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Abstract
We present a class of arbitrarily high-order conservative schemes for the Klein–Gordon
Schrödinger equations. These schemes combine the symplectic Runge–Kutta method with
the quadratic auxiliary variable approach. We first introduce an auxiliary variable that sat-
isfies a quadratic equation to reformulate the original system into an equivalent one. This
reformulated system possesses two strong quadratic invariants: energy and mass. Next, we
discretize the reformulated system using symplectic Runge–Kutta methods, yielding a class
of semi-discrete systems with arbitrarily high-order accuracy in time. The semi-discrete sys-
tems naturally preserve the discrete contour part of the strong invariants and the relationship
of the quadratic equation. By eliminating the intermediate variable, we obtain the original
energy conservation law. Then, the Fourier pseudo-spectral method is employed to obtain
the fully discrete scheme that preserves the original energy and mass. We provide a fast
solver to implement the proposed methods effectively. Numerical experiments demonstrate
the expected accuracy and conservation of proposed schemes.

Keywords Conservative scheme · High-order accuracy · Quadratic auxiliary variable
approach · Symplectic Runge–Kutta method · Klein–Gordon–Schrödinger equations.
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1 Introduction

In this paper, we consider the following Klein–Gordon–Schrödinger (KGS) equations [2]
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⎧
⎨

⎩

i∂tψ(x, t) + 1

2
Δψ(x, t) + u(x, t)ψ(x, t) = 0, (x, t) ∈ Ω × (0, T ]

∂t t u(x, t) − Δu(x, t) + u(x, t) − |ψ(x, t)|2 = 0, (x, t) ∈ Ω × (0, T ]
(1.1)

equipped with the following initial conditions

ψ(x, 0) = ψ0(x), u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ Ω,

where i2 = −1,Ω ⊂ R
d (d = 1, 2). The solutionsψ(x, t) and u(x, t) of the KGS equations

are complex and real valued functions with periodic boundary conditions, respectively. By
introducing ψ = p + iq , ut = v, the KGS Eq. (1.1) can be reformulated as a first-order real
valued system as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

pt = −1

2
Δq − qu

qt = 1

2
Δp + pu,

ut = v,

vt = Δu − u + p2 + q2.

(1.2)

It is readily to verify that the KGS system (1.2) preserves the mass and energy conservation
laws, i.e.,

d

dt
M(t) = 0, with M(t) =

∫

Ω

(p2 + q2)dx, (1.3)

and

d

dt
H(t) = 0, with H(t) =

∫

Ω

(
|∇ p|2 + |∇q|2 + |∇u|2 + u2 + v2 − 2u(p2 + q2)

)
dx .

(1.4)

In fact, by applying the energy variational principle, we can rewrite (1.2) into a compact
infinite-dimensional Hamiltonian system as follows:

dz

dt
= S δH

δz
, with S =

⎛

⎜
⎜
⎝

0 1
4 0 0

− 1
4 0 0 0
0 0 0 1

2
0 0 − 1

2 0

⎞

⎟
⎟
⎠ , (1.5)

where z = (p, q, u, v)T and δH
δz represents the vector of variational derivatives [10] given

by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δH
δ p

= −2Δp − 4pu,

δH
δq

= −2Δq − 4qu,

δH
δu

= −2Δu + 2u − 2r ,

δH
δv

= 2v.

(1.6)
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To gain deeper insights into the wave propagation and interaction of the KGS equations,
it is essential to develop efficient and accurate numerical methods, as analytical solutions of
(1.1) are usually unavailable. Theoretical and experimental results consistently highlight the
superiority ofmethods that preserve the invariants of the original system, exhibiting favorable
numerical characteristics such as linear error growth, long-term stability, and reduced ampli-
tude. These methods are commonly referred to as structure-preserving algorithms [8, 20, 22,
27]. Over the past few years, significant progress has been made in developing structure-
preserving methods. These advancements include the discrete gradient methods [16], the
averaged vector field methods [23], and Crank-Nicolson methods [19, 35]. Specifically for
the KGS equations, authors have proposed a series of conservative schemes based on the
Crank-Nicolson/leap-frog methods [3, 7, 17, 33, 34], and the partitioned averaged vector
field methods [6].

However, the above methods are limited to second-order accuracy and fail to meet the
precision requirements for long-time simulations. It is well-known that high-order structure-
preserving algorithms have higher-accuracy and improved stability for long-time simulations.
Therefore, constructing and analyzing high-order structure-preserving algorithms for KGS
systems are desirable. Over the past decade, several methods have been used to construct
high-order energy-preserving methods for conservative systems, such as the Hamiltonian
boundary value (HBVM) methods [4] and the sixth-order average vector field method [23].
These schemes can effectively preserve the original energy, but generally cannot simultane-
ously preserve the mass and their construction is quite complex. Recently, researchers have
proposed invariant quadratization methods (IEQ) [37, 38] and auxiliary variable (SAV) [30,
31] for gradient flows. By combining the symplectic Runge–Kutta (RK) methods [26, 32]
with these methods, high-order energy-preserving methods for conservative systems can be
obtained [10, 11, 21, 28, 36]. However, the resulting schemes can only preserve the modified
energy.

Inspired by the energy quantization method, Gong et al. developed the quadratic auxiliary
variable (QAV) technique in [12] for the Korteweg-de Vries equation. Different from the
previous IEQ and SAV schemes, the newly proposed schemes inherit the original energy of
the system. However, this method has not been utilized to construct high-order conservative
schemes for coupled systems or high-dimensional problems. This paper aims to develop a
class of high-order schemes for the KGS Eq. (1.1) using the symplectic RK method and the
QAV technique. The proposed schemes enjoy the following distinct advantages:

• The first advantage is that when combined with Fourier pseudo-spectral for spatial dis-
cretization, these schemes achieve high accuracy in both time and space;

• Another advantage is that these schemes not only preserve the original energy but also
conserve the mass of the KGS systems;

• Despite being fully implicit, the proposed schemes are more efficient than the HBVM
method in practical numerical simulations.

Additionally, the proposed methods can also be extended to develop high-order structure-
preserving algorithms for other conservative systems.

The outline of this paper is as follows. In Sect. 2, an equivalent systemwith three invariants
is obtained by introducing a new auxiliary variable. In Sect. 3, the modified system is dis-
cretized using the symplectic Runge–Kutta method, resulting in a semi-discrete system that
preserves all the invariants of the reformulated system. The fully discrete system is obtained
by employing the Fourier pseudo-spectral method for spatial discretizaion, which are proved
to preserve both original energy and mass at a discrete level in Sect. 4. Section5 presents a
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fast solver for the proposed methods. Numerical results in Sect. 6 are provided to confirms
our theoretical analysis. Finally, in Sect. 6, we summarize our findings and draw conclusions.

2 An Equivalent System via the QAV Approach

In this section, we utilize the QAV approach to derive an equivalent system of the KGS
equations. Let us introduce a quadratic auxiliary variable

r(x, t) = p2(x, t) + q2(x, t). (2.1)

The energy of the KGS equations can then be reformulated into a quadratic one as follows:

E(t) =
∫

Ω

(
|∇ p|2 + |∇q|2 + |∇u|2 + u2 + v2 − 2ur

)
dx . (2.2)

From the energy variational principle, we take the variational derivatives with respect to
p, q, u, v, and also take the time derivative of (2.1). Then according to the Hamiltoninan
form (1.5), we can derive the following equivalent KGS system associated with the quadratic
energy (2.2) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt = −1

2
Δq − qu,

qt = 1

2
Δp + pu,

ut = v,

vt = Δu − u + r ,

rt = 2ppt + 2qqt .

(2.3)

For consistency, the initial condition of r(x, 0) is set to

r(x, 0) = p2(x, 0) + q2(x, 0). (2.4)

Though an auxiliary variable has been introduced, we will prove that the underlying mass
and energy conservation laws are still preserved.

Theorem 1 The equivalent system (2.3), (2.4) preserves the mass and energy conservation
laws

M(t) = M(0), E(t) = E(0), (2.5)

and the algebraic relation I(t) = I(0) ≡ 0, where

I(t) = r(x, t) − p2(x, t) − q2(x, t). (2.6)

Proof Integrating the last Eq. (2.3) from 0 to t and utilizing the consistent initial condition
(2.4), we can readily establish the conservation of the algebraic relation.

By a direct calculation, we can verify the mass conservation law

d

dt
M(t) = 2(p, pt ) + 2(q, qt ) = 2

(

p,−1

2
Δq − qu

)

+ 2

(

q,
1

2
Δp + pu

)

= 0,
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where the integration-by-parts formula and the periodic boundary conditions are employed.
The quadratic energy conservation law can then be derived similarly as follows:

d

dt
E(t) = 2

[
(∇ p, ∇ pt ) + (∇q,∇qt ) + (∇u,∇ut ) + (u, ut ) + (v, vt ) − (ut , r) − (u, rt )

]

= 2
[

− (Δp, pt ) − (Δq, qt ) − (Δu, ut ) + (u, ut ) + (v, vt ) − (ut , r) − (u, rt )
]

= 2
[
2(pu − qt , pt ) + 2(pt + qu, qt ) − (vt + u − r , ut ) + (u, ut ) + (v, vt ) − (ut , r) − (u, rt )

]

= 2
[
(pu, pt ) + (qu, qt ) − (u, rt )

]

= 2
[
(pu, pt ) + (qu, qt ) − (u, ppt + qqt )

]

= 0.

(2.7)

This completes the proof. ��
Since the algebraic relation r(x, t) = p2(x, t)+q2(x, t) is exactly preserved, we can deduce
that the equivalent system (2.3) equipped with the consistent initial condition (2.4) conserves
the original energy of the KGS equations.

Theorem 2 The solution of the equivalent system (2.3) equipped with the initial condition
(2.4) preserves the original energy conservation law, i.e.,

H(t) = H(0). (2.8)

3 Symplectic Runge–Kutta Method for Time Integration

Notice that the equivalent system (2.3) not only inherits the original conservation laws of the
KGS equations, but also provides an elegant platform for the development of arbitrarily high
order mass and energy preserving schemes. This significant insight stems from the fact that
any symplectic Runge–Kutta method preserves quadratic invariants of the original system. In
this section, we discretize (2.3) in time by the symplectic Runge-Kutta method and rigorously
prove the semi-discrete mass and energy conservation laws.

For a given positive integer N , we set τ = T /N as the time step and define tn = nτ ,
n = 0, 1, · · · , N . Let ai j , bi , ci , i, j = 1, · · · , s be the coefficients of an s-stageRunge-Kutta
method, satisfying the following symplectic conditions

ai j bi + a ji b j − bib j = 0, for all i, j = 1, · · · , s. (3.1)

We now apply the above symplectic Runge–Kutta method to the reformulated system (2.3)
and obtain the equations of the internal stages as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi = pn + τ

s∑

j=1

ai j k
j
p, kip = −1

2
ΔQi − QiUi ,

Qi = qn + τ

s∑

j=1

ai j k
j
q , kiq = 1

2
ΔPi + PiUi ,

Ui = un + τ

s∑

j=1

ai j k
j
u , kiu = Vi ,

Vi = vn + τ

s∑

j=1

ai j k
j
v , kiv = ΔUi −Ui + Ri ,

Ri = rn + τ

s∑

j=1

ai j k
j
r , kir = 2(Pik

i
p + Qik

i
q).

(3.2)

Then (pn+1, qn+1, un+1, vn+1, rn+1) can be updated by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn+1 = pn + τ

s∑

i=1

bi k
i
p,

qn+1 = qn + τ

s∑

i=1

bi k
i
q ,

un+1 = un + τ

s∑

i=1

bi k
i
u,

vn+1 = vn + τ

s∑

i=1

bi k
i
v,

rn+1 = rn + τ

s∑

i=1

bi k
i
r ,

(3.3)

where pn = pn(x) represents the numerical approximation of p(x, tn), etc. In the following
contexts, we denote the above schemes (3.2), (3.3) satisfying the symplectic condition (3.1)
as QAV-SRK methods.

Theorem 3 The QAV-SRK schemes (3.2), (3.3) satisfy the following semi-discrete conser-
vation laws

Mn+1 = Mn, En+1 = En, In+1 = In,

where

Mn = (pn, pn) + (qn, qn), (3.4)

En = (∇ pn,∇ pn) + (∇qn,∇qn) + (∇un,∇un) + (un, un) + (vn, vn) − 2(un, rn),
(3.5)

In = rn − (pn)2 − (qn)2. (3.6)
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Proof Through a direct calculation, we have

Mn+1 − Mn = (pn+1, pn+1) + (qn+1, qn+1) − (pn, pn) − (qn, qn)

= 2τ
s∑

i=1

bi (p
n, kip) + τ 2

s∑

i, j=1

bib j (k
i
p, k

j
p)

+ 2τ
s∑

i=1

bi (q
n, kiq) + τ 2

s∑

i, j=1

bib j (k
i
q , k

j
q ).

(3.7)

Substituting the identities Pi = pn + τ
∑s

j=1 ai j k
j
p and kip = − 1

2ΔQi − QiUi into the first
two terms yield

2τ
s∑

i=1

bi (p
n , kip) + τ2

s∑

i, j=1

bi b j (k
i
p, k

j
p) = 2τ

s∑

i=1

bi (Pi − τ

s∑

j=1

ai j k
j
p, k

i
p) + τ2

s∑

i, j=1

bi b j (k
i
p, k

j
p)

= 2τ
s∑

i=1

bi (Pi , k
i
p) − 2τ2

s∑

i, j=1

bi ai j (k
j
p, k

i
p) + τ2

s∑

i, j=1

bi b j (k
i
p, k

j
p)

= 2τ
s∑

i=1

bi (Pi , k
i
p),

= τ

s∑

i=1

bi (∇Pi , ∇Qi ) − 2τ
s∑

i=1

bi (Pi , QiUi ).

(3.8)

where the property
s∑

i, j=1
biai j =

s∑

i, j=1
b ja ji and the symplectic condition (3.1) are used.

Similarly,

2τ
s∑

i=1

bi (q
n, kiq) + τ 2

s∑

i, j=1

bib j (k
i
q , k

j
q ) = 2τ

s∑

i=1

bi (Qi , k
i
q)

= −τ

s∑

i=1

bi (∇Qi ,∇Pi ) + 2τ
s∑

i=1

bi (Qi , PiUi ).

(3.9)

Combining (3.7), (3.8), (3.9), yields Mn+1 − Mn = 0.
By performing a direct calculation, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∇ pn+1,∇ pn+1) − (∇ pn,∇ pn) = 2τ
s∑

i=1

bi (∇Pi ,∇kip),

(∇qn+1,∇qn+1) − (∇qn,∇qn) = 2τ
s∑

i=1

bi (∇Qi ,∇kiq),

(∇un+1,∇un+1) − (∇un,∇un) = 2τ
s∑

i=1

bi (∇Ui ,∇kiu),

(3.10)
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(un+1, un+1) − (un, un) = 2τ
s∑

i=1

bi (Ui , k
i
u),

(vn+1, vn+1) − (vn, vn) = 2τ
s∑

i=1

bi (Vi , k
i
v),

(un+1, rn+1) − (un, rn) = τ

s∑

i=1

bi (Ui , k
i
r ) + τ

s∑

i=1

bi (Ri , k
i
u).

(3.11)

The process of calculating En+1 −En is analogous to the derivation of the mass conservation
law mentioned above.

En+1 − En = 2τ
s∑

i=1

bi
(
(∇Pi ,∇kip)

+ (∇Qi ,∇kiq) + (∇Ui ,∇kiu) + (Ui , k
i
u) + (Vi , k

i
v) − (Ui , k

i
r ) − (Ri , k

i
u)

)

= 2τ
s∑

i=1

bi
(

− (ΔPi , k
i
p) − (ΔQi , k

i
q)

− (ΔUi , k
i
u) + (Ui , k

i
u) + (Vi , k

i
v) − (Ui , k

i
r ) − (Ri , k

i
u)

)

= 2τ
s∑

i=1

bi
(
2(PiUi − kiq , k

i
p) + 2(kip + QiUi , k

i
q)

− (kiv +Ui − Ri , k
i
u) + (Ui , k

i
u) + (Vi , k

i
v) − (Ui , k

i
r ) − (Ri , k

i
u)

)

= 2τ
s∑

i=1

bi
(
2(PiUi , k

i
p) + 2(QiUi , k

i
q) − (Ui , k

i
r )

)

= 2τ
s∑

i=1

bi
(
2(PiUi , k

i
p) + 2(QiUi , k

i
q) − 2(Ui , Pik

i
p + Qik

i
q)

)

= 0,

(3.12)

which leads to the quadratic energy conservation law.
Finally, we confirm the preservation of the algebraic relation. Combining (3.10) and (3.11)

provides

(pn+1)2 + (qn+1)2 − (pn)2 − (qn)2 = 2τ
s∑

i=1

bi (Pik
i
p + Qik

i
q). (3.13)

Notice that

rn+1 − rn = τ

s∑

i=1

bi k
i
r = 2τ

s∑

i=1

bi (Pik
i
p + Qik

i
q). (3.14)

Comparing (3.13) and (3.14) then yields In+1 = In . The proof is thus completed. ��
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Theorem 4 The semi-discrete QAV-SRK schemes (3.2)-(3.3) conserve the system energy of
the original form, i.e.,

Hn+1 = Hn,

where

Hn = (∇ pn,∇ pn) + (∇qn,∇qn) + (∇un,∇un) + (un, un) + (vn, vn)

− 2(un, (pn)2 + (qn)2). (3.15)

Proof According to (3.6) and the consistent initial condition r0 = (p0)2 + (q0)2, we have
rn = (pn)2 + (qn)2. Inserting it into (3.5) leads to the original energy conservation law. ��

4 Fully-Discrete QAV-SRK Schemes

In this section, we develop fully-discreteQAV-SRK schemes by applying the Fourier pseudo-
spectral method to the semi-discrete system (3.2)-(3.3).

4.1 Fourier Pseudo-Spectral Method

Without losing generality, we consider the system (1.1) in 2D with Ω = (−L, L)2. For a
positive even integer M , we partition the domain uniformly with mesh sizes h = hx = hy =
2L/M . Let the spatial grid points

Ωh = {(xi , y j )| i = j = 1, 2, · · · , M − 1}
with xi = −L + ih, y j = −L + jh. We denote

Uh = {
U |U = (u1,1, · · · , uM−1,1, u0,1, · · · , uM−1,1, · · · , u1,M−1, · · · , uM−1,M−1)

T }
,

For U , V ∈ Uh , defining the corresponding discrete inner product and norms as follows

〈U , V 〉h = h2
N−1∑

i=0

N−1∑

j=0

ui, jvi, j , ‖U‖ = 〈U ,U 〉
1
2
h , ‖U‖∞ = sup

(xi ,y j )∈Ωh

|ui, j |.

Let Xi (x) be the interpolation basis functions given by

Xi (x) = 1

M

M/2∑

m=−M/2

1

cm
eimμ(x−xi ),

where μ = π/L and cm =
{
1, |m| < M

2 ,

2, |m| = M
2 .

Then, we can define the two-dimensional

interpolation space

SM = {
Xi (x)X j (y)

∣
∣0 ≤ i, j ≤ M − 1

}
,

and the interpolation operator IM : C(Ω) → SM

IMu(x, y) =
M−1∑

i=0

M−1∑

j=0

ui, j Xi (x)X j (y).
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The corresponding second-order spectral differential matrices for x- and y-directions are
uniformly calculated by

(D2)i,l = d2Xl(xi )

dx2
.

Owing to the circulant property of this differential matrices, one can utilize the Fast Fourier
Transform (FFT) to accelerate the computation of matrix–vector multiplication with D2. In
fact, we have the decomposition that

D2 = FH
M ΛFM , (4.1)

where FM denotes the matrix of discrete Fourier transform, FH
M is the conjugate transpose

matrix of FM and FH
M = F−1

M [13]. The diagonal matrix Λ corresponds to the eigenvalues
of D2 with the elements given by

Λ = −μ2 diag
[
02, 12, · · · ,

(
M

2

)2

,

(

−M

2
+ 1

)2

, · · · , (−2)2, (−1)2
]
. (4.2)

Moreover, the approximation of the two-dimensional Laplace operator by the pseudo-spectral
method yields the second-order differential matrix D := IM ⊗ D2 + D2 ⊗ IM , which by
(4.1) also admits a diagonal decomposition

D = (FH
M ⊗ FH

M )(IM ⊗ Λ + Λ ⊗ IM )(FM ⊗ FM ). (4.3)

Therefore, the practical computation associated with the differential matrix will be efficiently
carried out.

4.2 Conservative Fully-Discrete Schemes

Applying the pseudo-spectral method to discretize the spatial derivative of (3.2), (3.3), The
fully discrete QAV-SRK schemes are as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi = Pn + τ

s∑

j=1

ai j k
j
p, kip = −1

2
DQi − QiUi ,

Qi = Qn + τ

s∑

j=1

ai j k
j
q , kiq = 1

2
DPi + PiUi ,

Ui = Un + τ

s∑

j=1

ai j k
j
u , kiu = Vi ,

Vi = V n + τ

s∑

j=1

ai j k
j
v , kiv = DUi −Ui + Ri ,

Ri = Rn + τ

s∑

j=1

ai j k
j
r , kir = 2(Pik

i
p + Qik

i
q).

(4.4)
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for the values of internal stages and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn+1 = Pn + τ

s∑

i=1

bi k
i
p,

Qn+1 = Qn + τ

s∑

i=1

bi k
i
q ,

Un+1 = Un + τ

s∑

i=1

bi k
i
u,

V n+1 = V n + τ

s∑

i=1

bi k
i
v,

Rn+1 = Rn + τ

s∑

i=1

bi k
i
r ,

(4.5)

for the numerical solutions at time level n + 1. For clarity, we use Pi and similar notations
to represent the vector-valued functions at the space grid points, and it is a vector in R

M2

after vectorizing the original matrix-valued function in the two-dimensional case. The only
difference between the semi-discrete schemes (3.2), (3.3) and the fully discrete schemes (4.4),
(4.5) is that the continuous Laplace operator is replaced by the discrete spectral differential
matrix D. However, in the proof of mass and energy conservation, the symmetry property
of the Laplace operator in the continuous inner product is retained by the discrete inner
product associated with the symmetric differential matrix D. Therefore, following the same
approach as in Theorems 3 and 4, we can similarly prove the fully discrete mass and energy
conservation laws for the schemes (4.4), (4.5).

Theorem 5 The fully discreteQAV-SRK schemes (4.4), (4.5) conserve the mass and energy
conservation laws and the algebraic relation, that is,

Mn = M0, En = E0, I n = I 0,

where the mass Mn and quadratic energy are defined by

Mn = 〈Pn, Pn〉h + 〈Qn, Qn〉h, (4.6)

En = 〈
DPn, Pn 〉

h + 〈
DQn, Qn 〉

h + 〈
DUn,Un 〉

h − 〈
Un,Un 〉

h − 〈
V n, V n 〉

h + 2
〈
Un, Rn 〉

h,

(4.7)

and the algebraic relation reads

I n = rn − 〈Pn, Pn〉h − 〈Qn, Qn〉h . (4.8)

Theorem 6 Under the consistent initial condition r0 = (u0)2 + (v0)2, the fully-discrete
QAV-SRK schemes (4.4), (4.5) conserve the original energy, i.e.,

Hn = H0,

where

Hn = 〈
DPn, Pn 〉

h + 〈
DQn, Qn 〉

h + 〈
DUn,Un 〉

h − 〈
Un,Un 〉

h − 〈
V n, V n 〉

h

+ 2
〈
Un, (Pn)2 + (Qn)2

〉

h . (4.9)
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Remark 1 Other recently developed methods, such as the IEQ and SAV approaches, can also
be used to construct high-order energy-preserving schemes (see e.g., [21, 25]). However,
these schemes only preserve a modified form of energy, rather than the original energy
conservation law. In contrast, our proposed QAV-RK schemes can conserve the original
energy conservation law.

4.3 Fast Solver for the QAV-SRK Scheme

It is worth noting that the proposed QAV-SRK schemes (4.4)-(4.5) are coupled and fully-
implicit, which require a nonlinear iteration to solve the system and can be computationally
expensive.However, by diagonalizing the differential D (4.3) and utilizing the FFT algorithm,
we can implement theQAV-SRK schemes very efficiently. Specifically, in each iteration, we
only need to perform FFTs and inverse FFTs, which can be done inO(M2 logM) time com-
plexity for two-dimensional problems. This allows us to achieve fast and accurate solutions
for the KGS equation.

Substituting kiu , k
i
v , k

i
r in the scheme (4.4) and after some arrangements, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi + 1

2
τ

s∑

j=1

ai j DQ j = Pn − τ

s∑

j=1

ai j Q jU j , kip = −1

2
DQi − QiUi ,

Qi − 1

2
τ

s∑

j=1

ai j DPj = Qn + τ

s∑

j=1

ai j PjU j , kiq = 1

2
DPi + PiUi ,

Ui − τ

s∑

j=1

ai j Vj = Un,

Vi − τ

s∑

j=1

ai j (DUj −Uj ) = V n + τ

s∑

j=1

ai j R j , Ri = Rn + 2τ
s∑

j=1

ai j (Pjk
j
p + Q jk

j
q ).

Let P = (P1, P2, · · · , Ps)� ∈ R
sM2

and so on. The above system can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P + 1

2
τ(A ⊗ D)Q = Is ⊗ Pn − τ(A ⊗ IM2 )(Q � U), kp = −1

2
(Is ⊗ D)Q − Q � U,

Q − 1

2
τ(A ⊗ D)P = Is ⊗ Qn + τ(A ⊗ IM2 )(P � U), kq = 1

2
(Is ⊗ D)P + P � U,

U − τ(A ⊗ IM2 )V = Is ⊗Un,

V − τ
(
A ⊗ (D − IM2 )

)
U = Is ⊗ V n + τ(A ⊗ IM2 )R,

R = Is ⊗ Rn + 2τ(A ⊗ IM2 )(P � kp + Q � kq ),

(4.10)

where Q �U represents the pointwise multiplication, etc. Denote Z = (P, Q,U, V )� and
zn = (Pn, Qn,Un, V n)�. The nonlinear system (4.12) can be further reformulated into a
compact form

AZ = b(zn, Z) (4.11)

where the coefficient matrix reads

A =

⎛

⎜
⎜
⎝

Is ⊗ IM2
1
2 τ(A ⊗ D) 0 0

− 1
2 τ(A ⊗ D) Is ⊗ IM2 0 0

0 0 Is ⊗ IM2 −τ(A ⊗ IM2)

0 0 −τ(A ⊗ (D − IM2)) Is ⊗ IM2

⎞

⎟
⎟
⎠ , (4.12)
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and b(zn, Z) is consisted of known terms like Is ⊗ Pn and the unknown nonlinear terms.
Since the differential matrix D has the decomposition (4.3), we further denote ΛD = IM ⊗
Λ + Λ ⊗ IM , F = I4 ⊗ FM ⊗ FM and FH = I4 ⊗ FH

M ⊗ FH
M . Then the coefficient matrix

A can be decomposed by

A = FHΛAF

where

ΛA =

⎛

⎜
⎜
⎝

Is ⊗ IM2
1
2τ(A ⊗ ΛD) 0 0

− 1
2 τ(A ⊗ ΛD) Is ⊗ IM2 0 0

0 0 Is ⊗ IM2 −τ(A ⊗ IM2)

0 0 −τ(A ⊗ (ΛD − IM2)) Is ⊗ IM2

⎞

⎟
⎟
⎠ :

=
(
M11 0
0 M22

)

.

Subsequently, the nonlinear system (4.11) is equivalent to

Z = FHΛ−1
A Fb(zn, Z), (4.13)

where Λ−1
A is also a sparse and block diagonal matrix and Λ−1

A =
(
M−1

11 0
0 M−1

22

)

. By the

formula of the inverse of a 2 × 2 block matrix we have

M−1
11 =

(
Is ⊗ IM2 − 1

2 τ(A ⊗ ΛD)
1
2τ(A ⊗ ΛD) Is ⊗ IM2

) (
B−1
1 0
0 B−1

1

)

,

M−1
22 =

(
Is ⊗ IM2 τ(A ⊗ IM2)

τ (A ⊗ (ΛD − IM2)) Is ⊗ IM2

) (
B−1
2 0
0 B−1

2

)

,

where

B1 = Is ⊗ IM2 + τ 2

4
(A2 ⊗ Λ2

D) and B2 = Is ⊗ IM2 − τ 2A2 ⊗ (ΛD − IM2)

are two s × s block diagonal matrices whose inverse can be easily obtained by the following
algorithm.

Algorithm Efficient computation of the inverse of Bi , i = 1, 2

Input: Bi
Output: B−1

i
for k = 1, · · · , M2

index = k + (0 : s − 1)M2

B−1
i (index, index) = (

Bi (index, index)
)−1

end

Once the inverse Λ−1
A has been obtained, we can apply the fixed-point iteration to the

nonlinear system (4.13) where the matrix multiplications can be implemented efficiently by
FFT.
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5 Numerical Example

In this section, we aim to verify the energy conservation, as well as the accuracy and eff of the
proposed QAV-SRK schemes. For clarity, we denote the QAV-SRK schemes with different
orders byQAV-SRKi , where i = 2, 4, 6 represents the order of the scheme. We also include
two other methods for comparison:

• HBVMi (i = 2, 4, 6): The i th-order HBVM schemes for the KGS system in Ref. [14];
• AVF: A second-order energy-preserving scheme for the KGS equation based on the AVF

method in Ref. [6].

Tomeasure the conservation ofmass, energy, and the algebraic relation, we use relative errors
defined as

Rξn = |(ξn − ξ0)/ξ0|,
where ξn = Mn , Hn or I n , respectively. we compute the numerical errors by using the
formula

‖e‖∞ = ‖Z(h, τ ) − z(h, τ )‖∞, (5.1)

where Z(h, τ ) and z(h, τ ) represent the numerical and exact solution at (h, τ ). The accuracy
of the constructed scheme can be computed by

Rate = ln (error1/error2)/ln (τ1/τ2), (5.2)

where τ j , error j , ( j = 1, 2) are the time step and the maximum-norm errors with τ j , respec-
tively.

Example 1 We consider the one-dimensional KGS equation with exact solutions given by:

ψ(x, t) = 3
√
2

4
√
1 − l2

sech2
( 1

2
√
1 − l2

(x − lt − α)
)
exp

(
i
(
lx + 1 − l2 + l4

2(1 − l2)
t
))

,

u(x, t) = 3

4(1 − l2)
sech2

( 1

2
√
1 − l2

(x − lt − α)
)
,

where α represents the initial phase of the system, and −1 < l < 1 is the propagating
velocity. In our computations, we take the computational domain as Ω = [−20, 20], and set
α = 0 and l = −0.8.

First, we test the time accuracy of different schemes. Table 1 lists the errors in the L∞-
norm and the corresponding convergence rates, which shows that all the presented schemes
exhibit the expected results. Furthermore, we observe that the numerical errors produced by
theQAV-SRK schemes are smaller than those of the other schemes with the same order. We
also compare the computational efficiency in Fig. 1. Although all the numerical schemes are
fully implicit, the QAV-SRK schemes are the most efficient among them, thanks to the fast
solver mentioned earlier.

Figure 2 displays the relative errors of the conservation laws. As shown, the proposed
QAV-SRK schemes can conserve both the energy and mass. However, the AVF scheme
and HBVM2 schemes can only preserve the energy, but fail to conserve the discrete mass.
Interestingly, the HBVM4 and HBVM6 schemes can also conserve mass, due to their high
accuracy in time and space directions. As a result, the QAV-SRK method is the optimal
choice for constructing high accuracy conservative schemes that conserve both the energy
and mass for the KGS equation among the three methods. Figure3 shows the evolution of the
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Table 1 Temporal accuracy of different schemes with h = 40/256 at T = 1

τ = 1
10 τ = 1

20 τ = 1
40 τ = 1

80

QAV-SRK2 ‖e‖∞ 1.8932e−03 4.7755e−04 1.1966e−04 2.9932e−05

Rate * 1.9871 1.9967 1.9992

QAV-SRK4 ‖e‖∞ 2.2692e−06 1.4271e−07 8.9328e−09 5.5852e−10

Rate * 3.9910 3.9978 3.9994

QAV-SRK6 ‖e‖∞ 2.3707e−09 3.7295e−11 5.8398e−13 9.7700e−15

Rate * 5.9902 5.9969 5.9014

AVF ‖e‖∞ 6.0555e−03 1.5255e−03 3.8210e−04 9.5570e−05

Rate * 1.9890 1.9972 1.99931

HBVM2 ‖e‖∞ 3.5015e−03 8.8089e−04 2.2056e−04 5.5163e−05

Rate * 1.99091 1.9977 1.9994

HBVM4 ‖e‖∞ 3.2769e−06 2.0555e−07 1.2858e−08 8.0386e−10

Rate * 3.9947 3.9986 3.9996

HBVM6 ‖e‖∞ 2.5401e−09 3.9824e−11 6.2438e−13 1.0658e−14

Rate * 5.9951 5.9950 5.8724

Fig. 1 Numerical errors versus CPU time by different schemes with T = 20, h = 40/256

soliton using the QAV-SRK4 scheme. The numerical results demonstrate that the proposed
methods can accurately preserve the shape of the solution.

Example 2 This example examines the two-dimensional KGS equation with exact solutions
given by:

ψ(x, y, t) = exp(i(x + y − 0.5t)), u(x, y, t) = |ψ(x, y, t)|, (x, y) ∈ [0, 2π]2.
We first set h = π/16 so that the spatial discretization errors are negligible, and test

the time accuracy of the constructed schemes for solving the two-dimensional KGS system.
Table 2 lists the L∞-norm errors and convergence rates of the three schemes at T = 1,
which demonstrates that they can also achieve high accuracy in the temporal direction for
the two-dimensional KGS equation. We then present the relative errors of the mass, energy,
and the algebraic relation in Fig. 4. It is clear that the QAV-SRK schemes can accurately
conserve all three discrete conservation laws in two-dimensional cases.
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Fig. 2 Relative errors in conservation laws of different schemes at T = 100 with τ = 0.01, h = 40/256

Fig. 3 Evolution of numerical solutions of |ψn | and Un by QAV-SRK4

Example 3 We further study the two-dimensional KGS equation [15]

⎧
⎨

⎩

i∂tψ(x, t) + κ1

2
Δψ(x, t) + γ u(x, t)ψ(x, t) = 0, (x, t) ∈ Ω × (0, T ]

∂t t u(x, t) − κ2Δu(x, t) + μ2u(x, t) − γ |ψ(x, t)|2 = 0, (x, t) ∈ Ω × (0, T ]
(5.3)
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Table 2 Temporal accuracy of different schemes at T = 1 with h = π/16

τ = 1
4 τ = 1

8 τ = 1
16 τ = 1

32

QAV-SRK2 ‖e‖∞ 2.2734e−02 5.9814e−03 1.5151e−03 3.8005e−04

Rate * 1.9263 1.9810 1.9952

QAV-SRK4 ‖e‖∞ 2.3296e−04 1.4582e−05 9.1193e−07 5.7005e−08

Rate * 3.9978 3.9991 3.9998

QAV-SRK6 ‖e‖∞ 2.3925e−07 4.3984e−09 7.1197e−11 1.1300e−12

Rate * 5.7654 5.9490 5.9775

Fig. 4 Relative errors of conservation laws for three schemes at T = 50 with τ = 0.01, h = 2π/16

with following initial conditions

ψ0 =
1∑

k=0

exp
( − (x − (−1)k2)2 − y2

)
exp(ξ i

(
x − (−1)k2)2 + y

)
,

u0 = −
1∑

k=0

1∑

j=0

exp
( − (x − (−1)k2)2 − (x − (−1) j2)2

)
, (x, y) ∈ [−8, 8]2,

the parameters are κ1 = −0.4, κ2 = 0.1, μ = 0.1, γ = 0.2, ξ = 0.1.
We set τ = 0.01, h = 16/64, and plot the deviation of the invariants for three schemes in

Fig. 5. The figure shows that the proposed schemes can preserve original conservation laws in
fully-discrete scenes.We also take t = 0, 1, 2, and show the evolution of the soliton in Figs. 6
and 7. The interactions of circular vector solitons for component ψ are depicted in Fig. 6. At
t = 0, ψ has two peaks which radiate and eventually collide with each other, resulting in the
creation of a new peak in the central domain. As time passes, the central peak becomes more
pronounced, while the amplitudes of the other two peaks decrease. Figure7 shows that u has
three peaks at t = 0 and all pointing to the plus direction. With the progression of soliton
collisions, the amplitude of the central peak decreases.

6 Conclusions

In this work, we proposed a family of high-order conservative schemes for solving the Klein-
Gordon-Schrödinger equation, which is based on the newly developed quadratic auxiliary
variable approach. The proposed schemes conserve the mass and Hamiltonian energy exactly
in a fully-discrete sense and arrive at arbitrary high-order accuracy in temporal. Some numer-

123



75 Page 18 of 20 Journal of Scientific Computing (2023) 97 :75

Fig. 5 Relative errors of conservation laws for three schemes at T = 20 with τ = 0.01, h = 16/64

Fig. 6 Time evolutions of 2D circular vector solitons for component |ψ | of 2D KGS system. The first row:
surface plots; the second row: density plots

Fig. 7 Time evolutions of 2D circular vector solitons for component u of 2D KGS system. The first row:
surface plots; the second row: density plots

ical examples verify our theoretical results. In addition, the approach presented in the paper
can be extended to construct conservative schemes for solving other conservative partial
differential equations.
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