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Abstract
This paper deals with a high-order H(curl)-conforming Bernstein–Bézier finite element
method (BBFEM) to accurately solve time-harmonic Maxwell short wave problems on
unstructured triangular mesh grids. We suggest enhanced basis functions, defined on the
reference triangle and tetrahedron, aiming to reduce the condition number of the resulting
global matrix. Moreover, element-level static condensation of the interior degrees of free-
dom is performed in order to reduce memory requirements. The performance of BBFEM is
assessed using several benchmark tests. A preliminary analysis is first conducted to highlight
the advantage of the suggested basis functions in improving the conditioning. Numerical
results dealing with the electromagnetic scattering from a perfect electric conductor demon-
strate the effectiveness of BBFEM in mitigating the pollution effect and its efficiency in
capturing high-order evanescent wave modes. Electromagnetic wave scattering by a circular
dielectric, with high wave speed contrast, is also investigated. The interior curved interface
between layers is accurately described based on a linear blending map to avoid numerical
errors due to geometry description. The achieved results support our expectations for highly
accurate and efficient BBFEM for time harmonic wave problems.
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1 Introduction

Advances in computer technology and numerical computational techniques over the last
decades have strengthened the use of electromagnetic wave simulations in a wide range
of applications in physical sciences and engineering, such as satellite communication sys-
tems, signal processing in radar and antennas, electrical power generation, and laser light
transmission in plasmas.

Owing to its attractive features such as flexibility in handling complex geometries, mate-
rial heterogeneity and anisotropy, the finite element method (FEM) is favoured over other
methods. The FEM has known significant growth in the computational electromagnetics.
The standard H(curl)-conforming FEs have been introduced by Nédélec [1, 2], based on the
moments of tangential components on edges and faces of the elements. The lowest-order
Nédélec element has been independently proposed by several authors [3–6], which all con-
form to the simplicial geometric construction made by Whitney in the context of geometric
integration theory [7]. The earliest applications of the lowest-order Nédélec element for the
solution of eddy current problems can be found in [8, 9]. Meanwhile, motivated by differ-
ential forms, Bossavit introduced in [10–12] the so-called edge-elements for the solution of
electromagnetic problems.

The design of FEs able to deal with electromagnetic waves at medium and high-frequency
regimes is still ongoing. Due to the so-called pollution error, the use of the lowest-order
Nédélec element requires high resolution to maintain engineering accuracy, and hence
resulting in an excessive computational effort making the procedure less efficient. Many
H(curl)-conforming FEs on triangular and tetrahedral elements up to the second order of
approximation have been proposed in [5, 6, 13–15], and their comparison studies were per-
formed in [6, 16]. The first example of high-order vector elements, in which interpolatory
basis functions were generated by multiplying high-order interpolating polynomials by the
lowest order vector basis function, is introduced by Graglia and co-authors [17]. Based on
a hierarchical construction, Webb proposed high-order bases for H(curl)-conforming tri-
angular and tetrahedral elements [18], where explicit basis functions up to the third order
of approximation were formulated in terms of affine coordinates. A comparison study of
these two interpolatory and hierarchical high-order bases was conducted in [19]. Following
pioneering ideas by Nédélec [1, 2] and inspired by the work of Webb [18], many hierarchi-
cal bases have been developed, especially for triangular and tetrahedral elements [20–27].
These FE bases can span the Nédélec space of the first or second kind [1, 2]. For a complete
classification, we refer the reader to [28]. A first attempt to design an arbitrary order hierar-
chical basis for H(curl)-conforming hybrid quadrilateral and triangular elements based on
Legendre polynomials are presented in [20]. It was pointed out that the resulting high-order
FE bases yield good conditioning and enable a reduction of the dispersion error. In the same
regard, Schöberl and Zaglmayr [25] have proposed a set of hierarchical conforming basis
functions based on a tensorial construction.

Another option to dealwith the pollution error involves the use of high orderDiscontinuous
Galerkin methods (DGM). While it maintains almost all the advantages of the conforming
edge element method, the DGM has other distinct characteristics such as straightforward
handling of non-conforming meshes, unrestricted choice of the local approximation space,
natural treatment of discontinuous solutions and coefficient heterogeneities, and its remark-
able parallelization properties. More recently, many authors have shown the effectiveness of
various DG formulations in solving the time-harmonic Maxwell’s equations [29–38]. How-
ever, due to nodal duplication on the borders of interior elements, which results in a high
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number of degrees of freedom, DG methods are computationally expensive [39]. Hybridiz-
able discontinuous Galerkin (HDG) methods have been devised in order to preserve the
strengths of the DG methods and address their main drawbacks. Optimal convergence prop-
erties of some HDGmethods have been achieved or demonstrated via numerical experiments
for 2D time-harmonic Maxwell’s equations in [39–44].

Bernstein polynomials have been classically used in computer-aided design and approx-
imation theory [45], and have recently gained increasing attention in the FEM community
[46–51]. While they share common characteristics with other conventional high-order FE
bases, Bernstein polynomials possess some of the key features of isogeometric analysis [52]
and have a number of attractive properties [46, 53–55], namely: positivity, partition of unity
and good conditioning. Moreover, they can be used to set up the mass and stiffness matri-
ces, based on fast assembling algorithms taking advantage of the sum-factorization method
[46, 55]. Kirby [56] has shown that these low complexity procedures are not limited to the
H1-conforming setting but extend to the entire de Rham sequence on simplices. Following
the idea in [25], Ainsworth et al. [46, 57, 58] have proposed a set of Bernstein–Bézier basis
functions for the de Rham sequence spaces on triangles and tetrahedra maintaining the exact
sequence structure. Recently, Arnold et al. [59] have investigated FE bases for the space of
differential k-forms, using Bernstein polynomials.

This work aims at investigating the performance of H(curl)-conformingBernstein–Bézier
FEs for the solution of time-harmonic Maxwell wave problems on unstructured mesh grids.
We propose an enhanced higher-order basis with improved conditioning, by replacing the
lower-order Whitney functions with higher-order functions and incorporating appropriate
scale factors that multiply each of them. In addition, we describe the extension of the H(curl)
basis to the tetrahedron. Numerical experiments are conducted to provide full details of the
performance in terms of accuracy, conditioning, and wave resolution given by the number of
degrees of freedom per wavelength. A wave transmission problem is also dealt with, where
the geometry of curved elements sharing an edge with the interface is interpolated via the
linear blending map of Gordon and Hall [60, 61].

The rest of this paper is organized as follows. In Sect. 2, we present the mathematical
model and its weak form. Section3 describes the discretization of the governing equation,
using the Nédélec FE space of the first type. In Sect. 4, we recall the construction of H(curl)-
conforming Bernstein–Bézier FEs and propose the enhanced basis for the reference triangle
and tetrahedron. An overview of the solutionmethod is presented in Sect. 5. Numerical results
are given in Sect. 6. Finally, some conclusions are drawn in Sect. 7.

Notation

The following notation will be used throughout this paper. Vectors are distinguished from
scalars by the use of boldface letters, but this convention does not, in general, carry over to
operators. Vectors will be two-dimensional and either real in R

2 or complex in C
2 with i =√−1 denoting the imaginary unit number. Each point x in R

2 is identified by its components
(x1, x2) relative to the Cartesian vector system denoted (e1, e2), i.e. x = x1e1 + x2e2. The
dot product of two vectors a and b in C

2 is a scalar given by a · b = ∑
i=1,2 ai bi . We denote

the scalar product in C
2 by (·, ·), that is, (a, b) = a · b, where the notation ’ ’ refers to the

complex conjugate, and the induced norm is denoted by ‖ · ‖.
Let D be a bounded Lipschitz domain. We will denote the usual inner product on the

complex-valued space L2(D) by (·, ·)D , where u and v are scalar functions in L2(D). For
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simplicity, we will adopt the same notation for the inner products on the space of vector
valued functions [L2(D)]2, that is,

(u, v)D =
2∑

i=1

(ui , vi )D, ∀u, v ∈ [L2(D)]2. (1.1)

Likewise, for a given Σ ⊂ ∂ D, the L2 inner products on L2(Σ) and [L2(Σ)]2 are denoted
by 〈·, ·〉Σ .
We recall the cross product of two vectors a and b in C

2, given by a × b := a · b⊥ =
a1b2 − a2b1, where b⊥ = (b2,−b1)
.

In two-dimensional space, we have two curl operators: the first acting on a vector field
v = (

v1, v2
)


and defined by curl v := ∇ × v = ∂v2
∂x1

− ∂v1
∂x2

, while the second one is defined

for a scalar function ϕ by the vector field curl ϕ := (∇ϕ)⊥ =
(

∂ϕ
∂x2

,− ∂ϕ
∂x1

)

. We shall also

need the following function spaces

H1(D) =
{
ϕ ∈ L2(D) : ∇ϕ ∈ [

L2(D)
]2}

, (1.2)

H(curl, D) =
{
u ∈ [

L2(D)
]2 : curl u ∈ L2(D)

}
, (1.3)

H0(curl, D) ={u ∈ H(curl, D) : u · t = 0 on ∂ D} , (1.4)

L2
t (Σ) =

{
u ∈ [

L2(Σ)
]2 : u · n = 0

}
, (1.5)

where n and t refer to the unit outward normal and the unit tangent vector to ∂ D, respectively.
For u ∈ H(curl, D) such that u · t ∈ L2(∂ D) and ϕ ∈ H1(D), we recall the Green’s formula

(ϕ, curl u)D = (curl ϕ, u)D + 〈ϕ, u · t〉∂ D . (1.6)

Standard multi-index notation will be used. For α ∈ Z
d+1+ and λ ∈ R

d+1 (with d = 2, 3),

we set |α| = ∑d+1
i=1 αi , λα = ∏d+1

i=1 λ
αi
i , α! = ∏d+1

i=1 αi ! and
(|α|

α

) = |α|!
α! . If α,β ∈ Z

d+1+
such that β ≥ α, i.e., βi ≥ αi , for all i ∈ �1, d + 1�, then

(
β
α

) = ∏d+1
i=1

(
βi
αi

)
, where for

given integers k and l, with k ≤ l, the set �k, l� is the interval of all integers between k and l
included. We denote by ei ∈ Z

d+1+ the multi-index whose i-th entry is unity and remaining
entries are zero, and by 0 ∈ Z

d+1+ the multi-index whose all its entries are zero.
For n ∈ Z+, we will denote by Id

n the indexing set defined by

Id
n :=

{
α ∈ Z

d+1+ : |α| = n
}

. (1.7)

It should be noted that #Id
n = (n+d

d

)
, where the notation ’#’ refers to the cardinality of a

finite set. We will also denote by I̊d
n , Î

d
n and Ǐd

n the auxiliary index subsets of Id
n defined as

follows:

I̊d
n :=

{
α ∈ Id

n : α > 0
}

, Îd
n := {nei : i ∈ �1, d + 1�} and Ǐd

n := Id
n \ Îd

n .

2 Mathematical Model

Let us consider a Lipschitz bounded domain Ω of R
2, with boundary Γ = ∂Ω . We shall

consider the first-order time-harmonicMaxwell’s system, in a transverse electric (TE) setting:

(−iωε + σ) E − curlH = −J in Ω, (2.1)
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−iωμH + curl E = 0 in Ω, (2.2)

where ω is the angular frequency, E(x) = (
E1(x1, x2), E2(x1, x2)

)

is the electric field,

H(x) = H3(x1, x2) is the magnetic scalar field, and J(x) = (
J1(x1, x2), J2(x1, x2)

)

is a

prescribed impressed current. The parameters σ , ε and μ denote the material electrical con-
ductivity, the electric permittivity and the magnetic permeability, respectively. Eliminating
the scalar field H from (2.1)–(2.2), leads to a single second-order equation

curl
(
μ−1 curl E

) − (
ω2ε + iωσ

)
E = iω J in Ω, (2.3)

to be solved for the complex vector field E. The magnetic scalar field H can be computed
from the time-harmonic version of Faraday law (2.2).

For simplicity, we complete equation (2.3), as in [62], by the following impedance bound-
ary condition

(
μ−1 curl E

)
t − iωγ (E · t) t = G on Γ , (2.4)

where γ =
√

ε
μ
is the wave impedance, and G is a tangential vector field. When the right

hand side of equation (2.4) is vanishing, i.e., G = 0, the boundary condition (2.4) reduces
to a first-order absorbing boundary condition [63]. In the case of γ ≡ 1, it is called the
Silver-Müller boundary condition [64]. Here, the source term G is introduced in order to
enforce the analytical solution.

It is worth noticing that the impedance boundary condition (2.4) has no meaning in
H(curl,Ω) [65, 66], therefore, we will introduce as in [64] the following energy space

Himp(Ω) = {
u ∈ H(curl,Ω) : u · t ∈ L2(Γ )

}
, (2.5)

which is the natural space for setting our problem.We recall that the space Himp(Ω) equipped
with the inner product

(u, v)Himp(Ω) = (u, v)Ω + (∇ × u,∇ × v)Ω + 〈u · t, v · t〉Γ , (2.6)

for u, v ∈ Himp(Ω), is a Hilbert space.
Multiplying the time harmonic equation by the complex conjugate of a test function

F ∈ Himp(Ω), and using the Green’s formula (1.6), we get
(
μ−1 curl E, curl F

)
Ω

− 〈
μ−1 curl E, F · t〉

Γ
− ([

ω2ε + iωσ
]
E, F

)
Ω

= iω (J, F)Ω .

Then, by taking into account the impedance boundary condition (2.4), the integral around
the boundary becomes

〈
μ−1 curl E, F · t〉

Γ
= iω 〈γ E · t, F · t〉Γ + 〈G · t, F · t〉Γ .

Finally, the weak form reads as
{
Find E ∈ Himp(Ω) such that

a (E, F) = iω (J, F)Ω + 〈G · t, F · t〉Γ , ∀F ∈ Himp(Ω),
(2.7)

where the sesquilinear form a : Himp(Ω) × Himp(Ω) −→ C is given by

a (E, F) = (
μ−1 curl E, curl F

)
Ω

− ([
ω2ε + iωσ

]
E, F

)
Ω

− iω〈ηE · t, F · t〉Γ .

Here, we will assume that
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(A1) The domain Ω may be split into nΩ disjoint open simply-connected Lipschitz subdo-
mains Ωl such that Ω = ∪nΩ

l=1Ω l , where Ω is the closure of Ω and l = 1, · · · , nΩ ;
(A2) the material coefficients ε, μ and σ are positive and constant on each subdomain;

(A3) the source term J ∈ [
L2(Ω)

]2
and the boundary data G ∈ L2

t (Γ ).

We end this section by stating the following existence and uniqueness result.

Theorem 2.1 Under assumptions (A1)–(A3), the variational problem (2.7) has a unique
solution.

Proof The proof makes use of the Helmholtz decomposition [67], Fredholm alternative and
the unique continuation principle for the Maxwell’s equations [63], and follows the lines in
[64, Thm. 4.17]. ��
Remark 2.1 Assumption (A2) could be weakened as in [64], for example, by considering the
material coefficients ε,μ and σ to be piecewise smooth and satisfying appropriate conditions.

3 Discretization

In this section, we will briefly present the Nédélec FE space of the first type in two space
dimensions [1]. To this end, we introduce the triangular master element T̂ defined by

T̂ = {
ξ = (ξ1, ξ2) : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1 − ξ1

}
, (3.1)

and whose vertices are q̂1 = (1, 0), q̂2 = (0, 1) and q̂3 = (0, 0) (see Fig. 1). Before getting
to the heart of the matter, we begin by introducing some spaces of bivariate polynomials that
are used in the construction of the H(curl)-conforming FEs. We denote by P

2
p(T̂ ) the space

of polynomials on T̂ of total degree at most p. The space of homogeneous polynomials on
T̂ of degree p is given by

P
2
p(T̂ ) = span

{
ξ i
1ξ

j
2 : i + j = p, ξ ∈ T̂

}
.

We also introduce a special subspace of homogeneous vector polynomials on T̂ :

S
2
p(T̂ ) :=

{

q ∈
[
P
2
p(T̂ )

]2 : ξ · q(ξ) = 0, ξ ∈ T̂

}

. (3.2)

Definition 3.1 For p ∈ Z+, the two-dimensional H(curl)-conforming Nédélec space of the
first type of order p is defined by

ND
2
p(T̂ ) :=

[
P
2
p(T̂ )

]2 ⊕ S
2
p+1(T̂ ). (3.3)

Since the linear transformation:
[
P
2
p(T̂ )

]2 � q −→ ξ · q ∈ P
2
p+1(T̂ ) is onto, applying

the rank-nullity theorem yields dim(S
2
p(T̂ )) = 2(p + 1) − (p + 2) = p, for all p ∈ Z+.

Which gives

dim(ND
2
p(T̂ )) = (p + 1)(p + 2) + p + 1 = (p + 1)(p + 3).

The following inclusion properties [68] are useful in the sequel:
[
P
2
p(T̂ )

]2 ⊂ ND
2
p(T̂ ) ⊂

[
P
2
p+1(T̂ )

]2
, (3.4)
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Fig. 1 Reference map for a curved triangular element

P
2
p(T̂ )ND

2
0(T̂ ) ⊂ ND

2
p(T̂ ). (3.5)

Let Th be a conforming partition of the domain Ω into triangular elements such that
Ωh = ∪T ∈Th T , where Ωh is an approximation of Ω , with boundary Γh = ∂Ωh , and h is
the mesh size of Th given by h = maxT ∈Th hT , where hT = diam(T ). Each T ∈ Th is
the image of the triangular master element T̂ , i.e. T = FT (T̂ ), where FT is a continuously

differentiable, invertible and surjective reference map. Let us denote by JT =
(
DFT
Dξ

)
the

Jacobian matrix of FT and by |JT | its determinant. It is well known that the covariant Piola
mapping defined by

u = PT (̂u) := J−

T û ◦ F−1

T , (3.6)

conserves vector function properties [64] and guarantees H(curl)-conformity [69], i.e., the
continuity of tangential components across element interfaces [2]. For any û ∈ H(curl, T̂ ),
it can be shown that u ∈ H(curl, T ) and

curl u = |JT |−1 ĉurl û ◦ F−1
T . (3.7)

This mapping ensures a local exact sequence property [70], summarized in the following
commuting diagrams:

H1(T̂ )
∇̂

FT

H(curl, T̂ )

PT

H1(T )
∇

H(curl, T ).

(3.8)

For further details, we refer the reader to [64, 71].
Let V h be the finite dimensional approximation space defined by

V h =
{
v ∈ H(curl,Ωh) : J
T v ◦ FT ∈ ND

2
p(T̂ ), ∀T ∈ Th

}
.
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Then the discrete analogous of the weak form (2.7) reads as
{
Find Eh ∈ V h such that

ah (Eh, Fh) = iω (J, Fh)Ωh
+ 〈G · t, Fh · t〉Γh

, ∀Fh ∈ V h,
(3.9)

where

ah (Eh, Fh) = (
μ−1 curl Eh, curl Fh

)
Ωh

− ([
ω2ε + iωσ

]
Eh, Fh

)
Ωh

−iω〈γ Eh · t, Fh · t〉Γh .

Herein, for convenience, the dependency on the polynomial order p is not indicated.

4 Bernstein–Bézier H(curl)-Conforming FE Basis

This section describes the Bernstein–Bézier H(curl)-conforming FE basis. We will recall
the main steps behind its construction [58, 72]. The next Subsection gives the definitions of
the barycentric coordinates and Bernstein polynomials.

4.1 Barycentric Coordinates and Bernstein Polynomials

Let us consider the barycentric coordinates λ = (λ1, λ2, λ3) relative to the master element
T̂ defined by

λ1(ξ) = ξ1, λ2(ξ) = ξ2, λ3(ξ) = 1 − ξ1 − ξ2. (4.1)

Now, we recall the definition of the bivariate Bernstein polynomials:

Definition 4.1 The Bernstein polynomials of degree p formulated on the reference element
T̂ read as

B p
α (ξ) =

(
p

α

)

λα(ξ), α ∈ I2p. (4.2)

We also recall the following well known result:

Theorem 4.1 The set {B p
α }α∈I2p of Bernstein polynomials forms a basis for the space P

2
p(T̂ ).

4.2 Lower-OrderWhitney Element

Here, we recall the definition of Whitney functions [7] and summarize some of their proper-
ties.

Definition 4.2 The Whitney functions are defined by

ωi := λi+1∇̂λi−1 − λi−1∇̂λi+1, i ∈ �1, 3�, (4.3)

where (i − 1, i, i + 1) is a cyclic permutation of (1, 2, 3).

By using the definition of the barycentric coordinates (4.1), it can be shown that

{ω1,ω2,ω3} ⊂ ND
2
0(T̂ ) =

{
a + bξ⊥ : a ∈ R

2, b ∈ R

}
,
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where ND
2
0(T̂ ) is the lowest order Nédélec space, consisting of shape functions attached to

the edges of the master element T̂ .
Let us denote by êi the edge of the triangle T̂ opposite to the vertex q̂i . Then, it can be

seen that the barycentric coordinates satisfy

λi |̂ei
= 0, for i ∈ �1, 3�. (4.4)

Let t i be the positively oriented unit tangent vector to êi given by t i = −n⊥
i .

Themost important properties of theWhitney functions are given in the following Lemma.

Lemma 4.1 The set of Whitney functions {ω1,ω2,ω3} forms a basis for the lowest order
Nédélec space ND

2
0(T̂ ), and the following properties hold:

(
ωi · t j

)∣
∣
ê j

= δi j

l (̂e j )
, for i, j ∈ �1, 3�, (4.5)

where l (̂e j ) is the length of the edge ê j , and
∫

∂ T̂
ωi · t ds = 1, for i ∈ �1, 3�. (4.6)

Proof Suppose that u =: ∑3
i=1 ciωi = 0. Then (u · t i )|̂ei

= 0, for all i ∈ �1, 3�. These
yield according to (4.5), ci

l (̂ei )
= 0, for all i ∈ �1, 3�. Hence, Whitney functions are linearly

independent. Since dim
(
ND

2
0(T̂ )

) = 3, theses functions form a basis for ND
2
0(T̂ ).

(1) Let us now prove (4.5). Denote by ni the unit outward normal vector to the edge êi . Then,
we have

ni = − ∇̂λi

‖∇̂λi‖
, (4.7)

where ‖∇̂λi‖ = l (̂ei )

2|T̂ | and |T̂ | denotes the area of the reference element T̂ . According to
(4.7) and the fact that

l (̂ei )l (̂ei+1) ni × ni+1 = 2|T̂ |,
the barycentric coordinates satisfy

∇̂λi × ∇̂λi+1 = 1

2|T̂ | . (4.8)

Then, combining (4.7) and (4.8), yields

∇̂λi · t i = 0, and ∇̂λi−1 · t i = −∇̂λi+1 · t i = 1

l (̂ei )
, for i ∈ �1, 3�. (4.9)

Moreover, by using (4.9), we get

ωi · t j =

⎧
⎪⎨

⎪⎩

−λi−1∇̂λi+1 · t i−1 if j = i − 1,
λi+1+λi−1

l (̂ei )
= 1−λi

l (̂ei )
if j = i,

λi+1∇̂λi−1 · t i+1 if j = i + 1,

and thus, thanks to (4.4), these prove (4.5).
(2) Finally, the integral (4.6) over ∂ T̂ is a direct consequence of (4.5). ��
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4.3 Bernstein–Bézier Gradient Based Functions

In two space dimensions, the construction of the Bernstein–Bézier basis for H(curl)-
conforming Nédélec space of the first type relies on the so-called local exact sequence [25]:

P
2
p+1(T̂ )

∇̂
ND

2
p(T̂ )

̂curl
P
2
p(T̂ ) . (4.10)

Then the gradient of any H1-conforming FE basis can be used in the construction of H(curl)-
conforming FE basis. For p ∈ Z+ and α ∈ I2p+1, the Bernstein–Bézier gradient based

function ∇̂B p+1
α ∈ ND

2
p(T̂ ) is given by

∇̂B p+1
α = (p + 1)

[
B p

α−e1
∇̂λ1 + B p

α−e2
∇̂λ2 + B p

α−e3
∇̂λ3

]
, (4.11)

with the convention B p
β = 0 if β /∈ I2p . We decompose this family according to indexes

attached to the vertices, interior edge-based and bubble degrees of freedom of the master
element T̂ :

{
∇̂B p+1

α : α ∈ I2p+1

}
=

{
∇̂B p+1

α : α ∈ Î2p+1

}
∪
(
∪3

i=1

{
∇̂B p+1

α : α ∈ I̊2p+1(̂ei )
})

∪
{
∇̂B p+1

α : α ∈ I̊2p+1

}
,

where

I̊2p+1(̂ei ) :=
{
α ∈ I2p+1 : αi = 0, αi−1, αi+1 > 0

}
,

and cyclic permutation, as previously, is adopted. Thus, the collection of the index sets
associated to interior edge-based and bubble degrees of freedom of the master element are

∪3
i=1I̊

2
p+1(̂ei ) ∪ I̊2p+1 = I2p+1 \ Î2p+1 = Ǐ2p+1.

Lemma 4.2 The set
{
∇̂B p+1

α : α ∈ Ǐ2p+1

}
forms a linearly independent family of the Nédélec

space ND
2
p(T̂ ), that satisfies for all i ∈ �1, 3�

(
∇̂B p+1

α · t i
)∣
∣
∣
êi

= 0, for all α ∈ I̊2p+1, (4.12)

(
∇̂B p+1

α · t j

)∣
∣
∣
ê j

=
⎧
⎨

⎩

p+1
l (̂ei )

(
B p

α−ei−1
− B p

α−ei+1

)∣
∣
∣
êi

if j = i

0 otherwise
, for all α ∈ I̊2p+1(̂ei ),

(4.13)

and
∫

∂ T̂
∇̂B p+1

α · t ds = 0, for all α ∈ Ǐ2p+1. (4.14)

Proof Let us first prove linear independence. Suppose that
∑

α∈Ǐ2p+1
cα∇̂B p+1

α = 0. Since

Ker(∇̂) = P
2
0(T̂ ), by linearity of the gradient operator ∇̂, we have

∑

α∈Ǐ2p+1
cα B p+1

α = c,

with c ∈ P
2
0(T̂ ). As, for any α ∈ Ǐ2p+1, the Bernstein polynomial B p+1

α vanishes at all
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vertices of T̂ , the constant c = 0 and hence
∑

α∈Ǐ2p+1
cα B p+1

α = 0. The set {B p+1
α }α∈I2p+1

being a basis for P
2
p+1(T̂ ), it follows that cα = 0, for all α ∈ Ǐ2p+1.

(1) Let us now prove (4.12). Let α ∈ Ǐ2p+1. Then, using (4.9), dot product of both sides of
Equation (4.11) yields

(
∇̂B p+1

α · t i
)∣
∣
∣
êi

= (p + 1)
3∑

j=1, j �=i

B p
α−e j

(∇̂λ j · t i
)∣
∣
êi

. (4.15)

In particular, for α ∈ I̊2p+1 and thanks to (4.4), we have

(
∇̂B p+1

α · t i
)∣
∣
∣
êi

= (p + 1) λi |̂ei︸︷︷︸
=0

∑

j �=i

(
p

α − e j

)

λα−e j −ei
∣
∣
êi

(∇̂λ j · t i
)∣
∣
êi

= 0.

(2) To show (4.13), consider α ∈ I̊2p+1(̂ei ). Using Eq. (4.15) once again (with i replaced

by j) and the fact that B p
α−ei

= 0 (because α − ei /∈ I2p), B p
α−ei+1

∣
∣
∣
êi−1

= 0 and

B p
α−ei−1

∣
∣
∣
êi+1

= 0, it can be shown that (4.13) holds true when j �= i . For the case j = i ,

it suffices to combine (4.15) and (4.9).
(3) Finally, owing to the fact that univariate Bernstein polynomials of the same order have

the same well-known integral:
∫

êi

B p
k (s)ds = l (̂ei )

p + 1
, (4.14) directly follows from (4.13)

and (4.9). ��
It is well known that

ĉurl∇̂B p+1
α = 0, α ∈ I2p+1. (4.16)

Thus, according to the rank-nullity theorem, we have

dim(∇̂P
2
p+1(T̂ )) = dim(P2

p+1(T̂ )) − dim(Ker(∇̂)) = (p + 1)(p + 4)

2
< dim(ND

2
p(T̂ )).

Hence, the Bernstein–Bézier gradient based functions must be completed by additional lin-
early independent set of vectors belonging to ND

2
p(T̂ ) called non-gradient bubble based

functions.

4.4 Non-gradient Bubble Based Functions

This subsection describes the non-gradient bubble based functions, following the ideas devel-
oped in [58].

Definition 4.3 Let p ∈ Z+. Then the non-gradient bubble functions are defined by

Γ
p
α = (p + 1) (α1ω1 + α2ω2 + α3ω3) B p

α , for α ∈ I2p. (4.17)

By (3.5), it follows that
{
Γ

p
α : α ∈ I2p

}
⊂ ND

2
p(T̂ ). Moreover, thanks to (4.4), we see

that αi B p
α

∣
∣
êi

= 0, which implies, using (4.5),
(
Γ

p
α · t i

)∣
∣
êi

= 0, for all i ∈ �1, 3�.
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Hence
∫

∂ T̂
Γ

p
α · t ds = 0, for all α ∈ I2p. (4.18)

Considerα0 an arbitrary index in I2p and set Í
2
p := I2p\ {α0} andG

p := span
{
Γ

p
α : α ∈ Í2p

}
.

The following lemma [58] recalls someuseful properties of the non-gradient bubble functions.

Lemma 4.3 The set
{
Γ

p
α : α ∈ Í2p

}
consists of p(p+3)

2 linearly independent functions of

ND
2
p(T̂ ) ∩ H0(curl, T̂ ). Moreover,

G
p ∩ ∇̂H1(T̂ ) = {0}. (4.19)

Let us set W := span {ω1,ω2,ω3} and B
p := B

p
e ⊕ B

p
T̂
, where

B
p
ê := ⊕3

i=1 span
{
∇̂B p+1

α : α ∈ I̊2p+1(̂ei )
}

and B
p
T̂

:= span
{
∇̂B p+1

α : α ∈ I̊2p+1

}
.

Then, Lemmas 4.1, 4.2 and 4.3 yield [58, 72]:

Theorem 4.2 Let p ∈ Z+. Then, the two-dimensional Nédélec space ND
2
p(T̂ ) of the first

type of order p satisfies the following algebraic decomposition:

ND
2
p(T̂ ) = W ⊕ B

p ⊕ G
p. (4.20)

Proof Wefirst check, from the above, thatW, B
p, G

p ⊂ ND
2
p(T̂ ) and dim(W)+dim(Bp)+

dim(Gp) = dim(ND
2
p(T̂ )). By (4.19), we can see that G

p ∩ B
p = {0}. Hence, by using

(4.6), (4.14) and (4.18), it can be shown that (Gp ⊕ B
p) ∩ W = {0}. ��

4.5 Enhanced Bernstein–Bézier H(curl)-Conforming FE Basis

The H(curl)-conforming Bernstein–Bézier basis, as previously described, is constructed
such that the gradient and non-gradient based shape functions are completedwith lower-order
Whitney functions. This construction is similar to the one developed for H(curl)-conforming
hierarchical basis [20]. However, in other versions of H(curl)-conforming bases such as in
[73], the edge based shape functions are chosen with the same order of approximation.
Herein, we replace the lower-order Whitney functions with edge functions of order p, called
high-order Whitney functions.

Definition 4.4 Let p ∈ Z+. We define the high-order Whitney functions of order p by

ω
(p)
i = 1

p
λ

p
i+1∇̂λi−1 − 1

p
λ

p
i−1∇̂λi+1, for i ∈ �1, 3�. (4.21)

In [23], it was shown that the use of appropriate scaling factors in the H(curl)-conforming
bases helps in improving the condition number of the resulting global FE matrix. To this end,
we incorporate here the scaling factor 1/p in Equation (4.21).

Lemma 4.4 Let p ∈ Z+. Then the set of high-order Whitney functions
{
ω

(p)
1 ,ω

(p)
2 ,ω

(p)
3

}

forms a linearly independent family for the Nédélec space ND
2
p(T̂ ), that satisfies

(
ω

(p)
i · t j

)∣
∣
∣
ê j

= δi j

p l (̂e j )

(
λ

p
j+1 + λ

p
j−1

)∣
∣
∣
ê j

, for i, j ∈ �1, 3�. (4.22)
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∫

∂ T̂
ω

(p)
i · t ds = 2

p(p + 1)
, for i ∈ �1, 3�. (4.23)

Proof It is clear that ω
(p)
i ∈

[
P
2
p(T̂ )

]2
. Then, by (3.4), we have

{
ω

(p)
1 ,ω

(p)
2 ,ω

(p)
3

}
⊂

ND
2
p(T̂ ).

(1) Let us first prove (4.22). The same arguments as in the proof of Lemma 4.1 yield

ω
(p)
i · t j =

⎧
⎪⎪⎨

⎪⎪⎩

− 1
p λ

p
i−1∇̂λi+1 · t i−1 if j = i − 1,

λ
p
i+1+λ

p
i−1

pl (̂ei )
if j = i,

1
p λ

p
i+1∇̂λi−1 · t i+1 if j = i + 1.

So, thanks to (4.4), we conclude (4.22).
(2) Let us now show linear independence. Suppose that u =: ∑3

i=1 ciω
(p)
i = 0. Then,

u · t i = 0 and by (4.22), we get ci
p l (̂ei )

(
λ

p
i+1 + λ

p
i−1

)∣
∣
êi

= 0. Hence ci = 0, for all
i ∈ �1, 3�.

(3) Finally, (4.23) is a direct consequence of (4.22) and the fact that
∫

êi
λ

p
j ds = p!(1−δi j )

(p+1)! l (̂ei ).
��

Remark 4.1 The curl of the high-order Whitney functions reads as

ĉurlω(p)
i =

(
λ

p−1
i+1 + λ

p−1
i−1

)
∇̂λi+1 × ∇̂λi−1.

Then, by using (4.8), we have

ĉurlω(p)
i = λ

p−1
i+1 + λ

p−1
i−1

2|T̂ | , for i ∈ �1, 3�, (4.24)

where i is taken in the cyclic permutations of the set {1, 2, 3}. Since 0 ≤ λ j ≤ 1 for j ∈ �1, 3�,

it can be seen that the choice of the scaling factor 1/p guarantees ĉurlω(p)
i ≤ ĉurlωi .

Let us set W
p = span

{
ω

(p)
1 ,ω

(p)
2 ,ω

(p)
3

}
. In the case of the lowest polynomial order

p = 0, we take W
0 = W. By using Lemmas 4.1, 4.2 and 4.4, an analysis similar to that in

the proof of Theorem 4.2, yields:

Theorem 4.3 Let p ∈ Z+. Then, the two-dimensional Nédélec space ND
2
p(T̂ ) of the first

type of order p satisfies the following algebraic decomposition:

ND
2
p(T̂ ) = W

p ⊕ B
p ⊕ G

p. (4.25)

4.6 Extension of the Bersntein–Bézier H(curl)-Basis to Tetrahedra

The Bernstein–Bézier H(curl)-basis functions can be extended to tetrahedrons, as described
in [58]. To provide a brief summary of this extension, we introduce the tetrahedral reference
element T̂ defined by

T̂ = {
ξ = (ξ1, ξ2, ξ3) : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1 − ξ1 − ξ2

}
,

and whose vertices are q̂1 = (1, 0, 0), q̂2 = (0, 1, 0), q̂3 = (0, 0, 1) and q̂4 = (0, 0, 0).
Notably, T̂ consists of four triangular faces:

f̂1 = < q̂2, q̂3, q̂4 >, f̂2 =< q̂3, q̂4, q̂1 >, f̂3 =< q̂4, q̂1, q̂2 > and
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f̂4 =< q̂1, q̂2, q̂3 >,

where each face f̂i of T̂ corresponds to the face opposite to the vertex q̂i .
Given the barycentric coordinatesλ = (λ1, λ2, λ3, λ4) relative to the reference tetrahedron

T̂ defined by

λ1(ξ) = ξ1, λ2(ξ) = ξ2, λ3(ξ) = ξ3 and λ4(ξ) = 1 − ξ1 − ξ2 − ξ3,

the trivariate Bernstein polynomials of degree p formulated on the reference tetrahedron T̂
read as

B p
α (ξ) =

(
p

α

)

λα(ξ), α ∈ I3p.

The construction of the extended basis functions involves the gradients of the Bernstein–
Bézier polynomials, as well as non-gradients basis functions consisting of:

(1) The lowest-order Whitney edge functions:

ωi j := λi ∇̂λ j − λ j ∇̂λi , for i, j ∈ �1, 4�, i < j .

(2) The H(curl)-face bubbles: for i ∈ �1, 4�,

Γ
p
i,α := (p + 1)Bn

α

(
αi1ωi2i3 + αi2ωi3i1 + αi3ωi1i2

)
, for α ∈ Í3p( f̂i ),

where (i1, i2, i3) is chosen such that (i, i1, i2, i3) is a cyclic permutation of (1, 2, 3, 4),

Í3p( f̂i ) := I3p( f̂i ) \ {
peΠ(i)

}
, with I3p( f̂i ) :=

{
α ∈ I3p : αi = 0

}
.

Herein, Π is the permutation of (1,2,3,4) defined by Π(i) = i + 1 for 1 ≤ i ≤ 3 and
Π(4) = 1.

(3) The H(curl)-cell bubbles: for i ∈ �1, 3�,

Ψ
p+1
i,α = (p + 2)B p+1

α−ei
∇̂λi − αi

p + 2
∇̂B p+2

α , for α ∈ I̊3p+2.

Let us denote by ND
3
p(T̂ ) the three-dimensional Nédélec space of the first type of order

p defined by [1]:

ND
3
p(T̂ ) :=

[
P
3
p(T̂ )

]3 ⊕ S
3
p+1(T̂ ), with S

3
p(T̂ )

:=
{

q ∈
[
P
3
p(T̂ )

]3 : ξ · q(ξ) = 0, ξ ∈ T̂

}

,

where P
3
p(T̂ ) and P

3
p(T̂ ), are respectively, the spaces of polynomials of total degree at most

p and homogeneous polynomials of degree p defined on the reference tetrahedron T̂ . Then,
following [58], it can be shown that the set:

{
∇̂B p+1

α : α ∈ Ǐ3p+1

}
∪ {

ωi j : i, j ∈ �1, 4�, i < j
} ∪

(
∪4

i=1

{
Γ

p
i,α : α ∈ Í3p( f̂i )

})

∪
(
∪2

i=1

{
Ψ

p+1
i,α : α ∈ I̊3p+2

})
∪
{
Ψ

p+1
3,α : α ∈ I̊3p+2, α3 = 1

}

forms a basis for the space ND
3
p(T̂ ).
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Remark 4.2 Similarly as in two space dimensions, the lower-order Whitney functions can be
replaced by the high-order Whitney functions of order p, defined as follows:

ω
(p)
i j = 1

p
λ

p
i ∇̂λ j − 1

p
λ

p
j ∇̂λi , for i, j ∈ �1, 4�, i < j,

where the scaling factor 1/p is chosen such that
∥
∥
∥̂curlω

(p)
i j

∥
∥
∥ ≤

∥
∥
∥̂curlωi j

∥
∥
∥. Apply-

ing similar arguments as in the proof of Lemma 4.4, we can show that the set{
ω

(p)
i j : i, j ∈ �1, 4�, i < j

}
forms a linearly independent family for the Nédélec space

ND
3
p(T̂ ). Moreover, it can be proven as in [58] that the set:

{
∇̂B p+1

α : α ∈ Ǐ3p+1

}
∪ {

ω
(p)
i j : i, j ∈ �1, 4�, i < j

} ∪
(
∪4

i=1

{
Γ

p
i,α : α ∈ Í3p( f̂i )

})

∪
(
∪2

i=1

{
Ψ

p+1
i,α : α ∈ I̊3p+2

})
∪
{
Ψ

p+1
3,α : α ∈ I̊3p+2, α3 = 1

}

forms a basis for the space ND
3
p(T̂ ).

5 SolutionMethod

The approximate Bernstein–Bézier FE solution Eh of (3.9) can be written element-wise, for
T ∈ Th , in the form:

Eh(x) =
3∑

k=1

Eêk
ω

⎧
⎨

⎩

ωk(ξ)

or

ω
(p)
k (ξ)

⎫
⎬

⎭
+

3∑

k=1

∑

α∈I̊2p+1 (̂ek )

Eêk
α ∇̂B p+1

α (ξ)

+
∑

α∈I̊2p+1

Eb1
α ∇̂B p+1

α (ξ) +
∑

α∈Í2p

Eb2
α Γ

p
α(ξ), (5.1)

where the global coordinate x = FT (ξ) and Eêk
ω , Eêk

α , Ebl
α ∈ C are unknown complex scalars.

It is worth noticing that the global edge-orientation is necessary to enable H(curl)-
conformity (see [21], for more details).

The discrete weak form (3.9) yields the following algebraic system

AE = B. (5.2)

Here, A is ndof × ndof sparse, complex symmetric matrix, E and b are, respectively, the
unknown and right-hand side column vectors of C

ndof and ndof is the total number of Degrees
of Freedom (DoF).

The global matrix A and the right-hand side vector b are computed by assembling the
element contributions AT and BT . The element matrix AT can be written as

AT = −MT + KT − iωST . (5.3)

Let us denote byNL the mapping from the multi-index sets in the local FE basis denoted{
ϕ

p
α : α ∈ I

nT̂
dof

}
to the local DoF numbers, where

I
nT̂
dof

= Î2p+1 ∪
(
∪3

k=1I̊
2
p+1(̂ek)

)
∪ I̊2p+1 ∪ Í2p,
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Table 1 Number and types of degrees of freedom in the basis of ND
2
p(T̂ )

Polynomial order Internal DoFs Edge DoFs nT̂
dof

G
p

B
p
T̂

W (or W
p) B

p
ê

0 – – 3 – 3

1 2 – 3 3 8

2 5 1 3 6 15

3 9 3 3 9 24

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

p p(p+3)
2

p(p−1)
2 3 3p (p + 1)(p + 3)

and the convention ϕ
p
α = ωk or ω

(p)
k , for α = (p+1)ek ∈ Î2p+1, is adopted. Table 1 arranges

the different degrees of freedom for each polynomial order p.
Using the H(curl)-conforming transformation (3.6), the element matrices MT , KT and ST

can be evaluated as follows

MT
i j =

([
ω2ε + iωσ

] |JT | J−

T ϕ

p
α , J−


T ϕ
p
β

)

T̂
,

KT
i j =

(
μ−1|JT |−1̂curl ϕ

p
α , ĉurl ϕ

p
β

)

T̂
,

ST
i j =

∑

E⊂∂T ∩Γh

〈
γ lE

(
J−


T ϕ
p
α

)
· tE,

(
J−


T ϕ
p
β

)
· tE

〉

Î
,

where α, β ∈ I
nT̂
dof
, i = NL(α) and j = NL(β). Here, E is an edge of T and lE =

√

x ′2
1(s) + x ′2

2(s), with s ∈ Î = [0, 1] = F−1
T (E).

The element right-hand side bT is given by

bT = iωFT + GT , (5.4)

in which

FT
j =

(
|JT |J, J−


T ϕ
p
β

)

T̂
and GT

j =
∑

E⊂∂T ∩Γh

〈
lEG · tE,

(
J−


T ϕ
p
β

)
· tE

〉

Î
.

For the evaluation of the above element matrices, the geometry is interpolated with the
quadratic Lagrange map, where the impedance boundary condition (2.4) is prescribed. By
doing so, it should be noted that the overall discretization error is not affected by the error
due to the interpolation of the geometry. Indeed, the numerical solution will be compared
to the enforced analytical solution. The case of electromagnetic wave transmission problem
dealt with here in the numerical study, requires an accurate representation of curved elements
sharing an edge with the interface. For this end, the blending map method of Gordon and
Hall [60, 61, 74] is used. For elements with straight edges, the transformation FT reduces to
an affine map and analytical rules are implemented as in [58]. However, high order Gauss-
Legendre quadrature are used for curved elements. Fast quadrature procedures in H(curl)
setting, taking advantage of sum factorisation, are investigated in [55, 72], but they are not
considered in this work.

Static condensation is performed at the element level, in order to reduce memory require-
ments. This procedure which consists to eliminate the element internal DoFs leads to a
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condensed linear system involving only edge based DoFs. The condensed global matrix is
assembled from local element matrices by using a coordinate storage format. The resulting
condensed linear system is solved using the multi-frontal sparse direct solver MUMPS [75].
Once the solution related to the edge basedDoFs is obtained, the internalmodes are recovered
at the post-processing stage by solving element-wise local small linear systems.

6 Numerical Results and Discussion

In this section, we investigate the computational efficiency and convergence properties of the
proposed Bernstein–Bézier H(curl)-conforming FEs, through two-dimensional benchmark
tests of varying levels of complexity.

We first introduce some indicators and notations used later in the analysis. The accuracy
of the numerical solution is evaluated by the relative L2 error ε2 defined by

ε2 = ‖Eh − E‖Ωh

‖E‖Ωh

× 100%, (6.1)

where E represents the analytical solution of the considered problem. We will denote by
Re(Eh) the real part of the approximate electric field Eh and by |Re(Eh)| its corresponding
Euclidean norm.

For simplicity, we will keep the same notation used in Equation (5.2), for the condensed
global linear system to be solved. The wave resolution, in the case of homogeneous media
is measured, by the parameter

τΛ = Λ

√
ndof

|Ωh | , (6.2)

giving the number of DoF per wavelength Λ. Here, ndof is the total number of DoF of the
condensed linear system and |Ωh | is the surface area of the approximate domain Ωh .

We will also denote by κA the condition number of the condensed global linear system,
provided by MUMPS and defined in [75] by

κA = || |A| |A−1| |x̂ | + |A−1| |b| ||∞
||x̂ ||∞ , (6.3)

where x̂ is the computed solution, || · ||∞ is the usual l∞ norm, |A| = (|ai j |) and |b| = (|bi |).

6.1 RadialWave Propagation from a Perfectly Conducting Circular Cavity

6.1.1 Description of the Problem

We consider the propagation of harmonic radial electromagnetic waves produced from a
perfectly conducting circular cylinder of radius a surrounded by an infinite homogeneous
medium suitable for electromagnetic wave propagation. We assume that the cavity consists
of a dielectric material. This corresponds to a conductivity σ = 0. The computational domain
Ω has a circular annulus shape of inner radius a and outer radius R = 2a as shown in Fig. 2.
The adoption of TE setting means that the propagating waves are purely tangential. They are
expressed in terms of the electric field by

E = i

√
μ

ε
H ′
0
(2)

(κr) eθ . (6.4)
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Fig. 2 Computational domain and problem specification

Table 2 Parameters used in the
numerical experiments

Description Value

μ Magnetic permeability 4π × 10−7 [Hm−1]
ε Electric permittivity 8.85 × 10−12 [Fm−1]
σ Electrical conductivity 0.00 [Sm−1]
a Cavity radius 0.5 [m]

Herein, κ = ω
√

με is the wave number and H (2)
ν is the Hankel function of the second kind

and order ν. The notation ’′’ refers to a derivative with respect to the argument.
The electromagnetic parameters used in this numerical study are chosen to be those of air

and are summarized in Table 2.
In order to perform the h-convergence analysis, a series of six gradually refined mesh grids
(Mi )

6
i=1 is considered. Three typical examples of such meshes are displayed in Fig. 3.

In what follows, the abbreviation BBFEMe refers to BBFEM in combination with the
enhanced Bernstein–Bézier H(curl)-FE basis given by (4.25). This will help to make a
distinction with the case where the Bernstein–Bézier basis defined by (4.20) is used.

6.1.2 Comparison of BBFEM Against BBFEMe

First, a comparison study ofBBFEMagainstBBFEMe, in terms of accuracy and conditioning,
is presented. The numerical experiments are performed on the sequence of unstructuredmesh
grids defined in the previous subsection (see Fig. 3).

Table 3 reports the wave resolution τΛ, the L2 error ε2 and condition number κA, at the
frequencies f = 1.00 GHz, f = 2.00 GHz, f = 4.00 GHz and f = 8.00 GHz, for different
values of the polynomial order p. The results of Table 3 show that BBFEM and BBFEMe

have a similar h-convergence behaviour. Moreover, as the frequency increases, both methods
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Fig. 3 Examples of unstructured mesh grids used for the pulsating cavity problem; from left to right: M1
(h = 0.375a), M3 (h = 0.125a) and M6 (h = 0.0625a)

achieve good accuracy with a low number of DoF per wavelength τΛ (see Table 3(d)), but
yield non comparable condition numbers. Indeed, as can be observed from Table 3(d) for
f = 8.00GHz, the conditioning of BBFEMmay be up to two orders ofmagnitude larger than
that of BBFEMe. However, sometimes the conditioning of BBFEMe may slightly worsen,
for a relatively low polynomial order (see Table 3(c), for p = 6).

Since both Bernstein–Bézier H(curl) bases in BBFEM and BBFEMe span the same
Nédélec space, they would therefore result in a similar performance, but conditioning may
be different and, as a consequence, they produce different L2 errors.

6.1.3 Error Analysis: h-Refinement

This subsection focuses on the h-convergence analysis of BBFEMe, with computations being
performed on the sequence of unstructured mesh grids previously defined. The relative L2

error ε2 versus the number τΛ of DoF per wavelength is shown in Fig. 4, at the frequencies
f = 1.00 GHz, f = 2.00 GHz, f = 4.00 GHz and f = 8.00 GHz, for different values of
the polynomial order p.

As expected, the h-convergence rate of BBFEMe increases as a function the polynomial
order p. More precisely, an asymptotically algebraic decay of the L2 error ε2, scaling as
O(τ

−(p+1)
Λ ), is clearly seen from Fig. 4. Due to the pollution effect when the frequency

increases, a pre-asymptotic region of slower convergence can be observed from the results of
Fig. 4d at the frequency f = 8.00 GHz, for a low wave resolution τΛ. Also, as the frequency
increases, it is clear that the method achieves better accuracy for lower values of the number
of DOF per wavelength τΛ.

6.1.4 Error Analysis: p-Refinement

Here, we study the p-convergence analysis of BBFEMe. Computations are carried out on
the mesh grid M2 at the same frequencies as in the previous subsection. Figure5 shows the
L2 error against the polynomial order p at the target frequencies f = 1.00 GHz, f = 2.00
GHz (Fig. 5a), f = 4.00 GHz and f = 8.00 GHz (Fig. 5b).

An exponential decay of the L2 error is clearly seen from the results of Fig. 5. This
convergence rate is expected, as it iswell known, for problemswith smooth solutions.Because
of the pollution error, a pre-asymptotic region of slower convergence can again be observed
at a low polynomial order p, when the frequency increases (see Fig. 5b, for f = 8.00 GHz).
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Table 3 BBFEM versus
BBFEMe; h-refinement, for
different values of the polynomial
order p: (a) f = 1.00 GHz, (b)
f = 2.00 GHz, (c) f = 4.00
GHz and (d) f = 8.00 GHz

p τΛ BBFEM BBFEMe

ε2[%] κA ε2[%] κA

(a) Case f = 1.00 GHz

2 6.45 4.27e+0 3.07e+2 4.27e+0 6.18e+2

11.44 6.72e−1 1.43e+2 6.72e−1 1.58e+2

16.63 2.05e−1 2.74e+2 2.05e−1 2.16e+2

21.54 9.15e−2 3.85e+2 9.15e−2 3.95e+2

26.50 4.76e−2 6.88e+2 4.76e−2 7.01e+2

32.24 2.63e−2 9.84e+2 2.63e−2 6.21e+2

4 8.33 1.12e−1 1.62e+3 1.12e−1 8.37e+2

14.77 5.18e−3 1.46e+2 5.18e−3 1.10e+2

21.47 6.79e−4 2.71e+2 6.79e−4 3.72e+2

27.81 1.74e−4 3.27e+2 1.74e−4 3.51e+2

34.21 5.71e−5 7.06e+2 5.71e−5 7.39e+2

41.63 2.11e−5 1.02e+3 2.11e−5 7.20e+2

6 9.86 1.80e−3 2.13e+4 1.80e−3 1.21e+3

17.48 2.31e−5 3.58e+2 2.31e−5 1.39e+2

25.41 1.30e−6 3.66e+2 1.30e−6 2.46e+2

32.91 1.89e−7 2.91e+2 1.89e−7 3.85e+2

40.47 3.86e−8 3.38e+2 3.86e−8 5.17e+2

49.25 9.52e−9 1.18e+3 9.52e−9 8.88e+2

(b) Case f = 2.00 GHz

4 4.17 4.11e+0 3.95e+2 4.11e+0 8.68e+2

7.39 1.63e−1 2.45e+3 1.63e−1 2.01e+3

10.74 2.13e−2 1.18e+2 2.13e−2 4.73e+2

13.91 5.48e−3 3.00e+2 5.48e−3 3.91e+2

17.10 1.80e−3 4.44e+2 1.80e−3 5.30e+2

20.81 6.68e−4 6.43e+2 6.68e−4 6.33e+2

6 4.93 2.35e−1 1.86e+3 2.35e−1 1.26e+3

8.74 2.86e−3 2.23e+4 2.86e−3 1.28e+3

12.70 1.62e−4 7.60e+2 1.62e−4 5.96e+2

16.45 2.36e−5 4.46e+2 2.36e−5 4.51e+2

20.24 4.82e−6 3.94e+2 4.82e−6 5.90e+2

24.63 1.20e−6 3.60e+2 1.20e−6 6.92e+2

8 5.59 1.05e−2 1.55e+4 1.05e−2 1.52e+3

9.91 3.28e−5 2.53e+5 3.32e−5 8.56e+3

14.41 8.26e−7 8.19e+3 8.33e−7 3.62e+2

18.66 6.75e−8 4.49e+3 6.78e−8 4.37e+2

22.95 8.58e−9 3.59e+3 8.60e−9 6.78e+2

27.92 1.43e−9 3.07e+3 1.43e−9 8.45e+2
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Table 3 continued p τΛ BBFEM BBFEMe

ε2[%] κA ε2[%] κA

(c) Case f = 4.00 GHz

6 2.46 3.50e+1 2.57e+4 3.50e+1 5.37e+3

4.37 3.40e−1 8.68e+3 3.40e−1 6.13e+3

6.35 2.01e−2 2.74e+5 2.01e−2 1.70e+4

8.23 2.96e−3 2.24e+5 2.96e−3 1.55e+4

10.12 6.09e−4 3.70e+4 6.09e−4 2.06e+3

12.31 1.52e−4 7.35e+2 1.52e−4 1.19e+3

8 2.79 5.08e+0 4.25e+4 5.08e+0 2.18e+3

4.95 1.54e−2 1.44e+5 1.54e−2 7.30e+3

7.20 4.17e−4 3.20e+6 4.17e−4 1.17e+5

9.33 3.35e−5 2.60e+6 3.40e−5 1.07e+5

11.47 4.29e−6 4.34e+5 4.32e−6 1.42e+4

13.96 7.20e−7 7.24e+3 7.25e−7 1.21e+3

10 3.09 5.15e−1 6.23e+5 5.15e−1 1.96e+4

5.48 5.10e−4 6.82e+5 5.10e−4 6.15e+4

7.96 6.47e−6 3.96e+7 6.47e−6 9.66e+5

10.31 2.82e−7 3.22e+7 2.86e−7 8.79e+5

12.68 2.25e−8 5.39e+6 2.26e−8 1.16e+5

15.44 2.52e−9 8.68e+4 2.56e−9 2.11e+3

(d) Case f = 8.00 GHz

8 1.40 1.39e+2 5.82e+5 1.39e+2 2.53e+5

2.48 9.74e+0 5.09e+4 9.74e+0 4.50e+3

3.60 1.85e−1 2.05e+6 1.85e−1 6.07e+4

4.66 1.60e−2 1.50e+6 1.60e−2 1.79e+5

5.74 2.12e−3 4.71e+5 2.12e−3 2.92e+4

6.98 3.62e−4 1.88e+6 3.62e−4 6.81e+4

10 1.54 9.56e+1 1.72e+5 9.56e+1 1.09e+5

2.74 7.49e−1 1.79e+5 7.49e−1 1.22e+4

3.98 1.13e−2 2.60e+7 1.13e−2 1.08e+6

5.16 5.46e−4 1.91e+7 5.46e−4 1.63e+6

6.34 4.44e−5 5.91e+6 4.44e−5 2.48e+5

7.72 5.04e−6 2.21e+7 5.04e−6 5.59e+5

12 1.68 6.57e+1 2.80e+6 6.57e+1 1.16e+6

2.98 6.57e−2 2.76e+6 6.57e−2 2.09e+5

4.33 5.71e−4 5.36e+8 5.71e−4 1.02e+7

5.61 1.45e−5 2.48e+8 1.45e−5 1.56e+7

6.89 7.36e−7 7.63e+7 7.36e−7 2.30e+6

8.39 5.87e−8 2.86e+8 6.06e−8 5.12e+6
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Fig. 4 The L2 error versus τΛ; h-refinement for different values of the polynomial order p: a f = 1.00 GHz,
b f = 2.00 GHz, c f = 4.00 GHz and d f = 8.00 GHz

Fig. 5 The L2 error versus the polynomial order for different frequencies; p-refinement with h = 0.1875a: a
f = 1.00 GHz and f = 2.00 GHz, b f = 4.00 GHz and f = 8.00 GHz

For illustration purpose,wedisplay inFig. 6 the contour plots of |Re(uh)| at the frequencies
f = 4.00 GHz and f = 8.00 GHz. Here, the computations are carried out on the mesh grid
M3 with a polynomial order p = 8.

Good accuracy is achieved at the frequency f = 8.00 GHz (see Fig. 6b), with only
τΛ = 3.60. It should be noted, in such case, that elements of the computational mesh grid
M3, may contain up to h/Λ � 2.17 wavelengths.

Although the obtained numerical results so far show a high accuracy, they do not represent
a great challenge, because the analytical solution does not involve a wave field with both
propagating and evanescent modes. It is worth noticing that standard discretization schemes
may not capture the rapid decay of higher-order evanescent modes. These motivate us to
study in the sequel wave scattering problems.
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Fig. 6 Pulsating cavity; contour plots of |Re(Eh)|; h = 0.125a and p = 8: (left) f = 4.00 GHz, ε2 =
4.16 × 10−4% and τΛ = 7.20; (right) f = 8.00 GHz, ε2 = 0.18% and τΛ = 3.60

6.2 Scattering of PlaneWaves by a Conducting Circular Cylinder

6.2.1 Description of the Problem

This second benchmark deals with a scattering problem, where an incident electromagnetic
plane wave traveling horizontally from left to right in a homogeneous dielectric medium and
collides with a perfectly conductive circular cylinder of radius a. We denote the permittivity
and the permeability of the surrounding medium by ε andμ, respectively. The computational
domain and the material parameters are considered as those of the first benchmark (see Fig. 2
and Table 2).

The analytical scattered electrical field in the case of TE configuration [76] is given, in
the polar coordinate system, by

E = Rer + T eθ , (6.5)

where

R = 1

iωε

+∞∑

ν=0

ν

[

(−i)νεν

Jν (κr)

r
+ Aν

H (2)
ν (κr)

r

]

sin (νθ),

T = κ

iωε

+∞∑

ν=0

[
(−i)νεν J ′

ν (κr) + Aν H ′
ν
(2)

(κr)
]
cos (νθ).

Herein, κ = ω
√

με is the wave number, Jν and H (2)
ν are, respectively, the Bessel function

of the first kind and the Hankel function of the second kind and order ν. The sequence {εν}
is defined by ε0 = 1 and εν = 2, for ν ≥ 1. The constants Aν are chosen such that E · t = 0
on the scatterer boundary.

In what follows, the above infinite series are truncated to a finite number Nt of terms. Note
that the truncation does not affect the accuracy, because the truncated analytical solution is
enforced through the impedance boundary condition (2.4).
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Fig. 7 The L2 error versus τΛ; h-refinement for different values of the polynomial order p: a f = 1.00 GHz,
b f = 2.00 GHz, c f = 4.00 GHz and d f = 8.00 GHz

6.2.2 Comparison of BBFEM Against BBFEMe

In the same fashion as before,we conduct a comparison study ofBBFEMagainst BBFEMe. In
contrast to the previous benchmark, the analytical solution of the scattering problem is chosen
such that all propagating modes are included, where Nt � κa. The numerical experiments
are carried out on the same unstructured mesh grids depicted in Fig. 3.

We report in Table 4 the wave resolution τΛ, the L2 error ε2 and condition number κA,
at the frequencies f = 1.00 GHz, f = 2.00 GHz, f = 4.00 GHz and f = 8.00 GHz,
for different values of the polynomial order p. A similar trend as previously shown can be
seen from the results of Table 4, namely, a similar h-convergence behaviour of BBFEM and
BBFEMe and better conditioning of BBFEMe as the frequency increases.

It should be noted that these numerical experiments make use of the same mesh grids and
polynomial order as in the first benchmark. However, the values of the computed condition
number κA differ from those reported in Table 3. This is because the metric defining κA by
equation (6.3) also depends on the right hand side of the linear system to be solved.

6.2.3 Error Analysis: h-Refinement

In a similar fashion, we perform h-convergence study using the same computational mesh
grids as before (see Fig. 3). We first take Nt � κa, so that analytical solutions involve only
propagating wave modes (ν ≤ κa).

In Fig. 7, the L2 error against the number τΛ of DoF per wavelength is plotted at the
typical frequencies f = 1.00 GHz, f = 2.0 × 104 Hz, f = 4.00 GHz and f = 8.00 GHz,
for different values of the polynomial order p.

The results of Fig. 7 show a similar h-convergence behaviour, compared to those of the
previous benchmark. Most importantly, the asymptotically algebraic decay of the L2 error,
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Table 4 BBFEM versus
BBFEMe; h-refinement, for
different values of the polynomial
order p: (a) f = 1.00 GHz, (b)
f = 2.00 GHz, (c) f = 4.00
GHz and (d) f = 8.00 GHz

p τΛ BBFEM BBFEMe

ε2[%] κA ε2[%] κA

(a) Case f = 1.00 GHz

2 6.45 4.93e+0 3.32e+2 4.93e+0 3.91e+2

11.44 7.19e−1 7.82e+1 7.19e−1 8.01e+1

16.63 2.24e−1 1.52e+2 2.24e−1 1.59e+2

21.54 9.84e−2 3.24e+2 9.84e−2 3.18e+2

26.50 5.16e−2 4.72e+2 5.16e−2 4.80e+2

32.24 2.85e−2 5.56e+2 2.85e−2 5.62e+2

4 8.33 1.36e−1 2.34e+3 1.36e−1 9.24e+2

14.77 6.16e−3 9.71e+1 6.16e−3 7.12e+1

21.47 9.03e−4 1.61e+2 9.03e−4 1.71e+2

27.81 2.38e−4 3.38e+2 2.38e−4 2.30e+2

34.21 8.01e−5 3.49e+2 8.01e−5 4.25e+2

41.63 2.85e−5 5.90e+2 2.85e−5 4.96e+2

6 9.86 2.61e−3 2.56e+4 2.61e−3 1.42e+3

17.48 4.35e−5 2.61e+2 4.35e−5 9.25e+1

25.41 3.56e−6 3.08e+2 3.56e−6 1.99e+2

32.91 5.90e−7 3.24e+2 5.90e−7 2.91e+2

40.47 1.32e−7 3.67e+2 1.32e−7 4.61e+2

49.25 2.99e−8 3.58e+2 2.99e−8 6.72e+2

(b) Case f = 2.00 GHz

4 4.17 3.81e+0 6.22e+2 3.81e+0 5.80e+2

7.39 1.72e−1 2.64e+3 1.72e−1 1.60e+3

10.74 2.22e−2 8.73e+1 2.22e−2 2.48e+2

13.91 5.56e−3 1.62e+2 5.56e−3 2.28e+2

17.10 1.87e−3 2.99e+2 1.87e−3 3.40e+2

20.81 6.74e−4 3.72e+2 6.74e−4 3.51e+2

6 4.93 2.03e−1 2.95e+3 2.03e−1 4.53e+2

8.74 3.10e−3 2.57e+4 3.10e−3 1.45e+3

12.70 1.73e−4 6.41e+2 1.73e−4 3.18e+2

16.45 2.52e−5 3.99e+2 2.52e−5 2.57e+2

20.24 5.27e−6 3.14e+2 5.27e−6 3.80e+2

24.63 1.24e−6 2.80e+2 1.24e−6 5.67e+2

8 5.59 8.41e−3 2.29e+4 8.41e−3 2.03e+3

9.91 3.75e−5 2.94e+5 3.75e−5 9.78e+3

14.41 9.63e−7 7.08e+3 9.63e−7 3.19e+2

18.66 8.55e−8 4.16e+3 8.55e−8 1.89e+2

22.95 1.11e−8 2.81e+3 1.11e−8 4.49e+2

27.92 1.70e−9 2.74e+3 1.70e−9 5.92e+2
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Table 4 continued p τΛ BBFEM BBFEMe

ε2[%] κA ε2[%] κA

(c) Case f = 4.00 GHz

6 2.46 3.35e+1 3.18e+4 3.35e+1 1.22e+4

4.37 3.47e−1 1.27e+4 3.47e−1 3.53e+3

6.35 1.96e−2 3.67e+5 1.96e−2 2.19e+4

8.23 3.01e−3 3.32e+4 3.01e−3 2.26e+3

10.12 6.44e−4 1.17e+4 6.44e−4 7.81e+2

12.31 1.52e−4 5.33e+2 1.52e−4 7.69e+2

8 2.79 3.86e+0 2.23e+4 3.86e+0 2.96e+3

4.95 1.61e−2 1.51e+5 1.61e−2 5.36e+3

7.20 3.89e−4 4.30e+6 3.89e−4 1.53e+5

9.33 3.56e−5 5.44e+5 3.56e−5 1.86e+4

11.47 4.71e−6 1.37e+5 4.71e−6 5.46e+3

13.96 7.27e−7 5.67e+3 7.27e−7 7.64e+2

10 3.09 3.51e−1 1.10e+5 3.51e−1 3.26e+4

5.48 5.49e−4 1.94e+6 5.49e−4 3.07e+4

7.96 5.66e−6 5.34e+7 5.66e−6 1.26e+6

10.31 3.21e−7 6.76e+6 3.21e−7 1.53e+5

12.68 2.56e−8 1.71e+6 2.56e−8 4.49e+4

15.44 2.65e−9 6.81e+4 2.67e−9 1.90e+3

(d) Case f = 8.00 GHz

8 1.40 1.28e+2 7.59e+5 1.28e+2 4.94e+5

2.48 1.05e+1 3.10e+4 1.05e+1 4.37e+3

3.60 1.75e−1 1.11e+6 1.75e−1 3.83e+4

4.66 1.71e−2 4.78e+5 1.71e−2 4.93e+4

5.74 2.27e−3 6.76e+4 2.27e−3 3.23e+3

6.98 3.65e−4 1.22e+6 3.65e−4 5.83e+4

10 1.54 1.14e+2 1.29e+5 1.14e+2 6.90e+4

2.74 8.38e−1 2.50e+5 8.38e−1 3.14e+4

3.98 1.00e−2 1.28e+7 1.00e−2 3.01e+5

5.16 6.23e−4 7.66e+6 6.23e−4 4.20e+5

6.34 4.96e−5 8.44e+5 4.96e−5 2.70e+4

7.72 5.33e−6 3.13e+6 5.33e−6 4.80e+5

12 1.68 6.94e+1 2.18e+6 6.94e+1 1.12e+6

2.98 7.17e−2 3.39e+6 7.17e−2 2.31e+5

4.33 4.53e−4 1.14e+8 4.53e−4 3.15e+6

5.61 1.82e−5 1.02e+8 1.82e−5 3.91e+6

6.89 8.60e−7 1.09e+7 8.60e−7 2.49e+5

8.39 6.75e−8 1.41e+8 6.90e−8 4.39e+6
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Fig. 8 The L2 error versus the polynomial order for different frequencies; p-refinement with h = 0.1875a: a
f = 1.00 GHz and f = 2.00 GHz; b f = 4.00 GHz and f = 8.00 GHz

which scales as O(τ
−(p+1)
Λ ), is recovered. Moreover, a pre-asymptotic region of slower

convergence is again observed at a low wave resolution τΛ, when the frequency increases
(see Fig. 7d, for f = 8.00 GHz).

6.2.4 Error Analysis: p-Refinement

In the same way as before, we carry out p-convergence analysis. Figure8 displays the L2

error against the polynomial order p at the frequencies f = 1.00 GHz, f = 2.00 GHz
(Fig. 8a), f = 4.00 GHz and f = 8.00 GHz (Fig. 8b).

The results of Fig. 8 show a similar trend in terms of p-convergence, compared to those
performed previously for the radial wave problem. Most notably, exponential decay of the
L2 error is seen for the considered range of frequencies. Moreover, a pre-asymptotic region
of slower convergence is again observed, when the frequency increases and the wave pattern
is not sufficiently resolved (Fig. 8b, for f = 8.00 GHz).

Figure9 shows the contour plot of |Re(uh)| for the frequencies f = 4.00 GHz and
f = 8.00 GHz. The numerical experiments are carried out on the mesh grid M3, with the
polynomial order p = 8. Here, we take Nt � 2κa, so that the analytical solution includes,
in addition to the propagating wave modes (ν ≤ κa), higher-order evanescent wave modes
(κa < ν ≤ 2κa).

A good quality result for f = 8.00 GHz is obtained, with a low number of DoF per
wavelength τΛ = 3.60. It should be noted that in this case, elements of the mesh grid M3

may contain up to h/Λ � 2.17 wavelengths.

6.3 Scattering of a PlaneWave by a Circular Dielectric Cylinder

6.3.1 Description of the Problem

In this last benchmark, we consider the scattering problem of an horizontal electromagnetic
plane wave by a homogeneous dielectric cylinder, surrounded by an infinite homogeneous
medium with material parameters that are different from those of the dielectric cylinder. The
computational domain is chosen to be a disk of radius a representing the scatterer, surrounded
by concentric annulus, of exterior radius R = 2a. The geometry of the problem is depicted
in Fig. 10.
The material properties of medium Ω1 = (a < r < R) are chosen such that μ(1) = μ,
ε(1) = ε and σ (1) = 0, where μ and ε are given in Table 2, while those of medium Ω2 =
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Fig. 9 Wave scattering; contour plots of |Re(Eh)|; h = 0.125a, p = 8 and Nt � 2κa: (left) f = 4.00 GHz,
ε2 = 3.89 × 10−4% and τΛ = 7.20; (right) f = 8.00 GHz, ε2 = 0.17% and τΛ = 3.60

Fig. 10 Schematic diagram defining the parameters of the wave transmission problem

(r < a) are given by μ(2) = nμ, ε(2) = nε and σ (2) = 0, with n = 2 or 4. These yield a
ratio κ2/κ1 = n, where κi = ω

√
μ(i)ε(i) is the wavenumber in the medium Ωi , i = 1, 2.

In this benchmark, the wave resolution is measured by the parameter

τΛ =
√

ndof
|Ω1|
Λ2

1
+ |Ω2|

Λ2
2

, (6.6)

where Λi is the wavelength in the subdomain Ωi .
The incident plane wave is travelling from left to right in the horizontal direction along

the x1-axis. Compared to the conducting scatterer benchmark dealt with previously, part of
the wave field can penetrate into the dielectric scatterer. Therefore, there is an internal field
inside the scatterer which generates a standing wave.
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Fig. 11 Typical interface fitted mesh grids; from left to right: M1 (h = 0.375a), M3 (h = 0.125a) and M6
(h = 0.0625a)

For the TE polarization case, the total electric field analytical solution can be found in
[76]. It is given in the polar coordinate system by

E =
{

R1er + T1eθ in Ω1

R2er + T2eθ in Ω2,
(6.7)

where

R1 = 1

iωε(1)

+∞∑

ν=0

ν

[

(−i)νεν

Jν (κ1r)

r
+ Aν

H (2)
ν (κ1r)

r

]

sin (νθ),

T1 = κ1

iωε(1)

+∞∑

ν=0

[
(−i)νεν J ′

ν (κ1r) + Aν H ′
ν
(2)

(κ1r)
]
cos (νθ),

R2 = 1

iωε(2)

+∞∑

ν=0

νBν

Jν(κ2r)

r
sin (νθ), T2 = κ2

iωε(2)

+∞∑

ν=0

Bν J ′
ν(κ2r) cos (νθ).

(6.8)

The amplitude coefficients Aν and Bν in equations (6.8) are to be evaluated by using the
following transmission conditions at the interface Σ :

E|Ω1 · t = E|Ω2 · t and
1

μ1
curl E|Ω1 = 1

μ2
curl E|Ω2 on Σ.

As before, the above infinite series are truncated to a finite number Nt � κa of terms. Here,
computations are performed on the interface fitted mesh grids depicted in Fig. 11.

This benchmark was designed to demonstrate the ability of BBFEM in efficiently solving
wave transmission problems with high wave speed contrast and a curved interior interface.

6.3.2 Comparison of BBFEM Against BBFEMe

To further assess the performance of BBFEMe in terms of accuracy and conditioning, a
comparison study against BBFEM is carried out. Herein, the numerical experiments are
performed on the mesh grids shown in Fig. 11. Table 5 reports the wave resolution τΛ, the
L2 error ε2 and condition number κA, when the ratio κ2/κ1 = 2, at the frequencies f = 1.00
GHz, f = 2.00 GHz, f = 4.00 GHz and f = 8.00 GHz. Once again, a similar trend can be
seen from the results of Table 5 compared to those of the previous benchmarks.
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Table 5 BBFEM versus
BBFEMe; h-refinement, for
different values of the polynomial
order p, with κ2/κ1 = 2: (a)
f = 1.00 GHz, (b) f = 2.00
GHz, (c) f = 4.00 GHz and (d)
f = 8.00 GHz

p τΛ BBFEM BBFEMe
ε2[%] κA ε2[%] κA

(a) Case f = 1.00 GHz

2 4.87 6.11e+1 1.33e+3 6.11e+1 2.68e+3

8.61 7.33e+0 1.90e+3 7.33e+0 2.61e+3

12.48 1.16e+0 3.08e+2 1.16e+0 3.43e+2

16.19 4.84e−1 5.05e+2 4.84e−1 5.33e+2

19.93 2.55e−1 6.99e+2 2.55e−1 7.04e+2

24.34 1.37e−1 1.10e+3 1.37e−1 1.11e+3

4 6.28 1.92e+0 3.77e+3 1.92e+0 2.16e+3

11.12 8.97e−2 5.72e+3 8.97e−2 1.87e+3

16.12 1.31e−2 3.04e+2 1.31e−2 4.00e+2

20.90 3.27e−3 4.69e+2 3.27e−3 5.78e+2

25.74 1.17e−3 7.01e+2 1.17e−3 7.44e+2

31.43 4.06e−4 1.09e+3 4.06e−4 1.15e+3

6 7.43 7.02e−2 2.10e+4 7.02e−2 3.20e+3

13.16 1.38e−3 5.77e+4 1.38e−3 3.31e+3

19.07 9.19e−5 1.28e+2 9.19e−5 4.26e+2

24.73 1.25e−5 4.71e+2 1.25e−5 5.78e+2

30.45 2.98e−6 7.04e+2 2.98e−6 7.89e+2

37.19 6.71e−7 1.09e+3 6.71e−7 1.20e+3

(b) Case f = 2.00 GHz

4 3.14 1.16e+2 3.35e+3 1.16e+2 4.11e+3

5.56 9.25e+0 4.02e+4 9.25e+0 2.44e+4

8.06 4.52e−1 3.76e+3 4.52e−1 2.43e+3

10.45 1.06e−1 1.29e+3 1.06e−1 1.87e+3

12.87 3.80e−2 3.45e+2 3.80e−2 5.40e+2

15.71 1.33e−2 3.83e+2 1.33e−2 4.96e+2

6 3.72 2.14e+1 1.80e+4 2.14e+1 5.64e+3

6.58 2.24e−1 6.95e+4 2.24e−1 8.51e+3

9.54 1.06e−2 4.75e+4 1.06e−2 2.96e+3

12.37 1.61e−3 1.14e+4 1.61e−3 2.22e+3

15.23 3.95e−4 7.58e+2 3.95e−4 6.23e+2

18.59 8.98e−5 7.71e+2 8.98e−5 5.84e+2

8 4.21 1.26e+0 4.01e+4 1.26e+0 2.80e+3

7.46 9.26e−3 8.43e+5 9.26e−3 4.18e+4

10.81 1.88e−4 5.64e+5 1.88e−4 3.02e+4

14.02 1.57e−5 1.26e+5 1.57e−5 4.66e+3

17.26 2.70e−6 7.77e+3 2.70e−6 7.02e+2

21.08 1.51e−6 7.25e+3 1.77e−6 7.56e+2
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Table 5 continued p τΛ BBFEM BBFEMe
ε2[%] κA ε2[%] κA

(c) Case f = 4.00 GHz

6 1.86 1.15e+2 1.55e+4 1.15e+2 1.01e+4

3.29 1.59e+2 1.53e+5 1.59e+2 2.28e+5

4.77 3.47e+0 1.82e+5 3.47e+0 1.17e+4

6.18 2.34e−1 9.73e+4 2.34e−1 7.97e+3

7.61 4.67e−2 8.17e+3 4.67e−2 1.16e+3

9.30 1.14e−2 9.51e+4 1.14e−2 6.65e+3

8 2.11 1.20e+2 5.50e+4 1.20e+2 3.73e+4

3.73 1.37e+1 9.34e+4 1.37e+1 1.63e+4

5.41 9.05e−2 2.12e+6 9.05e−2 8.11e+4

7.01 7.64e−3 2.40e+6 7.64e−3 6.23e+4

8.63 1.18e−3 9.62e+4 1.18e−3 3.95e+3

10.54 2.01e−4 1.11e+6 2.01e−4 4.66e+4

10 2.33 1.12e+2 5.10e+5 1.12e+2 2.49e+5

4.12 7.23e−1 1.09e+7 7.23e−1 1.19e+6

5.98 4.38e−3 2.63e+7 4.38e−3 6.70e+5

7.75 2.11e−4 1.58e+7 2.11e−4 6.54e+5

9.54 2.20e−5 1.21e+6 2.20e−5 3.32e+4

11.65 2.74e−6 1.37e+7 2.77e−6 3.85e+5

(d) Case f = 8.00 GHz

8 1.05 1.17e+2 4.53e+5 1.17e+2 2.89e+5

1.86 1.15e+2 2.37e+4 1.15e+2 5.41e+4

2.70 1.34e+2 2.42e+5 1.34e+2 6.60e+4

3.51 2.25e+1 7.80e+5 2.25e+1 1.19e+5

4.32 1.72e+0 2.38e+6 1.72e+0 3.26e+5

5.27 1.74e−1 7.62e+5 1.74e−1 7.55e+4

10 1.16 1.18e+2 4.48e+5 1.18e+2 3.80e+5

2.06 1.21e+2 1.27e+6 1.21e+2 9.72e+5

2.99 3.63e+1 2.55e+6 3.63e+1 6.15e+5

3.88 1.07e+0 9.50e+6 1.07e+0 8.23e+5

4.77 8.69e−2 3.20e+6 8.69e−2 5.92e+5

5.83 5.67e−3 1.92e+6 5.66e−3 2.22e+5

12 1.27 1.18e+2 1.43e+7 1.18e+2 9.34e+6

2.24 1.39e+2 3.60e+6 1.39e+2 3.67e+6

3.25 3.05e+0 3.99e+7 3.05e+0 5.92e+6

4.21 4.71e−2 5.37e+8 4.71e−2 7.91e+6

5.19 2.32e−3 4.65e+7 2.32e−3 6.57e+5

6.33 2.34e−4 2.48e+7 2.34e−4 2.03e+6
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Table 6 BBFEM versus
BBFEMe; h-refinement, for
different values of the polynomial
order p, with κ2/κ1 = 4: (a)
f = 1.00 GHz, (b) f = 2.00
GHz, (c) f = 4.00 GHz and (d)
f = 8.00 GHz

p τΛ BBFEM BBFEMe
ε2[%] κA ε2[%] κA

(a) Case f = 1.00 GHz

4 3.81 1.49e+2 3.07e+4 1.49e+2 3.73e+4

6.75 1.11e+1 3.91e+4 1.11e+1 6.34e+4

9.78 5.94e−1 4.91e+3 5.94e−1 4.97e+3

12.69 1.14e−1 2.91e+3 1.14e−1 3.31e+3

15.62 3.90e−2 1.05e+3 3.90e−2 1.38e+3

19.08 1.35e−2 9.04e+2 1.35e−2 1.25e+3

6 4.51 3.50e+1 3.14e+4 3.50e+1 4.25e+4

7.99 2.01e−1 5.69e+4 2.01e−1 2.71e+4

11.58 1.21e−2 5.04e+4 1.21e−2 5.79e+3

15.01 1.71e−3 6.22e+3 1.71e−3 3.68e+3

18.48 3.99e−4 1.68e+3 3.99e−4 1.80e+3

22.57 9.01e−5 9.07e+2 9.01e−5 1.46e+3

8 5.12 1.70e+0 1.74e+5 1.70e+0 9.05e+3

9.06 7.65e−3 6.19e+5 7.65e−3 3.32e+4

13.12 2.25e−4 6.67e+5 2.25e−4 3.58e+4

17.02 1.71e−5 7.93e+4 1.71e−5 4.98e+3

20.96 2.69e−6 1.64e+4 2.69e−6 2.02e+3

25.59 2.73e−6 3.90e+3 3.12e−6 1.64e+3

(b) Case f = 2.00 GHz

6 2.26 1.15e+2 8.90e+3 1.15e+2 8.23e+3

3.99 1.32e+2 4.12e+4 1.32e+2 5.98e+4

5.79 5.19e+0 5.17e+5 5.19e+0 1.31e+5

7.51 2.67e−1 7.44e+5 2.67e−1 3.11e+5

9.24 5.15e−2 8.57e+3 5.15e−2 2.60e+4

11.29 1.12e−2 3.42e+5 1.12e−2 1.54e+5

8 2.56 1.35e+2 1.17e+5 1.35e+2 8.82e+4

4.53 1.36e+1 1.47e+5 1.36e+1 1.17e+5

6.56 1.21e−1 2.54e+5 1.21e−1 6.03e+4

8.51 8.00e−3 1.05e+6 8.00e−3 3.36e+5

10.48 1.27e−3 9.53e+4 1.27e−3 3.15e+4

12.80 1.97e−4 3.92e+6 2.01e−4 1.63e+5

10 2.83 1.28e+2 7.46e+5 1.28e+2 4.31e+5

5.01 9.89e−1 1.46e+7 9.89e−1 1.62e+6

7.26 5.68e−3 3.15e+6 5.68e−3 6.76e+4

9.41 2.28e−4 1.43e+7 2.28e−4 3.79e+5

11.58 2.39e−5 1.17e+6 2.39e−5 3.59e+4

14.15 7.87e−6 4.85e+7 8.16e−6 1.19e+6
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Table 6 continued p τΛ BBFEM BBFEMe
ε2[%] κA ε2[%] κA

(c) Case f = 4.00 GHz

8 1.28 1.05e+2 6.55e+4 1.05e+2 2.05e+4

2.26 1.34e+2 6.51e+5 1.34e+2 1.58e+5

3.28 1.49e+2 3.38e+5 1.49e+2 7.02e+4

4.26 2.40e+1 6.23e+5 2.40e+1 5.43e+4

5.24 2.74e+0 3.64e+6 2.74e+0 5.94e+5

6.40 1.20e−1 1.25e+5 1.20e−1 1.52e+4

10 1.41 1.13e+2 3.61e+5 1.13e+2 2.30e+5

2.50 1.31e+2 3.60e+6 1.31e+2 1.42e+6

3.63 5.00e+1 4.01e+6 5.00e+1 9.06e+5

4.70 8.46e−1 3.01e+6 8.46e−1 5.59e+5

5.79 4.63e−2 8.35e+6 4.63e−2 1.93e+5

7.07 4.54e−3 1.54e+6 4.54e−3 3.88e+4

12 1.54 1.20e+2 1.09e+7 1.20e+2 8.96e+6

2.72 1.84e+2 1.99e+7 1.84e+2 2.04e+7

3.94 1.06e+1 4.10e+7 1.06e+1 8.28e+6

5.11 3.08e−2 1.11e+9 3.08e−2 4.23e+7

6.30 2.26e−3 1.06e+8 2.26e−3 1.86e+6

7.69 1.84e−4 1.98e+7 1.84e−4 3.68e+5

(d) Case f = 8.00 GHz

12 0.77 1.06e+2 1.81e+6 1.06e+2 1.25e+6

1.36 1.09e+2 1.50e+7 1.09e+2 1.51e+7

1.97 1.32e+2 3.43e+7 1.32e+2 3.45e+7

2.56 1.43e+2 1.53e+8 1.43e+2 1.49e+8

3.15 9.65e+1 8.49e+7 9.65e+1 3.83e+7

3.84 5.36e+0 2.51e+7 5.36e+0 3.11e+6

14 0.83 1.03e+2 6.99e+9 1.03e+2 6.37e+9

1.46 1.15e+2 9.76e+7 1.15e+2 1.18e+8

2.12 1.38e+2 3.65e+8 1.38e+2 3.67e+8

2.75 1.79e+2 9.25e+8 1.79e+2 9.28e+8

3.38 2.88e+1 1.37e+8 2.88e+1 1.23e+8

4.13 2.88e−1 2.09e+8 2.88e−1 2.47e+7

16 0.88 1.06e+2 8.97e+8 1.06e+2 9.00e+8

1.56 1.20e+2 1.37e+10 1.20e+2 1.37e+10

2.25 1.41e+2 2.17e+9 1.41e+2 2.04e+9

2.92 3.50e+1 2.97e+11 3.50e+1 2.98e+11

3.60 7.39e−1 6.79e+8 7.39e−1 2.68e+8

4.40 1.30e−2 3.58e+9 1.30e−2 2.60e+8
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Fig. 12 Wave transmission problem; contour plots of |Re(Eh)| at f = 4.00GHz, with p = 10 and Nt � κ2a:
(left) κ2/κ1 = 2, mesh grid M2, ε2 = 0.72% and τΛ = 4.12; (right) κ2/κ1 = 4, mesh grid M4, ε2 = 0.85%
and τΛ = 4.70

The results corresponding to the ratio κ2/κ1 = 4 are reported in Table 6. Up to the
frequency f = 4.00 GHz, BBFEMe yields a reduction of the condition number by up to
two orders of magnitude, as the polynomial order p increases (see Table 6(a), (b) and (c)).
For the target frequency f = 8.00 GHz, the polynomial order is further increased to achieve
accuracy below 1%. This leads to high levels of the condition number κA for both Bernstein–
Bézier H(curl) bases. It should be noted that elements of the finest mesh M6 used in such
a case may contain up to h/Λ2 � 4.42 wavelengths. The results of Table 6(d) show that
BBFEM and BBFEMe yield comparable accuracies and almost the same condition numbers.

Figure12 shows the contour plot of |Re(uh)| at f = 4.00 GHz for both ratios κ2/κ1 = 2
and κ2/κ1 = 4, where p = 10 and Nt � κ2a. Computations are carried out on mesh grids
M2 and M4, where h = 0.187a and h = 0.094a, respectively.

Good accuracies are achieved, with only τΛ = 4.12 and τΛ = 4.70, on computational
meshes capable to contain multi-wavelength sized elements such that h/Λ2 � 3.04 and
h/Λ2 � 3.52, respectively.

7 Conclusions

In this paper, BBFEM has been successfully implemented for the solution of time-harmonic
Maxwell wave problems, on unstructured triangular mesh grids. An enhanced H(curl) FE
basis, with improved conditioning, is proposed by incorporating high-order Whitney func-
tions. Static condensation is performed element-wise in order to efficiently solve the resulting
condensed linear system.

The performance of BBFEM has been evaluated, in terms of accuracy conditioning
and wave resolution, by considering three benchmark tests. As expected, the h- and p-
convergence studies confirmed that the suggested method enables the recovery of the
algebraic and exponential convergence rates, respectively. Moreover, p-BBFEM has shown
to bemore effective in reducing the pollution effect and capturing high-order evanescentwave
modes involved in the wave scattering problems. Furthermore, the high geometric flexibility
of BBFEM in combination with a blending map method enables to represent computational
domains including curved interfaces with very high accuracy.
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Future work should take into account hp-adaptivity to further improve the computational
efficiency as well as optimal complexity algorithms to speed up the assembly process and
take full advantage of BBFEM.Other possible potential research directions include the use of
a robust preconditioned iterative method to solve the resulting linear systems, which are typ-
ically complex valued and tend to be highly indefinite at higher frequencies. Nonoverlapping
domain decomposition methods have demonstrated to provide efficient iterative algorithms
for the solution of the time-harmonic Maxwell’s equations [77–79]. It is believed that the
modified basis will help in enhancing the convergence of such iterative algorithms. Based on
these encouraging results, it is also planned to extend the method to solve 3DMaxwell wave
problems with material discontinuity, in the presence of curved interface, and anisotropy.
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