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Abstract
We present a family of novel explicit numerical methods for the diffusion or heat equation
with Fisher,Huxley andNagumo-type reaction terms.After discretizing the space variables as
in conventional method of lines, our methods do not apply a finite difference approximation
for the time derivatives, they instead combine constant- linear- and quadratic-neighbour
approximations, which decouple the ordinary differential equations. In the obtainedmethods,
the time step size appears in exponential form in thefinal expressionwith negative coefficients.
In the case of the pure heat equation, the new values of the variable are convex combinations
of the old values, which guarantees unconditional positivity and stability. We analytically
prove that the convergence of the methods is fourth order in the time step size for linear ODE
systems. We also prove that the concentration values in the case of Fisher’s and Nagumo’s
equations lie within the unit interval regardless of the time step size.We construct an adaptive
time step size time integrator with an extremely cheap embedded error control method.
Several numerical examples are provided to demonstrate that the proposed methods work for
nonlinear equations in stiff cases as well. According to the comparisons with other solvers,
the new methods can have a significant advantage.

Keywords Diffusion equation · Explicit time-integration · Stiff equations · Nagumo’s
equation · Unconditional stability

1 Introduction

1.1 The Studied Problems

Diffusive transport of particles or heat has a fundamental role in several scientific and engi-
neering applications [1–3]. It is well known that the so-called heat or diffusion equation,
which describes diffusion and conductive heat transfer, is the following linear parabolic
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partial differential equation (PDE),

cρ
∂u

∂t
� ∇ · (k∇u) + cρq. (1.1)

here u :R3×R �→ R; (�r , t) �→ u(�r , t) is the unknown function, q :R3×R �→ R; (�r , t) �→ q
(�r , t) and u(�r , t � 0) � u0(�r) are given functions, while c � c(�r , t), ρ � ρ(�r , t), and
k � k(�r , t) are known nonnegative functions. The boundary conditions will be specified at
the concrete numerical examples.

In one space dimension, provided that k is independent of the space variable, Eq. (1.1)
can be written into the simple form

∂u

∂t
� α

∂2u

∂x2
+ q , (1.2)

where u :R × R �→ R; (x , t) �→ u(x , t), α > 0 is a constant.
In the case of diffusive mass transfer, u is the concentration of the particles. In the case of

heat conduction, u denotes the temperature, α � k/(cρ) is the thermal diffusivity, k, ρ, and
c are the heat conductivity, the specific heat and the mass density, while q is the intensity of
the heat sources (due to electromagnetic radiation, electric currents, etc.), respectively.

The diffusion equation and its generalizations, such as the advection–diffusion-reaction
equation, can model mass transport in countless physical, chemical, and biological systems,
for example charge carriers in semiconductors [4], atoms in carbon nanotubes [5], and pro-
teins in embryos [6]. Furthermore, very similar equations or systems of equations are used to
simulate fluid flow through porous media, such as moisture [7], ground water, or crude oil in
underground reservoirs [8]. We are going to deal here with two nonlinear reaction–diffusion
equations. The first one is Fisher’s equation, also called Fisher-Kolmogorov-Petrovsky-
Piskunov equation [9], which contains an additional nonlinear logistic reaction term besides
the diffusion term:

∂u

∂t
� α∇2u + βu(1 − u). (1.3)

This equation is used to model the spreading of gene-variants in space, as well as the
growth and spreading of misfolded proteins in neurophysiology [10], and the propagation
of fronts in combustion processes [11]. The second nonlinear equation we use here contains
a source term which can be a large and non-integer power of the variable u, and has the
following form:

∂u

∂t
� α∇2u + βu

(
1 − uδ

)(
uδ − γ

)
, (1.4)

where β, γ, and δ are nonnegative real numbers. This equation has applications not only in
biology [12], but in chemical reactions [13] and nuclear reactor theory [14] as well. It is
usually called the Nagumo, FitzHugh-Nagumo or the generalized Huxley equation [15]. In
fact, Huxley’s equation can be obtained from the Nagumo equation if one sets γ � 0, δ � 1
as follows

∂u

∂t
� α∇2u + βu2(1 − u). (1.5)

It was shown [16] that this equation is superior to Fisher’s equation when the change in
frequency of a new, advantageous recessive allele in a sexually reproducing population has
to be modelled. Equation (1.5) is a special case of the Burgers-Huxley equation [17], which
is used to model nonlinear wave phenomena.
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1.2 On the SolutionMethods

It is well known that several numerical methods have been developed and applied to solve the
equations in question. Nevertheless, most of these are elaborated and tested under circum-
stances where the coefficients in the equations, such as the diffusivity α, do not depend on the
space variable. In real applications, however, there are systems where the physical properties
can be extremely different at neighbouring points, let us just think about a microprocessor.
This means that the coefficients, and therefore the eigenvalues of the system matrix, may
have a range of several orders of magnitude, thus the problem can be severely stiff. Although
when combined with method of lines, the traditional explicit methods (such as the fourth-
order Runge–Kutta method) can be very accurate [18], very small time step sizes have to be
applied in stiff cases regardless of the measurement errors of the input data and the require-
ments on the accuracy of the output. This is because they are stable only if the time step size
does not exceed a certain threshold number, the mesh Fourier number (also called Courant
or CFL limit). Even the adaptive time step size solvers like ode23 and ode45 of MATLAB
can run into instability [19] if the tolerance is not very small.

On the other hand, implicit methods have much better stability properties. That is why
they are typically proposed to solve these equations [20–22]. For example, Ramos [23] suc-
cessfully modified the standard explicit method to reach higher accuracy in the case of the
one-dimensional Huxley’s equation. However, the stability was not improved by the modifi-
cation, and the implicit methods, especially the different versions of Crank-Nicolson schemes
are still outperform themodified explicit method as well. He also applied different linearized-
implicit techniques for one-dimensional [24] and multi-dimensional [25] diffusion-reaction
problems. Manaa and Sabawi solved [26] δ � 1 the version of Eq. (1.4) using Explicit
(Euler) and Crank- Nicolson methods, and obtained that albeit the explicit method is faster, it
is less stable and accurate than the Crank-Nicolson scheme. Kadioglu and Knoll solved cou-
pled hydrodynamics and nonlinear heat conduction problems by treating the hydrodynamics
explicitly and the heat conduction part implicitly [27]. They explain that this strategy, which
is called IMEX, is typical for these kinds of problems. Its counterpart in the field of reservoir-
simulation is the IMplicit Pressure Explicit Saturation (IMPES) approach [28], where the
pressure-equation (mathematically similar to the diffusion equation) is solved implicitly, and
the saturation is calculated explicitly. However, fully implicit methods are also proposed [29]
for this problem.

The most serious problem with the implicit methods is that the solution of a system of
algebraic equations is required at each time step, which cannot be straightforwardly paral-
lelized. In one space dimension, when the number of nodes or cells is small and the matrix is
tridiagonal, these calculations can be very fast and implicit methods are hard to compete with.
However, the solution can be extremely time-consuming in the opposite case, and we note
that the number of cells has already reached one trillion in reservoir simulations. Since the
clock frequencies of CPUs halted in the last decades, which reinforced the tendency towards
increasing parallelism in high-performance computing [30, 31], we believe that the attention
towards the easily parallelizable explicit algorithms is going to increase.

The second problem with most of the methods, either explicit or implicit, is that they
can lead to qualitatively unacceptable solutions, such as unphysical oscillations or nega-
tive values of the otherwise non-negative variables. These variables can be concentrations,
densities, or temperatures measured in Kelvin, and the numerical methods should preserve
their positivity. That is why Chen-Charpentier and others constructed and studied [32–34]
the fully explicit and unconditionally positive finite difference (UPFD) scheme for linear
advection–diffusion reaction equations. Then Kolev et al. [35] considered a model of cancer
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migration and invasion, which consists of two PDEs with diffusion terms and an ordinary
differential equation (ODE). They discretized one of the PDEs and the ODE implicitly while
the remaining PDE was solved by an explicit scheme similar to the UPFDmethod. However,
their method, as well as the original UPFD scheme, has only first order temporal accuracy.
Chertock and Kurganov developed a positivity preserving scheme for a system of advection-
reaction–diffusion equations describing chemotaxis/haptotaxis models, but their method is
positivity preserving only if the time step size is below the rather low mesh Fourier number
[36]. The situation is similar to the nonstandard finite difference schemes (NSFD), applied to
cross-diffusion equations by Chapwanya et al. [37], and Songolo [38], and to the Fisher and
the Nagumo equation by Agbavon et al. [12, 39]. The schemes of Agbavon will be tested in
this paper as well.

There are explicit algorithms which are at the same time unconditionally stable, at least in
the case of the linear heat equation. For example, the Alternating Direction Explicit (ADE)
scheme [40] and the odd–even hopscotch algorithm [41, 42] have second order temporal
accuracy. They are often quite accurate indeed, but not positivity preserving. Actually, for
stiff systems, the odd–even hopscotch method can produce very large errors [43]. Moreover,
both of them build on the regularity of the mesh, thus they lose their explicit nature otherwise.

Nonlinear equations of type (1.3) or (1.4) are treated by operation splitting approaches
as well, such as Strang-splitting. The diffusion part is solved by an implicit method as if
the nonlinear term does not exist. The nonlinear term is treated locally, solving the ODE,
either analytically or via linearization. In this way, one can spare the Newton iterations due to
the nonlinearity, but most of the above-mentioned problems remain. Moreover, the splitting
implies larger errors and even the decoupling of the reaction and the diffusion processes in
the case of large time steps [18].

To summarize, we do not know any explicit and unconditionally stable, let alone uncon-
ditionally positive method above second order, even for the linear diffusion equation. That
is why we started to construct novel explicit methods based on a fundamentally new way of
thinking. The obtained lower order members (the CNe, LNe, CCL and CLL methods, see
[44–46], respectively) have already been published, and now we are going to present the
fourth order members, for which we need the quadratic-neighbour approximation.

1.3 The Outline of the Paper

In Sect. 2, only the linear diffusion equation is considered. First we briefly recall the CNe
and LNe schemes, because they make the first two stages of the new methods. In Sect. 2.2,
we introduce the new algorithms for the linear diffusion equation, first for the simplest case
(one dimensional, equidistant mesh), then in Sect. 2.3, for a general, arbitrary mesh as well.
Then we start to analyse the properties of these new methods. The unconditional positivity
and stability are proved in Sect. 2.4, then the truncation error is examined to determine the
conditions for consistency and the order of convergence in 2.5. In Sect. 3, we show how to
adapt the algorithms to the nonlinear cases. In Sect. 4, five numerical tests are presented in 1D
cases where analytical solutions of the equations are used as reference solutions. In Sect. 5,
we present the adaptive stepsize controller and then perform three numerical experiments for
two space-dimensional stiff systems. Finally, we summarise our conclusions and write about
our future research goals.
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2 Description and Properties of the NewMethod for the Linear
Diffusion Equation

We begin with the construction of the new schemes for the one dimensional Eq. (1.2). First,
the space variable is discretized by creating N ∈ N+ equidistant nodes: xi � i�x , i � 1,
..., N . As in the most standard method of lines, the next step is the discretization of the space
derivatives by the second order central difference formula:

∂2

∂x2
f (xi , t) ≈

f (xi+1, t)− f (xi , t)
�x + f (xi−1, t)− f (xi , t)

�x

�x
. (2.1)

Using (2.1) we obtain an ordinary differential equation (ODE) for each node i � 1, ...,
N :

dui
dt

� α
ui−1 − 2ui + ui+1

�x2
+ qi � α

ui±1 − 2ui
�x2

+ qi ,

where ui :R �→ R; t �→ ui (t) are functions of the time variable, which is still continuous,
while qi is the value of the source term at node i. The ui±1 � ui+1 + ui−1 notation will be
used throughout the whole paper for the sake of brevity. This system of Eq. (2.2) has the
following matrix-form:

d �u
dt

� M �u + �q. (2.2)

here M is a tridiagonal matrix with the usual elements: mii � − 2α
�x2

, mi , i+1 � mi , i−1 �
α

�x2
(1 < i < N ), while the first and last row is determined by the boundary condition. The

ith element of the vector �u : {1, ..., N } × R �→ RN is the function ui (t). If one calculates
the eigenvalues of the matrixM, then the (nonzero) eigenvalues with the largest and smallest
absolute value (let us say λmax and λmin) can determine the stiffness ratio, which is λmax/λmin.
Moreover, themaximum time step size abovewhich the explicit Euler time integrationwill be
unstable can be given as hEEMAX�−2/λmax. Similar but slightly larger mesh Fourier numbers
hold for all explicit Runge–Kutta methods.

We define the usual mesh ratio as r � αh
�x2

� −mii
2 h , 1 < i < N , with which we can

write

dui
dt

� −2
r

h
ui +

r

h
ui±1 + qi
︸ ︷︷ ︸

(∗)

(2.3)

At this point the time variable is also discretized, tn � nh , n ∈ {0, 1, 2, ..., T } , and
uni is the numerical solution at xi and tn . We use h instead of �t or k for the time step
size because of the similarity of our methods to the method of lines. We emphasize here
that the time derivatives will not be approximated by finite difference formulas as in the
Finite Difference Methods (FDM). Instead, the ODE system (2.2) or (2.3) will be solved
analytically assuming the time-variable to be continuous and the initial value at tn is uni . The
constructed solution of ODE (2.3) is used to approximate the real u

(
tn+1
)
value. Due to this,

the new methods are not always considered as FDMs.

2.1 The Already Known Constant- and Linear-Neighbour Type Approximations

Now the simplest member of our methods, the CNe algorithm [47] is briefly repeated via the
following points.
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(1a) When the new value un+1i of the unknown function is calculated, we neglect that other
variables, most importantly the neighbours uni−1 and u

n
i+1 are also changing during the

time step. This crude approximation means that uj ( j 
� i), and therefore the (*) term
in (2.3) are considered to be constants (this is where the name of the method comes
from). After this a set of uncoupled, linear ODEs remains:

dui
dt

� ai − 2r

h
ui , (2.4)

where the unknown ui is still a function of the (continuous) time in each equation with
initial values uni , while h is a parameter, but r/h is not a function of time. The quantity
ai has been introduced to condense information about the neighbours of cell i and the
source term

ai �
∑

j∈{i−1, i+1}
mi j u

n
j + qi � α

uni±1

�x2
+ qi � r

h
uni±1 + qi . (2.5)

We note again that uni−1 and uni+1 are the values of the neighbours at the beginning of
the actual time step, thus the ai values are considered as constants during the time step.

(1b) The Eq. (2.4) are very simple and it is straightforward to use their analytical solution
at time t � h to obtain the values of u at the end of the time step:

un+1i � uni · e−2r +
hai
2r

(
1 − e−2r ). (2.6)

Thus, for a one-dimensional homogeneous systemwith an equidistant mesh, the following
one-stage method was introduced.

Algorithm 1, CNe method

un+1i � uni · e−2r +

(
uni±1

2
+

h

2r
qi

)(
1 − e−2r ). (2.7)

The CNe method has first order convergence in time [44]. If one uses a half time step to
obtain predictor values, and then a full time step for the corrector values, both with the CNe
formula, one will have the so-called CpC algorithm:

(2a) Instead of the constant-neighbour approximation, now we suppose that the neighbours
of the node, and therefore the (*) term in (2.3) are changing linearly. It means that we
have to solve the following uncoupled ODE system:

dui
dt

� si t + ai − 2r

h
ui , (i � 1 . . . N ) (2.8)

To determine the si values (the aggregated or effective slopes),we need a set of predictor
values upredi . These are obtained by the CNe algorithm and are valid at the end of the
examined time step. So the slope for the neighbours can be calculated as

si � apredi − ai
h

. (2.9)

Here

apredi �
∑

j∈{i−1, i+1}
mi j u

n+1,pred
j + qi � α

�x2
un + 1,pred
i±1 + qi � r

h
un + 1,pred
i±1 + qi (2.10)

contains the predictor values of all the neighbours. The source terms are considered to
be independent of time for the sake of simplicity.
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(2b) The equation system (2.8) is a set of independent linear ODEs again, with the simple
analytical solution:

ui (t) � uni e
−2 r

h t −
(

h2

4r2
si − h

2r
ai

)(
1 − e−2 r

h t
)

− h

2r
si t .

This solution is used at the end of the time step t � h to provide us with the corrector
values. Steps 1a–b and then 2a–b make a two-stage (predictor–corrector) method, which
is called “linear-neighbour method” [44] and abbreviated by LNe2 or LNe. After some
rearrangement, we have the following scheme.

Algorithm 2, LNe method

Stage 1 The same as Algorithm 1.

Stage 2 uL,n+1i � uni e
−2r +

h

2r

(
1

2r

(
ai − apredi

)
+ ai

)
(
1 − e−2r )− h

2r

(
apredi − ai

)
,

(2.11)

where ai and a
pred
i are defined in (2.5) and (2.10).

This algorithm has second order convergence [44], and it is an important building block
of our multistage methods.

2.2 The NewQuadratic-Neighbour Approximation

Now we approximate the aggregate change of the neighbours, more precisely, the (*) term in
(2.3), by a second order polynomial, which yields the following ODE for the node-variable:

dui
dt

� −2r

h
ui + wi t

2 + si t + ai (2.13)

where u(t � 0) � u0 and the values of w, s, and a contain information about the neighbours
and the source term. The analytical solution of the initial value problem (2.13) at t � h is

u(t) � e−2r u0 +
(
1 − e−2r )

(

2wi

(
2r

h

)3
− si

(
2r

h

)2
+ ai

2r

h

)

+ 2r
(
wi h − 4wi

r

h
+ si
)

(2.14)

In the case of the LNe method, we needed values of �u at two different time-points to
determine the “slope” coefficients si. Now, for each node,we need three values, f0, f1 and f2,
to determine the coefficients w, s and a. The quantity ai is obviously ai � f0 � r/

hu
n
i±1 +qi .

We choose to obtain an estimation of the other two values at the middle and at the end of the
actual time step by the LNe scheme described above, so the two missing function values are:

f1, i � r/
hu

L,n + 1/2
i±1 uni + qi , f2, i � r/

hu
L,n + 1
i±1 uni + qi

Now we have the following simple system of equations:

w
h

4

2

+ s
h

2
+ a � f1 and wh2 + sh + a � f2

The solution of this gives the unknown parameters for each node:

si � 4 f1, i − f2, i − 3ai
h

andwi � 2
f2, i − 2 f1, i + ai

h2
,
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and with these, the new values of the solution can be calculated using (2.14). For the sake of
simplicity and higher speed of the calculations, we introduce the following new quantities:

F1, 2 � f1, 2
h

2r
, Ai � ai

h

2r
, Si � si

h2

2r
, Wi � wi

h3

2r

Now, if someone uses quantities with dimensions, then the new quantities A, S and W
have the same dimension as u. With these new notations, we have

uQ
i � e−2r uni +

(
1 − e−2r )

(
2Wi

2r

h3
h3

8r3
− Si

2r

h2
h2

4r2
+ Ai

2r

h

h

2r

)

+ h
h

2r

(
Wi

2r

h3
h − 2Wi

2r

h3
h

2r
+ Si

2r

h2

)

� e−2r uni +
(
1 − e−2r )

(
Wi

2r2
− Si

2r
+ Ai

)
+Wi − 1

r
Wi + Si

We can summarize the obtained algorithms as follows:
Algorithm 3: three-stage constant-linear-quadratic neighbour (CLQ) method

Stage 1 Calculate Ai � uni±1
2 + h

2r qi , then take a full time step with the CNe method

uCi � uni e
−2r + Ai

(
1 − e−2r )

Stage 2 Calculate Apred
i � uCi±1

2 + h
2r qi , then calculate a half as well as a full time step with

the LNe method

u
L1/2
i � uni e

−r + Ai
(
1 − e−r ) +

Apred
i − Ai

2

(
1 − 1 − e−r

r

)

uLi � uni e
−2r + Ai

(
1 − e−2r ) +

(
Apred
i − Ai

)(
1 − 1 − e−2r

2r

)

Stage 3 Calculate F1, i � uL1/2i±1
2 + h

2r qi and F2, i � uLi±1
2 + h

2r qi , then Si � 4F1, i − F2, i − 3Ai

and Wi � 2
(
F2, i − 2F1, i + Ai

)
, and finally

uQi � e−2r uni +
(
1 − e−2r )

(
Wi

2r2
− Si

2r
+ Ai

)
+Wi

(
1 − 1

r

)
+ Si . (2.15)

One can use the CLQ result obtained at Stage 3 to add one more stage, which will be the
CLQ2 method. For this, the midpoint values must be calculated first as follows:

uQ1/2
i � e−r uni +

(
1 − e−r )

(
Wi

2r2
− Si

2r
+ Ai

)
+
Wi

4
− Wi

2r
+
Si
2

(2.16)

Algorithm 4: four-stage CLQ2 method

Stage 1–2–3 The same as in Algorithm 6.
Stage 4 Use formula (2.15) again to obtain the final values of the four-stage CLQ2 method,
but now uQ1/2

i is obtained by (2.16), F1, i � 1
2u

Q1/2
i±1 + h

2r qi , F2, i � 1
2u

Q
i±1 +

h
2r qi , while Si

and Wi must also be recalculated. This iteration stage can be further repeated (in the very
same way as Stage 4) to get the CLQ3 method (5 stages altogether), the CLQ4 method (6
stages altogether), etc. We will show that although this iteration CLQn does not converge
to the true solution as n → ∞, it becomes more and more accurate due to the decreasing
truncation error coefficients.
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We have expressed the new values un + 1
i with the old values unj for the new algorithm

using the Mathematica software, but for the sake of brevity we present it only for the CLQ
algorithm, because for the other schemes they are much longer expressions.

un+1i � e−6r

8r3

{

−2 − r + er
(

4(1 + r) + er
(
2 + r(−1 + 6r) + 4e3r

(
1 + r − 2r2

)− 8er
(
1 + r + r2

)

+e4r
(−2 − 3r + 6r2

)
+ e2r

(
2 + r

(
5 + 4r + 8r2

))

))}

uni

+
e−6r

32r3

{
3(2 + r) − 12er (1 + r) + 4e5r (r − 1)(3 + 8r) − e2r

(
6 + r + 20r2

)

+8e3r (3 + 4r(1 + r)) − 3e4r (2 + r(5 + 4r(2 + r))) + e6r (6 + r(13 + 4r(3r − 5)))

}

uni±1

+
e−6r

16r3
(
er − 1

)2(−2 + 4e2r − 2e4r − r + 2er r + 4e2r r − 2e3r r − 3e4r r + 6e2r r2 + 4e3r r2 + 6e4r r2
)
uni±2

+
e−6r

32r3
(
e2r − 1

)(−2 + 4er − 4e3r + 2e4r − r + 4er r − 6e2r r + 4e3r r − e4r r + 4e2r r2 − 4e4r r2 + 4e4r r3
)
uni±3

(2.17)

2.3 Extension to a General Grid

It is possible to extend the methods to more general cases where the geometrical and material
properties of the simulated system depend on the position, and the discretization reflects this
fact. To take a step towards a resistance–capacitance-type model [48] of heat conduction, we
switch to cell variables, where ui , ci , ρi , and qi are the average temperature, specific heat,
density and heat source intensity of cell i, respectively, which will be approximated by their
values at the cell centres. The quantity ki , i+1 is the heat conductivity between cell i and its
right neighbour, which can be approximated as the value of k at the cell borders. The heat
capacity of the cells are Ci � ciρi Vi , while the thermal resistance between the cells can
be estimated as Ri , i+1 ≈ di , i+1/

(
ki , i+1Ai , i+1

)
, where Ai , i+1 is the interface area between

the neighbouring cells. Using these quantities and approximations, one can obtain the ODE
system for the time derivative of each cell-variable for a general (e.g. unstructured) grid in
any space-dimensions, independently of any coordinate-system as follows:

dui
dt

�
∑

j 
�i

u j − ui
Ri , jCi

+ qi . (2.18)

Equation system (2.18) can bewritten into the samematrix-form as (2.2). The off-diagonal
elements of the matrix M are mi j � 1/

(
Ri jCi

)
. If the cells i and j are not neighbours, i.e.

there is no direct heat conduction between them, then the corresponding element is zero. The
diagonal elements of the matrix are the negative sums of the off-diagonal elements: mii �
−∑ j 
�i

(
Ri , jCi

)−1. Let us introduce two notations, namely ri � −hmii and τi � − 1
mii

�
h
ri
. The first one can be perceived as the generalization of r, while τi is the characteristic time

or time constant of cell i. For the simplest one-dimensional case, we obtain ri � h 2α
�x2

�
2r and τi � h

2r (1 < i < N ) .
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Algorithm 3b: generalized three-stage CLQ method

Stage 1 Calculate ai �∑ j 
�i
unj

Ri , j Ci
+ qi , then take a full time step with the general form of

the CNe method:

uCi � uni e
−ri + τi ai

(
1 − e−ri

)

Stage 2 Calculate aCi �∑ j 
�i
uCj

Ri , j Ci
+ qi , then calculate a half and a full time step with the

LNe method:

uL1/2i � uni e
−ri /2 + τi ai

(
1 − e−ri /2

)
+ τi
(
aCi − ai

)
[
1

2
− τi

h

(
1 − e−ri /2

)
]

uLi � uni e
−ri + τi ai

(
1 − e−ri

)
+ τi
(
aCi − ai

)[
1 − τi

h

(
1 − e−ri

)]

Stage 3 Calculate

f1, i � ∑ j 
�i
uL1/2j
Ri , j Ci

+ qi and f2, i � ∑ j 
�i
uLj

Ri , j Ci
+ qi , then si � 4 f1, i− f2, i−3ai

h , and wi �
2 f2, i−2 f1, i+ai

h2
.

After this take a full (and if necessary, a half) time step as follows

uQi � e−ri uni +
(
1 − e−ri

)(
2wiτ

3
i − siτ

2
i + aiτi

)
+ τi h(wi h − 2wiτi + si )

u
Q1/2
i � e−ri /2uni +

(
1 − e−ri /2

)(
2wiτ

3
i − siτ

2
i + aiτi

)
+ τi

h

2

(
wi

h

2
− 2wiτi + si

)

Further stages canbe constructed straightforwardly by recalculating f1, i �∑j
�i
uQ1/2j
Ri, jCi

+qi

and f2, i �∑j
�i
uQj

Ri, jCi
+qi , then using these for the recalculation of si , wi , uQ1/2

i , and uQ
i

according to the formulas in Stage 3. (At the last stage calculating uQ1/2
i is redundant.)

The generalized CNe and LNe methods are presented in [44] and also can be extracted
from the generalized version of the CLQ method. These generalized algorithms can still
be implemented with little coding effort, and once the quantities Ci and Ri j are given, the
methods are easy to use.

Remark 2.1 Note that in Algorithm 3b, the C and R quantities are not directly present, only
through the matrix elements. Thus, if one defines ai � ∑

j 
�i mi , j unj + qi , etc., then the
algorithms can be applied for any ODE system which has the form (2.2), independently
of the physical content of the variables. Since exponential terms are present in the new
algorithms, they may look similar to the so-called exponential integrators [49]. However,
matrix exponentials are calculated in the case of those methods, while all of our algorithms
are fully explicit: solving equation systems or performing operations on matrices is not
needed. The necessary operations are clearly proportional to the first power of the number of
spatial nodes as well as the total number of timesteps, thus the algorithms scale like O(N ·T ).
This is confirmed by all of our numerical experiments where we measured the running time
for sufficiently long runs. Moreover, the calculations are suitable for parallelization on GPUs
as well.
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2.4 Unconditional Positivity and Stability of the CLQnMethod

First, we examine the one-dimensional linear diffusion equation with an equidistant mesh.
We recall the following simple lemma, the associativity of convex combinations [43, p. 28].

Lemma A convex combination x �∑ ai xi of convex combinations xi �∑ bi j yi j is again
a convex combination:

x �
∑∑(

aibi j
)
yi j

for any yi j ∈ Rn .

Theorem 2.1 In case of the linear diffusion Eq. (1.2), if the qi source terms are zero, the
new values uCi , u

L
i , u

CLQ
i , uCLQQi uCLQ3i and uCLQ4i are the convex combinations of the initial

values u j (0), j � 1, ..., N .

Proof Using the Mathematica software, we have analytically calculated the coefficients of
the old values unj in the expression of the new value of a general element un+1i (such as
Eq. (2.17)) as functions of the mesh ratio r > 0, and examined their properties. The sum
of the coefficients is always exactly one. We have to prove that each of the coefficients is
nonnegative. In the case of the CNe and LNe methods, we have 3 and 5 nonzero coefficients
(first and second neighbours), respectively. These had been examined in our previous papers
[44, 47] by hand calculations, but we repeated them by the software for verification. In the
case of the CLQn method, we have 2(n + 2) + 1 nonzero coefficients, which are more and
more complicated as n increases, but still continuous functions of the variable r. First, the
limit values are calculated at 0 and ∞. Then, the functions are differentiated with respect to
r to obtain the extrema (extreme points). In some cases, there are one or two extreme points,
but the extreme values are always in the unit interval. The values are tabulated in Table 1,
where the last column gives the second derivative of the coefficient with respect to r at the
extrema to let the readers know if the extreme value is minimum or maximum. In Fig. 1 we
exemplify the coefficients of the uni± j terms as a function of r for the CLQ4 method, where
i is a general mesh point while j ∈ {0, ..., 6}. The last two coefficients are quite small, and
their curves are hard to distinguish with the naked eye.

From the analysis above, it is clear that in the open interval r ∈ ]0, ∞[, all coefficients
are strictly positive. The Lemma now implies the theorem. �

Remark 2.2 In our previous paper [44], we analytically proved the convex combination
property for the CNe and LNemethods in the case of an arbitrarymesh and space dimensions.
For the CLQnmethod, however, we managed to do this only for the simplest case of Eq. (1.2)
with an equidistant mesh, but all of the numerical experiments suggest that it holds in more
general cases as well. Theorem 2.1 about convex combination property states that (for heat
conduction) the temperature of each cell tends to the weighted average of the temperatures of
the surrounding cells. It implies that errors cannot be amplified during the calculation. The
solution obeys the maximum and minimum principles [51, p. 87], i.e. the extremal values of
the function u occur among the initial or the (prescribed) boundary values. It also implies that
starting from nonnegative initial values and assuming no heat sinks are present, the function
u always remains positive. This convex-combination property is a much stronger property
than unconditional stability.

In case of linear or linearized ODE systems of u′ � Mu type, the widely used definition
of A-stability is that the numerical solution is bounded for arbitrarily large step sizes for
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Table 1 Analysis of the coefficient-functions

Method Term lim
r→0

lim
r→∞ Extreme point(s) Extreme value(s) 2nd der. value

CLQ uni±3 0 1/8 – – –

uni±2 0 0 1.7474 0.1079 – 0.03664

uni±1 0 3/8 0.8312 and 1.7355 0.2211 and 0.2123 – 0.1259 and 0.03215

uni 1 0 – – –

CLQ2 uni±4 0 1/16 n.a n.a n.a

uni±3 0 0 2.7532 0.0561 – 0.009631

uni±2 0 1/4 – – –

uni±1 0 0 0.7712 0.2189 – 0.1997

uni 1 3/8 2.5863 0.2313 0.02488

CLQ3 uni±5 0 1/32 – – –

uni±4 0 0 3.6621 0.028377 – 0.002978

uni±3 0 5/32 – – –

uni±2 0 0 2.40565 0.134179 – 0.020307

uni±1 0 5/16 0.7218 and 2.9838 0.2161 and 0.1496 – 0.2695 and 0.02029

uni 1 0 – – –

CLQ4 uni±6 0 1/64 – – –

uni±5 0 0 4.54791 0.0142048 – 0.00097952

uni±4 0 3/32 – – –

uni±3 0 0 3.59707 0.0806553 – 0.0076002

uni±2 0 15/64 – – –

uni±1 0 0 0.745453 0.217207 – 0.2263

uni 1 5/16 4.00917 0.176982 0.0103322

Fig. 1 The coefficients of the uni± j terms for the CLQ4 method as a function of the mesh ratio
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Dahlquist’s famous test equation, i.e. for each (non-positive) eigenvalue ofM. Since the work
of Dahlquist we know that no explicit Runge–Kutta or multistep Adams–Bashforth method
can be A-stable (see [52] and the references therein), due to the polynomial expression of the
time step size h. Now, unlike in the case of those methods, in our cases the step size h appears
not in a polynomial, but in an exponential form with negative exponents (for the linear heat
equation) in the expression for the new values of the variable u. This means that the proposed
formulas contain h up to infinite order, which gives the entirely different stability properties.
However, this will have some consequences on the truncation errors, as we will see soon.

Remark 2.3 In the case of the CLQ5 method, the coefficient of uni±7 can be negative with
very small (less than 10–7) absolute value. However, this is already enough for not only the
violation of the positivity preserving property, but for occasional unstable behaviour as well.
That is why we propose and examine the methods only up to 4 quadratic stages. We have
also tried to omit the linear stage and examined the obtained CQ, CQQ, etc. methods. These
are typically slightly more accurate than their counterpart with the same number of stages.
The problem is that they are only conditionally stable, albeit with much larger mesh Fourier
numbers than for the RK methods. Still, we stopped their investigation, because we think
that losing the unconditional stability is too big a price for a slight increase in accuracy.

2.5 Consistency and Convergence

First, the consistency and convergence will be discussed considering the schemes as direct
PDE solvers as usual [53] (Sect. 4.2), [54]. Subscripts containing x or t denote differentiation
with respect to the space or time variables, respectively. We give the truncation errors for the
proposed methods below.

Theorem2.2 When applied to the homogeneous PDE ut � αuxx , the CLQnmethods (Algo-
rithms 6 and 7) are conditionally consistent, i.e. if the time and space step sizes tend to zero
h → 0, �x → 0, such that h

�x2
→ 0, then the numerical solution tends to the analytical

solution of the PDE.

Proof We calculate the local truncation error for each method by symbolic computer calcu-
lation. Assuming that the analytical solution u of Eq. (1.2) is sufficiently smooth, one can
use the following temporal and spatial Taylor-series expansions of this u:

un+1i � uni +
∑

s

hs

s!
u(st), and u

n
i± j � 2

(

uni +
∑

s

j2s�x2s

(2s)!
u(2sx)

)

for j , s ∈ N+.

Using the Taylor series expansion of the exponential function, we also expand the r-
dependent coefficients, such as e−2r . In the case of the CLQ method, we are going up at
least to u(4t), u(8x), and r4, and even further if there are more stages. We substitute these
into the final expressions of the algorithms, for example, Eq. (2.17), in the case of the CLQ
scheme. Since u is the true solution, we use the substitutions ut � αuxx , utt � (αuxx )t � α

(ut )xx � α2u(4x), uttt � α3u(6x) and so on. After simplifications, we obtain the local
truncation errors of the methods. Now the global error can be estimated by dividing the local
truncation error by h. For the sake of brevity, we introduce the notations

ε0 � −α�x2
(
90
(
1680u(4x) + 56�x2u(6x) + �x4u(8x)

)
+ �x6u(10x)

)

1814400
,
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ε1 � −α2�x2
(
5040u(6x) + 378�x2u(8x) + 17�x4u(10x)

)

60480
h,

ε2 � −α3�x2
(
60u(8x) + 7�x2u(10x)

)

1440
h2

where ε0 belongs to the central difference formula (2.1). The global errors without some
higher order terms are as follows:

εCLQ � ε0 + ε1 + ε2

+
α4
(
720
(
315u(2x) + 420�x2u(4x) + 224�x4u(6x) + 64�x6u(8x)

)
+ 3467�x8u(10x)

)

340200�x6
h3

εCLQQ � ε0 + ε1 + ε2 − 1

72
α4�x2u(10x)h

3+

+
α5
(
80
(
5040u(2x) + 8820�x2u(4x) + 6475�x4u(6x) + 2683�x6u(8x)

)
+ 57267�x8u(10x)

)

1209600�x8
h4

εCLQ3 � ε0 + ε1 + ε2 − 1

72
α4�x2u(10x)h

3 +
α5
(
80u(6x) + 220�x2u(8x) + 149�x4u(10x)

)

57600�x4
h4

+
α6

2155507200�x10

· (132(90(56(360u(2x) + 750�x2u(4x) + 661�x4u(6x)
)
+ 18397�x6u(8x)

)
+ 561481�x8u(10x)

)

+19595929�x10u(12x)
)
h5

εCLQ4 � ε0 + ε1 + ε2 − 1

72
α4�x2u(10x)h

3 +
α5
(
80u(6x) + 220�x2u(8x) + 149�x4u(10x)

)

57600�x4
h4

+
α6
(
180u(8x) + 510�x2u(10x) + 377�x4u(12x)

)

129600�x4
h5

The global errors have the following orders: εCLQ � O
(
�x2, �x2h, �x2h2, h3,

h3

�x6

)
, εCLQQ � O

(
�x2, �x2h, �x2h2, �x2h3, h4, h4

�x8

)
and εCLQn � O

(
�x2,

�x2h, �x2h2, �x2h3, h4, h4

�x4

)
, n � 3, 4. One can see that there are several mixed

terms containing both the space and the time step size, which are not present in the case of
traditional methods such as the Runge Kutta schemes. Themost problematic is that the global
error contains powers of h

�x2
and h

�x in all cases, which means that the consistency is only
conditional. This fact and its negative consequences will be explained in the next remark. �

Remark 2.4 As we showed, these methods are only conditionally consistent, and therefore
conditionally convergent, if one considers them as time integrators for the original PDE.
The first consequence of the h

�x2
terms in the global error is that when one has to solve the

PDE with higher accuracy, it is not enough to make the size of the spatial cells �x tend to
zero, because if h is kept constant, the global error actually does not decrease (but stability
remains, unlike in the case of the conditionally stable explicit methods). The numerical
solution converges to the true solution of the original PDE if both the space step size �x and
the time step size h go to zero, but h goes faster than�x2. If this condition is not fulfilled, the
errors tend to non-negligible constant values due to the convex combination property. The
second consequence is the slow convergence for larger time step sizes. As we will see, when
we start to decrease the time step size, the errors are first decreasing very slowly, and they
approach the theoretical order only for medium step sizes. It means that for larger time steps,
the order of temporal convergence cannot be determined using the formula ε ∼ h p . We note
that this conditional consistency is the price one has to pay for unconditional stability. It is
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common among the stable explicit methods, for example in the case of the first order UPFD
method. This is the main weak point of these kinds of algorithms. Nevertheless, we are going
to show that they are very competitive in several cases.

Aswe alreadymentioned inRemark 2.2, the newCLQnmethods (and themethods given in
Sect. 2.1) can be used to solve general ODE systems. Now the order of accuracy is examined
from this point of view.

Theorem 2.3 The order of convergence is three for the three-stage CLQ algorithm and four
for the 4, 5 and 6-stage CLQn algorithms, n ∈ {2, 3, 4}, if they are applied to the general.

d �u
dt

� M �u + �Q, �u(t � 0) � �u0.

linear ODE system, where �u : {1, ..., N } × R �→ RN is the unknown vector-function, M ∈
RN×N is an arbitrary constant matrix, while �Q, �u0 ∈ RN are arbitrary vectors.

Proof We applied the Mathematica software for symbolic computer-calculation. The linear
initial value problem

d

dt

⎛

⎜
⎝

u1
...

uN

⎞

⎟
⎠ �

⎛

⎜
⎝

m11 · · · m1N
...

...
...

mN1 · · · mNN

⎞

⎟
⎠

⎛

⎜
⎝

u1
...

uN

⎞

⎟
⎠ +

⎛

⎜
⎝

Q1
...

QN

⎞

⎟
⎠, �u(t � 0) �

⎛

⎜
⎝

u01
...

u0N

⎞

⎟
⎠

has been examined, where the general elements mij are kept undetermined. It is well known
that this ODE system has the following analytical solution:

�u(t) � eMt �u0 +
(
eMt − 1

)
M−1 �Q.

Substituting h instead of t, i.e. considering this function at the end of the time step, the
exact solution up to fourth order in h can be written as

�un+1 �
(
1 + Mh + M2 h

2

2
+ M3 h

3

3!
+ M4 h

4

4!
+ · · ·

)
�un +

(
h + M

h2

2
+ M2 h

3

3!
+ M3 h

4

4!
· · ·
)

�Q.

The software calculated this solution as well as the numerical solution by symbolic matrix
operations. After this, the coefficients of h from h0 up to h4 have been sorted out for both the
analytical and the numerical solution of the ODE system. It is observed that the appropriate
coefficients are exactly the same in the exact solution and in the CLQn results. It follows that
the local error of the time integrator CLQn is fourth order in h if n � 1 and fifth order if n �
2, 3 or 4, which is equivalent to the statement of the theorem about global errors. �

Corollary 2.5 If we apply the CLQn methods as time integrators for the ODE system (2.18)
obtained from the PDE (1.1) by spatial discretization using any fixed spatial grid, the order
of the convergence of the method is the same as we stated for the equidistant grid. It means
that these new methods can be used in any space dimensions, in case of unstructured grids
or inhomogeneous medium. We underline again that some other stable and explicit methods,
such as the odd–even hopscotch and ADE methods, lose their favourable properties when
they are applied to these more general meshes.
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3 The Adaptation of the ProposedMethods for the Nonlinear Cases

3.1 Fisher’s equation

We apply a kind of operator splitting, which means that first we handle the effect of the
diffusion term and then separately the effect of the nonlinear reaction term in Eq. (1.3). The
diffusion term is treated exactly as in Sect. 2. For example, first Algorithm 4 is applied, which
yields upredi , the value in which the diffusion term is fully taken into account. These upredi
values are now used as starting points for the calculation of the reaction term, which has the
form βu(1− u) � βu − βuu. The negative term can affect the positivity condition, thus we
treat the terms in a “semi-implicit” or “pseudo-implicit” way as follows. We substitute the
first power of the new, unknown value un+1i into the expression of the nonlinear term, thus

this new value appears on the right-hand side of the equation as well. Everywhere else upredi
remains, thus we have

un+1i � upredi + βupredi h − βupredi un+1i h.

This can be straightforwardly rearranged into a fully explicit form:

un + 1
i � 1 + βh

1 + βhupredi

upredi . (3.1)

The operation (3.1) can be performed at the last stage (inside the “for” loop going through
the nodes) immediately after the new values uCLQni (uCi and uCLi in the case of the CNe and

LNemethod, respectively) are calculated, because these serve as upredi . We note that a similar
treatment has been applied by Appadu et al. [55] to the generalized Burgers-Huxley equation
in the framework of the NSFD methods, but they constructed one-stage first order methods.

Another possibility of treating the Fisher-term arises if we solve the

du

dt
� βu(1 − u) (3.2)

ODE analytically.More precisely, we solve the corresponding initial value problem,where
the values upredi serve as initial values at the initial time, which is the beginning of the actual
time step. This yields:

un+1i � 1

upredi +
(
1 − upredi

)
e−βh

upredi . (3.3)

Apart from the operator splitting itself, this solution avoids any approximation or lin-
earization.

Remark 3.1 Assume that 0 ≤ upredi ≤ 1. Now if one considers the coefficient of upredi , one
can easily see that the numerators and the denominators in both (3.1) and (3.3) are positive
and the denominators cannot be larger than the numerators. Moreover, the right-hand sides
cannot be larger than one. From these, it immediately follows that the new value un+1i cannot

be smaller than the upredi value, and it cannot be negative, thus 0 ≤ upredi ≤ un+1i ≤ 1 holds.

Corollary 3.1 (dynamical consistency of the methods). If we use Algorithm 1–4 with
Eqs. (3.1) or (3.3) to solve Fisher’s Eq. (1.3) and if the initial values are in the unit interval
u0i ∈ [0, 1], then the values of u remain in this interval for arbitrary nonnegative β and
time step size h during the whole calculation. This is similar to the maximum and minimum
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principles, and automatically implies unconditional stability. Moreover, the appearance of
the Fisher term (increasing β from zero to a positive value) cannot imply the decrease, only
the increase of the u values, which also reflect a dynamical property of the original PDE
(1.3).

Proof Theorem 2.1 and Remark 3.1 immediately imply the statement.

3.2 Nagumo’s Equation

Now the reaction term in Eq. (1.4) has the formβu
(
1−uδ

)(
uδ−γ

) � βuδ+1−βγ u−βuu2δ+
βγ uδ+1. The ODE containing the nonlinear Nagumo term cannot be solved analytically in
general, so we follow the logic which leads us to Formula (3.1) above. This implies

un+1i � upredi + βh
(
upredi

)δ+1 − βhγ un+1i − βh
(
upredi

)2δ
un+1i + βhγ

(
upredi

)δ+1
,

The explicit form is easily obtained:

un+1i �
1 + βh(1 + γ )

(
upredi

)δ

1 + βh

(
γ +

(
upredi

)2δ)u
pred
i . (3.4)

Theorem 3.1 (dynamical consistency). If Algorithm 6 or 7 and then formula (3.4) is applied
to solve Eq. (1.4), then the values of the solution lie in the unit interval [0, 1] provided that
0 ≤ u0i ≤ 1, 0 ≤ γ ≤ 1, δ > 0, β > 0 for arbitrary time step size h if.

δ ≤ (1 + βh)2 + βhγ (2 + 2βh + βhγ )

βh
[
(1 + βh) − γ (1 + βhγ )

] . (3.5)

Since 1 + βh > γ (1 + βhγ ), un+1i is obviously nonnegative, thus we have to prove that

it cannot be larger than 1. Let us introduce the temporary notations u � un+1i p � upredi and
b � βh for brevity. We prove that

u � u(p) � p + b(1 + γ )pδ+1

1 + b(p2δ + γ )
≤ 1

provided that 0 ≤ p ≤ 1, 0 ≤ γ ≤ 1, δ > 0, b > 0.
The examined u(p) function is continuous and sufficiently smooth in p ∈ [0, 1] and at

the boundaries of the examined interval its values are u(p � 0) � 0 and u(p � 1) � 1. Due
to the extreme value theorem, if u has no extremal value in the interior of the unit interval,
then it cannot be larger than 1. Let us differentiate the u(p) function:

du

dp
� 1 + bγ + b(1 − 2δ)p2δ + b2(1 + γ )(1 − δ)p3δ + b(1 + γ )(1 + bγ )(1 + δ)pδ

(
1 + bp2δ + bγ

)2 . (3.6)

The denominator of (3.6) is always positive, thus to seek for extremal values, we need
to examine only the numerator. The value of the numerator is nonnegative for p � 0. The
coefficients of the two largest power of p, namely p2δ and p3δ can be negative, which can
cause a non-positive numerator. Note that since p ∈ [0, 1] and the exponents are positive,
larger powers of p are smaller and increasing with p. This implies that if the numerator is
negative for a particular p∗ ∈ ]0, 1[, then it is also negative for p � 1. Thus, if the numerator
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of (3.6) is positive for p � 1, then the u(p) function is monotonously increasing from 0 to 1
and the statement of the theorem is true. The numerator for p � 1 can be written as

1 + bγ + b(1 − 2δ) + b2(1 + γ )(1 − δ) + b(1 + γ )(1 + bγ )(1 + δ)

� (1 + b)2 + bγ (2 + 2b + bγ ) + b(γ (1 + bγ ) − (1 + b))δ (3.7)

and the requirement of the non-negativity of (3.7) gives the condition (3.5). �

Remark 3.2 If condition (3.5) is reorganized into the form

1 + (2 − δ)b + (1 − δ)b2 + (2 + δ)bγ + 2b2γ + (1 + δ)b2γ 2 ≥ 0

Then it is easy to see that if δ ≤ 1 then (3.5) holds for arbitrary non-negative b � βh, and
γ. Moreover, by examining the right-hand side of (3.5) one can obtain that it approaches
the value 1 only if b tends to infinity and γ tend to zero. For example, for γ → 0 it takes
(1 + b)/b, so the maximum value of δ is at least two if h ≤ 1/β. On the other hand, if b
tends to zero and/or γ tends to one, it strictly monotonously tends to infinity. The values of
the maximum allowed δ are plotted in Fig. 2.

Remark 3.3 In the case of Huxley’s equation, the γ � 0, δ � 1 substitution into (3.5) yields
the

1 ≤ (1 + βh)2

βh(1 + βh)
� 1 + 2βh + (βh)2

βh + (βh)2

condition, which trivially holds for any nonnegative β for arbitrary time step size, thus the
statement of the theorem is automatically true in this case.

We note that the investigation of the consistency of the methods in the case of nonlinear
equations is out of the scope of this paper, and is planned to be published in the future.

Fig. 2 The maximum allowed values of the parameter δ as a function of βh and γ for Eq. (1.4) under which
dynamical consistency is guaranteed
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4 Numerical Experiments in 1D Using Analytical Reference Solutions

The numerical solution is compared with the reference solution only at final time tfin which
will be specified later. We measure the accuracy using the global L∞ error, which is the max-
imum of the absolute difference between the reference temperature urefj and the temperature
unumj calculated by our numerical methods at the final time:

Error(L∞) � max
1≤j≤N

∣∣
∣urefj (tfin) − unumj (tfin)

∣∣
∣. (4.1)

The numerical order of convergence can be calculated using two values of the errors
belonging to two subsequent time step sizes h1 and h2, where h1 > h2, using the formula

Error ∼ h p ⇒ p � log Error(h1)
Error(h2)

log(h1/h2)
. (4.2)

4.1 Experiment 1: Nonlinear Fisher’s Equation

We are going to reproduce the following analytical solution [39, 56] of PDE (1.3), valid for
α � 1:

uexact(x , t) �
(
1 + e

√
β
6 x− 5

6βt
)−2

.

The initial condition is obtained simply by substituting the initial time into that:

u(x , t � 0) �
(
1 + e

√
β
6 x− 5

6βt0
)−2

.

The appropriate Dirichlet boundary conditions are prescribed at the two ends of the inter-
val:

u(x � x0, t) �
(
1 + e

√
β
6 x0− 5

6βt
)−2

,

u(x � xN , t) �
(
1 + e

√
β
6 xN− 5

6βt
)−2

.

We examine the numerical solution at the interval x ∈ [0, 2], thus x0 � 0 , xN � 2,
which is discretized by dividing it into 500 equal parts: x j � x0 + j�x , j � 0, ..., 500 ,
�x � 0.004. The initial and the final time are t0 � 0 and tfin � 0.1. The nonlinear coefficient
is quite large, β � 22.

For comparison purposes, we coded theNSFD schemementioned in the paper of Agbavon
et al. [39], which has the formula for the α � 1 case:

NSFD : un+1i � (1 − hβ − 2r)uni + runi±1

1 + hβ
(
uni±1 + uni−1

)
/3

,

First, for verification of this NSFD part of our code, we reproduced some error-values
from that publication (Table 6 in [39]). Then, in our experiment, we calculated the error as
a function of the time step size h for all the examined methods. The results are presented in
Fig. 3. We note that similar results have been obtained for other parameter values of β, tfin,
etc. as well. The proposed CLQ, CLQ2, etc. algorithms are smoothly converging without the
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Fig. 3 L∞ errors as a function of the time step size h for Experiment 1

slightest sign of instability. However, this convergence is very slow for larger time step sizes
due to the inconsistent truncation error terms, as we explained in Remark 2.4. In the case of
all members of the CNe-CLQ4 family, not only Eq. (3.1) but Eq. (3.3) is used to test, where
the nonlinear term is treated analytically. For very large and very small time step sizes, this
treatment (denoted by “An” in the Figure) can be more accurate, but for medium time step
sizes, which are the most interesting for us, the accuracy is the same for the two treatments.
The NSFD method yields an error around 108 for large and medium time step sizes, but
below those, it is quite accurate.

In Table 2we present themaximumof the numerical orders calculated by the (4.2) formula,
with the appropriate larger and smaller time step sizes h1 and h2, and the belonging errors.
The numerical orders are not very far from their theoretical values, even for this severely
nonlinear case. In Fig. 4 we present the errors of the CLQ and CLQ4 schemes for different
numbers of nodes N, and therefore, mesh spacing�x as a function of the time step size. This
can help one to optimize the spatial and the temporal discretization.

4.2 Experiment 2: Nonlinear Nagumo’s Equation

Now PDE (1.4) with α � 1 is going to be solved in the domain (x , t) ∈ [x0, xN ] × [0,
tfin
]
. We found the following analytical solution of Eq. (1.4) in the literature [12], valid in
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Table 2 Largest numerical order and the appropriate time step sizes and L∞ errors of different methods for
Experiment 1

Method Larger h1 and error Smaller h2 and error Numerical order

CNe 2.33 × 10−6 and 1.14 × 10−2 1.79 × 10−6 and 8.90 × 10−3 0.940

LNe 2.33 × 10−6 and 1.48 × 10−3 1.79 × 10−6 and 9.16 × 10−4 1.836

CLL 3.03 × 10−4 and 1.99 × 10−4 2.33 × 10−6 and 9.90 × 10−5 2.654

CLQ 2.33 × 10−6 and 1.44 × 10−4 1.79 × 10−6 and 7.18 × 10−5 2.659

CLQ2 6.66 × 10−6 and 4.31 × 10−4 5.12 × 10−6 and 1.86 × 10−4 3.199

CLQ3 1.13 × 10−5 and 5.80 × 10−4 8.66 × 10−6 and 2.22 × 10−4 3.664

CLQ4 1.46 × 10−5 and 4.37 × 10−4 1.13 × 10−5 and 1.49 × 10−4 4.105

Fig. 4 Errors as a function of the time step size h for different mesh spacings in the case of Experiment 1

the δ � 1 case:

uanal(x , t) � 1

2

(

1 − tanh

[√
β

8
(x − ct)

])

,

123



39 Page 22 of 39 Journal of Scientific Computing (2024) 98 :39

where c �
√

β
2 (1 − 2γ ). We use parameter values α � 1 , β � 10 , γ � 0.4 , δ � 1

in Eq. (1.4), and x0 � 0 , xN � 3, tfin � 0.6, �x � 0.02. Similarly to the previous
subsection, we obtain the initial and the Dirichlet boundary conditions by taking this function
at the appropriate time and space points: u(x , 0) and u(x0, t) , u(xN , t), respectively. In
paper [12] four nonstandard finite difference schemes were proposed with the following
formulas:

NSFD1 : un+1i �
(1 − 2R)uni + Runi±1 + βφ2

(
(1 + γ )

(
uni−1

)2 +
(
uni−1

)3
/2
)

1 + βγφ2 + 3/
2βφ2

(
uni−1

)2 , (4.3)

NSFD2 : un+1i � (1 − 2R)uni + Runi±1

1 + βγφ2 − β(1 + γ )φ2uni + βφ2
(
uni
)2 , (4.4)

NSFD3 : un+1i � (1 − 2R)uni + Runi±1 + βφ2
(
uni
)3 + (1 + γ )

(
uni
)2

1 + βγφ2 + 2βφ2
(
uni
)2 , (4.5)

NSFD4 : un+1i �
(1 − 2R)uni + Runi±1 + βφ2

(
(1 + γ )

(
uni
)2 +

(
uni
)3

/2
)

1 + βγφ2 + 3/
2βφ2

(
uni
)2 , (4.6)

where φ2 � eβ�t−1
β

, ψ1 � 1−e−β�x

β
, ψ2 � eβ�x−1

β
and R � φ2

ψ1 ψ2
. It is analytically proved

that these methods have dynamical consistency, i.e. positivity and boundedness. However,
these are not unconditional, and the most important condition is R ≤ 1/

2, which is actually
a similar condition than the standard mesh Fourier number for the explicit Euler method. We
use these NSFD schemes for comparison purposes.

We present here the set of the error curves in Fig. 5, while some numerical errors are
shown in Table 3. One can see that the new methods behave well for this strongly nonlinear
case as well. The error as a function of h decreases smoothly with h, there are no signs of
instability or unphysical, e.g. oscillatory behaviour. In Fig. 6 the concentration u as a function
of the space variable x is presented for the case of the analytical solution at the final time
and two numerical solutions. The initial u0 function is also plotted to see how the variable
changes in time. One can see that even for this relatively large time step size, where the
maximum error is 0.044, the numerical solution is qualitatively the same as the analytical
one, and no unphysical oscillations appear. A further decrease of the time step size yields
numerical curves which are indistinguishable from the analytical one.

4.3 Experiment 3: Nonlinear Huxley’s Equation

Now PDE (1.4) with α � 1 and γ � 0 is going to be solved. We found the following
analytical solution in the literature [16, p. 34]

uexact(x , t) � e

√
β
2 x+

β
2 t
(
c + e

√
β
2 x+

β
2 t
)−1

.

The parameters are β � 7 , c � 8 and x0 � 0 , xN � 2, t0 � 0, tfin � 0.4,
�x � 0.005. Similarly to the previous subsection, we can construct the initial and the
Dirichlet boundary conditions by taking this function at the appropriate time and space
points. For comparison purposes, we use the NSFD schemes (4.3)–(4.6) again. The obtained
error-curves are presented in Fig. 7. One can see that the methods behave well for this case
as well.
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Fig. 5 L∞ errors as a function of the time step size h for Nagumo’s equation, Experiment 2

In Table 4 we present the maximum of numerical orders with the appropriate larger and
smaller time step sizes and errors. The numerical orders can exceed their theoretical values
for the CLQ2, CLQ3 and CLQ4 methods. In Fig. 8 the concentration u as a function of the
space variable x is presented for the case of the analytical solution at the final time and two
numerical solutions. One can see that even for this case, where the maximum errors of the
CLQ and CLQ4 algorithms are 0.0321 and 0.0123, respectively, the numerical solution is
qualitatively the same as the analytical one.

Table 3 Largest numerical order and the appropriate L∞ errors of different methods for Experiment 2

Method Larger h1 and error Smaller h2 and error Numerical order

CNe 1.75 × 10−5 and 5.96 × 10−3 1.25 × 10−5 and 4.28 × 10−3 0.988

LNe 3.44 × 10−5 and 9.26 × 10−4 2.46 × 10−5 and 4.96 × 10−3 1.855

CLL 1.32 × 10−4 and 1.40 × 10−3 9.44 × 10−5 and 6.02 × 10−4 2.501

CLQ 9.44 × 10−5 and 8.32 × 10−4 6.74 × 10−5 and 3.46 × 10−4 2.605

CLQ2 1.85 × 10−4 and 9.50 × 10−4 1.32 × 10−4 and 3.18 × 10−4 3.253

CLQ3 2.59 × 10−4 and 6.48 × 10−4 1.85 × 10−4 and 1.73 × 10−4 3.929

CLQ4 3.63 × 10−4 and 6.09 × 10−4 2.59 × 10−4 and 1.25 × 10−4 4.701
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4.4 Experiment 4: Diffusion Equation with Strongly Space-Dependent Coefficient

We use the recently published [57] analytical solution of the diffusion equation where the
coefficient has a power-law space dependence: α(x) � αxm . With this one has the following
equation

∂u(x , t)

∂t
� α

∂

∂x

(
xm

∂u(x , t)

∂x

)
.

The analytical solution of this equation is highly nontrivial, since it has the form

u(x , t) � t−σ

√
η
e− η−s

2αs2

{
c1 · M (1+2sσ)|s|

2s2
, s+1

2s

( |s|η−s

s3α

)
+ c2 · W (1+2sσ)|s|

2s2
, s+1

2s

( |s|η−s

s3α

)}
,

where s � m − 2, η � x · t1/s ∈ R, σ, c1 and c2 are arbitrary constants, while M and
W are the Whittaker functions [58, 59]. Here we consider only the c1 � 0 and c2 � 1 case
and we set m � 20, σ � 6 , α � 1, t0 � 2.3 , tfin � 2.5 . The initial condition and the
Dirichlet boundary conditions are calculated using the analytical solution, as in the previous
examples. Let us consider the 1D interval x ∈ [x0 , xN ], where x0 � 0.6 and N � 299. The
equidistant spatial grid is constructed using the x j � x j−1 +�x , j � 1, ..., N rule, where
x0 , x1 , ..., xN are the coordinates of the cell borders and �x � 2 · 10−3. The cell centres
X1 , ..., XN can be expressed as X j � x j−1 + �x/2 , j � 1, ..., N . The power-law
space dependence α(x) � αxm of the diffusion coefficient is taken into account only at the
level of the k material coefficients, so take c ≡ 1 and ρ ≡ 1 for simplicity, thus C j � �x j ,
j � 1, ..., N . The resistances are calculated as follows:

Ri , i+1 � Xi+1 − Xi

ki , i+1
� �x

α(xi )m
, i � 1, ..., N − 1

Fig. 6 The initial, analytical and numerical values of the variable u as a function of the space variable x in the
case of Experiment 2
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Fig. 7 L∞ errors as a function of the time step size h for Experiment 3

Table 4 Largest numerical order and the appropriate L∞ errors of different methods for Experiment 3

Method Larger h1 and error Smaller h2 and error Numerical order

CNe 2.17 × 10−6 and 3.26 × 10−3 1.55 × 10−6 and 2.35 × 10−3 0.976

LNe 2.17 × 10−6 and 2.60 × 10−4 1.55 × 10−6 and 1.37 × 10−4 1.909

CLL 3.04 × 10−6 and 2.66 × 10−5 2.17 × 10−6 and 1.06 × 10−5 2.735

CLQ 2.17 × 10−6 and 1.40 × 10−5 1.55 × 10−6 and 5.14 × 10−6 2.971

CLQ2 4.26 × 10−6 and 6.48 × 10−6 3.04 × 10−6 and 1.26 × 10−6 4.867

CLQ3 1.17 × 10−5 and 4.32 × 10−5 8.35 × 10−6 and 7.80 × 10−6 5.091

CLQ4 1.64 × 10−5 and 2.80 × 10−5 1.17 × 10−5 and 3.25 × 10−6 6.391

Note that the concentrations, including the Dirichlet boundary conditions are calculated
at the X1 , ..., XN cell centres while the conductivities are taken into account at the x1 , ...,
xN−1 cell borders. The stiffness ratio of this problem is 5.3× 108, and hEEMAX� 6.3× 10−8.
We use the generalized methods, for example, Algorithm 6b. For comparison purposes, we
use the UPFD method [32], which in our case has the form:

un+1i � uni + ai h

1 + 2ri
,
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Fig. 8 The initial, analytical and numerical values of the variable u as a function of the space variable x in the
case of Experiment 3

and the most standard 4th order Runge–Kutta method [60, p. 737]. In Fig. 9 we present
the errors as a function of the time step size h, while in Table 5 the numerical orders are
tabulated. One can see that the unconditionally stable methods behave well for this very stiff
problem as well, but the numerical order of convergence is significantly less for the higher
order schemes. Only one point is shown for the RK4 method, since above the smallest time
step size, that scheme was unstable.

In Fig. 10 the analytical and a numerical solution at t � tfin by two methods are presented.
One can see that apart from a small delay at about x � 0.8, the numerical solutions are close
to the analytical one even if we use time step size, which is 3–4 orders of magnitude larger
than the stability threshold for the RK methods.

Remark 4.1 If in Experiment 4 one increases N from 299 to 799, then the stiffness ratio and
the mesh Fourier number drastically change to 6.7 × 1014, and hEEMAX� 5.6 × 10−14. This
implies that Runge–Kutta methods cannot be used at all, while the unconditionally stable
methods produce almost the same error curves as in Fig. 9.

4.5 Experiment 5, General, Strongly Nonlinear Nagumo Equation
with Non-equidistant Grid

We use a solitary wave analytical solution [61, 62] of Eq. (1.4), which is valid if α � 1, and
has the form

u(x , t) �
{γ

2

[
1 + tanh(σγ (x − ϑ t))

]}1/δ
.
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Fig. 9 L∞ errors as a function of the time step size h for the linear Eq. (1.3) with a spatially varying diffusion
coefficient (Experiment 4)

Table 5 Largest numerical order and the appropriate L∞ errors of different methods for Experiment 4

Method Larger h1 and error Smaller h2 and error Numerical order

CNe 3.28 × 10−6 and 9.59 × 10−4 2.05 × 10−6 and 5.95 × 10−4 1.016

LNe 2.15 × 10−5 and 1.02 × 10−3 1.34 × 10−5 and 4.86 × 10−4 1.593

CLQ 5.50 × 10−5 and 1.66 × 10−3 3.44 × 10−5 and 7.63 × 10−4 1.651

CLQ2 8.81 × 10−5 and 1.90 × 10−3 5.50 × 10−5 and 8.68 × 10−4 1.662

CLQ3 8.81 × 10−5 and 1.20 × 10−3 5.50 × 10−5 and 5.24 × 10−4 1.759

CLQ4 1.41 × 10−4 and 1.82 × 10−3 8.81 × 10−5 and 8.19 × 10−4 1.695

hereϑ � (1+δ−γ )ρ
2(1+δ)

is the speedof the travellingwave,whileρ � √
4β(1 + δ), andσ � ρδ

4(1+δ)
.

Weuse the following parameters:α � 1 , β � 24, γ � 0.8 , δ � 6 and t0 � 0 , tfin � 0.1 .
The initial condition and the Dirichlet boundary conditions are calculated using the analytical
solution, as in the previous examples. Now a non-equidistant spatial grid is constructed on
the 1D interval x ∈ [x0 , xN ] using the following procedure. We start with the definition of
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Fig. 10 The initial, analytical and numerical values of the variable u as a function of the space variable x in the
case of Experiment 4

the coordinates x0 , x1 , ..., xN of the cell borders:

�xi � ε�xi−1, i � 2, ..., N
x j � x j−1 + �x j , j � 1, ..., N

,

where x0 � −5, �x1 � 2 · 10−3 and ε � 1.002. It means that the cell sizes are increasing
from the left to the right. Now the cell centres X1 , ..., XN can be expressed as follows:

X j � x j−1 +
�x j
2

, j � 1, ..., N .

NowC j � �x j , j � 1, ..., N , and the resistances are calculated as Ri , i+1 � Xi+1−Xi ,
i � 1, ..., N − 1. The capacities and the resistances are both increasing from 0.002 to about
0.0219. The stiffness ratio is 9.7 × 106, and hEEMAX� 2.1 × 10−6. For comparison purposes,
we have coded the explicit exponential finite difference method proposed by Inan [62], which
is a one-stage scheme with the following formula

un+1i � uni exp

{
h

[
β
(
1 − (uni

)δ((
uni
)δ − γ

))
+
uni−1 − 2uni + uni+1

uni �x2

]}

for an equidistant mesh. We adapted this to our non-equidistant case as follows:

un+1i � uni exp

{
h

uni

[
βuni

(
1 − (uni

)δ((
uni
)δ − γ

))
+
uni−1 − uni
Ri , i−1Ci

+
uni+1 − uni
Ri , i+1Ci

]}
.

In Fig. 11we present the L∞ errors as a function of the time step size h. One can see that the
proposedmethods behave quite similarly than in the previous cases, but some order-reduction
can be observed for the higher order schemes (Table 6).

We also present the analytical and a numerical solution at t � tfin by the method for a
concrete time step size in Fig. 12.
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Fig. 11 L∞ errors as a function of the time step size h for the highly nonlinear Eq. (1.4) with a spatially varying
diffusion coefficient (Experiment 5)

Table 6 Largest numerical order and the appropriate L∞ errors of different methods for Experiment 5

Method Larger h1 and error Smaller h2 and error Numerical order

CNe 3.03 × 10−6 and 6.65 × 10−3 2.33 × 10−6 and 5.12 × 10−3 0.993

LNe 1.90 × 10−5 and 4.39 × 10−3 1.46 × 10−5 and 2.76 × 10−3 1.771

LNe3 5.44 × 10−5 and 7.71 × 10−3 4.18 × 10−5 and 4.32 × 10−3 2.204

CLQ 7.08 × 10−5 and 1.06 × 10−2 5.44 × 10−5 and 5.98 × 10−3 2.192

CLQ2 1.56 × 10−4 and 2.20 × 10−2 1.20 × 10−4 and 1.17 × 10−2 2.413

CLQ3 2.03 × 10−4 and 1.91 × 10−2 1.56 × 10−4 and 9.64 × 10−3 2.580

CLQ4 2.64 × 10−4 and 1.99 × 10−2 2.03 × 10−4 and 9.87 × 10−3 2.670

5 Numerical Experiments in 2D

All simulations in this section are performed using the MATLAB R2020b software on a
desktop computer with an Intel Core (TM) i11-11700F. Since the analytical solution does
not exist for complicated systems, the reference solution has been calculated by the implicit
ode15s solver setting very stringent error tolerance (‘RelTol’ and ‘AbsTol’ were both 10−14).
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Fig. 12 The initial, analytical and numerical values of the variable u as a function of the space variable x in the
case of Experiment 5

5.1 The Adaptive Time-Step Controller

In references [63–65], the authors proposed adaptive procedures for the solution of diffu-
sion–reaction equations. They used one-dimensional systems to test their methods. However,
according to our experience, the successful validation of a method in one dimension does not
guarantee the same performance in two dimensions. This is why our adaptive-CLQ2 method
will be applied to two-dimensional systems with a high stiffness ratio.

On the other hand, in [66–68] the authors suggested a step size control algorithm for the
numerical integrations of ODEs. The authors tested their algorithms by applying them to a
small system of ODEs (maximum 25 equations). We do believe that the step size controller
is usually efficient when it is applied to a system of ODEs containing a limited number of
equations, but the same controller can show a poor performance when it is applied to a big
systemofODEs containing, for instance, 50 equations. So, if wewant to apply those proposed
controllers to get the numerical solution of Eq. (2.2), then we will be confined to a small size
of thematrixM , which does not match the engineering applications. Our adaptive-CLQ2will
be applied to a system of 900 equations, and it can still show good performance, as we will
see. Moreover, in [66] (Paragraph 4.1) one can straightforwardly calculate the stiffness ratio
of the system, which is 4.66, while, as we will see, the stiffness ratio of our tested systems
can be of order 1011.

The main objective of this section is to design an adaptive time-step controller in order to
achieve a given level of accuracy in the solution at a minimal computational cost. Numerical
calculations based on an adaptive controller allow changing the time step hn such that the
error can be lower than a prescribed value. The most common way (see e.g. [69]) to adapt
the step size is the elementary controller:

hn+1 � 0.9

(
ε

rn

) 1
p

hn (5.1)
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here ε is the desired tolerance and p is the order of the used method, while rn is the local
error estimator at time level n. Recall that, by definition, the local error for an algorithm is the
error generated by a single step of the algorithm, under the assumption that we start the step
with the exact solution. There are many adaptive techniques for local error estimations. One
of them is the so-called embedded Runge–Kutta pairs. In that technique, two RK methods
are used to calculate the local error estimation, where one of them is more accurate than the
other [70]. The Runge–Kutta-Fehlberg method (denoted RKF45) has two methods of orders
4 and 5, as it is well explained in the literature [71]. Inspired by that, and since our CLQ2
is a multi-stage embedded method, we decided to follow the same fashion of embedded
Runge–Kutta pairs in calculating the local truncation error.

Let ûi+1i and un+1i be the approximated solutions at time level n + 1 obtained by the CLQ
(third order) and CLQ2 (fourth order) methods respectively.We estimate the local error using
the following formula:

rn � max
1≤i≤N

∣
∣ûn+1i − un+1i

∣
∣ (5.2)

If rn ≤ ε, we accept the solution and set tn+1 � tn + hn , while the solution is un+1i (since
un+1i is more accurate than ûn+1i ).

If rn > ε, we reject the time step and try again with a new time step calculated by Eq. (5.1).
Our adaptive-CLQ2method will be applied not only to linear diffusion–reaction problems

but also to nonlinear types. In the CLQ2 method, the effect of the nonlinear reaction term
(Nagumo term) is only considered at the fourth stage, but not in the third stage, as we can see
in Eq. (3.4). In other words, ûn+1 does not include the effect of the nonlinear reaction term,
while the value of un+1 includes that effect. So, the difference between those two values,
which represents rn , will not reflect the real behaviour of the local error. To fix this, we
calculated ûn+1i taking into account the effect of the nonlinear reaction term. If we applied
here the same pseudo-implicit treatment as in Eq. (3.4), then the difference between un+1i
and ûn+1i would be extremely small when the reaction term dominates the diffusion term, and
we could not trust in the error estimator. Therefore, we choose the following simple explicit
treatment of the reaction term:

ûn+1i � uCLQ
i + βuCLQ

i

(
1 −

(
uCLQ
i

)δ
)((

uCLQ
i

)δ − γ

)
h (5.3)

In the last equation, the value of uCLQ
i can be calculated using stages 1, 2 and 3 in

Algorithm 6. This algorithm is valid in the linear (β � 0) and in the nonlinear case (β > 0)
as well.

In the following experiments, wewill test our improved adaptive time step controller in the
case of the linear diffusion equation with a heat source and the nonlinear diffusion equation
with the Nagumo term. We do not claim that our adaptive time step controller is efficient
for solving all kinds of systems. However, this algorithm can reduce the time required for
achieving the numerical calculations when applied to some stiff systems. The advantages
and disadvantages of this algorithm will be illustrated for each experiment individually. The
adaptive-CLQ2 will be compared to the CLQ2, RK4, and RKF45 methods as well.

5.2 Experiment 6: Heat Equation with Heat Source

In this experiment we consider Eq. (2.2) in 2 space-dimensions (x , y, t) ∈ [0, 1] × [0,
1]× [0, 2× 10−4

]
, subjected to zero Neumann boundary conditions. The space domain was
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Fig. 13 L∞ errors as a function of the total running times in case of a system of 900 cells with heat source

divided into N � Nx × Ny � 30 × 30, thus we have 900 cells. The initial conditions were
ui(0) � rand , where rand is a pseudo-random number in the unit interval. The resistances
and capacities obeyed the following equations:

C � ((10−6 − 1
)
x + 1

)
10−4, Rx � (10−6 − 1

)
x + 1, Ry � y + 1

The heat source can be given by the following equation:

q � 10 sin(πx)

The stiffness ratio of the introduced system is 1.54×1011 (hEEMAX � 6.4×10−12). Figure 13
shows the error as a function of the total running time at different levels of accuracy. One can
see that the adaptive-CLQ2 method is more efficient than the CLQ2 and the other methods
when high-accuracy calculations are required. The order-reduction due to the high stiffness
is smaller for the adaptive than for the non-adaptive CLQ2 algorithm. The RK5 method
can provide reliable calculations only when the time step size is less than 6.4 × 10−12,
otherwise it is unstable. A possible remedy for the problem of instability could be the usage
of the Runge–Kutta-Fehlberg (RKF45) method, but it is not much faster, and it reduces the
accuracy of the calculations, as we can see in the figure.

5.3 Experiment 7: FitzHugh-Nagumo equation

In this experiment we consider Eq. (1.4) with β � 10, γ � 0.1, δ � 0.5. All other settings
and circumstances were the same as in Experiment 6, except that now q ≡ 0. For comparison
purposes, we used not only the non-adaptive RK5 and the adaptive RKF45, but the implicit
and non-adaptive Crank-Nicolson (Cr-Ni) scheme with Strang-splitting. It means that the
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Fig. 14 L∞ errors as a function of the total running times in case of system of 900 cells with Nagumo term

PDE contains only the diffusion term is solved by the standard Cr-Ni scheme, but before
and after this stage, formula (3.4) is applied with half time step sizes to take into account the
effect of the nonlinear term.

Figure 14 suggests that the adaptive-CLQ2 is more efficient than the CLQ2 when high
accuracy is required. Time steps of order 10−11 have to be used in the case of RK5 to reach
the stability region of the algorithm. The RKF45 method is present with only a few points
on the right of the figure, so none of these can be proposed for this type of problem. The
Cr-Ni-Strang algorithm is completely useless for small and medium time step sizes, but
suddenly becomes extremely accurate when h is decreased. So, if high accuracy is required,
this implicit method can be recommended, but only for these relatively small system sizes
(e.g. below N � 1000). We will see soon that for a larger system, the implicit solvers are
much slower than the explicit ones.

5.4 Experiment 8: Heat Equation with Moving and Pulsing Heat Source

In this experiment we consider Eq. (2.2) in 2 space-dimensions (x , y, t) ∈ [0, 1]× [0, 1]×
[0, 1], subjected to zero Neumann boundary conditions. The space domain was divided into
N � Nx × Ny � 100 × 100 cells, thus we have 10,000 cells. The initial conditions were
ui (0) � rand , while the resistances and capacities were set to unity,C � 1, Rx � 1, Ry � 1
to obtain a non-stiff system. The heat source can be given by the following equation:

q(x , t) � 100t2
(
max

{
cos2(6π t), 0.5

}− 0.5
)
exp

(x − x0 − vx t)2 +
(
y − y0 − ay

2 t
2
)2

r0
.

It means we have a Gaussian spot-like heat source with effective diameter r0 � 4�x �
0.04,movingwith initial horizontal velocity vx � 0.8 and vertical acceleration ay � −2 from
the initial position x0 � 0.05 , y0 � 0.9. Figure 15 shows the contour of the temperature
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Fig. 15 The contour of the temperature distribution at the end of the simulation in Experiment 8

distribution at T � 1. For comparison purposes, we used not only the RK5, RKF45 and the
standard (non-adaptive) Crank-Nicolson, but the four implicit ODE solvers of MATLAB:

• ode15s, variable-step, variable-order solver basedon thenumerical differentiation formulas
(NDFs) of orders 1 to 5

• ode23t, an implementation of the trapezoidal rule using a “free” interpolant.
• ode23s, a 2nd order modified Rosenbrock formula.
• ode23tb, a combination of the backward differentiation formula and the trapezoidal rule;

Figure 16 shows the error as a function of the total running time. One can see that the
effect of conditional consistency is not present owing to the adaptive controller in the case
of the adaptive-CLQ2 method. It makes this solver more efficient than all the other methods
for high- and medium accuracy, and the whole CNe-CLQ family is quite efficient for low
and medium accuracy.

6 Conclusions

Our aim was to construct a family of fully explicit numerical algorithms to solve parabolic
PDEs, especially the non-stationary diffusion (or heat) and diffusion–reaction equations.
The new algorithms are one step time-integrators, and consist of 3–6 stages. The algorithms
can be applied to general linear ODE systems (for example, the spatially discretized heat
equation, even in the case of unstructured grids as well), and for this case, we show that the
convergence in the time step size of the 3-stage CLQ scheme is three, while it is four for the 4,
5 and 6-stage algorithms CLQ2, CLQ3 and CLQ4. Although the accuracy is not always good
for large time step sizes, the dynamical consistency, as well as stability, is guaranteed for
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Fig. 16 L∞ errors as a function of the total running times in case of a system of 10,000 cells with moving heat
source

arbitrary time step sizes for the linear diffusion equation, the nonlinear Fisher’s and Huxley’s
equation, and, within a wide parameter domain, for the Nagumo’s equation. This property
is especially advantageous when one models physical processes, where the variable is the
concentration, which must be in the unit interval.

We used one-dimensional analytical solutions of the linear diffusion equationwith a space-
dependent diffusion coefficient, as well as the Fisher’s, Huxley’s and Nagumo’s equations
with rather large nonlinear coefficients to verify and test the new methods. After this, we
developed the adaptive step size control version of the algorithms. The values predicted in the
third stage are compared to the values calculated in the fourth stage to obtain an estimation of
the local error. In thisway an embeddedmethodwas implemented,where the adaptation of the
time step size is performed with very little extra computational effort. The performance of the
non-adaptive and adaptive methods was examined in the case of three 2-dimensional systems
with inhomogeneous parameters and randomly generated discontinuous initial conditions.
We showed that the proposed methods are competitive as they can give quite accurate results
orders of magnitude faster than the standard Runge–Kutta and Crank-Nicolson schemes,
depending on the system parameters.

In the near future, we plan to apply the proposed methods to other nonlinear equations
as well. We are going to systematically investigate the possible treatment of the nonlinear
terms, including linearizations [72] and operator-splitting techniques.
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