
Journal of Scientific Computing (2024) 98:22
https://doi.org/10.1007/s10915-023-02412-1

Discontinuity Computing Using Physics-Informed Neural
Networks

Li Liu1 · Shengping Liu1 · Hui Xie1 · Fansheng Xiong2 · Tengchao Yu1 ·
Mengjuan Xiao1 · Lufeng Liu1 · Heng Yong1,2

Received: 5 February 2023 / Revised: 28 October 2023 / Accepted: 1 November 2023 /
Published online: 13 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Simulating discontinuities has been a long-standing challenge, especially when dealing with
shock waves characterized by strong nonlinear features. Despite their promise, the recently
developed physics-informed neural networks (PINNs) have not yet fully demonstrated their
effectiveness in handling discontinuities when compared to traditional shock-capturingmeth-
ods. In this study, we reveal a paradoxical phenomenon during the training of PINNs when
computing problems with strong nonlinear discontinuities. To address this issue and enhance
the PINNs’ ability to capture shocks, we propose PINNs-WE (Physics-Informed Neural
Networks with Equation Weight) method by introducing three novel strategies. Firstly, we
attenuate the neural network’s expression locally at ‘transition points’ within the shockwaves
by introducing a physics-dependent weight into the governing equations. Consequently, the
neural network will concentrate on training the smoother parts of the solutions. As a result,
due to the compressible property, sharp discontinuities emerge, with transition points being
compressed into well-trained smooth regions akin to passive particles. Secondly, we also
introduce the Rankine–Hugoniot (RH) relation, which is equivalent to the weak form of
the conservation laws near the discontinuity, in order to improve the shock-capturing pre-
formance. Lastly, we construct a global physical conservation constraint to enhance the
conservation properties of PINNs which is key to resolve the right position of the dis-
continuity. To illustrate the impact of our novel approach, we investigate the behavior of the
one-dimensional Burgers’ equation, as well as the one- and two-dimensional Euler equations.
In our numerical experiments, we compare our proposed PINNs-WE method with a tradi-
tional high-order weighted essential non-oscillatory (WENO) approach. The results of our
study highlight the significant enhancement in discontinuity computing by the PINNs-WE
method when compared to traditional PINNs.

Keywords Physics-informed neural networks · Shock capturing · Compressible flow · Euler
equations · Discontinuity calculation

B Heng Yong
Yong_Heng@iapcm.ac.cn

1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

2 Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02412-1&domain=pdf
http://orcid.org/0000-0001-7425-233X

22 Page 2 of 38 Journal of Scientific Computing (2024) 98 :22

1 Introduction

Efficiently capturing shock waves and other discontinuities is crucial for solving hyper-
bolic equations. Von Neumann and Richtmeyer pioneered shock-capturing work in 1950
[1], introducing artificial viscosity into a staggered Lagrangian scheme for compressible
flow simulations. Today, advanced techniques such as essential non-oscillatory (ENO) [2],
weighted ENO (WENO) [3], and discontinuous Galerkin methods [4] offer high-order accu-
racy in simulating problems involving shock waves. For more in-depth information on the
development of shock-capturing methods, you can refer to [5, 6].

Due to the rapid development of machine learning and neural networks (NNs), they have
been extensively employed to solve partial differential equations (PDEs) [7–11].Among these
applications, physics-informed neural networks (PINNs) have received significant research
attention. PINNs encode PDEs or other model equations as one of their penalty components,
making them versatile tools across various fields [12]. In the realm of hyperbolic equations,
Mao et al. [13] studied one- (1D) and two-dimensional (2D)Euler equationswith shockwaves
and used clustered training samples around high gradient area sto improve the solution accu-
racy in these regions while preventing error propagation to the entire domain. In another
study, Patel et al. [14] introduced a PINN capable of discovering thermodynamically con-
sistent equations that ensure hyperbolicity. This approach is particularly relevant for inverse
problems in shock hydrodynamics. Furthermore, Jagtap et al. [15] proposed conservative
PINNs that partition the computational domain into smaller subdomains, each employing
distinct NNs to tackle Burgers’ equation and Euler equations. Additionally, Jagtap et al. [16]
delved into inverse problems of supersonic flows.

The aforementioned studies showcase the effectiveness of PINNs in addressing inverse
problems involving prior knowledge of flow structure development, such as density gradients
[17]. However, when it comes to studying forward problems, the original PINNs have shown
limited applicability, primarily restricted to simple problems like tracking moving shock
waves. In contrast, Patel et al. [14], based on traditional shock-capturing methods, devised a
mesh-based control-volume PINN and incorporated entropy and total-variation-diminishing
conditions into the neural network. Additionally, Papados [18] extends the computational
domain for simulating the shock-tube problem, yielding remarkable results without the intro-
duction of non-physical viscosity terms into the equations. However, their open-source code
suggests that this method is not very stable in the cases under consideration, and good results
may only be achieved with fixed hyperparameters under a fixed number of training steps.
Nonetheless, this work has demonstrated the potential of using the PINNsmethod for solving
shock wave problems.

We are interested in applying PINNs to the computation of discontinuities, particularly in
problems involving the generation of nonlinear strong discontinuities, such as shock waves
in hyperbolic equations. Mathematically, these discontinuities possess zero thickness and
infinite gradients, rendering them beyond the description of strong form PDEs. Instead, their
behavior can be controlled by physical laws or weak form equations. Furthermore, to the
best of our knowledge, there is no existing theory that can guarantee neural networks (NNs)
accurately approximate C0 discontinuous functions. Consequently, when residual points fall
within a shock region, significant equation losses are incurred due to their steep gradients.
These points, located in high-gradient regions where the shock is expected to occur, are
referred to as ’transition points’ [19].While anNNmay prioritize handling transition points as
they contribute the most to the loss. However, an NN cannot increase the gradient to decrease
the thickness of the shock because of the aforementioned reason. As a result, transition points

123

Journal of Scientific Computing (2024) 98 :22 Page 3 of 38 22

fall into a paradoxical state - whether the gradient increases or decreases, the training loss
inevitably rises. What’s more concerning is that transition points not only impact the total
loss but also influence convergence in smooth regions. We elucidate this phenomenon in
Sect. 2.2 through a test involving the Burgers’ equation.

To enhance the shock-capturing capabilities of PINNs, this paper presents three key contri-
butions. Firstly, in order to break the paradoxical status at transition points and enable PINNs
to represent strong nonlinear discontinuities effectively, we introduce a ‘retreat to advance’
strategy. This strategy weakens the neural network’s expressions in regions of strong com-
pression and large gradients by introducing a physical pointwise equation weight, enabling
the network to focus on training in other regions. As a result, depending on the physical com-
pression mechanisms from the well-trained smooth regions, strong discontinuity solutions
automatically generate.

Secondly, for the effective control of shockwave solutions and to prevent underdetermined
problems, we incorporate the Rankine–Hugoniot (RH) relation, which is equivalent to the
weak form of the conservation laws, as constraints in the vicinity of the shock waves. Also,
we implement limiters to identify the appearance of shock waves in this part.

Thirdly, in the computation of nonlinear hyperbolic equations, such as the Euler equa-
tions, preserving physical conservation is of paramount importance. For instance, it directly
impacts the accuracy of shock wave positions. To address this, we introduce a global physical
conservation constraint within the new framework.

The remainder of this paper is organized as follows. In Sect. 2, we first analyze the failure
of classical PINNs in solving shock waves with the non-dissipative Burgers’ equation. Then,
in Sect. 3, we detail our proposed PINNs-WE method. Next, various 1D and 2D forward
examples are studied to demonstrate the effectiveness of the proposed method in Sect. 4.
Finally, conclusions are drawn in Sect. 5. In addition, we also discuss the omissible boundary
conditions in PINNs in Appendix A and verify original PINNs in solving problems with
linear or weak discontinuities in Appendix B.

2 Classical PINNs and Problem Analysis

2.1 PINNs for Conservative Hyperbolic PDE

We consider the following conservative hyperbolic PDE

∂U(x)
∂t

+ ∇ · F(U) = 0, x = (t, x1, x2, · · ·) ∈ �, (1)

with the initial and boundary conditions (IBCs):

IBCs(U, x) = 0 on ∂�, (2)

and we treat the initial condition in the same way with Dirichlet boundary condition.
The classical PINNs typically consist of two parts. The first part is a neural network

Û(x; θ) used to approximate the relation ofU(x)with trainable parameters θ . The second part
is informed by the governing equations as well as the initial and boundary conditions, which
are used to train the network. The calculation of ∂/∂t and∇· in the PDEare carried out through
automatic derivative evaluation. More details information about PINNs for convection PDE
can be found in [13, 18].

The loss function used to train Û(x; θ) comprised at least two components that define the
problem. One component is controlled by the equations, and the other one is given by the

123

22 Page 4 of 38 Journal of Scientific Computing (2024) 98 :22

IBCs of the problem,

L = LPDE + ωIBCsLIBCs. (3)

To define the loss, we choose a set of residual points inside the domain � and another set of
points on ∂� as SPDE and SIBCs, respectively. Then

L = 1

|SPDE|
∑

xi∈SPDE

G2
i + ωIBCs

1

|SIBCs|
∑

xi∈SIBCs

(Ûe,i − Ue0,i)
2, (4)

where Gi := ∂t Û(xi) + ∇ · F(OU(xi)), Gi = 0 is the governing equations at residual point
xi ∈ SPDE and Ue0,i represents the given IBCs at residual point xi ∈ SIBCs. ωIBCs is the
weight to adjust the confinement strength of IBCs [16, 18, 20]. Typically, more weight is
assigned to points located on initial and boundaries.

In each term of a loss function, it is common to average the residual across all residual
points to obtain the total training loss. Averaging is often suitable and convenient for problems
with smooth solutions. However, when a nonlinear discontinuity forms under compression,
the gradient becomes theoretically infinite and cannot be directly described by differential
equations. As a result, transition points defined within the discontinuity may introduce sig-
nificant errors and loss of function. We will illustrate this in the following example.

2.2 Analysis of Transition Points Based on Inviscid Burgers’ Equation

We demonstrate in Appendix B that classical PINNs can sharply capture linear or weak
discontinuities without the need of introducing numerical dissipation to maintain stability.
However, when it comes to solving nonlinear strong discontinuities, particularly compression
discontinuities like shock waves, PINNs encounter significant challenges. To illustrate this
phenomenon in the context of PINNs solving problems with compression discontinuities, we
consider an inviscid Burgers’ equation problem with the following equation and IBCs as

∂u

∂t
+ ∂(u2/2)

∂x
= 0, x ∈ [0, 2], t ∈ [0, 1],

u(0, x) = − sin(π(x − 1)),

u(t, 0) = u(t, 2) = 0.

(5)

In this problem, the initial condition is smooth. However, as the initial velocities on both
sides are directed towards the center, a strong discontinuous solution will form in the center
after finite time with the compression from both the left and right sides.

We solve this problem using the original PINNs method, which is referred to as ‘PINNs’
in this paper and was introduced in the previous section. Figure1 presents the loss history,
the variable u, and the residual at t = 1 for different training epochs (1000, 3000, 5000,
8000, and 11500). It is evident that the PINNs initially tend to achieve a global smooth
solution to satisfy the initial boundary conditions (checkpoint 1). Subsequently, the training
focuses on reducing the residual to approach the exact solution of the problem. However,
when the transition points reach relatively high gradients (checkpoint 2), they carry nearly
all of the function loss LPDE (Fig. 1c). The training enters a paradoxical state - irrespective of
an increase (checkpoint 3) or decrease (checkpoint 4) in the gradient, the training loss always
increases. This is because these points cannot be directly controlled by the strong form of the
PDE. So a decrease in the gradient will cause the PINNs solution to deviate from the exact
solution, while an increase will also result in an increased residual.

123

Journal of Scientific Computing (2024) 98 :22 Page 5 of 38 22

As shown in the loss history (Fig. 1a), after 3000 epochs (checkpoint 2), the training
encounters difficulties with these transition points and struggles to effectively reduce the total
loss.More importantly, as a globalmethod, the total loss also influences the errormagnitude in
other regions. This stands in contrast to classical finite-volumeor finite-differencemethods. In
those classical methods, when a cell is located within a discontinuous region, the scheme’s
order automatically reduces to no more than second-order, and significant dissipation is
introduced into the cell to achieve a non-oscillatory result. However, the locally large error
does not impact the accuracy order of other cells outside the discontinuity.

3 PINNs-WE Framework

We assume that the flow field is continuous except for finite discontinuities. To effectively
capture strong nonlinear discontinuities using PINNs, we introduce a new weighted equation
framework. The basic idea is to separate the shock waves from other regions and solve them
with different constraints. As depicted in Fig. 2, the new framework consists of three key
components.

The first part is a local strong form PDE constraintLPDE for simulating the smooth regions
of the computational domain, which also includes linear or weak discontinuities, as explained
in Appendix B.

The second part is Rankine–Hugoniot relation constraint LRH, which equivalent to local
weak form of the conservation laws across the shock waves.

The last part is a global conservation component LCONs that enforces total conservation.
The algorithm details for solving 2D Euler equations are presented in Fig. 3, while the

sample domains for each part are illustrated in Fig. 4.

3.1 Local Strong form PDE Constraint

Based on the aforementioned analysis of the Burgers’ equation, the training of PINNs can
become challenging due to the paradoxical status of transition points.

Therefore, the first and most important part of our method is to resolve this paradoxical
status by introducing a weighted-equation (WE) method. The core idea behind this method is
to reduce the impact of points in high-gradient regions by introducing a local positive weight,
denoted as λ1, into the governing equations.

The effectiveness of this method is based on the fact that strong nonlinear discontinuities
are formed by the convergence of characteristic lines. By reducing the influence of transition
points through the adjustment of λ1, the neural network (NN) will prioritize training in the
smooth regions and achieve high accuracy in those areas. Consequently, the transition points,
which are inherently influenced by the compression properties of strong discontinuities, will
effectively be compressed into a smooth region under the weak form equation constraint
introduced in the next part. As a result, a sharp and precise discontinuity will emerge during
training.

For a general conservative equation (Eq. 1), if we define

G = ∂U
∂t

+ ∇ · F, (6)

the weighted equation is defined as follows:

123

22 Page 6 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 1 Results of the Burgers equation with PINNs. The NN has 4 hidden layers and 30 neurons per layer.
PDE residual points are distributed uniformly on a 100×100 grid in the X × T space, and the IBCs points are
set on a uniform grid of 100. The optimizer used is Adam with a learning rate of 0.001. The reference result
is provided by WENO-Z on a refined mesh with 10,000 spatial grids

123

Journal of Scientific Computing (2024) 98 :22 Page 7 of 38 22

Fig. 2 The basic idea of PINNs-WE framework in solving problems with strong nonlinear discontinuities

Fig. 3 Architecture of PINNs-WE for solving 2D Euler equations

Gnew = λ1

(
∂U
∂t

+ ∇ · F
)

. (7)

It is evident that Gnew = 0 shares the same solutions as G = 0 if λ1 remains positive.
Moreover, we can adjust the NN’s expression at different points through the design of the
weight λ1. Correspondingly, the new function loss is defined as:

LPDE = MSE(Gnew) = 1

|SPDE|
∑

xi∈SPDE

G2
new,i . (8)

123

22 Page 8 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 4 The sample space of residual points in different loss parts

Wewould like to note thatMcClenny andBraga-Neto [21] have also introduced a trainable
weight into the loss function to focus the NN on improving approximation in difficult-to-train
regions by increasing the loss weights on them. However, based on our analysis, we need
to decrease the weight near a physical discontinuity. We believe that this process cannot be
effectively controlled by strong form PDEs residual.

Another relative work is proposed by Wang et al. [22], they identify and analyze a funda-
mental failuremode related to numerical stiffness causing imbalanced gradients duringmodel
training. To address this, they introduce a learning rate annealing algorithm that uses gradient
statistics to balance the interplay of various terms in composite loss functions. However, the
distinction lies in the fact that the computation of shock waves results in an imbalance in
spatial derivatives due to physical factors and the non-validity of the strong form PDEs.

We are explaining here that the reduction of sampling points near discontinuities or the
extension of the computational domain can also be considered as a method of attenuating the
attention on regions close to the discontinuities. However, such methods may, on one hand,
reduce the resolution of shock waves and, simultaneously, make it challenging to achieve
sufficient weakening strength.

Inspired by the seminal work [1] on artificial viscosity, we define a physics-dependent
weight as follows:

λ1 = 1

k1(|∇ · �u| − ∇ · �u) + 1
, (9)

Here, �u represents the velocity field, and k1 is a factor used to adjust λ1. This factor may
vary from case to case; Based on the tests, we suggest using a global value of k1 = 0.2 for
this research.

The construction of this weight is based on the fact that velocity divergence∇ · �u becomes
negative when the field is compressed, and∇ · �u → −∞when a shock appears. It’s important
to highlight that we only utilize velocity divergence to detect shocks and apply λ1 to the

123

Journal of Scientific Computing (2024) 98 :22 Page 9 of 38 22

equations without introducing any numerical dissipation. Since λ1 is a positive constant, it
does not affect the exact solution of the equations.

3.2 LocalWeak form of the Conservation Laws Constraint

Since strong form PDEs cannot describe strong discontinuous solutions, the PDE constraints
near discontinuities can lead to significant loss errors. Therefore, in the first part, we reduce
the weight of the equations near the shock wave regions to eliminate the incorrect constraints
in PINNs. However, until now, there have been no appropriate constraints over the shock
regions, making the problem underconstrained.

Although strong form solutions do not exist across the shock waves, the physical con-
servation laws still hold, meaning that the physical flux crossing the shock waves must be
conservative. This leads us to the Rankine–Hugoniot (RH) relation of the conservation laws
(1):

s · [[U]] = [[F]], (10)

where s represents the normal velocity of the shock wave, and for any given variable f ,

[[f]] = f1 − f2, (11)

where f1 and f2 are the values of f on different sides of the discontinuity.
The RH relation can also be deduced from and is equal to the weak form conservation

laws across shock waves. More information can be found in [23]. Here, we provide the RH
relation and the corresponding constraints for 1D Burgers equation, as well as 1D and 2D
Euler equations.

3.2.1 1D Burgers’ Equation

For Burgers’ equation (5), the RH relation is expressed as follows:

s[[u]] = [[u2/2]], (12)

where the velocity of the discontinuity is given by

s = u1 + u2
2

. (13)

In the case of the given initial antisymmetric condition in (5), as the discontinuity forms at
the center x = 1, the value of s remains zero. Therefore, we have the RH constraint as

fRH(x, t) = u(x = 1, t) − u(x = 1, 0) = 0, (14)

which can be considered as an additional constraint for the Burgers equation. This constraint
is formulated as:

LRH = MSE(fRH) = 1

|SRH|
∑

xi∈SRH

f 2RH,i . (15)

The settings of SRH and other sampling sets mentioned in this article can be referred to in
Fig. 4. Of course, SRH and SPDE can be completely identical here.

123

22 Page 10 of 38 Journal of Scientific Computing (2024) 98 :22

3.2.2 Euler Equations

We next consider the 1D and 2D Euler equations in their conservative forms,

∂U
∂t

+ ∇ · F = 0. (16)

For the 1D case, the Euler equations are defined as

U =
⎛

⎜⎝
ρ

ρu

E

⎞

⎟⎠ ,F =
⎛

⎜⎝
ρu

ρu2 + p

u(E + p)

⎞

⎟⎠ . (17)

For 2D cases, we have two flux vectors, F1 and F2, with the following definition:

U =

⎛

⎜⎜⎜⎝

ρ

ρu

ρv

E

⎞

⎟⎟⎟⎠ ,F1 =

⎛

⎜⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

u(E + p)

⎞

⎟⎟⎟⎟⎠
,F2 =

⎛

⎜⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

v(E + p)

⎞

⎟⎟⎟⎟⎠
. (18)

In these equations, ρ represents density, u is the velocity in the x direction, v is the velocity
in the y direction, p is the pressure, and E stands for the total energy. To close the equations,
we apply the ideal gas equation of state:

E = 1

2
ρu2 + p

γ − 1
, (19)

Here, γ = 1.4 represents the specific heat ratio.
Now, let’s discuss the RH relations. We will first address the 2D Euler equations and

subsequently, the 1D case.
For 2D Euler equations, the RH relation is given as

s[[ρ]] − [[ρ �u · �n]] = 0,

s[[ρu]] − [[(ρ �u · �n) u + pnx]] = 0,

s[[ρv]] − [[(ρ �u · �n) v + pny]] = 0,

s[[E]] − [[(E + p)�u · �n]] = 0.

(20)

Here, �n = (nx , ny) represents the unit normal vector of the discontinuity. To simplify, we
can eliminate the variables s and �n from (20), resulting in the following two equations,

ρ1ρ2
[
(u1 − u2)

2 + (v1 − v2)
2] = (p1 − p2)(ρ1 − ρ2), (21)

ρ1ρ2(e1 − e2) = 1

2
(p1 + p2)(ρ1 − ρ2). (22)

These two equations are commonly employed in the field of gas dynamics, with the latter
being the renowned Hugoniot relation. These two relations are also valid for 1D case where
v1 = v2 = 0. Then we let

f1(U1,U2) = ρ1ρ2
[
(u1 − u2)

2 + (v1 − v2)
2] − (p1 − p2)(ρ1 − ρ2),

f2(U1,U2) = ρ1ρ2(e1 − e2) − 1

2
(p1 + p2)(ρ1 − ρ2).

(23)

123

Journal of Scientific Computing (2024) 98 :22 Page 11 of 38 22

To establish the constraint in PINNs, for each RH residual point x(x, y, t) ∈ SRH, we
introduce two companion points as xL and xD :

xL = (x − 	x, y, t), xD = (x, y − 	y, t).

Then we utilize them to construct the RH constraint as

LRH = MSE(λ2(U,UL) f1(U,UL)) + MSE(λ2(U,UL) f2(U,UL))+
MSE(λ2(U,UD) f1(U,UD)) + MSE(λ2(U,UD) f2(U,UD)),

(24)

where U = U(x), UL = U(xL) and UD = U(xD), respectively.
The hybridization of strong form and weak form equations can be effective, with the key

factor being howwell we can capture shock waves. In the first part, the added physical weight
can adaptively weaken the strong-form PDEs near shock waves with a weak form. However,
in the second part, the RH relation is derived under the assumption of shockwaves. Therefore,
we design a new strong-form filter to detect shock waves using the following expression:

λ2(U1,U2) =
{

|(p1 − p2)(�u1 − �u2)| if |p1 − p2| > ε1 and |u1 − u2| > ε2,

0 elsewhere.
(25)

Here, ε1 and ε2 are two parameters used to detect jumps in shock waves and can be adjusted
according to the specific problem. After normalizing and dimensionless scaling of the prob-
lem, we set ε1 = ε2 = 0.1 for all the cases in this paper.

3.3 A Total Physical Conservation Constraint

In solving Euler equations, physical conservation laws are of paramount importance, espe-
cially when it comes to accurately determining the position of shock waves. We can explain
this by reconsidering the RH relation (20). In 1D case, assume we know (ρ1, u1, p1) on one
side, their are three equations but four variables left, as the velocity of the discontinuity s is
also unknown. As a conclusion, the discontinuity cannot be completely determined solely
by RH relation (local conservation laws), so additional conservation relations from the left
and right smooth parts are necessary. However, in PINNs, even though we utilize a system of
conservation equations, we still cannot achieve the theoretical total conservation properties
as with finite difference or finite volume methods. Therefore, in the third part of this work, in
order to improve the conservation, we add a soft total conservation constraint to PINNs-WE
framework.

Here we consider the conservation of the total mass, momentum and total energy, which
are defined as

MasExact =
∫

V
ρ(x)dV ,

MomExact =
∫

V
ρ(x)�u(x)dV ,

EneExact =
∫

V
E(x)dV .

(26)

123

22 Page 12 of 38 Journal of Scientific Computing (2024) 98 :22

The conservation of total mass, momentum, and total energy between time t = t1 and t = t2
can be expressed as follows:

∫

V
ρdV |t=t2 −

∫

V
ρdV |t=t1 =

∫ t2

t1

∮

∂V
ρ(�u · �n∂V)dtdA,

∫

V
ρ �udV |t=t2 −

∫

V
ρ �udV |t=t1 =

∫ t2

t1

∮

∂V
ρ �u(�u · �n∂V) + p�n∂V dtdA,

∫

V
EdV |t=t2 −

∫

V
EdV |t=t1 =

∫ t2

t1

∮

∂V
(E + p)(�u · �n∂V)dtdA,

(27)

where E = ρe + 1
2ρ �u2, V is the volume of the computational domain, and x = (t = tk, x)

for the 1D problem and x = (t = tk, x, y) for the 2D problem. ∂V is the boundary of the
computational domain, and �n∂V is the unit normal vector of the boundary.

As the residual points are random or uniform sampled, we approximate the total conser-
vation constraints at time t = tk as

Mas(tk) = V

|SCon(tk)|
∑

x∈SCon(tk)

ρ(x)

Mom(tk) = V

|SCon(tk)|
∑

x∈SCon(tk)

ρ(x)�u(x)

Ene(tk) = V

|SCon(tk)|
∑

x∈SCon(tk)

E(x)

(28)

The boundary terms can also be approximated as

BDMas(t1, t2) = (t2 − t1)A

|SBD|
∑

x∈SBD

ρ(x)(�u(x) · �n∂V (x)),

BDMom(t1, t2) = (t2 − t1)A

|SBD|
∑

x∈SBD

[
ρ(x)(�u(x))2 + p(x)

] · �n∂V (x),

BDEne(t1, t2) = (t2 − t1)A

|SBD|
∑

x∈SBD

[E(x) + p(x)] �u(x) · �n∂V (x),

(29)

where SBD is the set of residual points sampled on the boundary over the computational
time t1 ≤ t ≤ t2, and A is the area of the boundary surface. Then the conservation loss is
constructed as

LCONs = (Mas(t2) − Mas(t1) − BDMas)
2 + (Mom(t2) − Mom(t1) − BDMom)2

+(Ene(t2) − Ene(t1) − BDEne)
2. (30)

4 Numerical Examples

We employ PINNs-WE to address forward problems involving the Burgers’ equation and
Euler equations, without relying on prior information from the data, except for the initial
boundary conditions (IBCs).We then compare the resultswith those obtainedusing traditional
high-order finite difference methods, specifically the fifth-orderWENO-Zmethod for spatial
discretization [24] and the third-order Runge–Kutta method for time integration [25].

123

Journal of Scientific Computing (2024) 98 :22 Page 13 of 38 22

4.1 Inviscid Burgers’ Equation

We first solve the inviscid Burgers’ equation (5) using the new PINNs-WE method with the
same setting as in Sect. 2.2.

In Burgers’ equation, as the position of the discontinuity is determined by the antisym-
metric condition as discussed in Eq.14, so the introduction of total conservation of u, that is∫
udx = 0, will be redundant. So the total loss is constructed as

L = ωPDELPDE + ωIBCsLIBCs + ωRHLRH. (31)

Here, the ω is weight for each term to adjust the confinement strength [16, 18, 20]. Typically,
more weight is assigned to points located on initial and boundaries and near the shocks. We
set

ωPDE = 1, ωIBCs = 10, ωRH = 10, (32)

the velocity is represented by u itself. Therefore, the weight in Gnew is given by:

λ1 = 1

k1(| ∂u
∂x | − ∂u

∂x) + 1
. (33)

The RH constraint is defined as in (15). All the residual points are uniformly distributed.
The RH points are sampled at x = 1 for 0 < t < 1.

Figure 5 displays the loss history over epochs, the evolution of u, the residual, and λ1 as
functions of x at t = 1 for different training epochs (1000, 3000, 5000, 8000, 11500, and the
end of training).

Compared to the results in Fig. 1, in the first 1000 epochs (Slice 1), PINNs-WE produce
results similar to the original PINNs. This is because the gradient of the transition point
is not sufficiently large to cause problems. However, after 3000 epochs, PINNs-WE can
effectively reduce the total loss as it resolves the paradoxical situation at the transition points.
Subsequently, all the transition points are compressed into a smooth region, except for the
one where u = 0 and always has zero velocity.

As shown in Fig. 5d, after 3000 epochs, all the weights change to nearly 1, except for the
central one.

We then proceed to compare PINNs-WE against the original PINNs and the traditional
high-order WENO-Z method, considering various factors, including the number of mesh-
based residual points, network structure, and the factor k1. All the presented results are the
averages of ten random runs to mitigate the influence of hyperparameter randomness. We
employed the L-BFGS algorithm for training to convergence.

Table 1 provides the L2 errors, L2 errors within smooth regions (x ∈ [0, 0.95] ∪
[1.05, 2], t = 1), and within the shock region (x ∈ (0.95, 1.05)), along with L∞ errors.
Additionally, the training losses after convergence in different scenarios are displayed in the
same table. We also give a rough comparison of the computational cost between different
methods. The comparison illustrates that:

1. For PINNs-WE, when the network parameters are sufficient, the network structure (depth
and width) does not have a significant impact on the results. The variation of parameter
k1 within the range of 0.1 to 0.4 also does not significantly affect the results.

2. The accuracy of the new method, PINNs-WE, consistently outperforms the original
PINNs in this case.

3. When there are insufficient cells/sampling points, the accuracy of PINNs-WE is higher
than that of the WENO-Z scheme.

123

22 Page 14 of 38 Journal of Scientific Computing (2024) 98 :22

4. Traditional methods exhibit mesh convergence, a property that PINNs do not possess. In
fact, even with an increase in residual points, the accuracy of PINNs-WE may decrease.
This is mainly due to the increased difficulty in optimization with more points.

5. Using PINNs to solve forward problems ismuchmore expensive than traditionalmethods
(Fig. 6).

4.2 Euler Equations

In 1D cases, we examine two classical Riemann problems, namely the Sod and Lax prob-
lems, as well as another 1D problem characterized by strong shock waves. Subsequently, we
transition to a 2D Riemann problem and a more intricate problem involving moving shock
waves. The loss function is constructed as

L = ωPDELPDE + ωIBCsLIBCs + ωRHLRH + ωCONsLCONs. (34)

and

ωPDE = 1, ωIBCs = 10, ωRH = 10, ωCONs = 10. (35)

4.2.1 Sod Problem

The Sod problem is an extensively studied 1D Riemann problem with the initial constant
states in a tube with unit length, formulated as follows:

(ρ, u, p) =
{

(1, 0, 1), if 0 ≤ x ≤ 0.5,

(0.1, 0, 0.125), if 0.5 < x ≤ 1.
(36)

We use a NNwith 7 hidden layers, each containing 50 neurons. We then set 5000 function
residual points using the Latin Hypercube Sampling (LHS) method in the X × T space. The
number of initial points is NIC = 100. The boundary condition is omitted for the reasons
explained in Appendix A. There are 100 residual points at time t = 0.2, referred to as NRH.
Additionally, we have a total of 100 conservation points at both t1 = 0 and t2 = 0.2, denoted
as NCONs. After training, we construct a test set consisting of 100 uniformly spaced points
in the range x ∈ [0, 1] at the final time t = 0.2.

First, we compare the results obtained with the well-trained PINNs-WE to the traditional
high-order WENO-Z method using 100 cells in space. Figure7 illustrates that PINNs-WE
achieves similar or even superior results when compared to the WENO-Z method. Notably,
when capturing shock waves, there are no transition points within the shock region because
PINNs-WE does not introduce any dissipation into the equations.

In Fig. 8, we present a result from the network that is still undergoing training.We compare
the pointwise function residuals, bothwith andwithout theweightλ1, and the equationweight
λ1 at time t = 0.2 between the well-trained network and the network during training. This
comparison demonstrates that, during training, as the shockwave forms, the function residual
within the discontinuous region dominates the training process. The design of the equation
weight λ1 is effective in reducing the residuals near the shock, thereby balancing the training
process and achieving high accuracy results with sharp shock waves.

123

Journal of Scientific Computing (2024) 98 :22 Page 15 of 38 22

Fig. 5 Results of inviscid Burgers’ equation with PINNs-WE (Part 1). Similar computational setting with
Fig. 1

123

22 Page 16 of 38 Journal of Scientific Computing (2024) 98 :22

Ta
bl
e
1

A
cc
ur
ac
y
on

in
vi
sc
id

B
ur
ge
rs
’
eq
ua
tio

n,
t
=

1

H
id
de
n
la
ye
rs

(1
)

N
(2

)
k 1

L
2

Sh
oc
k
L
2

Sm
oo

th
L
2

L
∞

Fi
na
lL

os
s

R
un
tim

e(
s)

(3
)

PI
N
N
s-
W
E

3
×

30
10

0.
2

1.
1

×
10

−2
8.
0

×
10

−4
1.
2

×
10

−2
2.
7

×
10

−2
2.
0

×
10

−5
66

3
×

30
20

0.
2

2.
8

×
10

−3
9.
3

×
10

−4
2.
9

×
10

−3
1.
1

×
10

−2
2.
9

×
10

−5
92

3
×

30
40

0.
2

2.
2

×
10

−3
6.
5

×
10

−3
1.
5

×
10

−3
1.
2

×
10

−2
4.
7

×
10

−5
11

6

3
×

30
80

0.
2

2.
0

×
10

−3
8.
1

×
10

−3
7.
0

×
10

−4
1.
5

×
10

−2
7.
6

×
10

−5
10

8

3
×

30
16

0
0.
2

2.
0

×
10

−3
7.
0

×
10

−3
1.
0

×
10

−3
1.
8

×
10

−2
2.
8

×
10

−4
12

8

3
×

30
32

0
0.
2

4.
1

×
10

−3
1.
3

×
10

−2
2.
9

×
10

−3
2.
1

×
10

−2
1.
5

×
10

−3
26

8

4
×

60
80

0.
2

2.
0

×
10

−3
6.
1

×
10

−3
1.
4

×
10

−3
1.
1

×
10

−2
2.
5

×
10

−4

3
×

30
80

0.
4

2.
5

×
10

−3
7.
8

×
10

−3
1.
6

×
10

−3
1.
4

×
10

−2
3.
0

×
10

−4

3
×

30
80

0.
1

3.
0

×
10

−3
8.
2

×
10

−3
2.
1

×
10

−3
1.
6

×
10

−2
6.
4

×
10

−4
PI
N
N
s 3
×

30
10

3.
2

×
10

−2
4.
7

×
10

−2
2.
4

×
10

−2
8.
6

×
10

−2
6.
7

×
10

−4
61

3
×

30
20

6.
7

×
10

−3
7.
1

×
10

−3
6.
4

×
10

−3
2.
6

×
10

−2
5.
6

×
10

−4
93

3
×

30
40

6.
2

×
10

−3
9.
6

×
10

−3
5.
8

×
10

−3
1.
8

×
10

−2
3.
3

×
10

−3
86

3
×

30
80

1.
3

×
10

−2
1.
8

×
10

−2
1.
2

×
10

−2
3.
5

×
10

−2
1.
1

×
10

−2
76

3
×

30
16

0
3.
1

×
10

−2
8.
3

×
10

−2
1.
9

×
10

−2
1.
8

×
10

−1
3.
0

×
10

−2
12

8

3
×

30
32

0
3.
7

×
10

−2
1.
1

×
10

−1
2.
3

×
10

−2
2.
8

×
10

−1
8.
2

×
10

−2
24

5

123

Journal of Scientific Computing (2024) 98 :22 Page 17 of 38 22

Ta
bl
e
1

co
nt
in
ue
d

H
id
de
n
la
ye
rs

(1
)

N
(2

)
k 1

L
2

Sh
oc
k
L
2

Sm
oo

th
L
2

L
∞

Fi
na
lL

os
s

R
un
tim

e(
s)

(3
)

W
E
N
O
-Z

10
5.
6

×
10

−2
1.
0

×
10

−1
5.
0

×
10

−2
1.
3

×
10

−1
3

×
10

−4

20
1.
3

×
10

−2
3.
3

×
10

−2
1.
1

×
10

−2
3.
3

×
10

−2
4

×
10

−4

40
3.
9

×
10

−3
6.
9

×
10

−3
3.
6

×
10

−3
8.
9

×
10

−3
1

×
10

−3

80
2.
0

×
10

−3
5.
9

×
10

−3
1.
6

×
10

−3
9.
7

×
10

−3
6

×
10

−3

16
0

1.
2

×
10

−3
4.
2

×
10

−3
7.
8

×
10

−4
9.
6

×
10

−3
2

×
10

−2

32
0

7.
9

×
10

−4
3.
0

×
10

−3
4.
3

×
10

−4
9.
8

×
10

−3
6

×
10

−2

1
n

×
m

st
an
ds

fo
r
n
hi
dd

en
la
ye
rs
an
d
m

ne
ur
on

s
pe
r
la
ye
r

2
N

is
th
e
nu

m
be
r
of

po
in
ts
in

ea
ch

di
m
en
si
on

,t
he

fu
nc
tio

n
po

in
ts
N

f
=

N
2
an
d
th
e
IB

C
s
po

in
ts
N
IB
C
s

=
N

3
Ju
st
a
ro
ug
h
co
m
pa
ri
so
n,

ca
lc
ul
at
io
ns

ar
e
ba
se
d
on

di
ff
er
en
td

ev
ic
es
,P

IN
N
s
an
d
PI
N
N
s-
W
E
ar
e
on

G
PU

w
hi
le
W
E
N
O
-Z

is
ba
se
d
on

C
PU

123

22 Page 18 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 6 Results of Burgers’ equation with PINNs-WE (Part 2). Similar computational setting with Fig. 1

Fig. 7 Evaluation of the Sod problem at t = 0.2

4.2.2 Lax Problem

The Lax problem is another a Riemann problem featuring a strong shock and strong contact
discontinuity. The initial conditions are defined as follows:

(ρ, u, p) =
{

(0.445, 0.698, 3.528), if 0 ≤ x ≤ 0.5,

(0.5, 0, 0.571), if 0.5 < x ≤ 1.
(37)

The computational domain is defined as t ∈ [0, 1.4] and x ∈ [0, 1] within the T × X space.
Similar to the Sod problem, you have used the same neural network (NN) architecture. In
this case, you randomly selected 50,000 interior points from a uniform 1000× 5000 mesh in

123

Journal of Scientific Computing (2024) 98 :22 Page 19 of 38 22

Fig. 8 The pointwise function residual and equation weight distribution at an epoch during training for the
Sod problem

the X × T space. There are 1000 initial points, and the number of residual points, RH points,
and conservation points is the same as in the Sod case.

We compare the results with those obtained from the high-order WENO-Z method. Fig-
ure9 shows that the PINNs-WE can accurately simulate this problem and gains a sharper
shock than that by WENO-Z. We also give a result from the network at one epoch that is
still during training, and we take a comparison of the pointwise function residuals without
the weight λ1 and the equation weight λ1 at time t = 1.4 between the well trained and
during training network. It illustrates that the design of the equation weight λ1 can balance
the training process and achieving high accuracy results with sharp shock waves.

4.2.3 Two Shock Waves Problem

At last of the 1D cases, we consider a problemwith left and right running strong shock waves.
The initial condition is given as

(ρ, u, p) =
{

(1, 0, 1), if − 0.1 ≤ x − 0.5 ≤ 0.1,

(1, 0, 0.01), otherwhere.
(38)

This problem can be viewed as a normalization and simplification of the classical 1D blast
problem. The shock waves are generated due to a pressure difference 100 times greater

123

22 Page 20 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 9 Results for the Lax problem

Fig. 10 The pointwise function residual and equation weight distribution at an epoch during training for the
Lax problem

between the center and the left and right sides. The computational time is t = 0.036. Other
settings are same to those in Sod problem.

123

Journal of Scientific Computing (2024) 98 :22 Page 21 of 38 22

Fig. 11 Evaluation of the two shock waves problem at t = 0.32

In Fig. 11, we give a comparison at time t = 0.32. They illustrate that PINNs-WE can
accurately capture the left and right shock waves. Compared to WENO-Z with a similar
number of grid points, despite a slightly lower accuracy in velocity, the shock resolution of
the new method still is higher.

4.2.4 2D Riemann Problem

Next, we consider a 2D problem with strong discontinuities. The basic settings are retrieved
from case 8 in [26]. The initial condition is given by

(ρ, u, v, p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1,−0.75, 0.5, 1) if 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 0.5,

(2, 0.75, 0.5, 1) if 0 ≤ x ≤ 0.5, 0.5 < y ≤ 1,

(3,−0.75,−0.5, 1) if 0.5 < x ≤ 1, 0 ≤ y ≤ 0.5,

(1, 0.75,−0.5, 1) if 0.5 ≤ x ≤ 0.5, 0.5 < y ≤ 1.

(39)

And t ∈ [0, 0.4]. We use an NN with 6 hidden layers and 60 neurons per layer. The training
points are obtained byLatin hypercube sampling,with 200,000 interior points in the T×X×Y
space and 10,000 initial points in the X × Y space. The final training loss is 0.009.

123

22 Page 22 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 12 Results of 2D Riemann problem (part 1) with 100 × 100 test points for PINNs-WE and the same
number of mesh grids for WENO-Z

We provide test results for 100× 100 mesh points, which slightly outnumber the training
points (approximately 60) along each dimension. Comparison results are shown in Figs. 12
and 13 with the WENO-Z method in the same 100 × 100 mesh. The proposed method can
capture contact discontinuities more sharply and nearly without transition points, which are
unavoidable by the traditional high-order method.

Then, we increased the test points to meshly 400 × 400, which is substantially larger
than the training data along each dimension. And we performed an unfair comparison with
the WENO-Z method in a 400 × 400 mesh in Figs. 14 and 15. The computation of the
detailed structure, particularly in the middle region, is weaker in the PINNs-WE because of
the available training data, but discontinuities are still sharper than those computed by the
WENO-Z. These results illustrate the advantages of the PINNs-WE in high dimensions given
its mesh-free feature.

123

Journal of Scientific Computing (2024) 98 :22 Page 23 of 38 22

Fig. 13 Results of 2D Riemann problem (part 2) with 100 × 100 test points for PINNs-WE and the same
number of mesh grids for WENO-Z

4.2.5 Transonic Flow Around Circular Cylinder

In our final analysis, we delve into a 2D problem involving a bow shock. Specifically,
we examine a transonic flow with a Mach number of 0.728 passing around a stationary
circular cylinder. A similar problem, along with detailed analysis, can be found in [27].
The initial condition is defined by a uniform flow with the parameters (ρ, u, v, p) =
(2, 112, 1.028, 0, 3.011). The computational domain spans t from 0 to 0.4, x from 0 to
1.5, and y from 0 to 2 within the T × X ×Y domain. The center of the cylinder, with a radius
of 0.25, is positioned at coordinates (1, 1).

For this analysis,we employ a neural network (NN) consisting of 7 hidden layers, eachwith
90 neurons. The residual points for our computations are obtained through Latin hypercube
sampling within the 3D domain of T × X × Y , totaling 300,000 points. Additionally, we
randomly select 15,000 boundary points along the cylinder, and another 15,000 initial points

123

22 Page 24 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 14 Results of 2D Riemann problem II (part 1), an unfair comparison, with 400 × 400 test points for
PINNs-WE and the same number of mesh grids for WENO-Z

are obtained using Latin hypercube sampling. After 2000 optimization steps using the L-
BFGS algorithm, we achieve a total loss of 0.028.

Figures 16, 17, 18 and 19 present a comparative analysis of the results obtained using
PINNs-WE and theWENO-Zmethod. The results from PINNs-WE exhibit sharpness similar
to those of WENO-Z, but they display a smoother profile. Notably, our approach effectively
captures the vortex located behind the cylinder.

It’s important to acknowledge certain limitations stemming from the number of residual
points and the use of single-precision calculations, which are imposed by the hardware
(Nvidia 1080ti) used in our study. These constraints prevent further reduction of the loss and
hindered obtaining more precise results.

Nevertheless, our work underscores the promising capability of PINNs-WE in simulating
complex transonic and supersonic flows. Despite these constraints, the method consistently

123

Journal of Scientific Computing (2024) 98 :22 Page 25 of 38 22

Fig. 15 Results of 2D Riemann problem II (part 2), an unfair comparison, with 400 × 400 test points for
PINNs-WE and the same number of mesh grids for WENO-Z

produces competitive and visually appealing results, highlighting its potential in addressing
challenging fluid dynamics problems.

5 Conclusions

In this paper, we introduce a Physics-Informed Neural Networks with Equation Weights
(PINNs-WE) framework designed to capture strong nonlinear discontinuities, particularly
shock waves, when solving hyperbolic equations. Despite the versatility of PINNs for solv-
ing inverse problems combining equations with data, our focus in this work is on forward
problems. This choice allows us to analyze the fundamental characteristics of PINNs without
the influence of prior data.

123

22 Page 26 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 16 Resulting pressure for transonic flow through circular cylinder using proposed PINNs-WE (left) and
WENO-Z method (right)

Fig. 17 Resulting density for transonic flow through circular cylinder using proposed PINNs-WE (left) and
WENO-Z method (right)

123

Journal of Scientific Computing (2024) 98 :22 Page 27 of 38 22

Fig. 18 Resulting velocity u for transonic flow through circular cylinder using proposed PINNs-WE (left) and
WENO-Z method (right)

Fig. 19 Resulting velocity v for transonic flow through circular cylinder using proposed PINNs-WE (left) and
WENO-Z method (right)

123

22 Page 28 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 20 Resulting streamline for transonic flow through circular cylinder using proposed PINNs-WE (left)
and WENO-Z method (right)

One of the key contributions of our approach is the recognition of a paradoxical issue
within transition points inside shock waves. Regardless of whether gradients are increased or
decreased, these points tend to increase the total loss, potentially leading to conflicts during
neural network training. To address this, we adopt three novel strategies:

1. In our framework, we first incorporate a positive physics-dependent weight into the gov-
erning equations to adapt the behavior of PINNs in regionswith varying physical features.
For solving the Euler equations, we construct a weight that is inversely proportional to
the local physics compression, measured through the velocity divergence. By introduc-
ing these Weighted Equations (WEs) into PINNs, the neural network training primarily
focuses on smoother regions, as shock regions receive small weights. Relying on the
inherent physics compression learned from these smooth regions, discontinuities natu-
rally emerge as transition points move out into smoother regions, analogous to passive
particles.

2. Recognizing that strong form PDEs are not suitable for describing strong discontinuous
solutions, we address the underconstrained nature of the problem by incorporating the
Rankine–Hugoniot (RH) relation, which is equivalent to the weak form of conservation
laws, as new constraints near the shock waves.

3. For nonlinear hyperbolic equations, such as the Euler equations, preserving physical
conservation is of utmost importance. It directly impacts the accuracy of shock wave
positions. Therefore, we integrate a conservation constraint into our new framework.

Furthermore, we provide a comparison between PINNs-WE and the traditional shock-
capturing method, WENO-Z, in this paper. Some of the key findings include:

1. Due to the nonlinear nature of neural networks, PINNs have the potential to capture
discontinuities sharper than mesh-based methods.

123

Journal of Scientific Computing (2024) 98 :22 Page 29 of 38 22

2. PINNs-WE can capture shock waves without obvious transition points and accurately
solve rarefaction waves as there is no additional dissipation introduced, as demonstrated
in the 123 problem presented in Appendix B.

3. When residual points are sparse, PINNs may outperform traditional methods in terms of
accuracy.

4. However, it is important to note that PINNs involve online training, which can be more
computationally expensive than traditional methods for forward problems.

5. A significant challenge with PINNs and similar methods is their lack of grid or sampling
point refinement convergence. This limitation can result in significant errorswhen dealing
with complex flows featuring fine or high-frequency structures.

Acknowledgements The authors would like to thank all the members from the corresponding author’s team
“AI++” for their help and fruitful discussions.

We acknowledge the financial support from the National Key R&D Program of China under Grant No
2022YFA1004500, the NSAF under Grant Number U2230208, and the Key Laboratory of Nuclear Data
foundation under Grant Number JCKY2022201C155.

The author would like to thank all referees for their constructive comments and suggestions which greatly
improve the paper.

Data Availability The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Code Availability Code is available at https://github.com/bfly123/PINN_WE.

Declaration

Conflict of Interests We declare that we have no financial and personal relationships with other people or
organizations that can inappropriately influence our work, there is no professional or other personal interest of
any nature or kind in any product, service and/or company that could be construed asinfluencing the position
presented in, or the review of, the manuscript entitled.

Appendix A: Omissible Boundary Condition in PINNs

In traditional numerical methods used for solving initial boundary value problems, such as
finite element and finite difference methods, boundary conditions play essential roles. They
serve two primary purposes: mathematically defining the problem and numerically closing
the discretization near the boundaries of the schemes. However, in PINNs, which do not
rely on discretization or logical relations between sampling points, the need for boundary
conditions to serve the latter purpose is eliminated. This simplifies the process of setting
boundary conditions significantly.

In our experimentation with PINNs, we have observed that two types of boundary con-
ditions may can be omitted when solving initial boundary value problems. The first type is
constant boundary conditions, where the boundary values remain unchanged over time after
being determined by the initial conditions. The second type is outflow boundary conditions,
where information purely flows out of the domain.

Traditionally, setting outflowboundary conditions can be challenging because they require
closed and discrete boundary conditions to exist while also ensuring that the set boundary
conditions do not influence the internal flow. In PINNs, these boundary conditions can be
omitted, yet they still ensure complete outflow characteristics at the boundary.

123

https://github.com/bfly123/PINN_WE

22 Page 30 of 38 Journal of Scientific Computing (2024) 98 :22

Table 2 Accuracy comparison
with and without constant
boundary constraint

L∞ Error L2 Error

Without boundaries 2.0e−3 4.8e−4

With boundaries 4.9e−3 7.3e−4

Table 3 Accuracy comparison
with different set of outflow
boundary constraint

L∞ Error L2 Error

Extrapolation 5.2e−3 1.9e−3

Zero gradient 4.9e−3 1.8e−3

Omitting 4.6e−3 1.3e−3

Appendix A.1: 1D Linear Transport Equation Problem

To illustrate the influence of omitting these two types of boundary conditions, we consider
two problems solved with PINNs. The governing equation for both problems is chosen as:

∂u

∂t
+ ∂u

∂x
= 0, −1 < x < 2,

with the first initial condition as

u(x, 0) =
{
sin(2πx) + 1 if 0 ≤ x ≤ 1,

1 else.

The computational time is set as 0 ≤ t ≤ 0.5. Both left and right boundary conditions are
kept constant throughout the computation time. We compare the results with and without the
inclusion of boundary conditions in Table 2.

Our results indicate thatwhen boundary conditions are constant, there isminimal influence
when omitting them from the loss function. The number of residual points sampled within the
computational domain is denoted as N f = 10000, while NIC = 100 represents the number
of residual points sampled on the initial condition. Additionally, NBC = 100 is the number
of residual points sampled on the left and right boundary conditions. All these residual points
are uniformly distributed.

For the second initial condition, it is defined as:

u(x, 0) = sin(2πx) + 1,

and the computational time is extended to 0 ≤ t ≤ 5. The left boundary condition is set as
an inflow boundary condition:

u(−1, t) = sin(2π(−t − 1)) + 1.

On the other hand, the right boundary condition is chosen as an outflow condition. In
traditional methods with outflow boundaries, there are various approaches to closing the
discretization. One common method is to extrapolate the value at u(2+	x, t) using u(2, t).
Here, 	x represents the mesh size and can be calculated as 	x = Lx/Nx = 0.03, where Lx

denotes the length in space, and Nx is the number of points in the x direction. Alternatively,
more complex zero-gradient outflow conditions, such as setting ux (2 + 	x, t) = ux (2, t),
can be employed to minimize the impact of boundary conditions. In this context, as you
mentioned, using uniform points simplifies the choice of 	x .

123

Journal of Scientific Computing (2024) 98 :22 Page 31 of 38 22

In our analysis, we have tested three cases: extrapolated boundary conditions, zero-
gradient boundary conditions, and omitting boundary conditions altogether with PINNs.
To minimize the impact of network randomness, the results reported in Table 3 represent the
averages of ten separate runs with different random seeds.

The results demonstrate that even when using zero-gradient boundary conditions, the
boundary conditions still influence the accuracy of internal flows. Conversely, omitting the
outflow boundary condition appears to be a better fit for representing the true physical behav-
ior.

Appendix A.2: 2DVortex Evaluation Problem

Then we test a 2D vortex problem governed by 2D Euler equations (16). The initial condition
is considered as

⎛

⎜⎜⎝

ρ

u
v

p

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

(1 + δT)1/(γ−1)

1 + (
ly/2 − y

)
σ
2π e

0.5
(
1−r2

)

1 + (x − lx/2) σ
2π e

0.5
(
1−r2

)

(1 + δT)γ /(γ−1)

⎞

⎟⎟⎟⎠ . (A.1)

Here δT is the perturbation in the temperature and is given by

δT = − (γ − 1)σ 2

8γπ2 e
(
1−r2

)
,

where r2 = (x − xc)2 + (y − yc/2)2 and the vortex strength σ = 5, xc = yc = 2. The
computational domain is given as [0, 5] × [0, 5]. Here γ is 1.4. The initial conditions lead
advection of a non-linear vortex at an angle of 45◦ with the x-axis and the numerical solutions
are obtained after t = 1. The left and bottom boundaries are constant inflow while right and
top boundaries are outflows. The N f = 400000 and NIBCs = 10000. Result at t = 1 is
compared with the exact solution in Fig. 21. And convergence of L2 and L∞ relative errors
are presented in Table 4. We show that omitting the boundary conditions in this case can
obviously improve the accuracy.

In summary, the PINNsmethodoffers the significant advantage of simplifying the handling
of boundary conditions. By not relying on a discrete grid and having the capability to capture
temporal behavior, it becomes feasible to omit constant boundary conditions and simplify
the setting of outflow boundary conditions. This flexibility and ease of handling boundary
conditions make the PINNs method a practical choice for solving hyperbolic equations.

123

22 Page 32 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 21 The result and point-wise error of the 2D vortex evolution problem at t = 1

Table 4 Accuracy comparison
with and without constant
boundary constraint, 2D vortex
evolution problem

L∞ Error L2 Error

Without boundaries 8.7e−3 9.0e−4

With boundaries 1.0e−1 2.0e−2

Appendix B: Classical PINNs in Computing Linear andWeak Discontinu-
ities

The effectiveness of Physics-Informed Neural Networks (PINNs) in solving problems with
smooth solutions has been extensively studied and demonstrated. However, research on solv-
ing problems involving discontinuities is still relatively limited. In this section, we aim to first
validate the performance of the classical PINNs approach in solving linear discontinuities and
weak discontinuities. Here, we consider several test cases, include linear transport equation
problems involving linear discontinuities to verify the solution with linear discontinuities,
and one-dimensional Riemann problems with rarefaction waves to verify the solution with
derivatives discontinuities.

123

Journal of Scientific Computing (2024) 98 :22 Page 33 of 38 22

x

T

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

u

0.985984
0.937657
0.889329
0.841002
0.792674
0.744346
0.696019
0.647691
0.599364
0.551036
0.502708
0.454381
0.406053
0.357726
0.309398
0.261071
0.212743
0.164415
0.116088
0.0677602
0.0194326

x

T

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

error

0.368403
0.349013
0.329623
0.310234
0.290844
0.271455
0.252065
0.232675
0.213286
0.193896
0.174507
0.155117
0.135727
0.116338
0.0969481
0.0775585
0.0581689
0.0387792
0.0193896

Fig. 22 The result and point-wise absolute error of the 1D linear transport equation with complex waveforms

Appendix B.1: 1D Linear Transport Equation with ComplexWaveforms

The equation is given as

∂u

∂t
+ ∂u

∂x
= 0, −1 < x < 2,

with the initial condition

u(x, 0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
6 (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)), −0.8 ≤ x ≤ −0.6
1, −0.4 ≤ x ≤ −0.2
1 − |10(x − 0.1)|, 0 ≤ x ≤ 0.2
1
6 (F(x, α, α − δ) + F(x, α, α + δ) + 4F(x, α, a)), 0.4 ≤ x ≤ 0.6
0, otherwise

As in Ref. [19], the constants have been assigned specific values: a = 0.5, z = −0.7,
δ = 0.005,α = 10, andβ = log 2/36δ2. The solution exhibits a diverse set of discontinuities,
including a smooth combination of Gaussians, a square wave, a sharp triangle wave, and a
half ellipse. The equation possesses an exact solution of the form u(x, t) = u(x − t, 0).

Here we use the classical PINNs with the loss function of the mean square error from two
part

Loss = MSE f + 10MSEIC

and ignoring the boundary conditions as we talked in Appendix A.
The function residual points is taken as N f = 10000 and the initial residual points is

NIC = 1000, and all they are sampled uniformly.
We use the ADAM optimizer with a learning rate of 0.01 then follows L-BFGS optimizer

with a learning rate of 1 until the loss converges.
The solution and the error solved by PINNs are present in Fig.. Then we test the trained

network with 100 uniform sampling points at time t = 0.5 and compare it we the exact
solution. And the L2 relative error is 0.005 (the average of ten cases with different random
seeds to eliminate the influence randomness).

123

22 Page 34 of 38 Journal of Scientific Computing (2024) 98 :22

Fig. 23 Test result at t = 0.5 of the 1D linear transport equation with complex waveforms

Appendix B.2: 2D Linear Transport Equation with Initial Interface Evolution

Interface tracking is a widely encountered scientific and engineering problem that often
requires solving the linear transport equation with a given velocity field:

∂u

∂t
+ ax (t, x, y)

∂u

∂x
+ ay(t, x, y)

∂u

∂ y
= 0.

We consider a complex case introduced by [28]. The velocity field is given as

{
ax = sin2(πx) sin(2π y),

ay = − sin2(π y) sin(2πx),

when t < T /2. Then we take an opposite velocity field to rotate it back. and the initial
conditions are

u0(x, y) =
⎧
⎨

⎩
0,

√
(x − xr)2 + (y − yr)2 > 0.15,

1, else.

The computation domain is 0 ≤ x, y ≤ 1.
The numbers of residual points sampled in the computational domain and on the initial

condition are N f = 10000 and NIC = 1000, respectively. They are sampled with the Latin
hypercube sampling (LHS) method.

We have test three networks with different t . After the training, we take two test sets
with 10000 uniform points at T = t/2 and T = t/2 in each case, respectively. The result
are shown in Fig. 24. We can see PINNs capture the interface sharply with little dissipation
as there is no necessary dissipation introduced to capture the discontinuity. So the possible
dissipation is the error from the approximation that can be controlled by the convergence of
the loss function.

123

Journal of Scientific Computing (2024) 98 :22 Page 35 of 38 22

Fig. 24 The result of the 2D linear transport equation with vortex stretching, t1 = 0.5, t2 = 1 and t3 = 2,
black line is the initial position of the interface

Appendix B.3: 1D Riemann Problemwith Double RarefactionWaves

After we test two linear discontinuity cases, then we will test the performance of PINNs in
solving weak discontinuities. Rarefaction wave is typically one kind of weak discontinuities
that they have only derivative discontinuity and C0 smoothness.

123

22 Page 36 of 38 Journal of Scientific Computing (2024) 98 :22

x

D
en

si
ty

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

PINNs
Exact

x

P
re

ss
u

re

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PINNs
Exact

x

V
el

o
ci

ty

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

PINNs
Exact

x

In
te

rn
al

 e
n

er
g

y

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

PINNs
Exact

Fig. 25 The result of the double rarefaction problem

We choose a classical double rarefaction problem described by Toro [29], Chapter 6. In
this test, the center of the domain is evacuated as two rarefaction waves propagate in each
direction, outward from the center.

The initial conditions are: The governing equation is the 1D Euler equation that is given
in Sect. 2 with the initial condition as

The initial condition is given as

(ρ, u, p) =
{

(1,−2, 0.4), if 0 ≤ x ≤ 0.5,

(1, 2, 0.4), if 0.5 < x ≤ 1.
(B.1)

And the computational time is t = 0.1. This problem is hard to solve as their are vacuum
created at the center after the expansion. Especially the internal energy e = p

/
ρ(γ − 1) may

have large error inside the low pressure/density region.
We use a two step training strategy, the initial residual points NIC = 100 and we pre-train

the network with N f = 2000 first to convergence and then refine it with more residual points
as N f = 10000. The results are shown in Fig. 25. It shows that PINNs performs good in
solving rarefaction waves even with vacuum regions.

Then we give a conclusion of appendix B. We test three classical interface tracking cases
with the classical PINNs without any optimization. The results show that PINNs is very good
at solving linear discontinuous problem, the discontinuous keeps sharp without obviously

123

Journal of Scientific Computing (2024) 98 :22 Page 37 of 38 22

dissipation. SoPINNshavemuchpotential to bepowerfulmethods for solvingmulti-materials
problems.

References

1. VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J.
Appl. Phys. 21(3), 232–237 (1950)

2. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-
oscillatory schemes, III. In: Upwind and High-resolution Schemes, Springer, pp. 218–290 (1987)

3. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1),
202–228 (1996)

4. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-
diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

5. Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011)
6. Zhang, D., Jiang, C., Liang, D., Cheng, L.: A review on TVD schemes and a refined flux-limiter for

steady-state calculations. J. Comput. Phys. 302, 114–154 (2015)
7. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning frame-

work for solving forward and inverse problems involving nonlinear partial differential equations. J.
Comput. Phys. 378, 686–707 (2019)

8. Pang, G., Yang, L., Karniadakis, G.E.: Neural-net-induced Gaussian process regression for function
approximation and PDE solution. J. Comput. Phys. 384, 270–288 (2019)

9. Lye, K.O., Mishra, S., Ray, D.: Deep learning observables in computational fluid dynamics. J. Comput.
Phys. 410, 109339 (2020)

10. Magiera, J., Ray,D., Hesthaven, J.S., Rohde, C.: Constraint-aware neural networks for Riemann problems.
J. Comput. Phys. 409, 109345 (2020)

11. Huang, H., Liu, Y., Yang, V.: Neural networks with local converging inputs (NNLCI) for solving conser-
vation laws, part II: 2D problems, arXiv preprint arXiv:2204.10424

12. Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine
learning through physics-informed neural networks: Where we are and what’s next, arXiv preprint
arXiv:2201.05624

13. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for high-speed flows. Com-
put. Methods Appl. Mech. Eng. 360, 112789 (2020)

14. Patel, R.G., Manickam, I., Trask, N.A., Wood, M.A., Lee, M., Tomas, I., Cyr, E.C.: Thermodynamically
consistent physics-informed neural networks for hyperbolic systems. J. Comput. Phys. 449, 110754 (2022)

15. Jagtap,A.D.,Kharazmi,E.,Karniadakis,G.E.:Conservative physics-informedneural networks ondiscrete
domains for conservation laws: applications to forward and inverse problems. Comput. Methods Appl.
Mech. Eng. 365, 113028 (2020)

16. Jagtap, A.D., Mao, Z., Adams, N., Karniadakis, G.E.: Physics-informed neural networks for inverse
problems in supersonic flows, arXiv preprint arXiv:2202.11821

17. Cai, S., Mao, Z., Wang, Z., Yin, M., Karniadakis, G.E.: Physics-informed neural networks (PINNs) for
fluid mechanics: a review. Acta. Mech. Sin. 37(12), 12 (2021)

18. Papados, A.: Solving hydrodynamic shock-tube problems using weighted physics-informed neural net-
works with domain extension, https://doi.org/10.13140/RG.2.2.29724.00642/1

19. Shen, Y., Liu, L., Yang, Y.: Multistep weighted essentially non-oscillatory scheme. Int. J. Numer. Meth.
Fluids 75(4), 231–249 (2014)

20. Yu, J., Lu, L., Meng, X., Karniadakis, G.E.: Gradient-enhanced physics-informed neural networks for
forward and inverse PDE problems. Comput. Methods Appl. Mech. Eng. 393, 114823 (2022)

21. Mcclenny, L., Braga-Neto, U.: Self-adaptive physics-informed neural networks using a soft attention
mechanism. In: AAAI-MLPS 2021 (2021)

22. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-
informed neural networks. Soc. Ind. Appl. Math. 43, A3055–A3081 (2021)

23. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, Hyperbolic Conservation Laws
in Continuum Physics. Springer, Berlin (2005)

24. Borges, R., Carmona,M., Costa, B., Don,W.S.: An improvedweighted essentially non-oscillatory scheme
for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

25. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes.
J. Comput. Phys. 77(2), 439–471 (1988)

123

http://arxiv.org/abs/2204.10424
http://arxiv.org/abs/2201.05624
http://arxiv.org/abs/2202.11821
https://doi.org/10.13140/RG.2.2.29724.00642/1

22 Page 38 of 38 Journal of Scientific Computing (2024) 98 :22

26. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without
Riemann problem solvers. Numer. Methods Partial Differ. Equ. Int. J. 18(5), 584–608 (2002)

27. Mo, H., Lien, F.-S., Zhang, F., Cronin, D.S.: An immersed boundary method for solving compressible
flow with arbitrarily irregular and moving geometry. Int. J. Numer. Meth. Fluids 88(5), 239–263 (2018)

28. Aulisa, E., Manservisi, S., Scardovelli, R.: A mixed markers and volume-of-fluid method for the recon-
struction and advection of interfaces in two-phase and free-boundary flows. J. Comput. Phys. 188(2),
611–639 (2003)

29. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin Heidelberg
(2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Discontinuity Computing Using Physics-Informed Neural Networks
	Abstract
	1 Introduction
	2 Classical PINNs and Problem Analysis
	2.1 PINNs for Conservative Hyperbolic PDE
	2.2 Analysis of Transition Points Based on Inviscid Burgers' Equation

	3 PINNs-WE Framework
	3.1 Local Strong form PDE Constraint
	3.2 Local Weak form of the Conservation Laws Constraint
	3.2.1 1D Burgers' Equation
	3.2.2 Euler Equations

	3.3 A Total Physical Conservation Constraint

	4 Numerical Examples
	4.1 Inviscid Burgers' Equation
	4.2 Euler Equations
	4.2.1 Sod Problem
	4.2.2 Lax Problem
	4.2.3 Two Shock Waves Problem
	4.2.4 2D Riemann Problem
	4.2.5 Transonic Flow Around Circular Cylinder

	5 Conclusions
	Acknowledgements
	Appendix A: Omissible Boundary Condition in PINNs
	Appendix A.1: 1D Linear Transport Equation Problem
	Appendix A.2: 2D Vortex Evaluation Problem

	Appendix B: Classical PINNs in Computing Linear and Weak Discontinuities
	Appendix B.1: 1D Linear Transport Equation with Complex Waveforms
	Appendix B.2: 2D Linear Transport Equation with Initial Interface Evolution
	Appendix B.3: 1D Riemann Problem with Double Rarefaction Waves

	References

