
Journal of Scientific Computing (2024) 99:80
https://doi.org/10.1007/s10915-024-02511-7

Analysis of a New NFV Scheme Preserving DMP for
Two-Dimensional Sub-diffusion Equation on Distorted
Meshes

Xuehua Yang1 · Zhimin Zhang2

Received: 26 October 2023 / Revised: 28 January 2024 / Accepted: 13 March 2024 /
Published online: 6 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In this paper, we describe a new nonlinear finite-volume scheme that preserves the dis-
crete maximum principle (DMP) for the two-dimensional sub-diffusion equation on distorted
meshes. One distinguishing feature of our method is its ability to uphold the DMP for the
anisotropic sub-diffusion problems, thereby ensuring the absence of spurious oscillations
in numerical solutions and maintaining the physical bounds of various quantities, such as
concentration, temperature, and density. Notably, our scheme offers the advantage of being
applicable to distorted meshes without stringent constraints. Numerical results demonstrate
that our scheme successfully preserves maximum principle on various randomly distorted
meshes.
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1 Introduction

The sub-diffusion has been observed and validated in various interesting phenomena. It also
referred as non-Gaussian. In this paper, we deal with the following sub-diffusion problem

with a tensor diffusion coefficient κ =
(

κ11(x, t) κ12(x, t)
κ21(x, t) κ22(x, t)

)
:

∂α
t u − ∇ · (κ(x, t)∇u) = f (x, t), (x, t) ∈ ΩT , (1.1)

u(x, 0) = v(x), x ∈ Ω̄, (1.2)
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u(x, t) = ψ(x, t), (x, t) ∈ ∂Ω × (0, T ], (1.3)

and

v(x) = ψ(x, 0), x ∈ ∂Ω, (1.4)

where ∂α
t u = ∫ t

0
∂u(·,η)

∂η
dη

Γ (1−α)(t−η)α
, 0 < α < 1, ΩT ≡ Ω × (0, T ], Ω is a connected

bounded polygonal set of R2 with boundary ∂Ω , f , v, ψ are given functions. The tensor
diffusion coefficient κ is the positive definite, that is to say, there exists two constantsμ1 > 0,
μ2 > 0 such that the following conditions hold:

μ1‖ϑ‖2 ≤ κ(x, t)ϑ · ϑ ≤ μ2‖ϑ‖2, f or x ∈ Ω̄, ϑ ∈ R2. (1.5)

For problem (1.1)–(1.4), a key feature is that the solution has an initial layer at t = 0
and ∂u

∂t may blow up when t → 0. In past decades, numerous authors have addressed this
issue and proposed various schemes for linear and nonlinear sub-diffusion problems [1–10].
But all of the above works have focused on numerical schemes with high-order stability and
convergence. There has been almost no consideration given to important properties, such as
local conservation property, mass conservation property, monotonicity property, and DMP
property.

Maximum principle (also known as extremum principle) is a crucial feature of sub-
diffusion equations. Interesting theoretical studies on the maximum principle of equations
(1.1)–(1.4) can be found in [11]. The DMP ensures non-negativity and eliminates non-
physical oscillations in numerical solutions, making it a highly desirable property for
numerical schemes. Jin et al. [12] provided the positivity property of problem (1.1)–(1.4)
and proposed three numerical method, where non-negativity cannot be maintained for suf-
ficiently small step, but after a certain threshold is reached, it may reappear. Ye et al. [13]
provided a predictor-corrector method with a maximum principle (MP) for specified 1D frac-
tional PDEs on a uniform grid. Jiang [14] established monotone properties of FDMs for 1D
sub-diffusion equations on a uniform grid and developed a monotone FVM in [15]. In [16],
Brunner presented aMP for sub-diffusion equation but did not include numerical simulations.
It’s worth noting that all of the aforementioned methods preserve only the monotonicity, not
the discrete maximum principle. Monotonicity refers to preserve non-negativity, which is a
special case of the DMP. More recently, Du et al. [17, 18] established maximum principle-
preserving (MPP) exponential time differencing schemes for semilinear parabolic equations.
Liao et al. [19, 20] provided time-steppingMPP schemes for nonlocal nonlinear partial differ-
ential equations. These MPP schemes are designed for time-stepping on conforming spatial
meshes and do not directly apply to randomly distorted spatial meshes.

This paper is the first in a series of papers on a nonlinear finite-volume (NFV) scheme
that preserves DMP for the sub-diffusion problems with anisotropic diffusion coefficients on
general polygonal meshes.

The primary contributions of this paper are as follows:

– We derive MP for a suitably defined solution for the first time and provide a proof that
the discrete solution of the proposed scheme satisfies DMP.

– Using nonlinear weighted methods, we construct a conservative flux through a weighted
combination of nonconservative fluxes.

– Furthermore, we offer a proof that the proposed scheme has local conservation property
and relies solely on cell-centered unknowns.

The primary advantages of this method are as follows:

– It preserves local conservation property.
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– It can be applied to general distortedmeshes without imposing stringent mesh conditions.
– It preserves MP property even for problems with strongly anisotropic and heterogeneous

full tensor coefficients.

The remainder of this article is organized as follows. The maximum principle properties
of problem (1.1)–(1.4) is proved in Sect. 2. A new NFV scheme is constructed in Sect. 3.
In Sect. 4, we prove DMP property of the proposed method. Five numerical examples are
introduced in Sect. 5. A conclusion is presented in Sect. 6.

2 TheMaximum Principle for (1.1)–(1.4)

Theorem 1 Suppose u(x, t) is the solution of (1.1)–(1.4) in ΩT , u(·, t) ∈ C (α)([0, T ]) ≡
{u|u ∈ C([0, T ]), ∂α

t u ∈ C([0, T ])}, 0 < α < 1. If ∂2u
∂xi ∂x j

, ∂u
∂xi

∈ C(Ω̄T ), 1 ≤ i, j ≤ 2, κ ,
∂κ
∂xi

∈ [L∞(ΩT )]2×2, and κ(x, t) is positive definite and satisfies the condition (1.5). Then

(1) If f (x, t) ≤ 0, (x, t) ∈ Ω̄T , then u(x, t) ≤ max{0, M},
where M := max

{
max
x∈Ω̄

u(x, 0), max
x∈∂Ω,t∈[0,T ] u(x, t)

}
.

(2) If f (x, t) ≥ 0, (x, t) ∈ Ω̄T , then u(x, t) ≥ min{0, m},
where m := min

{
min
x∈Ω̄

u(x, 0), min
x∈∂Ω,t∈[0,T ] u(x, t)

}
.

2.1 Two Preliminary Lemmas

To prove Theorem 1, we introduce two following results, which are the essential elements
of our proof.

Lemma 1 [16, Lemma 3.3] Assume f (t) ∈ C (α)([0, T ]) for 0 < α < 1. If there is some
point t0 ∈ (0, T ) so that f (t) ≤ f (t0) for t ∈ [0, t0]. Then

(∂α
t f )(t0) ≥ 0. (2.6)

Lemma 1 was introduced by Luchko in [21, Theorem 1] under the stronger assumptions.
We refer the reader to the work [16, 21] for the proof of the Lemma 1.

Lemma 2 [16, Lemma 3.4] Let a function f = f (t) ∈ C (α)([0, T ]), satisfy

(1) f (t) ≤ f (t0) for 0 ≤ t ≤ t0 ≤ T ,
(2) (∂α

t f )(t0) = 0.

Then, for 0 ≤ t ≤ t0, one gets

f (t) = f (t0), ∀t ∈ [0, t0]. (2.7)

2.2 Proof of Theorem 1

We only prove the maximum principle (1). Since the minimum principle (2) can be obtained
if we substitute -u instead of u in the reasoning below.

Note that u(x, t) is continuous in (x, t) ∈ Ω̄ ×[0, T ]. Then ∃(x0, t0), x0 ∈ Ω̄ , t0 ∈ [0, T ]
with following property

u(x0, t0) ≥ u(x, t), (x, t) ∈ Ω̄T . (2.8)
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Now assume 0 < u(x0, t0). The reason is that if 0 ≥ u(x0, t0), maximum principle (1) is
true.

Further, since 0 < u(x0, t0), if x0 ∈ ∂Ω , t0 ∈ [0, T ] or t0 = 0, the maximum point of
u on Ω̄T is (x0, t0), i.e. M = u(x0, t0). Obviously in this case the maximum principle (1)
holds.

If 0 < u(x0, t0), x0 ∈ Ω , t0 ∈ (0, T ], note that u(x, t) ≤ u(x0, t0) in (2.8), then by using
Lemma 1 we obtain the following relation

(∂α
t u)(x0, t0) ≥ 0, (2.9)

Also, the continuous function u has a maximum value, and its necessary condition is:

∂u

∂x1
(x0, t0) = ∂u

∂x2
(x0, t0) = 0, (2.10)

and Hessian matrix ⎡
⎣

∂2u
∂x21

∂2u
∂x1∂x2

∂2u
∂x2∂x1

∂2u
∂x22

⎤
⎦

(x0,t0)

(2.11)

is a symmetric negative semidefinite.
Since (κi j )2×2 is positive definite, then we can find an invertible matrix (Q(x, t))2×2 so

that κ(x, t) = QT (x, t)Q(x, t).
Thus, by combining the condition (2.11), we have

2∑
i=1

2∑
j=1

κi j (x0, t0)
∂2u

∂xi∂x j
(x0, t0) ≤ 0. (2.12)

Notice that ∇ · (κ∇u) = ∑2
i=1

∑2
j=1(κi j

∂2u
∂xi ∂x j

+ ∂κi j
∂xi

∂u
x j

), then by combining conditions
(2.10) and (2.12) yield

∇ · (κ(x0, t0)∇u(x0, t0)) ≤ 0. (2.13)

Also, since f (x0, t0) ≤ 0, using (2.13), then Eq. (1.1) implies

(∂α
t u)(x0, t0) = (∇ · (κ∇u))(x0, t0) + f (x0, t0) ≤ 0. (2.14)

By combining (2.9) and (2.14), one has

(∂α
t u)(x0, t0) = 0.

Moreover, for all 0 ≤ t ≤ t0, we have

u(x0, t0) ≥ u(x0, t).

Thus, using the two equations above, the result in Lemma 2 implies that

u(x0, t) = u(x0, t0), ∀t ∈ [0, t0]. (2.15)

Further, using (2.15), we can get

u(x0, t0) = u(x0, 0). (2.16)

We complete the proof.
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Fig. 1 Stencil of meshes and notation of stencil

3 The Construction of Discrete Scheme

3.1 Preliminaries

In order to deal with the weak singularity of the solution at initial time t = 0, we first
introduce a graded mesh subdivision of the temporal interval [0, T ]. For a positive integer
N , 0 = t0 < · · · < tN = T , assume τn = tn − tn−1 and

τ = max
1≤k≤N

τk, tn = T (n/N )r , r ≥ 1, n = 0, . . . , N .

Nextwewill introduce notation onmeshes and stencil (see Fig. 1) for spatial discretization.
AssumeM and E be a set of all cells and cell edges, respectively. The cell and cell-center are
presented by K or L , the cell edge by σ , the boundary of K by ∂K , the midpoint of cell-edge
by Mi , the cross point by Oi . Eext and Eint the set of boundary and interior edges, respectively.
LetPin andPout be the set of K in Ω and Mi on ∂Ω , respectively. Let �nKσ /�nLσ be the unit
outer normal on σ of K /L , �tK Mi /�tL Mi be the unit tangential vectors on K Mi /L Mi , i = 1, . . . .

We also define the angles

θK1 = (
−−→
K M1,

−−→
K O1), θK2 = (

−−→
K O1,

−−→
K M2), θL1 = (

−−→
L M3,

−−→
L O2), θL2 = (

−−→
L O2,

−−→
L M4),

θK = θK1 + θK2 , θL = θL1 + θL2 .

From Fig. 1, we have

sin θK1 ≥ 0, sin θK2 ≥ 0, sin θL1 ≥ 0, sin θL2 ≥ 0,

sin θK > 0, sin θL > 0. (3.17)

3.2 Discretization

Let

b̃n,α
j+1 = (tn − tn− j−1)

1−α − (tn − tn− j )
1−α

τn− j
, j = 0, . . . , n − 1,
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and

bn,α
j =

⎧⎪⎪⎨
⎪⎪⎩

− (tn−t0)1−α−(tn−t1)1−α

τ1
, j = 0;

(tn−t j−1)
1−α−(tn−t j )

1−α

τ j
− (tn−t j )

1−α−(tn−t j+1)
1−α

τ j+1
, 1 ≤ j ≤ n − 1;

(tn−tn−1)
1−α

τn
, j = n.

(3.18)

Then, by the L1 scheme on graded meshes [5, Eq. (3.1)], one has

∂α
t u(x, tn) = Dα

N u(x, tn) + Rn
T ,α

=

n−1∑
j=0

b̃n,α
j+1t u(x, tn− j−1)

Γ (2 − α)
+ Rn

T ,α =

n∑
j=0

bn,α
j u(x, t j )

Γ (2 − α)
+ Rn

T ,α, (3.19)

where t u(·, tn− j−1) = u(·, tn− j ) − u(·, tn− j−1).
From [5, Lemma 5.2], one has

|Rn
T ,α| = |(Dα

N − ∂α
t )u(x, tn)| ≤ Cn−min{2−α,rα}. (3.20)

Noticing that bn,α
n = τ−α

n , due to the monotonic increasing function (t − s)−α , it is easy
to get the inequality

bn,α
n > 0, bn,α

j < 0 for j = 0, 1, . . . , n − 1. (3.21)

Next we will construct a new weighted MPP NFV method for sub-diffusion problem
(1.1)–(1.4).

To write down a NFV scheme for (1.1)–(1.4), for 1 ≤ n ≤ N , we first evaluate (1.1) at
t = tn and integrate it over a cell K :∫

K
∂α

t u(x, tn)dx −
∫

K
(∇ · (κ∇u))(x, tn)dx =

∫
K

f (x, tn)dx .

Applying the divergence equation, one has∫
K

∂α
t u(x, tn)dx −

∫
∂K

((κ∇u)(x, tn)) · �nK ,σ dl =
∫

K
f (x, tn)dx .

From Fig. 1, since ((κ∇u)) · �nK ,σ = ∇u · (κT �nK ,σ ), and then using the Gauss theorem
to get ∫

K
∂α

t u(x, tn)dx −
∑

σ∈EK

∫
σ

∇u(x, tn) · (κT (x, tn)�nK ,σ )dl =
∫

K
f (x, tn)dx, (3.22)

where EK ⊂ E , K ∈ M , κT is the transpose of κ .
Now let’s discretize equation (3.22) term by term.
By using (3.19) and (3.20), the first term of (3.22) can be designed as

∫
K

∂α
t u(x, tn)dx = m(K )

Γ (2 − α)

n∑
j=0

bn,α
j u(K , t j ) + O(n−min{2−α,rα}), (3.23)

where m(K ) is the area of K , and u(K , t j )m(K ) ≈ ∫
K u(x, t j )dx .

Next, we will approximate the second term of (3.22).
Denote

κ̃n
K (x) = κT (x, tn)�nK ,σ , 1 ≤ n ≤ N , (3.24)
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F n
K ,σ = −

∫
σ

∇u(x, tn) · (κT (x, tn)�nK ,σ )dl = −
∫

σ

∇u(x, tn) · κ̃n
K dl. (3.25)

The key point is to construct a discrete approximation of the continuous flux F n
K ,σ for

each edge σ at time t = tn .
From Fig. 1, since K M1 (resp. L M4) and K M2 (resp. L M3) are two edges of K M1M2

(resp. L M3M4), using (3.24), one has

κ̃n
K (x) = |κ̃n

K (x)| sin θK2

sin θK
�tK M1+!‘!‘|κ̃n

K (x)| sin θK1

sin θK
�tK M2 ,

κ̃n
L(x) = |κ̃n

L(x)| sin θL2

sin θL
�tL M3+!‘!‘|κ̃n

L (x)| sin θL1

sin θL
�tL M4 ,

where κ̃n
L(x) = κT (x, tn)�nL,σ , 1 ≤ n ≤ N .

Combining (3.25) and the two equation above, one has

F n
K ,σ = −

∫
σ

|κ̃n
K (x)|

(
sin θK2

sin θK
∇un(x) · �tK M1+!‘!‘ sin θK1

sin θK
∇un(x) · �tK M2

)
dl

= −|κ̃n
K (K )||σ |

(
sin θK2

sin θK

un
M1

− un
K

|K M1| + sin θK1

sin θK

un
M2

− un
K

|K M2|
)

+ Cn
K ,σ h2

= −|κT (K , tn)�nK ,σ |
sin θK /|σ |

(
sin θK2

|K M1| un
M1

+ sin θK1

|K M2| un
M2

−
(
sin θK2

|K M1| + sin θK1

|K M2|
)

un
K

)
+ Cn

K ,σ h2,

(3.26)

where h = (supK∈M m(K ))1/2.
Likewise, one has

F n
L,σ = −

∫
σ

|κ̃n
L(x)|

(
sin θL2

sin θL
∇un(x) · �tL M3+!‘!‘ sin θL1

sin θL
∇un(x) · �tL M4

)
dl

= −|κ̃n
L(L)||σ |

(
sin θL2

sin θL

un
M3

− un
L

|L M3| + sin θL1

sin θL

un
M4

− un
L

|L M4|
)

+ Cn
L,σ h2

= − |κ̃n
L(L)|

sin θL/|σ |
(
sin θL2

|L M3| un
M3

+ sin θL1

|L M4| un
M4

−
(
sin θL2

|L M3| + sin θL1

|L M4|
)

un
L

)
+ Cn

L,σ h2.

(3.27)

We next can define the discrete normal flux:

F̃n
K ,σ = −|κT (K , tn)�nK ,σ |

sin θK /|σ |
(
sin θK2

|K M1|un
M1

+ sin θK1

|K M2|un
M2

−
(
sin θK2

|K M1| + sin θK1

|K M2|
)

un
K

)
,

(3.28)

and

F̃n
L,σ = −|κT (L, tn)�nL,σ |

sin θL/|σ |
(
sin θL2

|L M3| un
M3

+ sin θL1

|L M4| un
M4

−
(
sin θL2

|L M3| + sin θL1

|L M4|
)

un
L

)
.

(3.29)

It is noted that (3.28) and (3.29) include cell-edge unknowns un
Mi

at the nodes Mi , we now
should write down the cell-edge unknowns un

Mi
as functions of the cell-centered unknowns

un
K (un

L ). For this purpose, by using following linear approximation [22], one has

un
Mi

=
JMi ,m∑
j=1

ωMi , j u
n
KMi , j

+ Cn
Mi

h2, (3.30)
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where un
KMi , j

, 1 ≤ n ≤ N , i = 1, 2, . . ., is some neighboring cell-centered unknowns

surrounding Mi , JMi ,m is the corresponding number of unknowns, i = 1, 2, . . ., and ωMi , j

is unknown coefficients, j = 1, 2 . . . , nMi , which satisfy

{∑JMi ,m

j=1 ωn
Mi , j = 1,

ωn
Mi , j ≥ 0.

(3.31)

For the detailed method determining these unknown weight coefficients ωn
Mi , j we refer

the reader to the paper [22].
Thus, combining (3.28), (3.29) and (3.30), we have

F̃n
K ,σ = −|κT (K , tn)�nK ,σ |

sin θK /|σ |

⎛
⎝ sin θK2

|K M1|
JM1,m∑
j=1

ωM1, j u
n
KM1, j

+ sin θK1

|K M2|
JM2,m∑
j=1

ωM2, j u
n
KM2, j

−
(
sin θK2

|K M1| + sin θK1

|K M2|
)

un
K

)
+ C̃n

K h2, 1 ≤ n ≤ N , (3.32)

F̃n
L,σ = −|κT (L, tn)�nL,σ |

sin θL/|σ |

⎛
⎝ sin θL2

|L M3|
JM3,m∑
j=1

ωM3, j u
n
KM3, j

+ sin θL1

|L M4|
JM4,m∑
j=1

ωM4, j u
n
KM4, j

−
(
sin θL2

|L M3| + sin θL1

|L M4|
)

un
L

)
+ C̃n

L h2. (3.33)

Further, we denote the discrete normal flux:

˜̃Fn
K ,σ = −|κT (K , tn)�nK ,σ |

sin θK /|σ |

⎛
⎝ sin θK2

|K M1|
JM1,m∑
j=1

ωM1, j u
n
KM1, j

+ sin θK1

|K M2|
JM2,m∑
j=1

ωM2, j u
n
KM2, j

−
(
sin θK2

|K M1| + sin θK1

|K M2|
)

un
K

)
, 1 ≤ n ≤ N , (3.34)

and

˜̃Fn
L,σ = −|κT (L, tn)�nL,σ |

sin θL/|σ |

⎛
⎝ sin θL2

|L M3|
JM3,m∑
j=1

ωM3, j u
n
KM3, j

+ sin θL1

|L M4|
JM4,m∑
j=1

ωM4, j u
n
KM4, j

−
(
sin θL2

|L M3| + sin θL1

|L M4|
)

un
L

)
, 1 ≤ n ≤ N . (3.35)

By using (3.27), (3.29), (3.30),(3.32) and (3.34), we have

F n
K ,σ = ˜̃Fn

K ,σ + Cn
K h2, 1 ≤ n ≤ N ,

also, using (3.26), (3.28), (3.30),(3.33) and (3.35), we have

F n
L,σ = ˜̃Fn

L,σ + Cn
L h2, 1 ≤ n ≤ N .

Note that the normal flux component is continuous over the edge σ , one has

˜̃Fn
K ,σ + ˜̃Fn

L,σ = Cn
0 h2. (3.36)
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To make our proposed method to satisfy MP, we now rewrite (3.34) and (3.35) as our
familiar form:

˜̃Fn
K ,σ = ˜̃̃

Fn
K ,σ + (an

K un
K − an

K un
L), (3.37)

˜̃Fn
L,σ = ˜̃̃

Fn
L,σ + (an

L un
L − an

L un
K ), (3.38)

where
˜̃̃
Fn

K ,σ (resp.
˜̃̃
Fn

L,σ ) does not include the term un
K − un

L (resp. un
L − un

K ).
By introducing a new factor

an = min{an
K , an

L }, 1 ≤ n ≤ N ,

(3.37) and (3.38) can be rewritten as

˜̃Fn
K ,σ = F̄n

K ,σ + (anun
K − anun

L),

˜̃Fn
L,σ = F̄n

L,σ + (anun
L − anun

K ).

Also

F̄n
K ,σ = ˜̃Fn

K ,σ + (anun
L − anun

K ), (3.39)

F̄n
L,σ = ˜̃Fn

L,σ + (anun
K − anun

L). (3.40)

Thus, combining (3.36), (3.39) and (3.40), we have

F̄n
K ,σ + F̄n

L,σ = Cn
0 h2, 1 ≤ n ≤ N ,

˜̃Fn
K ,σ + ˜̃Fn

L,σ = Cn
0 h2, 1 ≤ n ≤ N .

To transform formulas (3.39) and (3.40) into a conservative scheme, the nonlinear
combination technique will be used to define discrete fluxes on edge σ , we write

Fn
K ,σ = an(un

K − un
L) + μ1(u

n)F̄n
K ,σ , (3.41)

Fn
L,σ = an(un

L − un
K ) + μ2(u

n)F̄n
L,σ , (3.42)

where μ1(un) and μ2(un) are nonnegative and nonlinear, which will be chosen below. We
need the scheme to be conservative, then the following important fact should be satisfied:

Fn
K ,σ + Fn

L,σ = 0, 1 ≤ n ≤ N , (3.43)

using (3.41)–(3.43), one has

μ1(u
n)F̄n

K ,σ + μ2(u
n)F̄n

L,σ = 0, 1 ≤ n ≤ N . (3.44)

To make F̄n
K ,σ and F̄n

L,σ to satisfy MP, we now turn to show how to choose the nonlinear

coefficients μ1(un) and μ2(un). In this paper, we use the weighted combination of flux F̄n
K ,σ

and F̄n
L,σ to design a conservative flux.

Going back to (3.44), if F̄n
K ,σ F̄n

L,σ ≥ 0, we can take

μ1(u
n) = μ2(u

n) = 0, 1 ≤ n ≤ N .

Then we insert the equation above into (3.41) and (3.42), a discrete conservative flux
approximation of the continuous flux F n

K ,σ is written by

Fn
K ,σ = an(un

K − un
L), 1 ≤ n ≤ N , (3.45)
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Fn
L,σ = an(un

L − un
K ), 1 ≤ n ≤ N . (3.46)

If F̄n
K ,σ F̄n

L,σ < 0, we can take the nonlinear coefficients μ1(un) and μ2(un) by using the
following weighted combination of nonconservative flux:

μ1(u
n) =

⎛
⎝ 2

√
|F̄n

L,σ |√
|F̄n

K ,σ | +
√

|F̄n
L,σ |

⎞
⎠

2

, μ2(u
n) =

⎛
⎝ 2

√
|F̄n

K ,σ |√
|F̄n

K ,σ | +
√

|F̄n
L,σ |

⎞
⎠

2

, 1 ≤ n ≤ N .

Thus, inserting the equation above into (3.41) and (3.42), we can attain a discrete
conservative flux approximation of the continuous flux F n

K ,σ on edge σ :

Fn
K ,σ = an(un

K − un
L) +

⎛
⎝ 2

√
|F̄n

L,σ |√
|F̄n

K ,σ | +
√

|F̄n
L,σ |

⎞
⎠

2

F̄n
K ,σ , (3.47)

Fn
L,σ = an(un

L − un
K ) +

⎛
⎝ 2

√
|F̄n

K ,σ |√
|F̄n

K ,σ | +
√

|F̄n
L,σ |

⎞
⎠

2

F̄n
L,σ . (3.48)

If σ ∈ Eext , one can refer [23] and define

Fn
K ,σ = F̄n

K ,σ , Fn
L,σ = F̄n

L,σ , 1 ≤ n ≤ N . (3.49)

At last, based on the temporal and spatial flux discretization, by using (3.19), (3.22), (3.23),
(3.45)–(3.46) and (3.47)–(3.49), we can construct the following nonlinear finite volume
method

m(K )

n∑
j=0

bn,α
j

Γ (2 − α)
u j

K +
∑

σ∈EK

Fn
K ,σ = f n

K m(K ), 1 ≤ n ≤ N , ∀K ∈ Pin,(3.50)

un
Mi

= ψn
Mi

, ∀Mi ∈ Pout , 1 ≤ n ≤ N , (3.51)

u0
K = v(K ), ∀K ∈ Pin ∪ Pout , (3.52)

where f n
K = f (K , tn).

4 Analysis of Discrete Maximum Principle

In this section, we first introduce feasible method for solving the nonlinear algebraic system
(3.50)–(3.52), and then prove our numerical scheme satisfies the discretemaximumprinciple.

Let J n
K ,σ (resp. J n

L,σ ) be the number of cell associated with K (resp. L) at time t = tn .
Going back to the expressions of discrete conservative flux (3.45)–(3.46) and (3.47)–(3.49),
we can write the flux as the following equivalent form:

Fn
K ,σ = −

J n
K ,σ∑

j=1

An
K ,σ, j (u

n
L j

− un
K ), 1 ≤ n ≤ N , (4.53)

Fn
L,σ = −

J n
L,σ∑

j=1

An
L,σ, j (u

n
K j

− un
L), 1 ≤ n ≤ N . (4.54)
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Set An
K , j be the sum associated with An

L,σ, j , J n
K is the number associated with cell K at

time t = tn . Then inserting (4.53) into (3.50), we have

m(K )

Γ (2 − α)

n∑
j=0

bn,α
j u j

K −
J n

K∑
j=1

An
K , j (u

n
L j

− un
K ) = m(K ) f n

K , ∀K ∈ Pin, 1 ≤ n ≤ N .

(4.55)

That is, the nonlinear system is as follows

m(K )

Γ (2 − α)
bn,α

n un
K −

J n
K∑

j=1

An
K , j (u

n
L j

− un
K )

= m(K ) f n
K − m(K )

Γ (2 − α)

n−1∑
j=0

bn,α
j u j

K , ∀K ∈ Pin, 1 ≤ n ≤ N . (4.56)

From (3.21), we know that bn,α
n > 0 and −bn,α

j > 0, n − 1 ≥ j ≥ 0. Set U n be
the unknowns solution vector, A(U n) be the corresponding coefficient matrix, and Fn be
corresponding right-hand term vector.

Thus our fully discrete nonlinear algebraic system (4.56) canbe rearranged as the following
matrix form:

A(U n)U n = Fn, (4.57)

where 1 ≤ n ≤ N , Picard nonlinear iteration can be used to process the above nonlinear
system.

4.1 The Analysis of DMP

We now state that our algorithm (3.50)–(3.52) satisfies the following DMP.

Theorem 2 The NFV scheme (3.50)–(3.52) satisfies the DMP. That is,
(1) If function f ≤ 0, then the numerical solutions satisfy

un,s
K ≤ max{0, Mn},∀K ∈ Pin ∪ Pout ,∀n = 0, 1, 2, . . . , (4.58)

where

Mn := max

{
max

K∈P in∪P out
u0

K , max
K∈P out ,1≤�≤N ,0≤r≤s

u�,r
K

}
.

Namely, the positive maximum of function u can only be found at the boundary of the domain.
(2) If function f ≥ 0, then the numerical solutions satisfy

un,s
K ≥ min{0, mn},∀K ∈ Pin ∪ Pout ,∀n = 0, 1, 2, . . . N ,∀s = 0, 1, 2, . . . , (4.59)

where

mn := min

{
min

K∈P in∪P out
u0

K , min
K∈P out ,1≤�≤N ,0≤r≤s

u�,r
K

}
.

Namely, the negative minimum of function u can only be found at the boundary of the domain.
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Proof We only prove the maximum principle, i.e. the inequality (4.58). For the minimum
principle (4.59), we only need to repeat the same arguments as the proof of inequality (4.58).

(1) If function f ≥ 0. Assume

un0,s
K0

= max{0, Mn}, K0 ∈ Pin ∪ Pout , 0 ≤ n0 ≤ N , s = 0, 1, 2, . . . . (4.60)

If un0,s
K0

≤ 0, then the inequality (4.58) follows directly.
We now consider the case un0,s

K0
> 0.

For ∀s = 0, 1, 2, . . ., if K0 ∈ Pout , 1 ≤ n0 ≤ N or K0 ∈ Pin ∪ Pout , n0 = 0, then the
inequality (4.58) follows directly.

For ∀s = 0, 1, 2, . . ., if K0 ∈ Pin, n0 �= 0, using (3.19), we go back to (4.55), then

m(K0)Dα
N un0,s

K0
=

J
n0
K0∑

j=1

An0,s
K0, j (u

n0,s
L j

− un0,s
K0

) + m(K0) f n0
K0

, K0 ∈ Pin, n0 �= 0. (4.61)

Using formulas (3.17), and noting the important condition ωn
Mi , j ≥ 0 in (3.31), we have

An0,s
K0, j ≥ 0, K0 ∈ Pin, n0 �= 0, j = 1, 2, . . . , J n0

K0
, s = 0, 1, 2, . . . , (4.62)

since (4.60), then for all L j ∈ Pin ∪ Pout , j = 1, 2, . . . , J n0
K0
, we have

un0,s
L j

− un0,s
K0

≤ 0, K0 ∈ Pin, n0 �= 0, s = 0, 1, 2, . . . , (4.63)

noting that f ≤ 0, thus combining (4.61)–(4.63), we have

J
n0
K0∑

j=1

An0,s
K0, j (u

n0,s
L j

− un0,s
K0

) + m(K0) f n0
K0

≤ 0, K0 ∈ Pin, n0 �= 0, s = 0, 1, 2, . . . ,

that is

Dα
N un0,s

K0
≤ 0, K0 ∈ Pin, n0 �= 0, s = 0, 1, 2, . . . . (4.64)

Also, using (3.19), for ∀s = 0, 1, 2, . . ., we have

Dα
N un0,s

K0
= 1

Γ (2 − α)

n0−1∑
j=0

b̃n0,α
j+1 (un0− j,s

K0
− un0−1− j,s

K0
), K0 ∈ Pin, n0 �= 0,

noticing (4.60), for all n = 0, 1, 2, . . . , N , we can obtain

un0,s
K0

− un,s
K0

≥ 0, K0 ∈ Pin, s = 0, 1, 2, . . . . (4.65)

Hence,

Dα
N un0,s

K0
≥ 0, K0 ∈ Pin, n0 �= 0, s = 0, 1, 2, . . . . (4.66)

By combining (4.64) and (4.66), we obtain

Dα
N un0,s

K0
= 0, K0 ∈ Pin, n0 �= 0, s = 0, 1, 2, . . . . (4.67)

Further, we combine (4.65) and (4.67), then, for all n = 0, 1, 2, . . . , N ,

un0,s
K0

− un,s
K0

= 0, K0 ∈ Pin, s = 0, 1, 2, . . . .

Thus, we can take n = 0, then the proof of the maximum principle inequality (4.58) is
completed. ��
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Fig. 2 RTMs: 16 × 16 × 2 (left) and RQMs: 24 × 24 (right)

5 Numerical Example

We will give five numerical examples to display typical behaviour in this section. In our
implementations, the temporal graded meshes is used with r = 2−α

α
in all five examples. The

Lu
2 is used to compute approximate errors for u: Lu

2 = (
∑

K∈M (uK −u(K ))2 m(K ))1/2. The
L F
2 = is used to compute approximate errors for flux F : L F

2 = (
∑

σ∈E (FK ,σ −FK ,σ )2)1/2.

Example 1 Consider the tensor diffusion matrix κ is anisotropic and homogeneous. For the
sub-diffusion model (1.1)–(1.3), set T = 1, x1 ∈ [0, 1], x2 ∈ [0, 1], and

κ =
(

x22 + εx21 − (1 − ε)x1x2
−(1 − ε)x1x2 εx22 + x21

)
,

where ε = 1 × 10−3, v(x1, x2) = 0, ψ(x1, x2, t) = 0 and

f =
{
10, 0 < t < 1, (x1, x2) ∈ [3/8, 5/8] × [3/8, 5/8],
0, other.

The exact solution u(x1, x2, t) is unknown, but the principle of minimum values shows
that it is non-negative. We test the problem on random quadrilateral meshes (RQMs) and
random triangular meshes (RTMs) in Fig. 2, which is obtained by the random disturbance of
mesh. That is x1i j = i

I + ρ
I (Rx1 − 0.5) and x2i j = j

J + ρ
J (Rx2 − 0.5) with random number

ρ ∈ [0, 1]. We consider ρ = 0.4 in the example.
In Fig. 3, the numerical solutions are obtained on RTMs with α = 0.8, α = 0.5, α = 0.2.

The minimum are 9.3951e−5, 7.9854e−5 and 6.7698e−5, respectively. The minimum 0
of the solution is reached on ∂Ω . The number of nonlinear iteration is 94, 184 and 236,
respectively. Figure4 shows the numerical solutions obtained on RQMs. The minimum are
3.3250e−6, 3.3415e−6 and 2.9352e−6, respectively. The minimum 0 is attained on ∂Ω .
Figures3 and 4 show that the proposed scheme have not non-physical oscillations while
maintaining positivity.

In the following example, we consider the problem which comes from Jiang and Xu [15].
We set the random number ρ = 0.6 and α = 0.5 (Fig. 5).

Example 2 [15] Take κ(x1, x2, t) = E , Ω = [0, 1] × [0, 1],T = 1, v = 0, f (x1, x2, t) = 0.
ψ(x1, x2, t) = (1 + 1−e10x1x2

2.20255×104
)t2 is introduced in Example 4.2 of Jiang [15].
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Fig. 3 Example 1: Numerical solutions of RTMS for α = 0.2, 0.5, 0.8 from left to right

Fig. 4 Example 1: Numerical solutions of RQMs for α = 0.2, 0.5, 0.8 from left to right

The exact solution of this problem is unknown. In Figs. 6 and 7 we present the numerical
results on RQMs and RTMs, respectively. The minimum and maximum in the domain are
0.1124 and 0.9571, respectively. The Figs. 6 and 7 affirm that the proposed scheme satisfy
the DMP on distorted RMMs and RTMs. However, the finite difference scheme constructed
in [15] can not satisfy the positivity of physical variables and has oscillations.

Example 3 Consider the model (1.1)–(1.3) with a non-smooth anisotropic solution. The
domain is Ω = (0, 1) × (0, 1)\[4/9, 5/9] × [4/9, 5/9] with the hole width 2/9. That is
∂Ω is formed by two disjoint parts: the interior and exterior boundary ∂Ω1 and ∂Ω2, respec-
tively. We take T = 1, f = 0, ψ = 1/5 on ∂Ω1, ψ(x1, x2, t) = 1/5+ tα on ∂Ω2, the initial
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Fig. 5 RTMs: 20 × 20 × 2 (left) and RQMs: 40 × 40(right)

Fig. 6 Example 2: Numerical solution of distorted quadrilateral meshes (40 × 40)

Fig. 7 Example 2: Numerical solution of distorted triangular meshes (20 × 20 × 2)
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Fig. 8 Random triangular meshes: 18 × 18 × 2 (left) and random quadrilateral meshes: 36 × 36(right)

Fig. 9 Example 3: Numerical solutions on random RTMs for α = 0.5

conditions v(x1, x2) = 1/5, and κ = RDRT, where

D =
(
1 + 2x2 + y2 0

0 1 + x2 + 2y2

)
, R =

(
cos 5π

12 − sin 5π
12

sin 5π
12 cos 5π

12

)
.

We experiment the example on the RTMs and RQMs in the domain with the hole in Fig. 8)
and consider ρ = 0.7, and the number of cells are 18 × 18 × 2 and 36 × 36, respectively.

The numerical solutions are presented in Figs. 9 and 10 with α = 0.5, respectively. The
minimum and maximum are 0.2 and 1.2, respectively. We find the proposed scheme satisfy
the DMP on RTMs and RQMs.

Example 4 [12] Consider (1.1)–(1.3) from [12]. Let Ω = [0, 1] × [0, 1], κ = E , v =
x1(1 − x1)x2(1 − x2), ψ(x1, x2, t) = 0 and f = 0.

The exact solution u(x1, x2, t) is unknown. Themain purpose is to compare preserving the
minimum principle obtained by the proposed method with the all three methods, including
SG method, LM method and FVE method, proposed by Jin et al. [12].
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Fig. 10 Example 3: Numerical solutions on RQMs for α = 0.5

Fig. 11 Example 4: Numerical solutions on RTMs for α = 0.5, 0.75 from left to right

Taking ρ = 0.7. In Figs. 11 and 12, we presented the numerical results on RTMs 40× 40
and RQMs 24 × 24 × 2 with different α = 0.5, 0.75, respectively. The proposed method
maintain the minimum of solution on RTMs and RQMs. But as Jin et al. [12] point out, the
numerical solutions obtained by all three methods in [12] may produce negative values for
small τ .
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Fig. 12 Example 4: Numerical solutions on RQMs for α = 0.5, 0.75 from left to right

Example 5 Consider (1.1)–(1.3) with Ω = [0, 1] × [0, 1], κ = E , v = sin(πx1) sin(πx2),
ψ = 0, f is selected so that the solution is

u = (1 + tα + t2+α + t3) sin(πx1) sin(πx2), (x1, x2) ∈ Ω = [0, 1] × [0, 1].
In this example, we take ρ = 0.7 and mainly test the accuracy of proposed method. We

always select N = ( 1h )
2

2−α so that the best convergence order O(h2 + N−(2−α)) = O(h2) is
reached in both time and space.

In Tables 1, 2, 3 and 4, we present the errors and convergence rates for solution u and flux
F on random and uniform quadrilateral and triangular meshes, respectively. The proposed
scheme obtains solution of second-order accuracy and first-order accuracy of flux for different
α = 0.2, 0.5, 0.7, which verifies our theoretical results.
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Table 1 Accuracy of schemes for Example 5 on random quadrilateral meshes

α Cells Accuracy of solution u Accuracy of flux F
Lu
2 Order L F

2 Order

α = 0.2 64 3.8753e−2 – 1.0798e−0 –

256 8.4890e−3 2.1906 5.5841e−1 0.9514

1024 2.2397e−3 1.9223 2.6711e−1 1.0639

4096 5.6082e−4 1.9977 1.2805e−1 1.0607

16, 384 1.3353e−4 2.0704 6.0048e−2 1.0925

α = 0.5 64 4.0082e−2 – 8.5480e−1 –

256 8.7737e−3 2.1917 3.4503e−1 1.3089

1024 2.2921e−3 1.9365 1.4693e−1 1.2316

4096 5.7164e−4 2.0035 6.1797e−2 1.2495

16, 384 1.3619e−4 2.0695 2.6139e−2 1.2413

α = 0.7 64 4.1432e−2 – 6.2464e−1 –

256 8.9533e−3 2.2103 2.2555e−1 1.4696

1024 2.3212e−3 1.9475 8.9481e−2 1.3338

4096 5.7667e−4 2.0091 3.7362e−2 1.2600

16, 384 1.3890e−4 2.0537 1.5651e−2 1.2553

Table 2 Accuracy of schemes for Example 5 on uniform quadrilateral meshes

α Cells Accuracy of solution u Accuracy of flux F
Lu
2 Order L F

2 Order

α = 0.2 64 2.1843e−2 – 9.6864e−1 –

256 5.7665e−3 1.9214 5.1388e−1 0.9145

1024 1.4836e−3 1.9586 2.4273e−1 1.0821

4096 3.7428e−4 1.9869 1.1592e−1 1.0662

16,384 9.3303e−5 2.0041 5.4139e−2 1.0984

α = 0.5 64 2.2875e−2 – 7.4349e−1 –

256 6.0197e−3 1.9260 3.0591e−1 1.2812

1024 1.5372e−3 1.9694 1.2635e−1 1.2757

4096 3.8759e−4 1.9877 5.1069e−2 1.3069

16,384 9.7161e−5 1.9961 2.0398e−2 1.3240

α = 0.7 64 2.3851e−2 – 4.9863e−1 –

256 6.1854e−3 1.9471 1.8176e−1 1.4559

1024 1.5678e−3 1.9801 6.4992e−2 1.4837

4096 3.9378e−4 1.9933 2.2764e−2 1.5135

16,384 9.8418e−5 2.0004 8.0344e−3 1.5025
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Table 3 Accuracy of schemes for Example 5 on random triangular meshes

α Cells Accuracy of solution u Accuracy of flux F
Lu
2 Order L F

2 Order

α = 0.2 128 3.5917e−2 – 1.4930e−0 –

512 8.5927e−3 2.0635 7.7273e−1 0.9502

2048 2.3899e−3 1.8462 3.6780e−1 1.0710

8192 6.1801e−4 1.9512 1.7503e−1 1.0713

α = 0.5 128 3.7094e−2 – 1.1608e−0 –

512 8.8392e−3 2.0692 4.6626e−1 1.3159

2048 2.4312e−3 1.8622 1.9464e−1 1.2603

8192 6.2528e−4 1.9591 7.8330e−2 1.3132

α = 0.7 128 3.8316e−2 – 8.0376e−1 –

512 8.9923e−3 2.0912 2.8609e−1 1.4903

2048 2.4539e−3 1.8736 1.0502e−1 1.4458

8192 6.2862e−4 1.9648 3.6907e−2 1.5087

Table 4 Accuracy of schemes for Example 5 on uniform triangular meshes

α Cells Accuracy of solution u Accuracy of flux F
Lu
2 Order L F

2 Order

α = 0.2 128 2.0874e−2 – 1.4115e−0 –

512 5.7053e−3 1.8713 7.3712e−1 0.9373

2048 1.4879e−3 1.9390 3.4580e−1 1.0920

8192 3.7535e−4 1.9870 1.6454e−1 1.0715

α = 0.5 128 2.1786e−2 – 1.0942e−0 –

512 5.9347e−3 1.8762 4.4327e−1 1.3036

2048 1.5351e−3 1.9508 1.8126e−1 1.2901

8192 3.8672e−4 1.9890 7.2839e−2 1.3153

α = 0.7 128 2.2674e−2 – 7.4933e−1 –

512 6.0856e−3 1.8976 2.6792e−1 1.4838

2048 1.5626e−3 1.9615 9.4544e−2 1.5027

8192 3.9222e−4 1.9942 3.2832e−2 1.5259

6 Conclusion

In this paper, we present the development of weighted NFV schemes that preserve the MP
for the sub-diffusion problems on various distorted RTMs and RQMs. We prove the MP for
a suitably defined solution for the first time and establish that the discrete solution satisfies
the DMP. Using nonlinear weighted methods, we construct a conservative flux by combin-
ing nonconservative fluxes with appropriate weights. Furthermore, we demonstrate that the
proposed scheme is local conservation and relies solely on cell-centered unknowns. It can be
used to general distorted meshes without imposing stringent conditions on the mesh quality.
The scheme preserves the MP for problems with strongly anisotropic and heterogeneous full
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tensor coefficients. Numerical results confirm that our scheme preserves theMP and achieves
second-order accuracy for solutions and first-order accuracy for flux computations.
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