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Abstract
In this paper, we are concerned with a class of structured optimization problems frequently
arising from image processing and statistical learning, where the objective function is the
sum of a quadratic term and a nonsmooth part, and the constraint set consists of a linear
equality constraint and two simple convex sets in the sense that projections onto simple sets
are easy to compute. To fully exploit the quadratic and separable structure of the problem
under consideration, we accordingly propose a partially inertial Douglas–Rachford splitting
method. It is noteworthy that our algorithm enjoys easy subproblems for the case where
the underlying two simple convex sets are not the whole spaces. Theoretically, we establish
the global convergence of the proposed algorithm under some mild conditions. A series of
computational results on the constrained Lasso and constrained total-variation (TV) based
image restoration demonstrate that our proposed method is competitive with some state-of-
the-art first-order solvers.

Keywords Douglas–Rachford splitting method · Alternating direction method of
multipliers · Structured optimization · Lasso · Image restoration

1 Introduction

We consider a class of structured optimization problems as follows:

min
x,y

f (x) + g(y)
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s.t. Ax + By = b,

x ∈ X , y ∈ Y, (1.1)

where f (x) is in particular specified as a quadratic function, i.e., f (x) = 1
2‖Kx − d‖2 with

K ∈ R
m1×n1 and d ∈ R

m1 ; g : R
n2 → R is a continuous closed convex (usually assumed

to be nonsmooth) function; A ∈ R
m2×n1 and B ∈ R

m2×n2 are given matrices; b ∈ R
m2 is

a given vector; both X ⊂ R
n1 and Y ⊂ R

n2 are simple closed convex sets in the sense
that projections onto them are very easy (e.g., nonnegative orthant, spheroidal or box areas).
Throughout this paper, we assume that the solution set of problem (1.1) is nonempty. Besides,
it is noteworthy that although we restrict the later theoretical discussion to the case of model
(1.1) with vector variables, all our results actually are applicable to the case with matrix
variables.

The main reason that we focus on model (1.1) with a specific quadratic term is its fruit-
ful applications in the areas of image processing, machine learning, and statistical analysis.
Generally speaking, the quadratic part f (x) often serves as a data-fidelity term and the non-
smooth part g(y) usually represents a regularization term to promote some special structure
(e.g., sparsity and low-rankness) of solutions. Below, we just list three motivating examples
which are special cases of model (1.1).

– Constrained TV-based image restoration. The pixels constrained TV-based image
restoration model (see [29, 39]) takes the form of

min
x∈B

{
1

2
‖Kx − d‖2 + μ‖|Dx |‖1

}
, (1.2)

where d is an observed image; K ∈ R
n×n represents a degraded operatorwith n = n1×n2

being the total number of pixels; D is the discrete gradient operator (see [42] for more
details);B = [l,u] is a box area inR

n (e.g.,B = [0, 1]n and [0, 255]n for double precision
and 8-bit gray-scale images, respectively); μ is a positive trade-off parameter between
the data-fidelity and regularization term. Clearly, introducing an auxiliary variable y to
the TV regularization term immediately leads to the following reformulation:

min
x,y

{
1

2
‖Kx − d‖2 + μ‖|y|‖1

∣∣ Dx − y = 0, x ∈ B, y ∈ R
n × R

n
}

, (1.3)

which is a special case of the generic model (1.1) with settings g(y) = μ‖|y|‖1, A = D,
B = −I , X = B, and Y = R

n × R
n .

– Constrained Lasso. The constrained Lasso problem is an extension of the standard Lasso
problem [43] with an extra constraint. Mathematically, it can be expressed as

min
x∈X

{
1

2
‖Kx − d‖2 + μ‖x‖1

}
, (1.4)

where d ∈ R
l is an observed vector; K ∈ R

l×n is a design or dictionary matrix; μ is a
positive constant controlling the degree of sparsity andX ⊂ R

n is an extra constraint. For
example, the nonnegative constraint, the ball constraint, the sum-to-zero constraint and
so on [25]. Such a model has been applied to hyperspectral unmixing [36], classification
[17], economics [47], and face recognition [18]. Like model (1.2), we can also rewrite
(1.4) as a special instance of (1.1) by introducing an additional variable y to the �1-norm
regularization term, i.e.,

min
x,y

{
1

2
‖Kx − d‖2 + μ‖y‖1

∣∣ x − y = 0, x ∈ X , y ∈ R
n
}

. (1.5)
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– Nuclear-norm-regularized least squares. A fundamental matrix completion model is the
so-called nuclear-norm-regularized least squares problem (e.g., see [16, 37, 44]), which
has the form of

min
X∈B

{
1

2
‖K(X) − M‖2F + μ‖X‖∗

}
, (1.6)

where K can be regarded as a linear sampling operator; M is an observed incomplete or
corrupted matrix; ‖ · ‖F denotes the standard Frobenius norm; ‖ · ‖∗ is the nuclear norm
(i.e., the sum of all singular values) promoting the low-rankness of a matrix; μ > 0 is
a trade-off parameter; B is a box area (e.g., [1, 5] and [−10, 10], respectively) usually
serving as a range of ratings in recommendation systems such as the classic Netflix
problem [5] and Jester Joke problem [27]. Like models (1.2) and (1.4), we reformulate
model (1.6) as

min
X ,Y

{
1

2
‖K(X) − M‖2F + μ‖Y‖∗ | X − Y = 0, X ∈ B, Y ∈ R

m×n
}

. (1.7)

It is clear that (1.7) is also a special case of model (1.1) with matrix variables.

To solve model (1.1), one of the most popular solvers is the so-called alternating direction
methodofmultipliers (ADMM)proposed in [24, 26],which, for given the k-th iterate (yk , λk),
updates the next iterate via⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 ∈ arg min
x∈X

{
f (x) + β

2

∥∥∥∥Ax + Byk − b − 1

β
λk

∥∥∥∥
2
}

, (1.8a)

yk+1 ∈ argmin
y∈Y

{
g(y) + β

2

∥∥∥∥Axk+1 + By − b − 1

β
λk

∥∥∥∥
2
}

, (1.8b)

λk+1 = λk − γβ(Axk+1 + Byk+1 − b), (1.8c)

where λk ∈ R
m2 is the Lagrangian multiplier, β > 0 is a penalty parameter, and γ ∈ (0, (1+√

5)/2) is a relaxation factor. Actually, the great success of ADMM in statistical learning
is owing to its easy subproblems when applying to some nonsmooth optimization models
without extra simple convex sets, such as Lasso and basis pursuit (see [10] and references
therein for more applications). In other words, ADMM efficiently exploits the great virtue of
some nonsmooth functions being simple enough in the sense that their associated proximal
operators enjoy closed-form solutions. However, when revisiting the iterative scheme of
ADMM for (1.1), we observe that both subproblems, i.e., (1.8a) and (1.8b), are constrained
optimization problems due to the appearance of X and Y . Consequently, (1.8a) and (1.8b)
have no closed-form solutions, even when f and g are simple enough to possess explicit
proximal operators (e.g., ‖ · ‖1 and ‖ · ‖∗), and X and Y are simple enough with cheap
projections (e.g., nonnegative orthant and box areas). Indeed, the appearance of general
matrices A and B (i.e., A and B are not identity matrices) also makes both subproblems
(1.8a) and (1.8b) lose their closed-form solutions for some cases such as f (·) = ‖ · ‖1 and
f (·) = ‖ · ‖∗. In these situations, we usually need to call some optimization solvers to find
approximate solutions of (1.8a) and (1.8b), thereby causing more computing time for large-
scale problems than those methods with easy subproblems. e.g., see numerical results in [29,
34, 35, 46]. We here emphasize that there exist closed-form solutions to the subproblems
of linearized ADMM when the objective functions are differentiable. However, there are
many cases where the objective functions are not necessarily differentiable. Therefore, to
make (1.8a) and (1.8b) easy to be solved, Han et al. [29] introduced a so-named customized
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Douglas–Rachford splitting method (CDRSM) to find solutions of (1.1) with general convex
objective functions, where they showed that such an algorithm can successfully circumvent
constrained subproblems so that it has easier subproblems than ADMM in some cases. A
series of numerical experiments in [29, 33] verified thatCDRSMperforms better thanADMM
for some constrained optimization problems.

To accelerate speed of first-order optimization methods, inertial (a.k.a., extrapolation)
technique originally proposed in [40] is one of the most popular strategies in the literature.
Recently, many efficient inertial-type splitting algorithms have been developed, e.g., inertial
forward-backward algorithm [3, 9, 38], inertial Peaceman-Rachford splitting algorithm [20,
21], inertial ADMM [7, 15, 28], inertial Douglas–Rachford splitting method [2, 8], to name
just a few. Like ADMM (1.8), however, these accelerated splitting algorithms still fail to
maximally exploit the favorable structure (e.g., simple convex sets X and Y and separability
of the objective) of (1.1). For example, when directly applying the inertial Douglas–Rachford
splitting method [2, 8], we can see from [29] that both variables x and y are treated as a one-
block variable, thereby resulting in a coupled subproblem so that the algorithm is not easy
enough to implement. Therefore, we aim to introduce an implementable Douglas–Rachford
splittingmethod equippedwith an inertial acceleration step for solvingmodel (1.1). Generally
speaking, the quadratic part f (x) often serves as a data-fidelity term,which usually dominates
the objective function of (1.1) in many real-world applications, since the trade-off parameter
in g(y) (e.g., the μ in (1.2), (1.4) and (1.6)) usually is small. In other words, the quadratic
term plays a more important role in the process of solving model (1.1). Accordingly, we in
this paper propose a partially inertial Douglas–Rachford splitting method for problem (1.1),
where we only consider the inertial acceleration to the quadratic term related variable and
Lagrangianmultiplier. Since our algorithm is based on theCDRSM[29], our proposed inertial
variant of CDRSM fully exploits the separable structure of the objective function, thereby
enjoyingmuch easier subproblems than ADMMand the original Douglas–Rachford splitting
method (DRSM). Moreover, some numerical experiments on constrained Lasso and image
deblurring show that our proposed algorithm has expected promising numerical behaviors.

The rest of this paper is organized as follows. In Sect. 2, we recall some basic results
of maximal monotone operators and list two equivalent reformulations of model (1.1). In
Sect. 3, we first present our new algorithm (see Algorithm 1) and then establish the global
convergence under somemild conditions. In Sect. 4, we conduct some numerical experiments
to verify that the embedded inertial technique can really accelerate the CDRSM for solving
problem (1.1). Finally, we complete this paper with drawing some concluding remarks in
Sect. 5.

2 Preliminaries

In this section, we summarize some basic concepts and well-known results that will be used
in the subsequent analysis. Also, we recall two equivalent reformulations of problem (1.1).

Let Rn be an n-dimensional Euclidean space equipped with the standard Euclidean norm,
i.e., ‖x‖ = √

x�x for any x ∈ R
n , where the superscript ‘�’ represents the transpose of a

vector or matrix. For any matrix M , we denote ‖M‖ as its matrix 2-norm.
Let P�[·] denote the projection operator onto � under the Euclidean norm, i.e.,

P�[x] := argmin{‖x − y‖ | y ∈ �}. (2.1)
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The following properties with respect to the projection operator are fundamental in the
literature and their proof can be found in [6, 12, 22].

Lemma 1 Let � be a nonempty closed convex subset of R
n and P�[·] be the projection

operator onto � defined in (2.1). Then we have

(u − P�[u])� (v − P�[u]) ≤ 0, ∀u ∈ R
n, ∀v ∈ �. (2.2)

Lemma 2 For any x, y ∈ R
n, and τ ∈ R, we have the following identity

‖τ x + (1 − τ)y‖2 = τ‖x‖2 + (1 − τ)‖y‖2 − τ(1 − τ)‖x − y‖2. (2.3)

Hereafter, we recall a lemma which will be used for global convergence analysis.

Lemma 3 ( [11]) Let {xk} be a sequence in R
n andD be a nonempty set of Rn. Suppose that

(i). limk→+∞ ‖xk − x‖ exists for all x ∈ D;
(ii). every cluster point of {xk} belongs to D.

Then, the sequence {xk} converges to a point in D.

Definition 1 A set-valued map T : R
n → 2R

n
is said to be monotone if

(u1 − u2)
�(v1 − v2) ≥ 0, ∀u1, u2 ∈ R

n, v1 ∈ T (u1), v2 ∈ T (u2).

Definition 2 For a convex function f : R
n → R, its subdifferential at x is the set-valued

operator given by

∂ f (x) = {ξ | f (y) ≥ f (x) + ξ�(y − x), ∀y ∈ dom f },
where ξ is called a subgradient of f at x , and dom f is the effective domain of f .

Below, we recall two equivalent reformulations for problem (1.1) that will be useful
for algorithmic design and convergence analysis. Let λ ∈ R

m2 be the Lagrange multiplier
associated to the linear constraints of (1.1). Then, the classical variational inequality (VI for
short) characterization of (1.1) can be stated as finding a vector w∗ ∈ W such that

(w − w∗)�F(w∗) ≥ 0, ∀w ∈ W, (2.4a)

where w := (x, y, λ), W := X × Y × R
m2 and

F(w) := {(∇ f (x) − A�λ, ζ − B�λ, Ax + By − b) | ζ ∈ ∂g(y)}. (2.4b)

Clearly, it is well-known from [41] that the underlying mapping F(w) defined in VI (2.4) is
monotone. Moreover, note that the nonempty assumption on the solution set of problem (1.1)
implies the nonemptiness of the solution set (denoted by W∗ throughout this paper) of VI
(2.4). Alternatively, it also follows from [23, page 3] that VI (2.4) can be further reformulated
as finding a zero point of the sum of two maximal monotone operators, i.e., finding w∗ ∈ W
such that

0 ∈ F(w∗) + NW (w∗), (2.5)

where NW (·) is the normal cone of W defined as

NW (w) :=
{

{u | (v − w)�u ≤ 0, ∀v ∈ W}, if w ∈ W,

∅, otherwise.

For any β > 0, we let
E (w, β) = w − PW [w − βF(w)]. (2.6)

Then, we have the following proposition.
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Proposition 1 The vector w∗ ∈ W∗ is a solution of VI (2.4) if and only if ‖E (w∗, β)‖ = 0
for any β > 0.

3 The Algorithm and Its Convergence Analysis

In this section, we first elaborate our proposed partially inertial CDRSM for solving (1.1).
Then, we prove its global convergence under some mild conditions.

3.1 Algorithm

Before stating our new algorithm, we first recall the general scheme of DRSM for solving
(2.5) (see [30, 32, 45]), which, for given the k-th iterate wk , reads as

wk+1 = (I + βF)−1{wk + βF(wk) − γ E (wk, β)}, (3.1)

where (I + βF)−1 represents the standard resolvent operator and γ ∈ (0, 2) is a relaxation
factor. Accordingly, by using the notations of F and w given in (2.4b), the iterative scheme
(3.1) can be specified as finding wk+1 ∈ W and ζ k+1 ∈ ∂g(yk+1) such that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = arg min
x∈Rn1

{
f (x) + 1

2β

∥∥∥x −
[
xk + β∇ f (xk ) − βA�(λk − λk+1) − γE1(x

k , λk , β)
]∥∥∥2

}
,

(3.2a)

yk+1 = arg min
y∈Rn2

{
g(y) + 1

2β

∥∥∥y −
[
yk + βζ k − βB�(λk − λk+1) − γE2(y

k , λk , β)
]∥∥∥2

}
,

(3.2b)

λk+1 = λk + β
[
A(xk − xk+1) + B(yk − yk+1)

]
− γE3(x

k , yk , β). (3.2c)

Clearly, we can see from (3.2) that both (3.2a) and (3.2b) are unconstrained minimiza-
tion problems, which are in general easier than ADMM’s subproblems, i.e., (1.8a) and
(1.8b), as long as the projections onto X and Y are simple enough with explicit repre-
sentations. However, such an algorithm is not easy to implement due to the coupled variables
(xk+1, yk+1, λk+1). In other words, the straightforward application of DRSM does not fully
exploit the separability of the objective function. Actually, it can be easily seen from (3.2)
that the main difficulty to implement such an algorithm is owing to the appearance of λk+1 in
(3.2a) and (3.2b). Hence, Han et al. [29] first made a prediction on λ, and slightly modified
the updating schemes on xk+1, yk+1 and λk+1. Consequently, they introduced the so-called
CDRSM for (1.1). Inspired by the inertial acceleration idea, we in this paper propose a par-
tially inertial CDRSM (denoted by ICDRSM) to accelerate the original CDRSM for solving
(1.1). It is remarkable that our ICDRSM approaches the original CDRSM when the inertial
parameters approaches zero.

To present our ICDRSM, for notational simplicity, we below denote

ūk := (x̃ k, λ̄k, β), v̄k := (yk, λ̄k, β), w̄k := (x̃ k, yk, λ̄k, β), (3.3)

and consequently, ⎧⎪⎨
⎪⎩

Ex (ū
k) := E1(x̃

k, λ̄k, β), (3.4a)

Ey(v̄
k) := E2(y

k, λ̄k, β), (3.4b)

Eλ(w̄
k) := λ̃k − λ̄k − β[AEx (ūk) + BEy(v̄

k)]. (3.4c)
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With the above preparations, details of the proposed ICDRSM for (1.1) can be described
in Algorithm 1.

Algorithm 1 A partially inertial CDRSM for (1.1).

1: Choose starting point (x0, y0, λ0) = (x1, y1, λ1) ∈ W . Set τ ∈ (0, 1), γ ∈
(

2τ2+2
2τ2+τ+1

, 2τ+2
2τ+1

)
and

β ∈ (0,
√
2
c ) with c := max{‖A‖, ‖B‖}.

2: for k = 1, 2, . . . do
3: Update wk+1 ∈ W via

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x̃k

λ̃k

)
=

(
xk

λk

)
+ τ

(
xk − xk−1

λk − λk−1

)
; (3.5)

λ̄k = λ̃k − β(Ax̃k + Byk − b); (3.6)

xk+1 = arg min
x∈Rn1

{
f (x) + 1

2β
‖x − ωk

x‖2
}

; (3.7)

yk+1 = arg min
y∈Rn2

{
g(y) + 1

2β
‖y − ωk

y‖2
}

; (3.8)

λk+1 = λ̃k − γαkEλ(w̄k ), (3.9)

where ωk
x := x̃k + β∇ f (x̃k ) − γαkEx (ū

k ), ωk
y := yk + βζ k − γαkEy(v̄

k ) with ∇ f (x̃k ) = K�(K x̃k −
d), ζ k ∈ ∂g(yk ) and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αk := ϕ(w̄k )

ψ(w̄k )
; (3.10)

ϕ(w̄k ) := ‖Ex (ūk )‖2 + ‖Ey(v̄k )‖2 + (λ̃k − λ̄k )�Eλ(w̄k ); (3.11)

ψ(w̄k ) := ‖Ex (ūk )‖2 + ‖Ey(v̄k )‖2 + ‖Eλ(w̄k )‖2. (3.12)

4: end for

3.2 Convergence Analysis

In this subsection, we establish the global convergence of Algorithm 1. For notational
convenience, we let

z1 := x + β∇ f (x), z2 := y + βζ, z :=
⎛
⎝z1
z2
λ

⎞
⎠ and D(w̄k) :=

⎛
⎝Ex (ūk)
Ey(v̄

k)

Eλ(w̄
k)

⎞
⎠ , (3.13)

where ∇ f (x) = K�(Kx − d) and ζ ∈ ∂g(y). For convenience, we further denote

z̃1 := x̃ + β∇ f (x̃), z̃ :=
⎛
⎝z̃1
z2
λ̃

⎞
⎠ . (3.14)

The following lemma clarifies the relationship between D(w̄k) and a solution of the VI
problem (2.4).

Lemma 4 If D(w̄k) = 0 for any β > 0, then the vector wk+1 = (xk+1, yk+1, λk+1) is a
solution of VI (2.4).
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Proof From the notation of D(w̄k) in (3.13), we know that D(w̄k) = 0 implies

‖Ex (ūk)‖ = ‖Ey(v̄k)‖ = ‖Eλ(w̄
k)‖ = 0. (3.15)

Then, by substituting (3.15) into (3.4) and combining with (3.6), we have

E3(x̃
k, yk, β) = 0,

which immediately implies that

E (x̃ k, yk, λ̄k, β) = 0. (3.16)

Hence, by invoking Proposition 1, the relation (3.16) means that (x̃ k, yk, λ̄k) is a solution
of VI (2.4). Consequently, it follows from the optimality conditions of (3.7) and (3.8) and
the update scheme (3.9) that xk+1 = x̃ k , yk+1 = yk , and λk+1 = λ̃k , which, together with
the fact that (x̃ k, yk, λ̄k) is a solution, means that (xk+1, yk+1, λk+1) is also a solution of VI
(2.4). This completes the proof. ��
Lemma 5 Suppose that w∗ ∈ W∗ is an arbitrary solution of (2.4). Then the sequence {z̃k}
generated by Algorithm 1 satisfies

(z̃k − z∗)�D(w̄k) ≥ ϕ(w̄k), k ≥ 1,

where z∗, z̃k,D(w̄k) and ϕ(w̄k) are defined in (3.13),(3.14) and (3.11), respectively.

Proof Since w∗ = (x∗, y∗, λ∗) ∈ W∗ and ζ ∗ ∈ ∂g(y∗), it follows from (2.4) that

(x ′ − x∗)�
(
∇ f (x∗) − A�λ∗) ≥ 0, ∀x ′ ∈ X , (3.17)

and
(y′ − y∗)�

(
ζ ∗ − B�λ∗) ≥ 0, ∀y′ ∈ Y.

Then, by setting x ′ = PX [x̃ k − β(∇ f (x̃ k) − A�λ̄k)] = x̃ k − Ex (ūk) in (3.17), we have
(
x̃ k − Ex (ū

k) − x∗)� (
∇ f (x∗) − A�λ∗) ≥ 0. (3.18)

On the other hand, by setting � := X , u := x̃ k − β(∇ f (x̃ k) − A�λ̄k), and v := x∗ in (2.2),
we have (

Ex (ū
k) − β(∇ f (x̃ k) − A�λ̄k)

)� (
x∗ − x̃ k + Ex (ū

k)
)

≤ 0. (3.19)

Multiplying inequality (3.18) by β and summing (3.18) and (3.19), it follows from ∇ f (x) =
K�(Kx − d) that

(
x̃ k − x∗ − Ex (ū

k)
)� (

Ex (ū
k) − βK�K (x̃ k − x∗) + βA�(λ̄k − λ∗)

)
≥ 0.

Rearranging the above inequality leads to

(z̃k1 − z∗1)�Ex (ūk) + β(λ̃k − λ∗)�A
(
x̃ k − x∗ − Ex (ū

k)
)

≥‖Ex (ūk)‖2 + β(x̃ k − x∗)�K�K (x̃ k − x∗) + β(λ̃k − λ̄k)�A
(
x̃ k − x∗ − Ex (ū

k)
)

≥‖Ex (ūk)‖2 + β(λ̃k − λ̄k)�A
(
x̃ k − x∗ − Ex (ū

k)
)

, (3.20)

where the second inequality comes from the fact that K�K is a positive semi-definite matrix.
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Similarly, we can also obtain

(zk2 − z∗2)�Ey(v̄k) + β(λ̃k − λ∗)�B
(
yk − y∗ − Ey(v̄

k)
)

≥ ‖Ey(v̄k)‖2 + β(λ̃k − λ̄k)�B
(
yk − y∗ − Ey(v̄

k)
)

. (3.21)

By adding (3.20) and (3.21), it follows from the notation of Eλ(w̄
k) in (3.4c) that

⎛
⎝ z̃k1 − z∗1
zk2 − z∗2
λ̃k − λ∗

⎞
⎠

� ⎛
⎝Ex (ūk)
Ey(v̄

k)

Eλ(w̄
k)

⎞
⎠ ≥ ‖Ex (ūk)‖2 + ‖Ey(v̄k)‖2 + (λ̃k − λ̄k)�Eλ(w̄

k).

Consequently, we conclude the assertion of this lemma by using the notations z∗, z̃k ,D(w̄k)

and ϕ(w̄k) given by (3.11), (3.13) and (3.14), respectively. ��
By invoking the first-order optimality condition of subproblems (3.7) and (3.8) with the

notations z1, z2 in (3.13), we obtain

zk+1
1 = z̃k1 − γαkEx (ū

k) and zk+1
2 = zk2 − γαkEy(v̄

k).

Note that, from the notations of zk+1, z̃k andD(w̄k) defined in (3.13) and (3.14), the iterative
scheme (3.7)-(3.9) then can be recast into the compact form:

zk+1 = z̃k − γαkD(w̄k). (3.22)

Thus, if ϕ(w̄k) is nonnegative, Lemma 5 implies that −D(w̄k) is a descent direction of the
distance function 1

2‖z− z∗‖2 at z̃k . Then, in this sense, αk plays the role of “step size”, and γ

can be viewed as a relaxed factor. In the following lemma, we will prove the sequence {αk}
generated by Algorithm 1 is bounded below.

Lemma 6 Assume that β ∈ (0,
√
2/c). For the step size αk given by (3.10), there exists a

constant αmin > 0 such that
αk ≥ αmin, ∀k ≥ 0.

Proof For any two vectors a, b ∈ R
m , we have the inequality

2a�b ≤ δ‖a‖2 + 1/δ‖b‖2, δ > 0. (3.23)

Hence, applying (3.23) to the last term of (3.11), for any δ > 0, we have

(λ̃k − λ̄k)�Eλ(w̄
k) = ‖λ̃k − λ̄k‖2 − β(λ̃k − λ̄k)�

(
AEx (ū

k) + BEy(v̄
k)

)

≥ (1 − δ)‖λ̃k − λ̄k‖2 − β2

2δ

(
‖AEx (ūk)‖2 + ‖BEy(v̄k)‖2

)

≥ (1 − δ)‖λ̃k − λ̄k‖2 − β2c2

2δ

(
‖Ex (ūk)‖2 + ‖Ey(v̄k)‖2

)
, (3.24)

where c := max{‖A‖, ‖B‖}. By substituting (3.24) into (3.11) and setting δ := βc/
√
2, we

deduce

ϕ(w̄k) ≥ (1 − δ)‖λ̃k − λ̄k‖2 + 2δ − β2c2

2δ

(
‖Ex (ūk)‖2 + ‖Ey(v̄k)‖2

)

=
(
1 − βc√

2

) (
‖λ̃k − λ̄k‖2 + ‖Ex (ūk)‖2 + ‖Ey(v̄k)‖2

)
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≥ 0, (3.25)

where the last inequality comes from the condition β ∈ (0,
√
2/c).

On the other hand,

ψ(w̄k) ≤ ‖Ex (ūk)‖2 + ‖Ey(v̄k)‖2 + 2‖λ̃k − λ̄k‖2 + 2β2
(
‖AEx (ūk)‖2 + ‖BEy(v̄k)‖2

)

≤ c′ (‖λ̃k − λ̄k‖2 + ‖Ex (ūk)‖2 + ‖Ey(v̄k)‖2
)

, (3.26)

where c′ := max{2, 1 + 4β2‖A‖2, 1 + 4β2‖B‖2}. By the definition of αk given in (3.10),
it immediately follows from (3.25) and (3.26) that

αk = ϕ(w̄k)

ψ(w̄k)
≥

√
2 − βc√
2c′ =: αmin > 0

holds under the condition β ∈ (0,
√
2/c). The proof is completed. ��

By the definitions of z1 and z̃1 in (3.13) and (3.14), it then follows from ∇ f (x) =
K�(Kx − d) that

z̃k1 = x̃ k + βK� (
K x̃k − d

)

= xk + βK� (
Kxk − d

)
+ τ

(
I + βK�K

) (
xk − xk−1

)

= zk1 + τ
(
zk1 − zk−1

1

)
.

Consequently, by denoting p = (z1, λ) as a subvector of z = (z1, z2, λ) for notational
brevity, it then follows from the above equality and iterative scheme (3.5) that

p̃k = pk + τ( pk − pk−1). (3.27)

Theorem 1 Suppose that β ∈ (0,
√
2/c). Then the sequence {wk} generated by Algorithm 1

converges to a solution of VI (2.4).

Proof It follows from (3.22) that

‖zk+1 − z∗‖2 = ‖z̃k − γαkD(w̄k) − z∗‖2
= ‖z̃k − z∗‖2 − 2γαk(z̃k − z∗)�D(w̄k) + γ 2α2

k‖D(w̄k)‖2
≤ ‖z̃k − z∗‖2 − 2γαkϕ(w̄k) + γ 2α2

k‖D(w̄k)‖2
= ‖z̃k − z∗‖2 − γ (2 − γ )α2

k‖D(w̄k)‖2

= ‖z̃k − z∗‖2 − 2 − γ

γ
‖zk+1 − z̃k‖2, (3.28)

where the first inequality is due to Lemma 5 and the third equality follows from (3.10), (3.12)
and (3.13). By invoking (2.3), it follows from (3.27) that

‖ p̃k − p∗‖2 = ‖ pk − p∗ + τ( pk − pk−1)‖2
= (1 + τ)‖ pk − p∗‖2 − τ‖ pk−1 − p∗‖2 + τ(1 − τ)‖ pk − pk−1‖2. (3.29)

For any ρ > 0, we have

‖ pk+1 − p̃k‖2 = ‖ pk+1 − pk − τ( pk − pk−1)‖2
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≥ ‖ pk+1 − pk‖2 + τ 2‖ pk − pk−1‖2 + τ

(
−ρ‖ pk+1 − pk‖2 − 1

ρ
‖ pk − pk−1‖2

)
,

(3.30)

where the last inequality follows from the fact that 2a�b ≥ − 1
t ‖a‖2−t‖b‖2 for anya, b ∈ R

n

and t > 0. Recalling the definition of z̃ in (3.14) and substituting (3.29) and (3.30) into (3.28),
we arrive at

‖ pk+1 − p∗‖2 − (1 + τ)‖ pk − p∗‖2 + τ‖ pk−1 − p∗‖2 + ‖zk+1
2 − z∗2‖2 − ‖zk2 − z∗2‖2

≤ (2 − γ )(ρτ − 1)

γ
‖ pk+1 − pk‖2 + s‖ pk − pk−1‖2 − 2 − γ

γ
‖zk+1

2 − zk2‖2, (3.31)

where

s := τ(1 + τ) + τ(2 − γ )(1 − ρτ)

γρ
.

Setting ρ = (2−2γ )τ 2−γ τ−γ+2
2(2−γ )τ

, there exists τ̄ ∈ (0, 1) such that ρ > 0 for any τ ∈ (0, τ̄ )

and ρτ < 1 by simple validation. Combining with γ ∈
(

2τ 2+2
2τ 2+τ+1

, 2τ+2
2τ+1

)
⊂ (1, 2), it is clear

that s ≥ 0 holds.
For convenience, we define the sequence {�k} by

�k := ‖ pk − p∗‖2 − τ‖ pk−1 − p∗‖2 + ‖zk2 − z∗2‖2 + s‖ pk − pk−1‖2

for all k ≥ 1. Then, we have

�k+1 − �k = ‖ pk+1 − p∗‖2 − (1 + τ)‖ pk − p∗‖2 + τ‖ pk−1 − p∗‖2
+‖zk+1

2 − z∗2‖2 − ‖zk2 − z∗2‖2 + s‖ pk+1 − pk‖2 − s‖ pk − pk−1‖2.
Using (3.31) yields

�k+1 − �k ≤
(

(2 − γ )(ρτ − 1)

γ
+ s

)
‖ pk+1 − pk‖2 − 2 − γ

γ
‖zk+1

2 − zk2‖2.

By the definitions of ρ and s, we have

(2 − γ )(ρτ − 1)

γ
+ s = 1 + τ

2γ

[(2τ + 1)γ − 2(τ + 1)][(2τ 2 − τ + 1)γ − 2(1 − τ)2]
(2τ 2 + τ + 1)γ − 2(τ 2 + 1)

< 0,

where the inequality is due to the selection of γ in Algorithm 1. Thus there exists a constant

δ > 0 such that δ < min
{

(2−γ )(1−ρτ)
γ

− s, 2−γ
γ

}
, then

�k+1 − �k ≤ −δ‖zk+1 − zk‖2. (3.32)

Hence, the sequence {�k} is monotonically nonincreasing, and in particular for all k ≥ 0,

‖ pk − p∗‖2 − τ‖ pk−1 − p∗‖2 ≤ �k ≤ �1.

Consequently, it follows that

‖ pk − p∗‖2 ≤ τ k‖ p0 − p∗‖2 + �1

k−1∑
i=0

τ i ≤ τ k‖ p0 − p∗‖2 + �1

1 − τ
, (3.33)
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which implies that { pk} is bounded due to the fact τ ∈ (0, 1). Hence, the sequence {zk} is
also bounded, where {zk2} is bounded from the monotonicity of {�k}. Combining (3.32) and
(3.33), we have

δ

k∑
i=1

‖zi+1 − zi‖2 ≤ �1 − �k+1 ≤ �1 + τ‖ pk − p∗‖2 ≤ τ k+1‖ p0 − p∗‖2+ �1

1 − τ
,

which shows that +∞∑
k=0

‖zk+1 − zk‖2 < +∞. (3.34)

Thus we have limk→+∞ ‖zk+1 − zk‖ = 0. By the definition of z̃k , (3.27) and triangle
inequality, we have

‖zk+1 − z̃k‖ ≤ ‖zk+1 − zk‖ + τ‖ pk − pk−1‖,

which means that limk→+∞ ‖zk+1 − z̃k‖ = 0. Recalling (3.22), we further obtain

lim
k→+∞D(w̄k) = 0.

Then, using Lemma 4 leads to
lim

k→+∞ E (wk, β) = 0. (3.35)

On the other hand, the sequence {wk} is bounded due to the boundedness of {zk}. Then
the sequence {wk} has at least one cluster point w∞ = (x∞, y∞, λ∞) and {wk j =
(xk j , yk j , λk j )} be the corresponding subsequence converging to w∞. Thus, taking limit
along this subsequence in (3.35) together with the continuity of E (w, β) with respect to w,
we immediately obtain

‖E (w∞, β)‖2 = ‖E ( lim
j→∞ wk j , β)‖2 = lim

j→∞ ‖E (wk j , β)‖2 = 0.

According to Proposition 1, the above fact means that w∞ is a solution of VI (2.4). Finally,
applying Lemma 3 with setting D = W∗, we conclude that the sequence {wk} generated by
Algorithm 1 converges to w∞, a solution of VI (2.4). The proof is completed. ��

4 Numerical Experiments

In this section, we shall conduct the numerical performance of the proposed ICDRSM (i.e.,
Algorithm 1) to verify that the inertial technique can really improve the efficiency of solving
(1.1), when comparing with some state-of-the-art benchmark solvers, including the classical
ADMM (see (1.8)), inertial ADMM (denoted by “IADMM”) in [15], the primal-dual method
in [13] (denoted by “PDM”) and inertial PDM (denoted by “IPDM”) in [14], and the original
CDRSMproposed in [29]. All the codes arewritten byMatlabR2021a and all the numerical
experiments are conducted on a 64-bit PC with an Intel(R) Core(TM) i5-8265U CPU @
1.6GHz with 8GB RAM.
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4.1 Constrained Lasso

In this subsection, we conduct the numerical performance of the proposed ICDRSM for
solving the following ball-constrained Lasso problem

min‖x‖≤1

{
F(x) := 1

2
‖Kx − d‖2 + μ‖x‖1

}
, (4.1)

which is a special case of (1.4). Here, we consider the reformulation given by (1.5). Therefore,
applying our ICDRSM (i.e., Algorithm 1) to (1.5), the x- and y-subproblems (i.e., (3.7) and
(3.8)) can be specified as⎧⎪⎨

⎪⎩
xk+1 =

(
I + βK�K

)−1 (
ωk
x + βK�d

)
,

yk+1 = Shrinkμβ

(
ωk
y

)
,

where ‘Shrinkβ (·)’ is the soft-shrinkage operator given by

Shrinkβ(·) := max{‖ · ‖ − β, 0} ·
‖ · ‖ . (4.2)

Here, we should notice that the subgradient ζ k+1 of μ‖y‖1 at yk+1 can be updated by

ζ k+1 := 1

β

(
ωk
y − yk+1

)
.

Note that CDRSM shares similar subproblems with ICDRSM, we omit its details here for
brevity. When applying ADMM to (1.5), the iterative scheme (1.8) reads as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = argmin

{
1

2
‖Kx − d‖2 + β

2
‖x − yk − 1

β
λk‖2 ∣∣ ‖x‖ ≤ 1

}
,

yk+1 = argmin

{
μ‖y‖1 + β

2
‖xk+1 − y − 1

β
λk‖2

}
= Shrinkμ/β

(
xk+1 − 1

β
λk

)
,

λk+1 = λk − γβ(xk+1 − yk+1). (4.3)

To implement the PDM [13] to solve (4.1), we first reformulate (4.1) as a saddle point
problem, i.e.,

min‖x‖≤1
max
y∈Y∞

{
y�x + 1

2μ
‖Kx − d‖2

}
, (4.4)

where Y∞ := {y | ‖y‖∞ ≤ 1}. Then, the iterative scheme of PDM solving (4.4) is specified
as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yk+1 = argmax

{
σ y�xk − 1

2
‖y − yk‖2 ∣∣ y ∈ Y∞

}
= PY∞[yk + σ xk],

ȳk+1 = yk+1 + θ(yk+1 − yk),

xk+1 = argmin

{
ν

2μ
‖Kx − d‖2 + 1

2
‖x − xk + ν ȳk+1‖2 ∣∣ ‖x‖ ≤ 1

}
. (4.5)

Apparently, the main difficulties of ADMM and PDM for solving (4.1) come from
their x-subproblems, i.e., (4.1) and (4.1), where the nonnegative constraint makes their x-
subproblems lose closed-form solutions. As suggested by [29], we employ the projected
Barzilai-Borwein method (PBBM) in [4, 19] to find approximate solutions of (4.1) and (4.1).

123



9 Page 14 of 24 Journal of Scientific Computing (2024) 98 :9

Before the formal simulation, we investigated the numerical sensitivity of themaximum inner
iterations of PBBM to the performance of those algorithms that need PBBM, where we con-
sidered five cases by setting the largest number of inner iterations as {10, 20, 30, 40, 50}. The
results showed that ADMM and PDM equipped with 20 performed slightly better than the
other settings in many cases. Therefore, we empirically choose 20 as the maximum number
of inner iterations for the following experiments.

Below, we conduct the numerical performance of the above six algorithms on synthetic
data. In our experiments, we test four scenarios for (m, n) = {(1000, 3000), (3000, 5000),
(5000, 8000), (8000, 10000)}. Here, we first generate K ∈ R

m×n in a random way such
that its components satisfy independent and identical standard normal distribution. Then, we
construct the observed vector d via d = K x̂ + ε, where ε ∈ N (0, 0.01 · Im) and x̂ in �2 unit
ball is a sparse random vector with 0.2n nonzeros. For the trade-off parameter μ, we take
it as 0.001. Now, we specify the choices of parameters to implement these algorithms. We
empirically set τ = 0.3 for ICDRSM for the four scenarios. For IADMM and IPDM, we set
inertial parameters τ = 0.1 for the first scenario, τ = 0.4 for the second and third scenarios

and τ = 0.6 for the last scenario. We set γ = 1
2

(
2(1+τ 2)

2τ 2+τ+1
+ 2+2τ

1+2τ

)
and β = 0.0005 for

ICDRSM, γ = 1.6 and β = 0.0005 for CDRSM, β = 0.1 and γ = 1.6 for ADMM and
IADMM, ν = 0.5, σ = 1

ν
and θ = 1 for PDM and IPDM. The initial iterates for all tested

methods are zero vectors x0 = y0 = λ0 = 0n×1. Finally, we adopt the following residual as
the stopping criterion for all methods

resi = |F(xk) − F(x∗)| ≤ 5 · 10−3, (4.6)

where F(x∗) is the objective value of termination point obtained by running CDRSM to
satisfy

‖F(xk) − F(xk−1)‖ ≤ 10−12.

In Table 1, we report the computing time in seconds (‘CPU’) and the number of iterations
(‘It.’). Note that ADMM and PDM require an inner loop to find approximate solutions of
their subproblems, we accordingly report the total inner iterations (‘InIt.’) for solving x-
subproblems. For each scenario, we test 10 times and report the averaged performance. The
symbol ‘–’ in Table 1 means that the computing time exceeds 20s. It can be seen from Table
1 that all inertial methods take fewer iterations and less computing time than those without
inertial acceleration. Both CDRSM and ICDRSM take more iterations than ADMM, PDM
and their inertial variants. However, owing to the inner iterations for solving x-subproblems,
the total computing time of CDRSM and ICDRSM is less than ADMM-like and PDM-like
methods. Comparing ICDRSM with CDRSM, we can see from Table 1 that ICDRSM takes
fewer iterations and less computing time than CDRSM, which support the idea of this paper
that inertial technique can further improve the performance of CDRSM for separable problem
(1.1).

To showmore details of their numerical behaviors, we show box plots with respect to com-
puting time of these 10 times in Fig. 1, which reports the minimum, median, and maximum
computing time of four methods for solving 10 groups of random problems. We can see from
Fig. 1 that CDRSM and ICDRSM are relatively stable and more efficient than ADMM and
PDM. Moreover, the convergence curves shown in Figs. 2 and 3 demonstrate that ICDRSM
is the fastest solver for solving ball-constrained Lasso (4.1).

As we all know, inertial parameter is important for inertial-type algorithms. Therefore,
we are further concerned with the numerical sensitivity of the inertial parameter to the
three inertial-type algorithms. In our experiments, we consider four scenarios and con-
duct behaviors on CPU time of the three inertial-type algorithms equipped with τ =
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Fig. 1 Box plots with respect to CPU of the six methods for solving constrained Lasso

Fig. 2 Evolution of relative errors with respect to computing time for constrained Lasso

{0.0, 0.1, 0.2, . . . , 0.9, 0.999}. The bar plots are listed in Fig. 4, where the algorithmic param-
eters and stopping criterion are the same as the previous experiments. We can observe from
Fig. 4 that, with the increase of τ ∈ [0, 1), the CPU time required by the three algorithms
decreases at first and then increases. Comparatively, ICDRSM equipped with τ ∈ [0.3, 0.5]
is more reliable, and the inertial parameter should be larger as the dimension of the problem
increases for IADMM and IPDM. This experience also supports our settings of the inertial
parameters in the previous experiments.

4.2 Constrained TV-Based Image Restoration

In this subsection, we conduct the performance of the proposed ICDRSM on solving con-
strained TV-based image restoration problem (1.2). Here, we also consider the separable
form (1.3) of (1.2). So, applying ICDRSM to model (1.3), both subproblems (3.7) and (3.8)
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Fig. 3 Evolution of relative errors with respect to iterations for constrained Lasso

of ICDRSM are specified as

⎧⎪⎨
⎪⎩

(
I + βK�K

)
xk+1 =

(
I + βK�K

)
x̃ k − γαkEx (ū

k),

yk+1 = Shrinkμβ

(
ωk
y

)
, (4.7)

where Ex (ūk) and ωk
y are defined in Algorithm 1. Theoretically, the x-subproblem (4.2)

has an explicit solution. However, as shown in [31, p.43], the linear system (4.2) is often
solved by the fast Fourier transform (FFT) or discrete cosine transform. In our experiments,
we employ FFT to find the solution of (4.2). When applying ADMM to (1.3), the main
subproblems are specified as

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = argmin
x∈B

{
1

2
‖Kx − d‖2 + β

2
‖Dx − yk − 1

β
λk‖2

}
,

yk+1 = Shrinkμ/β

(
Dxk+1 − 1

β
λk

)
. (4.8)

Like the saddle point reformulation of (1.4), we can also reformulate (1.2) as the following
min-max problem

min
x∈B max

y∈Y∞

{
y�Dx + 1

2μ
‖Kx − d‖2

}
.
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Fig. 4 Numerical sensitivity of inertial parameter τ = {0.0, 0.1, 0.2, . . . , 0.9, 0.999} in terms of CPU time
for the three inertial algorithms

Consequently, the iterative scheme of PDM reads as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yk+1 = PY∞
[
yk + σ Dxk

]
,

ȳk+1 = yk+1 + θ(yk+1 − yk),

xk+1 = argmin
x∈B

{
ν

2μ
‖Kx − d‖2 + 1

2

∥∥∥x − xk + νD� ȳk+1
∥∥∥2

}
. (4.9)

Clearly, both x-subproblems (4.2) and (4.2) have no closed-form solution. So we also
employ the aforementioned to solve it approximately. Like the previous experiments, we also
investigate the numerical sensitivity of the maximum number of inner iterations to the algo-
rithms that need to recall the PBBM. According to our numerical simulation, we empirically
choose 10 as the maximum number of inner iterations for the following experiments.

In our experiments, we consider four well-tested images in the literature, i.e., ‘Camera-
man.tif (256 × 256)’, ‘Columbia.tiff (480 × 480)’, ‘Crowd.tiff (512 × 512)’ and ‘Man.pgm
(1024×1024)’. All images are first corrupted by the blurring operator with a 25×25 uniform
kernel and by adding the zero-white Gaussian noise with the standard derivation 0.001. In
Fig. 5, we list the original and degraded images.

For the algorithmic parameters, we take τ = 0.7, 0.4, 0.5 for ICDRSM, IADMM and

IPDM, respectively. And we set γ = 1
2

(
2(1+τ 2)

2τ 2+τ+1
+ 2+2τ

1+2τ

)
and β = 0.35 for ICDRSM,

γ = 1.6 and β = 0.3 for CDRSM, β = 1 and γ = 1.6 for ADMM and IADMM, ν = 0.03,
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Fig. 5 From left to right: Cameraman.tif, Columbia.tiff, Crowd.tiff, Man.pgm. From top to bottom: original
images and degraded images, respectively

σ = 1
8ν and θ = 1 for PDM and IPDM. The starting points for all methods are set as zeros

x0 = y0 = λ0 = 0. As used in the literature, we employ the signal-to-noise ratio (SNR) in
the unit of dB to measure the quality of restored images. The SNR is defined by

SNR = 10 log10
‖x∗‖2

‖x − x∗‖2 , (4.10)

where x∗ is the original image and x represents the restored image.
In Fig. 6, we graphically show the evolution of SNR values with respect to CPU time. It

is clear from Fig. 6 that ICDRSM outperforms the other five methods in terms of taking less
time to recover images with higher quality.

To see more detailed performance of those methods, we also report the number of itera-
tions, computing time, and SNR values in Table 2, where images are corrupted by blurring
operator with a 21 × 21 uniform kernel, and we take pre-set SNR values as stopping crite-
rion. The symbol ‘–’ in Table 2 means that the number of total iterations exceeds 1000 or the
computing time exceeds 20s. As shown in Table 1, both ICDRSM and CDRSM require more
iterations than ADMM-like and PDM-like methods. However, ICDRSM and CDRSM take
less computing time to achieve higher SNR values than other methods. The computational
results in Table 2 further verify that ICDRSM equipped with an inertial step runs faster than
CDRSM for solving constrained TV-based image restoration problems.

Finally, we also investigate the numerical sensitivity of the inertial parameter to these
inertial-type algorithms for solving constrained TV-based image restoration problems. Here,
we follow the settings used in Fig. 4, i.e., {τ = 0.0, 0.1, 0.2, . . . , 0.9, 0.999}. The numeri-
cal results are summarized in Fig. 7, where the algorithmic parameters are the same as the
previous experiments and the stopping rules are taken as some preset SNR values, i.e., 19.5
dB, 22 dB, 19.5 dB, and 22 dB for Cameraman, Columbia, Crowd, and Man, respectively.
It can be observed from Fig. 7 that τ = 0.7 is suitable for ICDRSM, τ = 0.4 is suitable for
IADMM and τ = 0.5 is suitable for IPDM, which also supports our settings of the inertial
parameters in the previous experiments.
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Fig. 6 Evolution of SNR with respect to computing time for solving constrained TV-based image restoration
problem

5 Conclusion

In this paper, we considered a class of structured convex optimization problem, which has a
separable objective function and a structured constraint. Such problems have many applica-
tions in statistical learning, machine learning, and image processing. Due to the appearance
of two simple convex sets in the structured constraint, a direct application of the popular
ADMM yields two constrained subproblems, thereby failing to exploit the simple structure
of the two simple convex sets. Comparatively, although the so-called customized DRSM
(CDRSM) proposed in [29] enjoys easier subproblems than ADMM, it does not fully make
use of the quadratic term in the objective function, since such a quadratic term dominates
the main minimization task. Hence, we introduced the inertial acceleration technique to the
quadratic term and proposed a partially inertial CDRSM for the problem under consideration.
Under mild conditions, we established its global convergence. Some preliminary numerical
results also supported the idea of this paper. In the future, we will pay our attention to the
theoretical convergence rate and its extension to the cases where the objective function is
nonconvex or nonquadratic.
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