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Abstract
A quasi-Toeplitz M-matrix A is an infinite M-matrix that can be written as the sum
of a semi-infinite Toeplitz matrix and a correction matrix. This paper is concerned with
computing the square root of invertible quasi-Toeplitz M-matrices which preserves the
quasi-Toeplitz structure. We show that the Toeplitz part of the square root can be easily
computed through evaluation/interpolation. This advantage allows us to propose algorithms
solely for the computation of correction part, whence we propose a fixed-point iteration and
a structure-preserving doubling algorithm. Additionally, we show that the correction part
can be approximated by solving a nonlinear matrix equation with coefficients of finite size
followed by extending the solution to infinity. Numerical experiments showing the efficiency
of the proposed algorithms are performed.

Keywords Quasi-Toeplitz matrix · Infinite M-matrix · Square root · Structured-preserving
doubling algorithm

Mathematics Subject Classification 15A24 · 65F45 · 15B05

1 Introduction

M-matrices in the context of infinite dimensional spaces are calledM-operators, which, to our
knowledge,werefirstly investigated in [19], since then related theoretical properties have been
developed in [1, 17, 19–21, 25]. Quasi-Toeplitz M-matrices are infinite M-matrices with an
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almost Toeplitz structure, they are encountered in the numerical solution of a quadraticmatrix
equation [10] involved in 2-dimensional Quasi-Birth-Death (QBD) stochastic processes [23]
and are recently studied in [22] in terms of their theoretical and computational properties.

In this paper, we are interested in the quasi-Toeplitz M-matrices that belong to the class
QT ∞ = {T (a)+E : a(z) ∈ W, E ∈ Kd(�

∞)}, where T (a) is a semi-infinite Toeplitzmatrix
associated with the function a(z) = ∑

i∈Z ai zi in the sense that (T (a))i, j = a j−i , W is the
Wiener algebra, defined as the set W = {a(z) = ∑

i∈Z ai zi : z ∈ T, ‖a‖W := ∑
i∈Z |ai | <

∞}, and Kd(�
∞) = {E = (ei, j )i, j∈Z+ : limi

∑∞
j=1 |ei, j | = 0}. It has been proved in [11,

Theorem 2.16] that the classQT ∞ is a Banach algebra with the infinity matrix norm ‖ · ‖∞,
which turns out to be ‖A‖∞ = supi

∑∞
j=1 |ai, j | for A = (ai, j )i, j∈Z+ . For A = T (a) + E ∈

QT ∞, T (a) is called the Toeplitz part with a symbol a, E is called the correction part.
Matrices in the class QT ∞ have rich and elegant theoretical and computational properties,
we refer the reader to [3, 6–13, 18, 24] for more details.

For a quasi-Toeplitz M-matrix A = T (a)+ EA ∈ QT ∞, it has been proved in [22] that if
A is an (invertible) M-matrix, then T (a) is also an (invertible) M-matrix. Moreover, it shows
that if A is invertible, there exists a unique quasi-Toeplitz M-matrix S = T (s)+ ES ∈ QT ∞
such that A = S2. Concerning the computation of thematrix S, Binomial iteration and Cyclic
Reduction (CR) algorithm have been proposed in [22], where the CR algorithm seems to
be better suited in the numerical computations. However, both the Binomial iteration and
the CR algorithm exploit the quasi-Toeplitz structure indirectly by performing approximate
operations of semi-infinite quasi-Toeplitz matrices in the format. It would be natural to
ask whether the quasi-Toeplitz structure can be fully exploited to propose more efficient
algorithms.

Suppose B = T (b) + EB ∈ QT ∞ satisfies (I − B)2 = A, where A = T (a) + EA

is a given quasi-Toeplitz M-matrix, then we have for the symbols of the Toeplitz parts that
(1−b(z))2 = a(z). Observe that for a positive integer n > 0, there is always a unique Laurent
polynomial b̂(z) = ∑n

i=−n+1 b̂i z
i that interpolates b(z) at the 2n roots of unity. Based on

the technic of evaluation/interpolation, we investigate computation of the coefficients bi of
b(z) = ∑

i∈Z bi zi , so that the Toeplitz part T (b) of the quasi-Toeplitz M-matrix A can be
easily obtained.

Concerning the computation of the correction part, we propose a fixed-point iteration
with a linear convergence rate, and a structure-preserving doubling algorithm, which is of
quadratic convergence rate. Moreover, we show that the correction part can be approximated
by extending a finite size matrix to infinity, where the finite size matrix solves a nonlinear
matrix equation. Numerical experiments show that the proposed algorithms provide conver-
gence acceleration in terms of CPU times comparing with the Binomial iteration and CR
algorithm proposed in [22], both of which keep the whole quasi-Toeplitz matrices in the
computations.

This paper is organized as follows. In the remaining part of this introduction, we recall
some definitions and properties concerning quasi-Toeplitzmatrices andM-matrices. Sections
2 and 3 concern with algorithms that fully exploit the quasi-Toeplitz structure of square
root of invertible quasi-Toeplitz M-matrices, in Sect. 2 we show how the Toeplitz part is
computed, while in Sect. 3, we design and analyze the convergence of algorithms that are
applicable in computing the correction part. In Sect. 4, we show that the correction part
can be approximated by extending to infinity of the solution of a nonlinear matrix equation
with finite size coefficients. In Sect. 5, we show by numerical examples the efficiency of the
proposed algorithms.
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1.1 Preliminary Concepts

Let �∞ be the space of sequences {x = (x1, x2, . . .)} such that supi∈Z+ |xi | < ∞, one can
see that quasi-Toeplitz M-matrices in the class QT ∞ are bounded linear operators from �∞
to �∞. Denote by B(�∞) the Banach space of bounded linear operators from �∞ to itself, we
first recall definition of M-operators on B(�∞). For definition of more general M-operators
on a real partially ordered Banach space, we refer the reader to [17, 21, 25] and the references
therein. M-operators on the Banach space B(�∞) are defined as

Definition 1.1 An operator A ∈ B(�∞) is said to be a Z -operator if A = s I − P , with s ≥ 0,
P(�∞+ ) ⊆ �∞+ , where �∞+ = {x = (xi )i∈Z+ ∈ �∞ : xi ≥ 0 f or all i}. A Z -operator is said
to be an M-operator if s ≥ ρ(P), where ρ(P) is the spectral radius of P . A is an invertible
M-operator if s > ρ(P).

As matrices in QT ∞ can be represented by matrices of infinite size, we keep using the
term M-matrix when referring M-operators inQT ∞. This way, a matrix A ∈ QT ∞ is said to
be an M-matrix if A = β I − B with B ≥ 0 and β ≥ ρ(B), and A is invertible if β > ρ(B).
Here B ≥ 0 means that B is an elementwise nonnegative infinite matrix.

The following lemma contains a collection of properties of quasi-Toeplitz matrices and
quasi-Toeplitz M-matrices, where properties (i) and (ii) have been proved in [2], while prop-
erties (iii–v) can be found from [22].

Lemma 1.1 If A = T (a) + EA ∈ QT ∞ and B = T (b) + EB ∈ QT ∞, then the following
properties hold:

(i) AB = T (ab) − H(a−)H(a+) ∈ QT ∞, where (H(a−))i, j = (a−i− j+1)i, j∈Z+ and
(H(a+))i, j = (ai+ j−1)i, j∈Z+ ;

(ii) it holds that ‖a‖W = ‖T (a)‖∞ ≤ ‖A‖∞;
(iii) T (a) ≥ 0 if A ≥ 0.
(iv) ‖a‖W = a(1) if T (a) ≥ 0.
(v) T(a) is an (invertible) M-matrix if A is an (invertible) M-matrix.

The following lemma shows that an invertibleM-matrix in the classQT ∞ admits a unique
quasi-Toeplitz M-matrix as a square root.

Lemma 1.2 [22, Theorem 3.6] Suppose A = β(I − A1) ∈ QT ∞ satisfies β > 0, A1 ≥ 0
and ‖A1‖∞ < 1, then there is a unique B ∈ QT ∞ such that B ≥ 0, ‖B‖∞ < 1, and
(I − B)2 = I − A1.

For quasi-ToeplitzM-matrix A = γ (I−A1) ∈ QT ∞ such that A1 ≥ 0 and ‖A1‖∞ < 1, it
can be seen fromLemma 1.2 that it suffices to computematrix B such that (I−B)2 = I−A1.
In what follows, we propose algorithms for computing the Toeplitz part and the correction
part of matrix B.

2 Computing the Toeplitz Part

Observe that the Toeplitz part T (b) is uniquely determined by the coefficients b j of the
symbol b(z) = ∑

j∈Z b j z j . In this section, we show that b(z) can be approximated by

b̂(z) = ∑n
i=−n+1 b̂ j z j in the sense that ‖b − b̂‖W ≤ cε for some constant c and a given

tolerance ε.
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Suppose B = T (b) + EB satisfies γ (I − B)2 = A, where A = γ (I − A1) ∈ QT ∞ is
such that A1 ≥ 0 and ‖A1‖∞ < 1. Suppose T (a) is the Toeplitz part of A, we have from
property (i) of Lemma 1.1 that γ (1 − b(z))2 = a(z), that is,

a(z)/γ = b(z)2 − 2b(z) + 1, (2.1)

from which we obtain b(z) = 1 ± √
a(z)/γ . Since A1 ≥ 0, in view of properties (ii)-(iv)

of Lemma 1.1, we have a1(1) = ‖a1‖W ≤ ‖A1‖∞ < 1, where a1(z) is the symbol of the
Toeplitz part of A1, hence we deduce that a(1) = γ (1 − a1(1)) > 0. On the other hand, it
follows from B ≥ 0 that b(1) = ‖b‖W = ‖T (b)‖∞ ≤ ‖B‖∞ < 1, which, together with√
a(1)/γ > 0, implies that b(1) = 1 − √

a(1)/γ and therefore b(z) = 1 − √
a(z)/γ .

Let n > 0 be a positive integer, set m = 2n, then there is always a unique Laurent series
b̂(z) = ∑n

j=−n+1 b̂ j z j such that b̂(ω�
m) = b(ω�

m), � = −n + 1, . . . , n, where ωm is the

principalm-th root of 1, that is,ωm = cos 2π
m +i sin 2π

m . Based on the evaluation/interpolation
technique, where the interpolation can be done by the means of the Fast Fourier Transform
(FFT), an approximation b̂i , i = −n+ 1, ..., n, to the coefficients bi of b(z) can be obtained.
Since B ≥ 0, we have from property (iii) of Lemma 1.1 that T (b) ≥ 0, so that b(z) =∑

i∈Z bi zi has nonnegative coefficients. If in addition b′′(z) ∈ W , the following lemma
provides a bound to |b̂i − bi |.

Lemma 2.1 [10, Lemma 3.1] For g(z) = ∑
i∈Z gi zi ∈ W with nonnegative coefficients, let

ĝ(z) = ∑n
j=−n+1 ĝ j z j be the Laurent polynomial interpolating g(z) at the m-th roots of 1,

i.e., g(wi
m) = ĝ(wi

m) for i = −n + 1, . . . , n, where m = 2n. If g′′(z) ∈ W , then g′′(1) ≥ 0
and

g′′(1) − ĝ′′(1) ≥ 2n
( ∑

j<−n+1

g j +
∑

j>n

g j
)
.

Moreover, 0 ≤ ĝ j − g j ≤ 1
2n (g′′(1) − ĝ′′(1)) for j = −n + 1, . . . , n.

For b̂(z) = ∑n
j=−n+1 b̂ j z j interpolating b(z) at ωi

m for i = −n + 1, . . . , n, suppose
b′′(z) ∈ W and b′′(1) > 0, we have from Lemma 2.1 that

b′′(1) − b̂′′(1) ≥ 2n
( ∑

j<−n+1

b j +
∑

j>n

b j
)
, (2.2)

and

|b̂ j − b j | ≤ 1

2n
(b′′(1) − b̂′′(1)), j = −n + 1, . . . , n. (2.3)

If b′′(1)− b̂′′(1) < ε for a given tolerance ε > 0, we have from (2.3) that |b j − b̂ j | ≤ ε/(2n)

for j = −n + 1, . . . , n, which together with (2.2) implies that

‖b − b̂‖W =
n∑

j=−n+1

|b j − b̂ j | +
∑

j<−n+1

b j +
∑

j>n

b j

≤ ε + 1

2n
(b′′(1) − b̂′′(1))

≤ (1 + 1

2n
)ε.
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Hence, in the computation of b̂ j , j = −n + 1, . . . , n, under the evaluation/interpolation
scheme, the approximation is accurate enough if b′′(1) − b̂′′(1) < ε. Actually, the val-
ues of b′′(1) − b̂′′(1) can be easily obtained. Indeed, once the coefficients b̂ j of b̂(z) =
∑n

j=−n+1 b̂ j z j are computed, one can easily obtain b̂′′(1) = ∑n
j=−n+1 j( j − 1)b̂ j . On the

other hand, we have from Eq. (2.1) that

b′(z) = a′(z)
2γ (b(z) − 1)

and b′′(z) = a′′(z) − 2γ (b′(z))2

2γ (b(z) − 1)
,

from which we easily obtain b′(1) and b′′(1).
Observe that equation (2.1) is a special case of the quadratic Eq.

a1(z)g(z)
2 + (a0(z) − 1)g(z) + a−1(z) = 0,

where ai (z) for i = −1, 0, 1 are known functions in the class W and g(z) is the function to
be determined. Algorithms for computing the approximations of the coefficients of g(z) has
been proposed in [10], based on which we propose the following Algorithm 1 that is more
efficient in computing the coefficients b̂ j of the Laurent series b̂(z) = ∑n

j=−n+1 b̂ j z j , so that

we get an approximation T (b̂) to the Toeplitz part T (b) in the sense that ‖T (b)− T (b̂)‖∞ =
‖b − b̂‖W ≤ (1 + 1

2n )ε for a given tolerance ε.

Algorithm 1 Approximation of b(z)
Require: The coefficients of a(z), a scalar γ such that A = γ (I − A1) and a tolerance ε > 0.
Ensure: Approximations b̂ j , j = −n+ 1, . . . , n, to the coefficients b j of b(z) such that |b̂ j − b j | ≤ ε/(2n).

1: Set n=4, and compute b(1) = 1 − √
a(1)/γ and b′(1) = a′(1)

2γ (b(1)−1) and b′′(1) = a′′(1)−2γ (b′(1))2
2γ (b(1)−1) ;

2: Set m = 2n and wm = cos 2π
m + i sin 2π

m . Evaluate a(z) at z = wi
m for i = −n + 1, . . . , n;

3: For i = −n + 1, . . . , n, compute si = 1 −
√

a(ωi
m )/γ ;

4: Interpolate the values si , i = −n+1, . . . , n, by means of FFT and obtain the coefficients b̂ j of the Laurent

polynomial b̂(z) = ∑n
j=−n+1 b̂ j z

j such that b(wi
m ) = b̂(wi

m ), i = −n + 1, . . . , n;

5: Compute b̂′′(1) = ∑n
j=−n+1 j( j − 1)b̂ j and δm = b′′(1) − b̂′′(1);

6: If δm < ε then exit, else set n = 2n and compute from Step 2.

It can be seen that the overall computational cost of Algorithm 1 is O(n log n) arithmetic
operations. Now the Toeplitz part of matrix B is approximated by T (b̂), it remains to compute
the correction part of B in order to complete the computation of the square root. We show
this subject in next section.

3 Computing the Correction Part

Suppose A = β(I−A1) ∈ QT ∞, where A1 ≥ 0 and ‖A1‖∞ < 1, then for B = T (b)+EB ≥
0 and ‖B‖∞ < 1 such that (I − B)2 = I − A1, we design and analyze the convergence of a
fixed-point iteration and a structure-preserving doubling algorithm that can be used for the
computation of EB .
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3.1 Fixed-Point Iteration

Consider the nonlinear matrix equation

(I − T (b) − X)2 = I − A1

which can be equivalently written as

X2 − (I − T (b))X − X(I − T (b)) + Q = 0, (3.1)

where Q = A1 + T (b)2 − 2T (b). It is clear that EB solves Eq. (3.1). On the other hand, it
follows fromLemma1.2 that I−A1 allows a unique quasi-ToeplitzM-matrix as a square root,
so that EB is the unique solution ofEq. (3.1) such that T (b)+EB ≥ 0 and‖T (b)+EB‖∞ < 1.

Observe that Eq. (3.1) can be equivalentlywritten as X = (2I−T (b)−X)−1(Q+XT (b)),
from which we propose the following iteration

Xk+1 = (2I − T (b) − Xk)
−1(Q + XkT (b)) (3.2)

with X0 = 0. We show that the sequence {Xk} converges to EB . To this end, we first show
the following result.

Theorem 3.1 Let A = β(I − A1) ∈ QT ∞ with A1 ≥ 0 and ‖A1‖∞ < 1. Suppose B =
T (b) + EB ∈ QT ∞ is the unique quasi-Toeplitz matrix such that B ≥ 0, ‖B‖∞ < 1, and
(I − B)2 = I − A1. Then, the sequence {Xk} generated by iteration (3.2) satisfies

(i) the sequence {Xk} is well defined;
(ii) T (b) + Xk ≥ 0 and ‖T (b) + Xk‖∞ < 1.

Proof Concerning item (i), observe that Xk+1 is well defined as long as 2I − T (b) − Xk is
invertible. It follows from [16, Lemma 3.1.5] that 2I − T (b) − Xk is invertible if ‖T (b) +
Xk‖∞ < 2, which can be verified if item (ii) is true. Hence, it suffices to prove item (ii).

We prove item (ii) by induction. For k = 0, we have T (b) + X0 = T (b) ≥ 0, where the
inequality follows from property (iii) of Lemma 1.1 and the fact B ≥ 0. On the other hand,
we have from property (ii) of Lemma 1.1 that ‖T (b)+X0‖∞ ≤ ‖B‖∞ < 1. For the inductive
step, assume that T (b) + Xk ≥ 0 and ‖T (b) + Xk‖∞ < 1, we show that T (b) + Xk+1 ≥ 0
and ‖T (b) + Xk+1‖∞ < 1.

Observe that

Xk+1 = (2I − T (b) − Xk)
−1(A1 − (2I − T (b) − Xk)T (b))

= (2I − T (b) − Xk)
−1A1 − T (b),

from which we have

T (b) + Xk+1 = (2I − T (b) − Xk)
−1A1.

On the other hand, we have the following Neumann series expansion

(2I − T (b) − Xk)
−1 = 1

2

∞∑

i=0

(1

2
(T (b) + Xk)

)i
,

so that (2I − T (b) − Xk)
−1 ≥ 0 since T (b) + Xk ≥ 0. Recall that A1 ≥ 0, we thus have

(2I − T (b) − Xk)
−1A1 ≥ 0, that is, T (b) + Xk+1 ≥ 0.
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It remains to show ‖T (b) + Xk+1‖∞ < 1. Observe that

‖T (b) + Xk+1‖∞ = ‖(2I − T (b) − Xk)
−1A1‖∞

≤ ‖(2I − T (b) − Xk)
−1‖∞‖A1‖∞

≤ ‖A1‖∞
2 − ‖T (b) + Xk‖∞

,

where the last inequality holds since

‖(2I − T (b) − Xk)
−1‖∞ ≤ 1

2

∞∑

i=0

(1

2
‖T (b) + Xk‖∞

)i

= 1

2 − ‖T (b) + Xk‖∞
. (3.3)

Recall that ‖T (b) + Xk‖∞ < 1 and ‖A1‖∞ < 1, one can check that

‖A1‖∞
2 − ‖T (b) + Xk‖∞

< 1,

that is, ‖T (b) + Xk+1‖∞ < 1. 
�

The following result shows the convergence of sequence {Xk}.
Theorem 3.2 Let A = β(I − A1) ∈ QT ∞ with A1 ≥ 0 and ‖A1‖∞ < 1. Suppose B =
T (b) + EB ∈ QT ∞ is the unique quasi-Toeplitz matrix such that B ≥ 0, ‖B‖∞ < 1 and
(I − B)2 = I − A1. Then the sequence {Xk} generated by iteration (3.2) converges to EB

in the sense that limk→∞ ‖EB − Xk‖∞ = 0.

Proof Let Wk = EB − Xk , a direct computation yields

Wk+1 = (2I − T (b) − Xk)
−1WkB,

which, together with (3.3), yields

‖Wk+1‖∞ ≤ ‖B‖∞
2 − ‖T (b) + Xk‖∞

‖Wk‖∞. (3.4)

Since ‖T (b) + Xk‖∞ < 1, it follows that ‖B‖∞
2−‖T (b)+Xk‖∞ < ‖B‖∞, so that

‖Wk+1‖∞ ≤ ‖B‖∞‖Wk‖∞ ≤ ‖B‖k∞‖W0‖∞.

Since ‖B‖∞ < 1, it implies that limk→∞ ‖EB − Xk‖∞ = 0. 
�

Wemay observe from inequality (3.4) that the sequence {Xk} generated by iteration (3.2)
satisfies ‖Xk+1 − EB‖∞ ≤ ‖B‖∞

2−‖T (b)+Xk‖∞ ‖Xk − EB‖∞. The fact ‖B‖∞
2−‖T (b)+Xk‖∞ < ‖B‖∞

may provide some insights to say that the fixed-point iteration (3.2), which is used for the
computation of the correction part, converges faster than the Binomial iteration [22] in the
computation of the whole square root, as the sequence {Yk} generated by the Binomial
iteration Yk+1 = 1

2 (A1 + Y 2
k ) with Y0 = 0 satisfies that ‖Yk+1 − B‖∞ ≤ ‖B‖∞‖Yk − B‖∞.
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3.2 Structure-Preserving Doubling Algorithm

We show that a structure-preserving doubling algorithm (SDA) is applicable in the com-
putation of EB such that (I − T (b) − EB)2 = A, where A is an invertible quasi-Toeplitz
M-matrix. This method has been motivated by the ideas in [5], where the SDA that enables
refining an initial approximation is applied to solve quadratic matrix equations with quasi-
Toeplitz coefficients. We fist recall the design and convergence analysis of SDA. For more
details of SDA, we refer the reader to [5], [4, Chapter 5] and [15].

In the finite dimensional space, the design of SDA is based on a linear pencil M − λN ,
where M and N are 2n × 2n matrices of the form

M =
[

E O
−P I

]

, N =
[
I −Q
O F

]

, (3.5)

where E, F, P, Q are n × n matrices, I and O are, respectively, the n × n identity matrix
and the zero matrix. Suppose there are n × n matrices X and W such that

M

[
I
X

]

= N

[
I
X

]

W ,

The columns of

[
I
X

]

is said to span a graph deflating subspace of the pencil M − λN

associated with the eigenvalues of W [5]. Consider the problem of computing the matrix X ,
which is equivalent to compute a graph deflating subspace of the pencil M − λN associated
with the eigenvalues of W , a new pencil Mk − λNk such that

Mk

[
I
X

]

= Nk

[
I
X

]

W 2k , (3.6)

is constructed, where the matrix sequences {Mk} and {Nk} are generated such that for k =
0, 1, 2, . . ., det Nk 
= 0, N−1

k+1Mk+1 = (N−1
k Mk)

2 with N0 = N , M0 = M . If M and N have
the form as in (3.5), it follows from [4, page 148] that

Mk =
[

Ek O
−Pk I

]

, Nk =
[
I −Qk

O Fk

]

,

where E0 = E, F0 = F, P0 = P , Q0 = Q, and

Ek+1 = Ek(I − Qk Pk)
−1Ek,

Pk+1 = Pk + Fk(I − PkQk)
−1Pk Ek,

Fk+1 = Fk(I − PkQk)
−1Fk,

Qk+1 = Qk + Ek(I − Qk Pk)
−1QkFk .

(3.7)

If ρ(W ) < 1 and the sequence {Nk} is uniformly bounded, then it can be seen from (3.6)

that limk→∞ Mk

[
I
X

]

= 0, from which we obtain limk→∞ Pk = X . The algorithm based

on the above technique for computing the matrix X is known as SDA. That is, SDA consists
in computing the sequences defined in (3.7), and under suitable convergence properties, as
shown in Lemma 3.1, the sequence {Pk} converges to the matrix X .

We mention that the scheme (3.7) is quite related to the forms of matrices M and N in
(3.5), which is called the standard structured form-I. For different forms, say the standard
structured form-II (see [4, Chapter 5]), different schemes can be obtained.

Concerning the convergence results of SDA, it has been proved in [5] that
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Lemma 3.1 [5, Theorem 2] Let X , Y ,W , V be n × n matrices such that

M

[
I
X

]

= N

[
I
X

]

W , M

[
Y
I

]

V = N

[
Y
I

]

,

and it satisfies that ρ(W ) ≤ 1, ρ(V ) ≤ 1, ρ(W )ρ(V ) < 1. If the scheme (3.7) can be carried
out with no breakdown, then limk ‖X − Pk‖1/2k ≤ ρ(W )ρ(V ) and limk ‖Y − Qk‖1/2k ≤
ρ(W )ρ(V ).

Concerning the feasibility of SDA in the infinite dimensional spaces, it has been shown
in [5, page 11] that the convergence results of SDA still hold when matrices belong to the
Banach algebraQT ∞. We are ready to show how SDA can be applied in the computation of
EB .

Suppose A = I − A1 ∈ QT ∞ is such that A1 ≥ 0 and ‖A1‖∞ < 1, we have from
Lemma 1.2 that the matrix equation

(I − X)2 = I − A1 (3.8)

has a unique nonnegative solution B ∈ QT ∞ satisfying ‖B‖∞ < 1. Observe that equation
(3.8) can be equivalently written as

X2 − 2X + A1 = 0, (3.9)

so that B solves Eq. (3.9) and is the unique solution such that B ≥ 0 and ‖B‖∞ < 1. Let
V = (2I − B)−1, it is easy to check that V solves the quadratic matrix equation

A1Y
2 − 2Y + I = 0. (3.10)

Moreover, we have V = 1
2

∑∞
i=0(

1
2 B)i ≥ 0 and ‖V ‖∞ ≤ 1

2

∑∞
i=1(

1
2‖B‖∞)i = 1

2−‖B‖∞ <

1.
Suppose T (b) with b ∈ W is the Toeplitz part of B, replacing X by T (b)+ H in Eq. (3.9)

results in the following quadratic matrix equation

H2 + (T (b) − 2I )H + HT (b) + R = 0, (3.11)

where R = T (b)2 − 2T (b) + A1. Then, equation (3.11) can be equivalently written as

M̃

[
I
H

]

= Ñ

[
I
H

]

B,

where M̃ =
[
T (b) I
−R 2I − T (b)

]

and Ñ =
[
I 0
0 I

]

On the other hand, according to [5, Theorem 3], the pencil M̃ − λÑ can be transformed
into the pencil M − λN , where M and N are of the form

M =
[
SA1 0
−SR I

]

, N =
[
I −S
0 S

]

,

where S = (2I − T (b))−1. It can be seen that M and N are of the same forms as those in
(3.5), and we have

M
[
I
H

]

= N
[
I
H

]

B,
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so that SDA can be applied to compute the matrix H , which consists of computing the
sequences as defined in the scheme (3.7) by setting

P0 = SR, E0 = P0 + T (b), and Q0 = F0 = S.

On the other hand, it can be verified that the matrices M and N also satisfy

M
[
Y
I

]

Z = N
[
Y
I

]

, (3.12)

where Y = V (I − T (b)V )−1, Z = (I − T (b)V )V (I − T (b)V )−1. It can be seen that Z
has the same spectrum as V so that ρ(Z) = ρ(V ) ≤ ‖V ‖∞ < 1, we then have from the
fact ρ(B) ≤ ‖B‖∞ < 1 that ρ(B)ρ(Z) < 1. Hence, according to Lemma 3.1, we obtain the
following convergence result of SDA in solving Eq. (3.11).

Theorem 3.3 For A = I − A1 ∈ QT ∞ such that A1 ≥ 0 and ‖A1‖∞ < 1, suppose I − B
with B = T (b)+EB ∈ QT ∞ is the unique quasi-Toeplitz M-matrix such that (I −B)2 = A.
If the scheme (3.7) can be carried out with no breakdown, then the sequence {Pk} converges
to EB and it satisfies limk ‖EB − Pk‖1/2k ≤ ρ(B)ρ(Z), where Z = (I − T (b)V )(2I −
B)−1(I − T (b)V )−1 and V = (2I − B)−1.

Actually, according to the ideas in [5], the scheme (3.7) allows to refine a given initial
approximation to EB , that is, if EB = ẼB + D, where ẼB is given and it satisfies ‖T (b) +
ẼB‖∞ < 1, then SDA can be used to compute D. Indeed, if H in Eq. (3.11) is replaced by
ẼB + D, it yields

D2 + (T (b) + ẼB − 2I )D + D(T (b) + ẼB) + R̃ = 0, (3.13)

where R̃ = (T (b) + ẼB)2 − 2(T (b) + ẼB) + A1. Analogously to the analysis above, we
obtain the matrix pencil M̂ − λN̂ such that

M̂ =
[
S̃ A1 0
−S̃ R̃ I

]

, N̂ =
[
I −S̃
0 S̃

]

,

where S̃ = (2I − T (b) − ẼB)−1, and it holds

M̂
[
I
D

]

= N̂
[
I
D

]

B, M̂
[
Ỹ
I

]

Z̃ = N̂
[
Ỹ
I

]

,

where Ỹ = V (I − (T (b) + ẼB)V )−1, Z̃ = (I − (T (b) + ẼB)V )V (I − (T (b) + ẼB)V )−1.
Now we set

M̂k =
[

Ẽk O
−P̃k I

]

, N̂k =
[
I −Q̃k

O F̃k

]

,

where P̃0 = S̃ R̃, Ẽ0 = S̃ A1, Q̃0 = F̃0 = S̃, and

Ẽk+1 = Ẽk(I − Q̃k P̃k)
−1 Ẽk

P̃k+1 = P̃k + F̃k(I − P̃k Q̃k)
−1 P̃k Ẽk;

F̃k+1 = F̃k(I − P̃k Q̃k)
−1 F̃k;

Q̃k+1 = Q̃k + Ẽk(I − Q̃k P̃k)
−1 Q̃k F̃k .

(3.14)
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Then we obtain a new pencil M̂k − λN̂k such that

M̂k

[
I
D

]

= N̂k

[
I
D

]

B2k .

Since ρ(B) ≤ ‖B‖∞ < 1, if in addition the sequence {N̂k} is uniformly bounded, we have

limk→∞ M̂k

[
I
D

]

= 0, from which we obtain limk→∞ P̃k = D.

Hence, SDA can be applied to solve Eq. (3.13), which consists in computing the sequences
defined in (3.14). Observe that ρ(Z̃) = ρ(V ) < 1, then according to Lemma 3.1 it holds

that limk ‖P̃k − D‖1/2k∞ < ρ(B)ρ(V ) < 1, that is, the sequence {P̃k} converges to D, so that
EB = ẼB + D is computed.

One alternative is to set ẼB = (b(1)1 − T (b)1)eT1 , where 1 = (1, 1, . . .)T and e1 =
(1, 0, . . .)T , then T (b)+ ẼB is a nonnegative substochastic matrix such that (T (b)+ ẼB)1 =
b(1)1. Numerical experiments in Sect. 5 shows that there are cases where a reduction in
CPU time occurs when setting ẼB = (b(1)1 − T (b)1)eT1 and applying iteration (3.14) for
computing D.

We mention that when applying the fixed-point iteration and SDA to compute the correc-
tion part of a quasi-Toeplitz M-matrix, the computations rely on the package CQT-Toolbox
of [9] which implements the operations of semi-infinite quasi-Toeplitz matrices. In next sec-
tion, we show that the fixed-point iteration and SDA can be applied to a finite dimensional
nonlinear matrix equation, whose solution after extending to infinity is a good approximation
to EB .

4 Truncation to a Finite Dimensional Matrix Equation

Recall that the correction part of a quasi-Toeplitz matrix A = T (a) + E ∈ QT ∞ satisfies
limi

∑∞
j=1 |ei, j | = 0 for E = (ei, j )i, j∈Z+ . Denote by E (k) the infinite matrix that coincides

with the leading principal k × k submatrix of E and is zero elsewhere, it follows form [11,
Lemma 2.9] that there is a matrix E (k) such that limk→∞ ‖E − E (k)‖∞ = 0.

For an invertible M-matrix A = I − A1 ∈ QT ∞, suppose (I − T (b) − EB)2 = A, then
for EB and a given ε > 0, there is a sufficiently large k such that

‖E (k)
B − EB‖∞ < ε. (4.1)

If we partition EB into EB =
(
E11 E12

E21 E22

)

, where E11 is the principal k × k submatrix of

EB , E12 ∈ R
k×∞, E21 ∈ R

∞×k and E22 ∈ R
∞×∞, it follows from ‖E (k)

B − EB‖∞ < ε that
‖E12‖∞ < ε, ‖E21‖∞ < ε and ‖E22‖∞ < ε.

Let W = 2T (b) − A1 − T (b)2, then T (b) and W can be partitioned into T (b) =(
T11 T12
T21 T22

)

and W =
(
W11 W12

W21 W22

)

, where T11 and W11 are, respectively, the princi-

pal k × k submatrices of T (b) and W . Substituting EB , T (b) and W into the equation
(I − T (b) − EB)2 = I − A1, we get

E2
11 − (Ik − T11)E11 − E11(Ik − T11) = W11 − E12E21 − E12T21 − T12E21, (4.2)

where Ik is the identity matrix of size k.
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Consider the matrix equation

G2 − (Ik − T11)G − G(Ik − T11) = W11, (4.3)

which is equivalent to

(Ik − T11 − G)2 = I − A11 − T12T21, (4.4)

where A11 is the principal k × k submatrix of A1. Observe that A11 ≥ 0 and T12T21 ≥ 0,
if in addition ρ(A11 + T12T21) < 1, which can be verified if ‖A11 + T12T21‖∞ < 1, then
I − A11−T12T21 is a nonsingularM-matrix. In what follows we assume ‖A11+T12T21‖∞ <

1, then I − A11 − T12T21 admits a unique M-matrix as a square root (see [14, Theorem
6.18]), so that Eq. (4.4), as well as Eq. (4.3), has a unique solution G such that T11 + G ≥ 0
and ρ(T11 + G) < 1. In fact, analogously to [22, Theorem 3.1], it is can be seen that
‖T11 + G‖∞ < 1.

Subtracting Eq. (4.2) form Eq. (4.3) yields

G2 − E2
11 − (G − E11)(Ik − T11) − (Ik − T11)(G − E11) = �W , (4.5)

where �W = E12E21 + E12T21 + T12E21. It can be seen that

‖�W‖∞ = ‖E12E21 + E12T21 + T12E21‖∞
≤ ε2 + ‖T21‖∞ε + ‖T12‖∞ε

≤ (2‖b‖W + ε)ε, (4.6)

where the last inequality holds as ‖T12‖∞ ≤ ‖T (b)‖∞ = ‖b‖W and ‖T21‖∞ ≤ ‖T (b)‖∞ =
‖b‖W .

On the other hand, a direct computation of Eq. (4.5) yields

(2Ik − T11 − G)(G − E11) − (G − E11)(T11 + E11) = −�W . (4.7)

Observe that 2Ik − T11 −G is a nonsingular M-matrix as T11 +G ≥ 0 and ρ(T11 +G) < 1.
Moreover, we have ‖T11 + E11‖∞ < 1 as T11 + E11 is the principal k × k submatrix of
T (b) + EB and ‖T (b) + EB‖∞ < 1. Then one can check that

G − E11 = −
∞∑

j=0

(2Ik − T11 − G)− j−1�W (T11 + E11)
j (4.8)

is well defined and it solves Eq. (4.7).
Let α = ‖(2Ik −T11−G)−1‖∞ and β = ‖T11+E11‖∞, we have α = 1

2‖
∑∞

j=0(
1
2 (T11+

G)) j‖∞ ≤ 1
2−‖T11+G‖∞ , so that αβ ≤ β

2−‖T11+G‖∞ < 1 since ‖T11 + G‖∞ < 1 and β < 1.
Then we deduce from (4.6) and (4.8) that

‖G − E11‖∞ ≤
∞∑

j=0

(αβ) jα‖�W‖∞

≤ α

1 − αβ
(2‖b‖w + ε)ε. (4.9)

Let EG be the matrix that coincides in the leading principal k × k submatrix with G and
is zero elsewhere, then we have from (4.1) and (4.9) that

‖EG − EB‖∞ ≤ ‖EG − E (k)
B ‖∞ + ‖E (k)

B − EB‖∞
≤ ‖G − E11‖∞ + ε
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≤ (1 + α

1 − αβ
(2‖b‖w + ε))ε. (4.10)

Hence, we can see from (4.10) that for a given ε > 0 and sufficiently large k, ifαβ ≤ c < 1
for some constant c, then EG may serve as a good approximation to EB . This implies that
the correction part EB can be approximated by firstly computing the numerical solution of
Eq. (4.3) and then extending the computed solution to infinity.

It is not difficult to see that the fixed-point iteration (3.2) and SDA can be applied to Eq.
(4.3) for computing the solution G. Numerical experiments in next section show that when
the size k is small, it is efficient to approximate the correction part EB by computing the
solution of Eq. (4.3) and extending it to infinity, while when k is large, that is, the coefficients
are large-scale matrices, both fixed-point iteration and SDA lose the effectiveness.

We provide some insight on how to select integer k such that the matrix G of size k × k,
after extending to infinity, is approximate enough to EB . Observe that the substitution of EG

into the equation (I − T (b) − X)2 = A yields

A − (I − T (b) − EG)2 =
(

0 GT12 − W12

T21G − W21 −W22,

)

,

from which we see that EG is a good approximation to EB if ‖GT12 − W12‖∞ < cε,
‖T21G − W21‖∞ < cε and ‖W22‖∞ < cε for some constant c and a given ε > 0. It can be
seen that these inequalities hold if

‖GT12‖ < c1ε, (4.11)

‖T21G‖∞ < c2ε, (4.12)

and

max{‖W12‖, ‖W21‖, ‖W22‖∞} < c3ε, (4.13)

for some constants c1, c2 and c3. Hence, we can choose k such that inequalities (4.11)–(4.13)
are satisfied.

Actually, since W is a correction matrix, one can check that inequality (4.13) holds if we
choose k such that ‖W − W (k)‖∞ < ε, where W (k) is the infinite matrix that coincides with
the leading principal k × k submatrix of W and is zero elsewhere. Hence, if the matrix W
has a nonzero part of size n1 × n2, we can choose k such that k > max{n1, n2}.

We next show how to choose k such that inequalities (4.11) and (4.12) hold. Observe that
for ε > 0, there is N ∈ Z

+ such that ‖EB − E (n)
B ‖∞ < ε for any n ≥ N . Set k > N and

G =
(
G11 G12

G21 G22

)

∈ R
k×k , where G11 ∈ R

N×N ,G12 ∈ R
N×(k−N ),G21 ∈ R

(k−N )×N and

G22 ∈ R
(k−N )×(k−N ). Observe that

‖EG − E (N )
B ‖∞ ≤ ‖EG − EB‖∞ + ‖EB − E (N )

B ‖∞,

which, together with inequality (4.10) and the fact ‖EB − E (N )
B ‖∞ < ε, implies that ‖EG −

E (N )
B ‖∞ < c̃1ε for some constant c̃1. On the other hand, observe that EG − E (N )

B coincides

in the leading principal k × k submatrix with

( ∗ G12

G21 G22

)

and is zero elsewhere, where ∗ is

an N × N matrix, we thus have ‖G12‖∞ < c̃1ε, ‖G21‖∞ < c̃1ε and ‖G22‖∞ < c̃1ε.

Suppose b(z) = ∑p
j=−q b j z j , then from the partition of T (b)we know that T12 =

(
O
T̃

)

,

where O is a zeromatrix of size (k− p)×∞ and T̃ is a p×∞matrixwith a p× p nonzero sub-
matrix located in the bottom leftmost corner. If k is selected such that k−N > p, we have from
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‖G12‖∞ < c̃1ε and ‖G21‖∞ < c̃1ε that ‖GT12‖∞ ≤ max{‖G12‖∞, ‖G21‖∞}‖T̃ ‖∞ < c1ε
for some constant c1. Similarly, if k − N > q , inequality (4.12) holds.

The above analysis indicates that if the matrix W has a nonzero part of size n1 × n2 and
the symbol b(z) of T (b) is a Laurent series b(z) = ∑p

j=−q b j z j , then we can choose k such
that

k − N > p, K − N > q and k > max{n1, n2}. (4.14)

Observe that the value of N in (4.14) is unknown, hence we can obtain a necessary condition
for determining k, that is, k > max{p, q, n1, n2}. In our numerical experiments, we have set
k = 3max{p, q, n1, n2} and it seems sufficient.

Note that equation (4.2) is a special case of the following equation

X2 − AX − X A = B,

where A is a large-scale nonsingular M-matrix with an almost Toeplitz structure, and B
is a low-rank matrix. It seems interesting to investigate whether there are more efficient
algorithms for computing the solution by exploiting the quasi-Toeplitz structure of A and the
low-rank structure of matrix B. We leave this as a future consideration.

5 Numerical Experiments

In this section,we showbynumerical experiments the effectiveness of thefixed-point iteration
(3.2) and SDA. The computations of semi-infinite quasi-Toeplitz matrices rely on the pack-
age CQT-Toolbox [9], which can be downloaded at https://github.com/numpi/cqt-toolbox,
while computation of the solution of Eq. (4.3) is implemented relying on the standard finite
size matrix operations. The tests were performed in MATLAB/version R2019b on the Dell
Precision 5570 with an Intel Core i9-12900H and 64 GB main memory. We set the inter-
nal precision in the computations to threshold = 1.e-15. For each experiment, the
iteration is terminated if

‖(I − T (b) − X)2 − A‖∞/‖A‖∞ ≤ 1.e − 13.

The codes are available at https://github.com/JieMeng00/structured_sqrtm_square_root_m-
matrices.

We recall that a quasi-Toeplitzmatrix A = T (a)+EA is representable inMATLABrelying
on the CQT-toolbox [9] by A=cqt(an,ap,E), where the vectors an and ap contain the
coefficients of the symbol a(z) with non negative and non positive indices, respectively, and
E is a finite matrix representing the non zero part of the correction EA.

Example 5.1 Let A = I − S with S = S̃/(‖S̃‖∞ + 1), where the construction of S̃ in MAT-
LAB is done as QS = cqt(sn,sp,EQS). We set sn = rand(32,1), sp = rand(30,1),
sn(1) = sp(1)=1, for the first test, we set EQS = 0, while for the second test, we set
EQS = rand(1000,1000).

Suppose B = T (b) + EB is such that (I − B)2 = A, we first compute by Algorithm 1 an
approximation b̂(z) = ∑n

j=−n+1 b̂ j z j to the symbol b(z) of T (b), then we apply the fixed-
point iteration (3.2) and SDA to compute EB . In Fig. 1 we show the graph of the computed
coefficients b̂ j , j = −n+1, . . . , n. In Fig. 2, we show the correction part EB = (ei, j )i, j∈Z+
in logarithmic scale, which is obtained by the fixed-point iteration. The number of iterations,
CPU times required in the computations and the relative residuals are reported in Table 1.
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Fig. 1 Toeplitz part of the computed B = T (b)+EB in Test 1: the log-scale of the absolute value of coefficients
bi of the symbol b(z) = ∑

i∈Z bi z
i . The coefficients are computed by Algorithm 1

Fig. 2 The correction part EB in
Test 1: absolute value of EB in
log scale, where EB is computed
by the fixed-point iteration (3.2)

In Table 2 we report the features of the computed matrix B = T (b) + EB , where EB is
computed by the fixed-point iteration, including band of the Toeplitz part, the rank and the
number of the nonzero rows and columns of the correction part.

It can be seen from Table 1 that the number of iterations required by SDA is much less
than the number of iterations required by the fixed-point iteration. Concerning the CPU time,
we can see that the fixed-point iteration takes less time than SDA in Test 1, while in Test 2,
the CPU time taken by SDA is about 1/3 of that taken by the fixed-point iteration. Together
with the results in Table 2, it seems that the rank of the correction part concerns a lot, that is,
when the rank of the correction part is small, it seems that the fixed-point iteration is faster
than SDA, but when the correction part is large, SDA is more efficient.

Moreover, in test 1, when applying SDA to compute matrix D such that EB = D + ẼB ,
where ẼB = (s(1)1 − T (s)1)eT1 , it takes 119.56s, which provides a reduction in CPU time
comparing with the case where SDA is applied directly for the computation of EB .

The computation of square root of invertible quasi-Toeplitz M-matrices has been imple-
mented in [22] by the Binomial iteration and CR algorithm, respectively. Numerical tests
show that the CR algorithm appears to be better suited for quasi-Toeplitz matrices. The fol-
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Table 1 Relative residual, number of iterations, CPU time in seconds in the computation EB . FPI means the
fixed-point iteration

Test 1 Test 2
Iterations res iter Time res iter Time

FPI 7.02e−14 55 1.15 · 102 9.62e−14 54 2.52 · 102
SDA 4.42e−14 6 1.70 · 102 6.61e−14 6 8.10 · 101

Table 2 Features of matrix
B = T (b) + EB in Test 1 which
is computed by FPI, including the
band of the Toeplitz part T (b),
number of nonzero rows and
columns, and rank of the
correction of the computed EB

Test 1 Test 2

Band 4200 376

Rows 2799 1296

Columns 1319 1162

Rank 80 1026

Table 3 Different values of the
parameters s0,m, n, p and q

Test s0 m n p q

1 0.1 100 1000 1 100

2 0.5 100 1500 2 100

3 0.9 100 2000 2 100

lowing example shows that the fixed-point iteration (3.2) and the SDA have their advantages
in computing the square root when decompose the task into the computation of the Toeplitz
part and the correction part.

Example 5.2 Let A = I − S with S = T (s) + ES ∈ QT ∞, where T (s) = s0 I with s0 < 1
and EB is the correction matrix with a (p + m + n) × (p + m + n) leading submatrix EP

S

and zero elsewhere. Here, EP
S =

⎛

⎝
Vp

Om

−s0 In

⎞

⎠, where Om is the zero matrix of size

m × m, In is the identity matrix of size n, and the matrix Vp =
(

Up×q

O(q−p)×q

)

is a q × q

block matrix with

Up×q =

⎛

⎜
⎜
⎜
⎝

u11 u12 · · · u1p · · · u1q
0 u22 · · · u2p · · · u2q
...

. . .
. . .

...
. . .

...

0 0 · · · u pp · · · u pq

⎞

⎟
⎟
⎟
⎠

p×q

.

where uii = −s0 for i = 1, . . . , p, and ui, j ≥ 0 for i = 1, 2, . . . , p and j = i + 1 . . . , q .
Moreover, for i = 1, 2, . . . , p, it satisfies that

∑q
j=i+1 ui j < 1.

For different values of the parameters s0,m, n, p and q as listed in Table 3, we apply the
fixed-point iteration (3.2) andSDA to compute thematrix EB such that (I−T (b)−EB)2 = A.
It can be seen that the symbol b(z) satisfies (1 − b(z))2 = 1 − s0, which, together with the
fact that ‖b‖W = ‖T (b)‖∞ < 1, implies b(z) = 1 − √

1 − s0, so that T (b) is a diagonal
matrix with diagonal elements being 1 − √

1 − s0.
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Table 4 Comparison of the fixed-point iteration (3.2) and SDA in computing EB with the Binomial iteration
and CR algorithm in computing B: the CPU time in seconds and relative residual in the computations

Test 1 Test 2 Test 3

Algorithms Time res Time res Time res

FPI 2.77 · 100 1.01e−15 1.94 · 101 3.00e−15 3.43 · 101 3.41e−14

SDA 8.44 · 100 1.40e−15 2.53 · 101 2.35e−15 4.48 · 101 6.79e−14

CR 1.13 · 101 1.83e−15 4.50 · 101 4.59e−15 9.59 · 101 7.48e−14

BI 1.44 · 101 7.65e−16 4.84 · 101 2.02e−15 1.12 · 102 5.22e−14

In this example, we observe that EB can be obtained by the fixed-point iteration as well
as SDA in just one or two steps. We also implement the Binomial iteration (BI) and the
CR in [22] for computing the whole matrix B = T (b) + EB , the CPU time and residual
error are compared with the fixed-point iteration and SDA in the computation of EB , and
are reported in Table 4. We mention that the residual error for BI and CR is obtained by
r = ‖(I − Ŷ )2 − A‖∞/‖A‖∞, where I − Ŷ is the computed square root of A.

As we can see from Table 4, the fixed-point iteration (3.2) and SDA take less CPU time
comparing with the Binomial iteration and CR algorithm. Moreover, the fixed-point iteration
(3.2), comparing with CR algorithm, has a speed-up in the CPU time by a factor of about 4
in Test 1 and 2.5 in Tests 2 and 3.

Example 5.3 Let A = cI − T (s) with T (s) = cqt(sn,sp), where c, sn and sp are con-
structed in MATLAB as

sp= rand(p,1), sn= rand(q,1), sn(1)=sp(1)=1, c= sum(sn)+sum(sp).

It can be seen that ‖T (s)‖∞ = ‖s‖W < c, so that A is an invertible M-matrix. For
different values of p and q , we apply the fixed-point iteration (3.2) and SDA for computing
matrix EB such that c(I − T (b) − EB)2 = A, where the symbol b(z) is approximated by
b̂(z) that is computed by Algorithm 1.

We also apply the fixed-point iteration andSDA to equation (4.3) for computing its solution
G, so that EB can be approximated by extending G to infinity. Table 5 reports the CPU time
taken by the fixed-point iteration and SDA when applied to matrix Eq. (4.3), as well as the
CPU time needed in the computation of the EB relying on the operations of quasi-Toeplitz
matrices.

We observe fromTable 5 that when the values of p and q are both small, say p = 4, q = 2,
it seems that applying the fixed-point iteration (3.2) and SDA to the truncatedmatrix equation
(4.3) takes less CPU time. For different values of p and q listed in Table 5, the rank of the
correction matrix is k=501, 1539, 8496 and 3834, respectively, we observe that when k
becomes large, the algorithms applied to the truncated matrix Eq. (4.3) take more CPU
times, and it can be seen that the algorithms relying on operations of quasi-Toeplitz matrices
are more efficient.

6 Conclusions

We have fully exploited the quasi-Toeplitz structure in the computation of the square root
of invertible quasi-Toeplitz M-matrices. We propose algorithms for computing the Toeplitz
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Table 5 CPU time in seconds, needed by the fixed-point iteration and SDA for computing a k × k matrix,
which, after extending to infinity, is a good approximation to EB .

(p, q) FPI SDA

(4,2) 2.79 · 10−2 [1.09 · 10−1] 1.95 · 10−2 [1.13 · 10−1]
(12,10) 4.19 · 100 [3.48 · 100] 2.45 · 100 [5.61 · 100]
(20,2) 6.90 · 102 [4.63 · 101] 6.56 · 102 [7.17 · 101]
(20,20) 7.52 · 101 [2.49 · 101] 3.53 · 101 [4.23 · 101]
For comparison, the CPU time needed by FPI and SDA relying on the operations of quasi-Toeplitz matrices
is written between bracket

part and the correction part respectively. The Toeplitz part is computed by Algorithm 1 at the
basis of evaluation/interpolation at the 2n roots of unique. We propose a fixed-point iteration
and a structure-preserving doubling algorithm for the computation of the correction part.
Moreover, we show that the correction part can be approximated by extending the solution
of a nonlinear matrix equation to infinity. Numerical experiments show that SDA in general
takes less CPU time than the fixed-point iteration. There are also cases where the fixed-point
iteration is inferior to SDA. There are cases where both the fixed-point iteration and SDA
work better than the Binomial iteration and CR algorithm that exploit the quasi-Toeplitz
structure indirectly.
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