and estimated orders of convergence for the approx-
imate solutions uh , vh , and qh , as well as the post-processed approximations u∗

h for the
HDGk-ESPRK6 and HDGk-SDIRK6 methods. The results show that the approximation uh ,
vh , and qh have optimal convergence rates of order k + 1, while the post-processed approx-
imation u∗

h has order k + 2 for k > 0. These findings match the results of the linear wave.
The post-processed approximation of the displacement u∗

h |K ∈ Pk+1(K ) is computed,
following the linear case [21], solving the local system (18) for all w ∈ Pk+1(K ), given
approximations unh and qnh at each time step.(∇u∗

h,∇w
)
K + (λ,w)K = − (qnh,∇w

)
K , (18a)(

u∗
h, 1
)
K = (unh, 1)K . (18b)

Table 5 reports the number of iteration steps done by the nonlinear solver Algorithm 2 used
in the HDGk-SDIRK6 scheme, using a time step of 
t = h/10 and stabilization parameter
τ = 10. We display the minimum, mean, and maximum number of iterations taken by fixed
point iteration over 150 timesteps for each mesh parameter h and each polynomial degree k,
and the corresponding average CPU time. These results were obtained in simulations running
on a 2.9GHz Dual-Core Intel Core i5 processor.

Example 2: Conservation of Physical Quantities

In this example, we aim to showcase the conservation properties of the HDG scheme (4),
by analyzing the cubic nonlinear Klein–Gordon equation (g(u) = u − u3) with zero source
f = 0 over the two-dimensional domain � = (0, 1)2. The computations are carried out
until a final time T = 50 and employ periodic boundary conditions. The initial conditions
are calculated using the initial data.

u0(x) = 219(x101 (1 − x1)
10 + x102 (1 − x2)

10),

v0(x) = −10 · 219(x91 (1 − x1)
9(1 − 2x1) + x92 (1 − x2)

9(1 − 2x2)).

We focus on studying the long-term evolution of physical quantities related to the semilin-
ear wave Eq. (1). The quantities approximated here are energy and momentum. We compute
the two approximations of the energy; the first Eh corresponds to the continuous energy func-
tional in terms of the approximate variables and the second one the correct Hamiltonian Hh

associated with the HDG methods (4).

Hh :=HHDG
h ,

Eh :=1

2
(ρ vh, vh)Th

+ 1

2

(
κ−1 qh, qh

)
Th

+ (G(uh), 1)Th
,

‖Mh‖2:=
∥∥∥∥
∫

�

ρ vhqh dx

∥∥∥∥
2
.

The approximate solution is computed at each time step using the HDG scheme with
piecewise polynomials of degree 3 with a fixed stabilization parameter τ = 10 and ESPRK
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Table 3 Convergence results regarding the L2-norm for HDGk -ESPRK6 method in Example 1

k h uh vh qh u∗
h

Error e.o.c Error e.o.c Error e.o.c Error e.o.c

0 5.00e−01 8.64e−01 − 7.75e+00 − 7.11e+00 − 9.50e−01 −
2.50e−01 6.74e−01 0.36 7.38e+00 0.07 5.90e+00 0.27 6.51e−01 0.54

1.25e−01 5.06e−01 0.41 5.28e+00 0.48 4.54e+00 0.38 4.80e−01 0.44

6.25e−02 3.21e−01 0.66 3.05e+00 0.79 2.92e+00 0.64 3.05e−01 0.66

3.13e−02 1.84e−01 0.81 1.62e+00 0.92 1.68e+00 0.79 1.75e−01 0.80

1.56e−02 9.87e−02 0.90 8.29e−01 0.96 9.08e−01 0.89 9.46e−02 0.89

1 5.00e−01 9.77e−01 − 8.73e+00 − 7.98e+00 − 8.78e−01 −
2.50e−01 2.96e−01 1.72 3.10e+00 1.49 3.18e+00 1.33 2.39e−01 1.88

1.25e−01 5.96e−02 2.31 6.73e−01 2.20 7.03e−01 2.18 3.90e−02 2.62

6.25e−02 1.22e−02 2.29 1.67e−01 2.01 1.58e−01 2.16 5.24e−03 2.89

3.13e−02 2.77e−03 2.13 4.18e−02 2.00 3.83e−02 2.04 6.83e−04 2.94

1.56e−02 6.75e−04 2.04 1.05e−02 2.00 9.45e−03 2.02 8.64e−05 2.98

2 5.00e−01 4.60e−01 − 2.96e+00 − 4.49e+00 − 4.57e−01 −
2.50e−01 3.85e−02 3.58 3.56e−01 3.06 4.97e−01 3.18 2.18e−02 4.39

1.25e−01 4.71e−03 3.03 4.46e−02 3.00 6.77e−02 2.87 1.19e−03 4.19

6.25e−02 5.96e−04 2.98 5.95e−03 2.91 8.72e−03 2.96 6.86e−05 4.12

3.13e−02 7.47e−05 3.00 7.65e−04 2.96 1.10e−03 2.99 4.12e−06 4.06

1.56e−02 9.33e−06 3.00 9.70e−05 2.98 1.37e−04 3.00 2.56e−07 4.01

3 5.00e−01 6.69e−02 − 8.33e−01 − 1.19e+00 − 8.33e−02 −
2.50e−01 2.29e−03 4.87 2.51e−02 5.06 7.85e−02 3.92 2.26e−03 5.21

1.25e−01 1.42e−04 4.01 1.89e−03 3.73 5.34e−03 3.88 7.23e−05 4.96

6.25e−02 9.84e−06 3.85 1.46e−04 3.70 3.36e−04 3.99 2.34e−06 4.95

3.13e−02 6.32e−07 3.96 1.01e−05 3.86 2.09e−05 4.00 7.26e−08 5.01

1.56e−02 3.98e−08 3.99 6.54e−07 3.95 1.31e−06 4.00 2.25e−09 5.01

and SDIRK time stepping schemes of sixth order. In our computations, we use a uniform
triangulation with mesh size parameter h = 0.125 and a fixed time step 
t = h/10. For
each quantity, we compute the relative error for the difference between the approximation at
time and the initial approximation.

Figure 1 shows similar behavior in the approximations by scheme HDG-ESPRK and
scheme HDG-SDIRK. In the first figure on the left, the energy is approximated up to 5
digits and exhibits non-drifting behavior over time with respect to the initial approximation.
The discrete Hamiltonian Hh provides an almost constant approximation of the energy, as
shown in the second figure in the middle. In both cases, the approximation does not drift
over time. Observe that, in the semilinear case, oscillations of the quantities occur due to the
time integration errors of the discrete Hamiltonian induced by the time-stepping schemes.
Finally, the third figure on the right shows an error of order 10−3 over time, indicating a small
dissipation compared to the initial approximation.

Additionally, we test the new DG methods (10). The election of numerical traces pqh and
pvh is given by the coefficients: D11 = 1, C12 = (1/2, 1/2) and D22 = 1. Note that these
satisfy the assumptions of Theorem 4.3. In particular, note that a non-zero coefficient D22
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Table 4 Convergence results regarding the L2-norm for HDGk -SDIRK6 method in Example 1

k h uh vh qh u∗
h

Error e.o.c Error e.o.c Error e.o.c Error e.o.c

0 5.00e−01 8.64e−01 − 7.75e+00 − 7.11e+00 − 9.50e−01 −
2.50e−01 6.74e−01 0.36 7.38e+00 0.07 5.90e+00 0.27 6.51e−01 0.54

1.25e−01 5.06e−01 0.41 5.28e+00 0.48 4.54e+00 0.38 4.80e−01 0.44

6.25e−02 3.21e−01 0.66 3.05e+00 0.79 2.92e+00 0.64 3.05e−01 0.66

3.13e−02 1.84e−01 0.81 1.62e+00 0.92 1.68e+00 0.79 1.75e−01 0.80

1.56e−02 9.87e−02 0.90 8.29e−01 0.96 9.08e−01 0.89 9.46e−02 0.89

1 5.00e−01 9.77e−01 − 8.73e+00 − 7.98e+00 − 8.77e−01 −
2.50e−01 2.96e−01 1.72 3.10e+00 1.49 3.18e+00 1.33 2.39e−01 1.88

1.25e−01 5.96e−02 2.31 6.73e−01 2.20 7.03e−01 2.18 3.90e−02 2.62

6.25e−02 1.22e−02 2.29 1.67e−01 2.01 1.58e−01 2.16 5.24e−03 2.89

3.13e−02 2.77e−03 2.13 4.18e−02 2.00 3.83e−02 2.04 6.83e−04 2.94

1.56e−02 6.75e−04 2.04 1.05e−02 2.00 9.45e−03 2.02 8.64e−05 2.98

2 5.00e−01 4.60e−01 − 2.96e+00 − 4.49e+00 − 4.56e−01 −
2.50e−01 3.85e−02 3.58 3.56e−01 3.06 4.97e−01 3.18 2.18e−02 4.39

1.25e−01 4.71e−03 3.03 4.46e−02 3.00 6.77e−02 2.87 1.19e−03 4.19

6.25e−02 5.96e−04 2.98 5.95e−03 2.91 8.72e−03 2.96 6.86e−05 4.12

3.13e−02 7.47e−05 3.00 7.65e−04 2.96 1.10e−03 2.99 4.12e−06 4.06

1.56e−02 9.32e−06 3.00 9.70e−05 2.98 1.37e−04 3.00 2.56e−07 4.01

3 5.00e−01 6.69e−02 − 8.28e−01 − 1.19e+00 − 8.33e−02 −
2.50e−01 2.29e−03 4.87 2.51e−02 5.04 7.84e−02 3.93 2.25e−03 5.21

1.25e−01 1.42e−04 4.01 1.89e−03 3.73 5.34e−03 3.88 7.23e−05 4.96

6.25e−02 9.84e−06 3.85 1.46e−04 3.70 3.35e−04 3.99 2.34e−06 4.95

3.13e−02 6.32e−07 3.96 1.01e−05 3.85 2.09e−05 4.00 7.26e−08 5.01

1.56e−02 3.98e−08 3.99 6.54e−07 3.95 1.31e−06 4.00 2.25e−09 5.01

Fig. 1 Example 2. Plot of the evolution of the relative errors for the approximations of the energy Eh (left) and
Hh (middle), and the momentum (right). In each of the figures, blue line denotes the approximation by the
HDG3-ESPRK6 method, and the red line the approximations by HDG3-SDIRK6

changes the time-stepping procedure by adding to the mass matrix a term that involves the
jump across the faces of the elements.

The Hamiltonian quantity in this case corresponds to Hh :=H̃DG
h [uh, vh, qh] in (14). We

use the same method as before to compute the physical quantities Eh and Mh .
To obtain our approximations, we utilize piecewise polynomials of degree 3 and employ

a sixth-order accurate SDIRK method on a structured triangular mesh with h = 0.125 and a
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Table 5 Performance report on
fixed point algorithm for the
solution of the HDG-semilinear
wave system with periodic
boundary from Example 1

k h ndof Fixed Point
Min Mean Max Time (s)

0 5.00e−1 44 3 4.77 6 0.015

2.50e−1 176 3 4.30 5 0.029

1.25e−1 704 3 3.71 4 0.078

6.25e−2 2816 3 3.56 4 0.307

3.13e−2 11,264 3 3.00 3 1.106

1 5.00e−1 120 3 4.92 6 0.022

2.50e−1 480 4 4.42 5 0.056

1.25e−1 1920 3 3.71 4 0.189

6.25e−2 7680 3 3.71 4 0.890

3.13e−2 30,720 3 3.00 3 4.073

2 5.00e−1 228 4 4.87 6 0.047

2.50e−1 912 4 4.29 5 0.134

1.25e−1 3648 3 3.71 4 0.667

6.25e−2 14,592 3 3.71 4 2.738

3.13e−2 58,368 3 3.00 3 12.40

3 5.00e−1 368 4 4.82 6 0.070

2.50e−1 1472 4 4.43 5 0.333

1.25e−1 5888 3 3.71 4 1.420

6.25e−2 23,552 3 3.71 4 5.720

3.13e−2 94,208 3 3.00 3 20.12

Fig. 2 Example 2. A plot of the evolution of the relative errors for the approximations of the energy Eh (left)
andHh (middle), and the momentum (right) for the DG3-SDIRK6 method

fixed time step of 
t = h/10. Figure2 illustrates the relative error evolution of the physical
quantities. We observe that the Hamiltonian H̃DG

h is accurately conserved, with oscillations
of up to 9 digits of precision. However, the quantity Eh exhibits a slight drift in contrast
to the HDG method shown in Fig. 1. Additionally, we provide a plot of the momentum
approximation obtained using the new DGmethods, which exhibits a similar behavior to the
HDG method’s approximation.

Example 3: Josephson Transmission Line

In this example, we follow the cloning soliton experiment from [16]. The experiment consid-
ers the sine-Gordon equation (g(u) = sin(u)) with zero source term f = 0 on the T -shaped
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Fig. 3 Example 3. Illustration and dimension of T-shaped domain for propagating a cloning soliton

domain illustrated in Fig. 3. Homogeneous Neumann boundary conditions are set on ∂�

modeling zero current on the boundary.
The initial conditions for this system are set to:

u0(x) = 4 arctan

(
exp

(
x1 − z√
1 − c2

))
,

v0(x) = − 2c√
1 − c2

sech

(
x1 − z√
1 − c2

)
,

where z and c are the first components of the initial position and velocity of the solution,
respectively. We compute two simulations with c = 0.7, associated with the non-cloning
effect, and c = 0.8, resulting in the cloning effect of the soliton. The HDG scheme’s initial
approximation is computed similarly to the system derived in Sect. 3.4, now imposing the
zero Neumann boundary condition.

We approximate the solution of the problem by the HDG3-ESPRK6 method (16) on an
unstructured triangulation with mesh parameter h = 0.1. The stabilization of the HDG
method is set to τ = 10, and a fixed time step of 
t = h/10 is taken. The evolution of
both examples can be seen in Figs. 4a and b and the relative errors regarding their physical
quantities can be seen in Fig. 5.

Our results replicate those obtained in [16], showing the cloning effect of the soliton along
the domain given a specific initial velocity. Figure4a shows the evolution over time of the
kink soliton for t = 0, 15, 20, 25 with c = 0.7. For this given velocity, the soliton cannot
replicate itself through the channels and move backward. On the other hand, Fig. 4b shows
the evolution of the kink soliton for c = 0.8. In this case, the soliton moves forward through
both channels proceeding to the right and upwards.

Furthermore, we present in Fig. 5 the evolution relative errors of the two approximations
of the energy discussed in the previous example and the approximation of the momentum
for each case c = 0.7 and c = 0.8 starting at z = −10. The discrete Hamiltonian gives
an accurate approximation of the energy up to 13 digits of precision in both cases, with
non-drifting behaviors as predicted by the Hamiltonian structure of the scheme.

7 Conclusions

We present Hamiltonian Mixed, DG, and HDG methods specifically devised to preserve the
Hamiltonian structure of the semilinear wave Eq. (1). Our results extend several numeri-
cal schemes introduced for the linear wave equation to the nonlinear case. Moreover, we
present a new class of discontinuous Galerkin methods with time operators defining their
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Fig. 4 Example 3. Evolution of Kink soliton on T-shaped domain with velocity c = 0.7 (a) and c = 0.8 (b).
We observe in (a) the non-cloning effect and in (b) the cloning effect of the kink soliton

Fig. 5 Example 3. Plots of the relative errors evolution for the approximations Eh (blue) and Hh (red) of the
energy andMh (black) of the momentum

numerical traces. We prove in Theorem 4.3 that the scheme is energy-conserving and that
the semidiscrete method is in Hamiltonian form. Numerical experiments demonstrate that
the approximate solution converges optimally with an order of k + 1 when using piecewise
polynomial spaces of degree k. Also, a post-processed approximation of the displacement
converges with an order k + 2 consequence of the superconvergence properties. The exper-
iments showcase the energy-conserving property of the approximations as a consequence
of the Hamiltonian form of the scheme. We also replicate a soliton cloning effect over a
Josephson Transmission line, frequently discussed in applications where computations over
a long term are crucial. Additionally, we showcase the energy-preserving properties of the
new DG method (10), proving its Hamiltonian structure numerically.
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Finally, the error analysis of the new discontinuous Galerkin methods and methods for the
nonlinear Schrödinger equation are subjects of ongoing investigation. Possible extensions to
other nonlinear wave propagation problems using the Hamiltonian finite element methods
could prove essential to devised energy-conserving methods suitable for computation over
long periods.
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Appendix A. Runge–Kutta Methods

Table 6 Order 6 SDIRK
coefficients. Obtained from [21] Stage b = (b1, . . . , bs )

�

1 7.8451361047755652 · 10−1

2 2.3557321335935860 · 10−1

3 −1.1776799841788705

4 1.3151863206839107

5 −1.1776799841788705

6 2.3557321335935860 · 10−1

7 7.8451361047755652 · 10−1

Table 7 Order 6 ESPRK
coefficients. Obtained from [21] Stage b = (b1, . . . , bs )

� B = (B1, . . . , Bs )
�

1 0.0502627644003922 0.148816447901042

2 0.413514300428344 −0.132385865767784

3 0.0450798897943977 0.067307604692185

4 −0.188054853819569 0.432666402578175

5 0.541960678450780 −0.016404589403618

6 −0.725525558508690 −0.016404589403618

7 0.541960678450780 0.432666402578175

8 −0.188054853819569 0.067307604692185

9 0.0450798897943977 −0.132385865767784

10 0.413514300428344 0.148816447901042

11 0.0502627644003922 0
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