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Abstract
We propose explicit stochastic Runge–Kutta (RK)methods for high-dimensional Itô stochas-
tic differential equations. By providing a linear error analysis and utilizing a Strang
splitting-type approach, we construct them on the basis of orthogonal Runge–Kutta–
Chebyshevmethods of order 2. Ourmethods are of weak order 2 and have high computational
accuracy for relatively large time-step size, as well as good stability properties. In addition,
we take stochastic exponential RK methods of weak order 2 as competitors, and deal with
implementation issues on Krylov subspace projection techniques for them. We carry out
numerical experiments on a variety of linear and nonlinear problems to check the computa-
tional performance of the methods. As a result, it is shown that the proposed methods can
be very effective on high-dimensional problems whose drift term has eigenvalues lying near
the negative real axis and whose diffusion term does not have very large noise.

Keywords Explicit method · Weak second order approximation · Orthogonal
Runge–Kutta–Chebyshev method · Stiffness · Noncommutative noise · Itô stochastic
differential equation

Mathematics Subject Classification 60H10 · 65L05 · 65L06

1 Introduction

We are concerned with stabilized explicit methods for high-dimensional stochastic differen-
tial equations (SDEs), which give weak second order approximations to the solution of SDEs.
One such class for ordinary differential equations (ODEs) is the Runge–Kutta–Chebyshev
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(RKC) methods, which are useful for stiff problems whose eigenvalues lie near the nega-
tive real axis [3, 30]. When the dimension of ODEs is very high, the class can be a powerful
tool, compared with other stabilized explicit methods such as exponential Runge–Kutta (RK)
methods. Recently, the class has played a significant role for the development of stabilized
explicit methods for SDEs.

Abdulle and Cirilli [1] andAbdulle and Li [2] have proposed a family of explicit stochastic
orthogonal Runge–Kutta–Chebyshev (SROCK) methods of strong order 1/2 and weak order
1 for noncommutative Stratonovich SDEs and for noncommutative Itô SDEs, respectively. As
the first order RKCmethods are embedded into their SROCKmethods, the SROCKmethods
have extended mean square (MS) stability regions. Komori and Burrage [21] have proposed
SROCKmethods of weak order 2 for noncommutative Stratonovich SDEs. The second order
orthogonal RKCmethods proposed in [3] are embedded into the SROCKmethods from [21].
We will refer to the orthogonal RKCmethods as the standard ROCK2methods. The SROCK
methods in [21] have the advantage that the stability region is large along the negative
real axis, but their stability region is not very wide. In order to overcome this drawback,
Abdulle, Vilmart, and Zygalakis [4] have proposed a new family of weak second order
SROCKmethods for noncommutative Itô SDEs.We call them SROCK2methods throughout
the present paper. In the SROCK2 methods, a new family of second order orthogonal RKC
methods is embedded, and it has a real parameter α. We will refer to them as the ROCK2
methods with α. The ROCK2 methods with α = 1 reduce to the standard ROCK2 methods.

Incidentally, there is another suitable class of explicitmethods for semilinear problems that
have stiffness in the linear part as opposed to the nonlinear part. One such class ofmethods for
semilinear ODEs is the family of explicit exponential RK methods [15–17]. These methods
have been recently developed for SDEs [9–12, 14, 22]. Some exponential RK methods have
been proposed to cope with highly oscillatory problems [9, 12]. In [23], the authors have
proposed weak second order stochastic exponential RK methods for noncommutative Itô
SDEs with a semilinear drift term, and showed the superiority of stochastic exponential RK
methods to SROCK2 methods in terms of computational accuracy for relatively large step
size in numerical experiments. This fact reduces the advantage of SROCK2 methods against
exponential RK methods in high-dimensional problems.

In the present paper, we propose the split SROCK2 methods, which not only are explicit
and stabilized, but also have high computational accuracy for relatively large step size. Our
extention for the SROCK2 methods is very helpful to remove a step size restriction that
the SROCK2 methods suffer from for computational accuracy in high-dimensional SDEs.
In Sect. 2 we will briefly introduce the derivative-free Milstein–Talay (DFMT) method. In
Sect. 3 we will derive the split SROCK2 methods and will give their error analysis. In Sect. 4
we will state other stabilized explicit methods based on the ROCK2 methods with α, as well
as stochastic exponential RK methods. In addition, we will deal with the implementation
issues of Krylov subspace projection techniques for matrix exponential functions. In Sect. 5
we will present numerical results and in Sect. 6 our conclusions.

2 Weak Second Order Stochastic RKMethods

First of all, We briefly introduce the definition of weak order of convergence and the DFMT
method of weak order 2 [4]. We are concerned with the autonomous SDE

d y(t) = f ( y(t))dt +
m∑

j=1

g j ( y(t))dWj (t), y(0) = y0, (1)
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where t ∈ [0, T ] and where f , g j , j = 1, 2, . . . ,m, are R
d -valued functions on R

d , the
Wj (t), j = 1, 2, . . . ,m, are independentWiener processes, and y0 is independent ofWj (t)−
Wj (0) [7, p. 100]. In order to consider weak q-th order approximations to its solution, we
make the assumptions on (1) that all moments of the initial value y0 exist and f , g j , j =
1, 2, . . . ,m, are Lipschitz continuouswith all their components belonging toC2(q+1)

P (Rd ,R).
As usual, CL

P (Rd ,R) denotes the family of L times continuously differentiable real-valued
functions on R

d , whose partial derivatives of order less than or equal to L have polynomial
growth [20, p. 474]. Let yn denote a discrete approximation to the solution y(tn) of (1) for

an equidistant grid point tn
def= nh (n = 1, 2, . . . , M) with step size h = T /M < 1 (M is a

positive integer). Then we define the weak convergence of order q as follows [20, p. 327].

Definition 1 When a numerical method gives discrete approximations yn , n = 1, 2, . . . , M ,

we say that the method is of weak (global) order q if for all G ∈ C2(q+1)
P (Rd ,R), constants

C > 0 (independent of h) and δ0 > 0 exist such that

|E[G( y(T )] − E[G( yM )]| ≤ Chq , h ∈ (0, δ0).

An effective numerical method of weak order 2, the DFMT method, has been proposed
[4]:

K 1 = yn + h f ( yn), K 2 = K 1 + √
h

m∑

j=1

g j ( yn)ξ j ,

yn+1 = yn + h

2

{
f
(
yn
)+ f (K 2)

}+ H
(
yn
)+ H̃

(
yn + K 1

2
, yn

)
,

(2)

where

H( y)
def= 1

2

m∑

j=1

{
g j

(
y + h

m∑

k=1

gk ( y) ζk j

)
− g j

(
y − h

m∑

k=1

gk ( y) ζk j

)}
,

H̃( y, z)
def=

√
h

2

m∑

j=1

{
g j

(
y +

√
h

2

m∑

k=1

gk (z) χk

)

+g j

(
y −

√
h

2

m∑

k=1

gk (z) χk

)}
ξ j ,

and where the χ j and ξ j , j = 1, 2, . . . ,m, are discrete random variables satisfying P(χ j =
±1) = 1/2, P(ξ j = ±√

3) = 1/6, and P(ξ j = 0) = 2/3, and the ζk j , j, k = 1, 2, . . . ,m,
are given by

ζk j
def=
⎧
⎨

⎩

(ξ jξ j − 1)/2 ( j = k),
(ξkξ j − χk)/2 ( j < k),
(ξkξ j + χ j )/2 ( j > k).

Based on the following well-known theorem proposed by Milstein [25, 26], the proof of
the weak order of convergence is obtained for (2). For details, see [4].

Theorem 1 Suppose that the numerical solutions satisfy the following conditions:

(1) for a sufficiently large r ∈ N, the moments E[‖ yn‖2r ] exist and are uniformly bounded
with respect to M and n = 0, 1, . . . , M;
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(2) for all G ∈ C2(q+1)
P (Rd ,R), the local error estimation

∣∣E[G( y(tn+1))] − E[G( yn+1)]
∣∣ ≤ |K ( yn)|hq+1

holds if y(tn) = yn, where K ∈ C0
P (Rd ,R).

Then, the method that gives yn, n = 1, 2, . . . , M, is of weak (global) order q.

Remark 1 If (1) has diagonal noise [20, p. 348], that is, d = m and

[g1( y) g2( y) . . . gd( y)] = diag(g11(y1), g22(y2), . . . , gdd(yd))

are satisfied, then we have
∑d

j=1 g j ( y)ξ j = [g11(y1)ξ1 g22(y2)ξ2, . . . , gdd(yd)ξd ]�, where
g j j and y j , j = 1, 2, . . . , d , denote the j-th component of g j and y, respectively. Similarly,
H( y) is a d-dimensional vector whose j-th component is

1

2

{
g j j
(
y j + hg j j (y j )ζ j j

)− g j j
(
y j − hg j j (y j )ζ j j

)}
,

and H̃( y, z) is a d-dimensional vector whose j-th component is
√
h

2

{
g j j

(
y j +

√
h

2
g j j (z j )χ j

)
+ g j j

(
y j −

√
h

2
g j j (z j )χ j

)}
ξ j .

If g j , j = 1, 2, . . . ,m, vanish in (1), then the problem is an ODE. Thus, we give a brief
introduction to the ROCK2 methods with a free parameter α for ODEs [3]. Originally, the
standardROCK2methods have been proposed byAbdulle andMedovikov [3]. The parameter
values of the methods are given in a site1 on the Internet. Abdulle, Vilmart, and Zygalakis
[4] have extended the standard ROCK2 methods to the following ROCK2 methods with a
free parameter α:

K 0 = yn, K 1 = K 0 + μ1αh f (K 0),

K i = μiαh f (K i−1) + (κi + 1)K i−1 − κi K i−2, i = 2, 3, . . . , s − 2,

K s−1 = K s−2 + 2ταh f (K s−2),

yn+1 = K s−2 +
(
2θα − 1

2

)
h f (K s−2) + h

2
f (K s−1).

(3)

Here, θα
def= (1 − α)/2 + αθ , τα

def= (1 − α)2/2 + 2α(1 − α)θ + α2τ , and the μi , κi , θ , and
τ are the same constants as in the standard s-stage ROCK2 method. This method achieves
order 2 for ODEs regardless of the value of α.

3 Novel Stabilized Explicit Methods of Weak Order 2

We want explicit methods to inherit preferable stability properties from (3) by involving its
stabilization procedures, while keeping weak order 2 for any α. In order to achieve this,
we propose to utilize a splitting technique. As a result, we construct novel stabilized explicit
methods ofweakorder 2,which have not only good stability properties, but also high precision
in the weak sense.

1 https://www.epfl.ch/labs/anmc/software/.
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3.1 Preliminary

When we consider deriving a new method of weak order 2 based on the DFMT method, the
following lemma proposed in [23] can be a useful tool.

Lemma 1 For an approximate solution yn, let yn+1 be given by (2) and ŷn+1 be defined by

ŷn+1 = ỹn+1 + h

2
f
(
Y1 + √

h
m∑

j=1

g j (Y2) ξ j

)
+ H (Y3) + H̃ (Y4,Y5) .

Here, we assume that the intermediate values ỹn+1 and Y i , i = 1, 2, . . . , 5, have no random
variable and satisfy Y4 = yn + (h/2) f

(
yn
) + O

(
h2
)
, Y i = yn + O(h), i = 1, 2, 3, 5,

and

ỹn+1 + h

2
f (Y1) = yn + h f

(
yn
)+ h2

2
f ′ ( yn

)
f
(
yn
)+ O

(
h3
)
. (4)

(Note that the symbol O(h p) represents terms x such that ‖x‖ ≤ |K ( yn)|h p for a K ∈
C0

P (Rd ,R) and a small h > 0.) Then, for all G ∈ Cr
P (Rd ,R) (r ≥ 3),

E
[
G
(
ŷn+1

)]− E
[
G
(
yn+1

)] = O
(
h3
)
. (5)

The following lemma gives a splitting technique which does not violate the weak second
order of convergence. A related theorem was originally proposed in [23]. Here, we write part
of the statement in the theorem with an appropriate notation for the present paper.

Lemma 2 For an approximate solution yn, let yn+1 be given by (2) and ŷn+1 be defined by

ŷn+1 = Ψ h
2

(
Φh

(
Ψ h

2
( yn)

))
,

where Φh is the DFMT method for SDEs given by making the drift term zero, that is,

Φh( yn) = yn + H
(
yn
)+ H̃

(
yn, yn

)
, (6)

and where Ψ h denotes a numerical method that at least satisfies

Ψ h( yn) = yn + h f ( yn) + h2

2
f ′( yn) f ( yn) + O

(
h3
)
.

Then, for all G ∈ Cr
P (Rd ,R) (r ≥ 3)

E
[
G
(
ŷn+1

)]− E
[
G
(
yn+1

)] = O
(
h3
)
.
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3.2 An Extended Class of the Stabilized Explicit Methods

Now, let us put all ideas mentioned so far together and organize them in a sophisticated way
to obtain a new class of the stabilized explicit methods. Then, we propose

K 0 = yn, K 1 = K 0 + μ1α
h

2
f (K 0),

K i = μiα
h

2
f (K i−1) + (κi + 1)K i−1 − κi K i−2, i = 2, 3, . . . , s − 2,

K̃ s−1 = K s−2 + ταh f (K s−2), K̂ s−1 = K s−2 + θαh f (K s−2),

K∗
s = K s−2 +

(
2θα − 1

2

)
h

2
f (K s−2) + h

4
f (K̃ s−1) + H(K s−2)

+ H̃(K̂ s−1, K s−2), yn+1 = Ψ h
2

(
K∗

s

)
.

(7)

We name the methods (7) in our extended class as the split SROCK2 methods. In what
follows, we will call them by this name.

Theorem 2 Suppose that all moments of the initial value y0 exist and f , g j , j = 1, 2, . . . ,m,
are Lipschitz continuous with all their components belonging to C6

P (Rd ,R) in (1). Then, (7)
is of weak order 2 for (1).

Proof We begin with

yn+1 = Ψ h
2

(
Φh

(
Ψ h

2
( yn)

))
, (8)

where Φh is given in (6) and Ψ h( yn) denotes yn+1 given in (3). As mentioned after (3),
since (3) achieves order 2 for ODEs regardless of the value of α, its local error is of order 3
for ODEs. Due to Lemma 2, then (8) clearly has a local error of weak order 3. In order to
see that the difference between (8) and (7) is of weak order 3, let us show that the difference

between Φh

(
Ψ h

2
( yn)

)
and K∗

s is of weak order 3. When we denote Ψ h
2

(
yn
)
by Ψ̃ , we can

rewrite these expressions as

Φh

(
Ψ h

2
( yn)

)
= Ψ̃ + H(Ψ̃ ) + H̃(Ψ̃ , Ψ̃ ), K∗

s = Ψ̃ + H(K s−2) + H̃
(
K̂ s−1, K s−2

)
.

From (7) we obtain the estimates

Ψ̃ − K s−2 = h

{
1

2

(
2θα − 1

2

)
f (K s−2) + 1

4
f (K̃ s−1)

}
= ha + O(h2)

and

Ψ̃ − K̂ s−1 = h

{
−1

4
f (K s−2) + 1

4
f (K̃ s−1)

}
= h2b + O(h3),

where a = (θα − 1/4) f ( yn) + (1/4) f ( yn) and b = (1/4)τα f ′( yn) f ( yn). Since we can
rewrite H(Y) as

H(Y) = h
m∑

j,k=1

g′
j (Y)gk(Y)ζk j + O(h3), (9)
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we have

H(Ψ̃ ) − H(K s−2)

= h
m∑

j,k=1

{
g′
j (Ψ̃ )gk(Ψ̃ ) − g′

j (K s−2)gk(K s−2)
}

ζk j + O(h3) = h2r1 + O(h3),

where r1 =∑m
j,k=1

{
g′′
j

(
yn
) [
a, gk

(
yn
)]+ g′

j

(
yn
)
g′
k

(
yn
)
a
}

ζk j . Here, we use the nota-

tion g′′
j ( y)[·, ·] for the second derivative (a symmetric bilinear form) of g j at y. Similarly,

since we can rewrite H̃(Y1,Y2) as

H̃(Y1,Y2)

= √
h

m∑

j=1

g j (Y1)ξ j + h3/2

4

m∑

j,k,l=1

g′′
j (Y1)[gk(Y2), gl(Y2)]χkχlξ j

+ h5/2

96

m∑

j,k,l,q,r=1

g(4)
j (Y1)[gk(Y2), gl(Y2), gq(Y2), gr (Y2)]χkχlχqχr ξ j

+ O(h3),

we have H̃(Ψ̃ , Ψ̃ ) − H(K̂ s−1, K s−2) = h5/2r2 + O(h3), where

r2 =
m∑

j=1

{
g′
j

(
yn
)
b + 1

2

m∑

k,l=1

g′′
j

(
yn
) [

gk
(
yn
)
, g′

l

(
yn
)
a
]
χkχl

}
ξ j .

Here, we use the notation g(4)
j ( y)[·, ·, ·, ·] for the fourth derivative (a symmetric tetra-linear

form) of g j at y. Thus, from Φh

(
Ψ h

2
( yn)

)
− K∗

s = h2r1 + h5/2r2 + O(h3), we have

G
(
Φh
(
Ψ h

2
( yn)

))− G
(
K∗

s

)

= G ′ ( yn
) (

h2r1 + h5/2r2
)

+ h5/2G ′′ ( yn
) [ m∑

j=1

g j

(
yn
)
ξ j , r1

]
+ O

(
h3
)
.

Consequently, we obtain E[G(Φh
(
Ψ h

2
( yn)

))] − E[G(K∗
s )] = O(h3) since E[r1] =

E[r2] = E[ξ j r1] = 0 ( j = 1, 2, . . . ,m).
As a sufficient condition for (1) in Theorem 1, it is known that the following two

inequalities hold for all sufficiently small h > 0:
∥∥E
[
yn+1 − yn | yn

]∥∥ ≤ C
(
1 + ‖ yn‖

)
h,

∥∥ yn+1 − yn
∥∥ ≤ Xn

(
1 + ‖ yn‖

)√
h,

where C is a positive constant and Xn is a random variable that has moments of all orders
[26, p. 102]. The smoothness and global Lipschitzness of g j ( j = 1, 2, . . . ,m) imply
‖g′

j ( y)gk( y)‖ ≤ C(1 + ‖ y‖) for a constant C > 0, whereas the global Lipschitzness
implies ‖g j ( y)‖ ≤ C(1 + ‖ y‖). From these facts as well as (9) and

∥∥Ψ h
2
( y) − y

∥∥ ≤ C1‖ f ( y)‖h ≤ C2(1 + ‖ y‖)h
for constants C1,C2 > 0, we can see that the two inequalities requested above hold for (7).
Consequently, (7) is of weak order 2 for (1) by Theorem 1. 
�
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3.3 StabilizedMethods with High Precision

As we have seen above, the split SROCK2 methods achieve weak order 2 for any α. In this
section we decide an appropriate value for the parameter α on the basis of a linear error
analysis.

Let us consider the linear scalar SDE given by

dy(t) = λy(t)dt + σ y(t)dW (t), 0 ≤ t ≤ T0 < 1, y(0) = y0, (10)

where y0 �= 0 with probability one (w.p.1) and λ, σ ∈ R. When a one-step method with
a step size h is applied to (10), we generally have yn+1 = R (h, λ, σ, η) yn , where R is an
amplification factor and η is a vector whose components are random variables appearing in
the method. In [23], the authors have considered the following errors of R for a method with
h = T0/2k (k is a positive integer):

Ē (k)
def= {

R̄(λT0/2
k)
}2k − eλT0 , Ê (k)

def= {
R̂(λT0/2

k, σ 2T0/2
k)
}2k − e(2λ+σ 2)T0 ,

where R̄(λh)
def= E[R] and R̂(λh, σ 2h)

def= E[R2]. We investigate these errors for the split
SROCK2 methods (7).

If we apply (7) to (10), then we obtain

R (h, λ, σ, ξ1, ζ11)

=
{
1 + θαλh + τα

(
1

2
λh

)2
}2 {

Ps−2

(
1

2
αλh

)}2

+ σ
√
hξ1 (1 + θαλh)

{
1 + θαλh + τα

(
1

2
λh

)2
}{

Ps−2

(
1

2
αλh

)}2

+ σ 2hζ11

{
1 + θαλh + τα

(
1

2
λh

)2
}{

Ps−2

(
1

2
αλh

)}2
,

(11)

where P0(z) = 1, P1(z) = 1 + μ1z, and Pi (z) = (1 + κi + μi z)Pi−1(z) − κi Pi−2(z),
i = 2, 3, . . . , s. Thus, we have

R̂
(
λh, σ 2h

) =
{
1 + θαλh + τα

(
1

2
λh

)2
}4 {

Ps−2

(
1

2
αλh

)}4

+ σ 2h (1 + θαλh)2

{
1 + θαλh + τα

(
1

2
λh

)2
}2 {

Ps−2

(
1

2
αλh

)}4

+ 1

2

(
σ 2h

)2
{
1 + θαλh + τα

(
1

2
λh

)2
}2 {

Ps−2

(
1

2
αλh

)}4
.

Suppose that the solution to (10) is asymptotically stable in the MS. Then 2λ + σ 2 < 0
holds. Let us define r by σ 2/λ and consider the case of −2 < r ≤ 0 in what follows. When
an α > 0 is given to (7), for each r ∈ (−2, 0] Ê (0) oscillates when λT0 moves in an interval
[l(r), 0] (see Figure1), where l(r) is a negative number such that R̂(l(r), rl(r)) = 1.

If we choose r0 ∈ (−2, 0], then
max

l(r)<λT0<0
r0≤r≤0

∣∣∣Ê (0)
∣∣∣ (12)
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Fig. 1 Error versus λT0 for the expectation and the second moment of the amplification factor of the split
SROCK2 method with s = 6, h = T0 and α = 2.73 when r = −1/2 (solid lines) or r = 0 (dashed lines)

Table 1 Optimal value of α for the split SROCK2 methods

s 3 4 5 7 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

α 2.63 2.73 2.74 2.73 2.72 2.71

s 22, 24, 26, 28, 30, 32, 35, 38, 41, 45, 49, 53, 58, 63, 68, 74, 80, 87, 95

α 2.72

s 104, 114, 125, 137, 150, 165, 182, 200

α 2.72

gives a uniform error of the second moment of the amplification factor for the numerical
method in (l(r), 0)×[r0, 0]. We decide the value of α, say α̂, such that the uniform error for
a given α̂ becomes equal to

min
α≥1

⎧
⎨

⎩ max
l(r)<λT0<0
r0≤r≤0

∣∣∣Ê (0)
∣∣∣

⎫
⎬

⎭ .

Here, note that if α < 1, then the good stability properties of (3) themselves are violated.
As seen in the expression of Ê (k), we cannot expect that methods based on (3) including

other methods introduced later, have a small error Ê (k) in general for a small r ∈ (−2, 0],
which leads to a large σ 2 = rλ > 0. For this, we set r0 at −1/2 and seek an optimal value
of α for (7) with the stage number s. The reason why we have chosen r0 = −1/2, not
−2, will also be mentioned in detail later. For example, when s = 6, we have α = 2.73
as an optimal value for (7). For other values of s, see Table 1. Figure1 shows the errors of
(7) with α = 2.73. Local maxima and local minima of the errors are indicated by points.
In the right-hand plot, we set r = −1/2 or 0. Note that Ê (k) depends on r , but Ē (k)
does not.

Let us investigate the errors of (7) with optimal α whose value is given in Table 1. Table 2
gives (12), that is, the uniform errors of the methods with h = T0. The notation l̃s denotes the
abscissa of the local minimal point of Ê (0) that is located in the most left among the local
minimal points of Ê (0). This gives auxiliary information about stability properties for the
methods. From the change of values of l̃s , we can observe that the stability interval becomes
longer as the stage number s increases. This is because the split SROCK2methods inherit the
stability properties of (3). The computational cost for the stabilization procedures depends
on the number of evaluations on f . The split SROCK2 method with s stages evaluates it 2s
times in one step. The table gives |l̃s |/(2s)2, which indicates the efficiency of the stabilization
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Table 2 Uniform error of the split SROCK2 methods with optimal α

s Error l̃s |l̃s |/(2s)2 s Error l̃s |l̃s |/(2s)2

3 3.9 × 10−3 −3.6 0.100 49 8.4 × 10−4 −1428.5 0.149

6 1.3 × 10−3 −20.1 0.140 104 8.3 × 10−4 −6440.4 0.149

12 9.6 × 10−4 −84.5 0.147 150 8.3 × 10−4 −13399.3 0.149

24 8.6 × 10−4 −341.6 0.148 200 8.3 × 10−4 −23822.1 0.149

procedures. From the table, we can see that the value of |l̃s |/(2s)2 is approximately 0.149
when s is large.

The first term in Ē (0) is equal to the first term in the right-hand side of (11) if h = T0.
In the term, the polynomial {1+ θαλh + τα(λh/2)2}Ps−2(αλh/2) for h = T0 approximates
eλT0/2, and as a result, its square approximates eλT0 in the interval [l(−1/2), 0] such as the
error is shown in the left-hand plot of Fig. 1.

Also in Ê (0), the square approximates eλT0 in the interval. In addition, the other polynomi-
als (1+ θαλh)Ps−2(αλh/2) and Ps−2(αλh/2) for h = T0 approximate eλT0/2 less precisely
than the above mentioned polynomial when |λT0| << 1, but their squares serve together
with the square of the above mentioned polynomial to overcome the increase by σ 2h and
(σ 2h)2/2 for h = T0. As a result, the error Ê (0) behaves as shown in the right-hand plot of
Fig. 1.

Remark 2 The naïve split method (8) gives R̂ as follows:

R̂
(
λh, σ 2h

) =
{
1 + σ 2h + 1

2

(
σ 2h

)2
}{

1 + θαλh + τα

(
1

2
λh

)2
}4 {

Ps−2

(
1

2
αλh

)}4
.

Although the differences from R̂ for (7) are only the replacements of (1 + θαλh)2 or 1 with
{1+ θαλh + τα(λh/2)2}2, the replacements strengthen the increase in R̂ when |λh| is large.
Thus, (8) is also of weak order 2, but unfortunately it cannot have good stability properties
especially when s is large. In addition, note that making a change in one Ψ h/2 in (8) leads to
a replacement of {1 + θαλh + τα(λh/2)2}2 ×{Ps−2(αλh/2)}2 in R̂.

4 Other Stabilized Explicit Methods of Weak Order 2

As competitors to the split SROCK2 methods, we first state other stabilized explicit methods
based on (3). Next, we introduce an exponential RK method of weak order 2 for SDEs [23].
When the dimension of the SDEs is very large, the exponential RK method needs techniques
in order to calculate the product of a matrix exponential function and a vector efficiently.
In the end of the section, we consider the implementation of Krylov subspace projection
techniques related to a matrix exponential function ϕ2.
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4.1 Other Methods Based on the ROCK2Methods with a Parameter˛

By combining (2) and (3), Abdulle, Vilmart, and Zygalakis [4] have proposed the following
class of methods:

K i = μiαh f (K i−1) + (κi + 1)K i−1 − κi K i−2, i = s − 1, s,

K∗
s−1 = K s−2 + 2ταh f (K s−2) + √

h
m∑

j=1

g j (K s)ξ j ,

yn+1 = K s−2 +
(
2θα − 1

2

)
h f (K s−2) + h

2
f (K∗

s−1) + H(K s)

+ H̃(K s−1, K s),

(13)

where Ki , i = s − 3, s − 2, are the same as those in (3), and have determined the value of α

such that K s−1 = yn + (h/2) f ( yn) + O(h2) holds. For the value of α, (13) achieves weak
order 2. Note Lemma 1. The methods are called the SROCK2methods. When (13) is applied
to (10), we have

R̂
(
λh, σ 2h

) = {1 + 2θαλh + τα(λh)2
}2 {Ps−2(αλh)}2

+ σ 2h

{
Ps−1(αλh) + 1

2
λhPs(αλh)

}2

+ 1

2

(
σ 2h

)2 {Ps(αλh)}2 .

(14)

For a given s, (7) contains almost twice as many computational procedures as (13). For
this, as a competitor to (7) with h = T0, we choose (13) with h = T0/2 when the both
methods have the same stage number s. Figure2 shows the errors of (13) when s = 6 and
k = 1 in a similar manner to Fig. 1. From the comparison of Figs. 1 and 2, we have the
following remarks. First, the split SROCK2 method with h = T0 can achieve very small
errors, compared with the SROCK2 method with h = T0/2. Second, the SROCK2 method
with h = T0/2 has a much longer stability interval than the split SROCK2 method with
h = T0. Also for other stages, this stability property is a strength of the SROCK2 methods,
whereas low precision is a weakness of them.

Incidentally, Table 3 gives the uniform errors of the SROCK2 methods with h = T0. As
the methods are of weak order 2, the replacement of h = T0 with h = T0/2 is expected to

Fig. 2 Error versus λT0 for the expectation and the second moment of the amplification factor of the SROCK2
method (s = 6, k = 1, α = 1.37) with h = T0/2 when r = −1/2 (long-dashed lines) or r = 0 (dashed
lines)
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Table 3 Uniform errors of the SROCK2 methods

s Error l̃s |l̃s |/(s + 1)2 s Error l̃s |l̃s |/(s + 1)2

3 9.7 × 10−1 −5.5 0.344 49 4.6 × 10−2 −1070.9 0.428

6 2.0 × 10−1 −20.0 0.408 104 4.8 × 10−2 −4721.1 0.428

12 6.1 × 10−2 −71.7 0.424 150 4.9 × 10−2 −9761.9 0.428

24 4.2 × 10−2 −267.5 0.428 200 5.0 × 10−2 −17294.8 0.428

decrease errors by a factor of 1/4 approximately. Even if we take this into account, we can say
that the split SROCK2 methods with h = T0 have smaller errors than the SROCK2 methods
with h = T0/2. Here, note that the value of errors in the table indicates a local maximum for
Ê (0), not for Ê (1). The SROCK2 method with s stages evaluates the function f s + 1 times
in one step. The table gives |l̃s |/(s + 1)2, which indicates the efficiency of the stabilization
procedures. From the table, we can see that the value of |l̃s |/(s + 1)2 is approximately 0.428
when s is large.

The first term in Ē (1) for (13) is equal to the first term in the right-hand side of (14) if
h = T0/2. Thus, Ē (0) for (7) and Ē (1) for (13) have the same expression except the value of
α. The difference in α makes the difference of the left-hand plots in Figs. 1 and 2. In addition,
in Ê (1) for (13), the polynomials Ps−1(αλh) + λhPs−2(αλh)/2 and Ps(αλh) for h = T0/2
approximate eλT0/2, and the fourth powers of them serve to overcome the increase by (σ 2h)2

and (σ 2h)4/4 for h = T0/2. Remember that Ê (0) for (7) has lower order terms with respect
to σ 2h. This difference as well as the difference in α makes the difference of the right-hand
plots in Figs. 1 and 2.

In Fig. 2, the following are also remarkable. When λT0 is sufficiently small, the first term
is dominant over the second term eλT0 in Ē (k). For example, since e−3 ≈ 5.0× 10−2, in the
left-hand plot of Fig. 2 the curve shows almost only the first term in Ē (1) when λT0 < −3.
Similarly, when λT0 is sufficiently small and r is close to 0, the first term is dominant over
the second term e(2λ+σ 2)T0 = e(2+r)λT0 in Ê (k). For example, since e(2+r)λT0 = e−6 ≈
2.5 × 10−3 if r = −1/2 and λT0 = −4, in the right-hand plot of Fig. 2 the curve shows
almost only the first term in Ê (1) when λT0 < −4.

Remark 3 On the basis of the idea of dense output in RK methods, due to Lemma 1 we can
obtain another class of weak second order methods based on the ROCK2 methods with a
free parameter α. However, unfortunately the methods lead to much worse precision than the
split SROCK2 methods and much worse stability properties than the SROCK2 methods.

We are concerned with weak second order methods, but there is a class of excellent
stabilized explicit methods of weak order one [5]. Let us call them the SK-ROCK methods
and give a brief remark on the methods.

Remark 4 The SK-ROCKmethods have a free parameter η to obtain good stability properties.
In fact, they have enjoyed excellent stability properties in some numerical experiments [5],
when the parameter has a typical value, η = 0.05. However, they suffer from the error of the
amplification factor. When s = 6 and η = 0.05, we obtain the left-hand plot in Fig. 3. Even
if we increase the value of η, they still suffer from the error, especially for large λT0 < 0.
For example, see the right-hand plot in the figure.
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Fig. 3 Error versus λT0 for the second moment of the amplification factor of the SK-ROCK methods (s =
6, k = 1, η = 0.05, 2.0) with h = T0/2 when r = −1/2 (long-dashed lines) or r = 0 (dashed lines)

4.2 Exponential RKMethods and the Implementation of Krylov Subspace Projection
Techniques for Matrix Exponential Functions

If the drift term is given as a semilinear drift term A y + f 0( y) in (1), where A is a d × d
matrix and f0 is an R

d -valued nonlinear function on R
d , then we can apply the following

stochastic exponential RK method to (1):

yn+1 = Y1 + h

3
ϕ2(hA)

{
4 f 0

(
Y2 + (6 + √

6)
√
h

10

m∑

j=1

g j (Y2) ξ j

)

+ f 0

(
Y3 + (3 − 2

√
6)

√
h

5

m∑

j=1

g j (Y2) ξ j

)

− 5 f 0( yn)
}

+ e
h
2 A
(
H(Y2) + H̃(Y2,Y2)

)
,

(15)

where

Y1 = ehA yn + hϕ1(hA) f 0( yn), Y2 = e
h
2 A yn + h

2
ϕ1

(
h

2
A

)
f 0( yn),

Y3 = Y1 + 2hϕ2

(
h

2
A

){
f 0 (Y2) − f 0

(
yn
)}+ 2hϕ2(hA)

{
f 0 (Y2) − f 0

(
yn
)}

.

The matrix exponential functions are defined by

ϕ1(Z)
def= Z−1(eZ − I ) =

∞∑

k=1

1

k! Z
k−1, ϕ2(Z)

def= Z−2(eZ − I − Z) =
∞∑

k=2

1

k! Z
k−2,

where Z , I stand for a d × d matrix, the d × d identity matrix, respectively. As the method
is of weak order 2 and deterministic order 3 [23], let us call this the SERKW2D3 method in
what follows.

If A is diagonalizable and its dimension is not large, for example, 100, then the matrix
exponential functions in the method are easy to calculate through a similarity transformation
based on eigenvectors [27, p. 23]. In addition, once they are calculated for a given step size
h, we can use them for all trajectories. Thus, in this case the SERKW2D3 method can be an
effective and powerful method. However, if the dimension of A is very large, the situation
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drastically changes. The computation based on the similarity transformation is not useful.
We need another computational method for the matrix exponential functions.

For a large sparse matrix A, let us suppose that A is symmetric since we can rewrite f as
(A + A�)/2 + f 0( y) + (A − A�)/2. The symmetric property will lead to computational
savings for a matrix exponential function times a vector.

In order to calculate Y3 efficiently and precisely, let us derive a recursive formula for ϕ2.
From the definition of ϕ1 and ϕ2, we have

(t + Δt)2ϕ2((t + Δt)A)q =
∫ t+Δt

0
(t + Δt − s)ϕ1((t + Δt − s)A)qds

= eΔt At2ϕ2(t A)q + tΔtϕ1(Δt A)q + (Δt)2ϕ2(Δt A)q

for t,Δt > 0, where q = f 0(Y2) − f 0(yn). Similarly, for any w ∈ R
d ,

Δtϕ1(Δt A)(Aw + q − t−1w) = eΔt Aw + Δtϕ1(Δt A)(q − t−1w) − w,

(Δt)2ϕ2(Δt A)(Aw + q) = Δtϕ1(Δt A)w − Δtw + (Δt)2ϕ2(Δt A)q.

If we set w = tϕ2(t A)q, then, from the above equalities we have

(t + Δt)2ϕ2((t + Δt)A)q

= (Δt)2ϕ2(Δt A)(Aw + q) + tΔtϕ1(Δt A)(Aw + q) − Δtϕ1(Δt A)w + (t + Δt)w.

We can calculate 2hϕ2((h/2)A)q firstly and 2hϕ2(hA)q secondly in Y3, using this relation-
ship repeatedly. Note that the Δt does not always need to be fixed in the calculations of
Y3.

Our next concern is to calculate (Δt)2ϕ2(Δt A)(Aw + q) and Δtϕ1(Δt A)(Aw + q). For
this, we adopt Krylov subspace projection techniques. Let us set u = Aw + q and denote by
Vρ+1 = [v1, v2, . . . , vρ+1] and Hρ = [hi, j ], the orthonormal basis of the Krylov subspace
Span {u, Au, . . . , Aρu} and the ρ-dimensional symmetric tridiagonal matrix resulting from
Lanczos process, where ρ is a small positive integer compared to d . For our purpose, Theorem
2 in [28] gives the following approximation

(Δt)2ϕ2(Δt A)u ≈ βVρ+1

[
Φ̃2,ρe1

hρ+1,ρe�
ρ Φ̃3,ρe1

]
(16)

for a sufficiently small Δt > 0, where β = ‖u‖, hρ+1,ρ = ‖Avρ −∑ρ
i=ρ−1 hi,ρvi‖, Φ̃i,ρ =

(Δt)iϕi (Δt Hρ), and ei denotes the ρ-dimensional unit vector whose i-th component is 1.
Note that if theminimal degree ofu is some integer l (≤ ρ), then an invariant subspace is found
and the above approximation is replaced with the equality (Δt)2ϕ2(Δt A)u = βVlΦ̃2,l ẽ1,
where ẽ1 is the l-dimensional unit vector whose 1st component is 1 [28].

Now, our next concern is to calculate Φ̃2,ρe1 and Φ̃3,ρe1 efficiently. Theorem 1 in [28]
gives the following equality:

exp(Δt H̃ρ+4) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

exp(Δt Hρ) Φ̃1,ρe1 Φ̃2,ρe1 · · · Φ̃4,ρe1
0�

ρ 1 Δt
1! · · · (Δt)3

3!
0�

ρ 0 1
. . .

...

0�
ρ 0 0

. . . Δt
1!

0�
ρ 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (17)
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where 0ρ denotes the ρ-dimensional zero column vector and

H̃ρ+4 =

⎡

⎢⎢⎢⎢⎣

Hρ e1 0ρ 0ρ 0ρ

0�
ρ 0 1 0 0

0 1 0
0 1

0 0

⎤

⎥⎥⎥⎥⎦
∈ R

(ρ+4)×(ρ+4).

This shows that exp(Δt H̃ρ+4) gives Φ̃2,ρe1 and Φ̃3,ρe1, and it is also helpful for us to
determine such a small Δt that (16) is valid.

The procedure to determine Δt is given as follows [28]. When we set two errors by
err1 = β|hρ+1,ρe�

ρ Φ̃3,ρe1| and err2 = β|hρ+1,ρe�
ρ Φ̃4,ρe1|‖Avρ+1‖ for an initial Δt , we

have an error estimation errloc by Algorithm 2 in [28]. We repeatedly carry out a procedure
to obtain an acceptable step size Δt . For details, see [28]. Incidentally, in our numerical
experiments we calculate exp(Δt H̃ρ+4) in (17) by a method based on Padé approximations
[28].

In (15), we can calculate the product of (h/3)ϕ2(hA) and a vector in a similar way. We
can also calculate the product of the matrix exponential or the matrix exponential function
ϕ1 and a vector in a similar but simpler way.

Remark 5 For the product of the matrix exponential and a vector in the case that the matrix
is of moderate dimension and is not sparse, some researchers have proposed more efficient
algorithms than theKrylov subspace projection techniques. See [6, 18] and references therein.

5 Numerical Experiments

We derived the split SROCK2 methods of weak order 2 that are expected to achieve better
precision than the SROCK2 methods for SDEs with not very large noise. In order to confirm
the performance of the methods, we investigate the expectation and the second moment of
the solution of SDEs in our numerical experiments.2 In all numerical experiments, we will
use the Mersenne twister algorithm [24] to generate pseudorandom numbers.

The first example is the following 2-dimensional damped nonlinear Kubo oscillator [11,
32]

d y(t) = f ( y(t))dt +
2∑

j=1

g j ( y(t))dWj (t), y(0) = y0 (w.p.1), (18)

where t ∈ [0, 1],

f ( y) = λ

[
0 −1
1 α

]
y +

[
0 − 1

5 (y1 + y2)5
1
5 (y1 + y2)5 0

]
y,

g j ( y) = σ j

[
0 −1
1 β j

]
y +

[
0 −q j ( y)

q j ( y) 0

]
y,

q1( y) = 0, q2( y) = 1
3 (y1 + y2)3, and λ, σ j , α, β j ∈ R. As we do not know the exact

expectation and second moment of the solution, let us seek approximations to them by the
SERKW2D3 method with h = 2−7. We refer to these approximations instead of the exact

2 For an implementation of the methods, we utilize the parameter values in a Fortran code, rectp.f, obtained
from http://anmc.epfl.ch/Pdf/srock2.zip.
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expectation and secondmoment. As another competitor, we add the SSDFMTmethod, which
is a stochastic Strang splitting method of weak order 2 [23].

We set λ = 2, σ1 = −α = 1/2, σ2 = −β1 = 1/5, β2 = −1/10 as well as y0 =
[1/2 1/2]� [31], and simulate 1024 × 106 independent trajectories for a given h, and seek
a numerical approximation to the expectation of y(1) or to the second moment of each

element of y(1), that is,
[
E[(y1(1))2] E[(y2(1))2]

]�
. The results are indicated in Fig. 4. As

the solution is a vector, the Euclidean norm is used. The solid and long-dashed lines denote
the split SROCK2 and SROCK2 methods with s = 3, respectively, whereas the dashed and
long-dash-dotted lines denote the SSDFMT and SERKW2D3 methods. Here and in what
follows, the dotted line is a reference line with slope 2. All the methods show the theoretical
order of convergence. The split SROCK2 method with s = 3, the SSDFMT method and the
SERKW2D3 method show much smaller errors than the SROCK2 method.

The second example is the following 2-dimensional linear SDE [29]

d y(t) =
[

λ1 0
0 λ2

]
y(t)dt +

[
0 σ

σ 0

]
y(t)dW (t), y(0) = y0 (w.p.1), (19)

where t ∈ [0, 1] and λ1, λ2, σ ∈ R. As the matrices in the drift and diffusion terms are
not simultaneously diagonalizable if λ1 �= λ2, the SDE cannot be transformed to decoupled
scalar SDEs. Thus, the behaviour of errors is predicted to differ from the results in Sect. 3.3.
As it is linear, we obtain ODEs with respect to the expectation and second moment of the
solution, and we can solve them for the exact expectation and second moment.

Let us set y0 = [1 1]�, λ1 = −100, λ2 = −1, and σ = 1/2. We simulate 1024 × 106

independent trajectories for a given h, and seek a numerical approximation to the expectation
of y(1) or to the second moment of each element of y(1). The results are indicated in Fig. 5.
In order to solve the SDE numerically stably with reasonable cost when a step size h is
given, we set the smallest stage number for each of the methods to solve it stably. As a
result, we set s = 3, 4, 5, 7, and 10 for the split SROCK2 and SROCK2 methods when
h = 1/32, 1/16, 1/8, 1/4, and 1/2, respectively. As in the previous experiment, the solid,
long-dashed, and dashed lines denote the split SROCK2, SROCK2, and SSDFMT methods.
The results by the SERKW2D3 method are omitted since they are the same as those by the
SSDFMT method.

As (19) is a linear SDE, we can predict that the two exponential methods, that is, the
SERKW2D3 and SSDFMT methods perform well. In fact, their errors are very small espe-
cially in the approximation to the expectation, and the errors seem to come almost from

Fig. 4 Log-log plots of the relative error versus h for the expectation and second moment in (18). Solid lines:
split SROCK2 (s = 3); long-dashed lines: SROCK2 (s = 3); dashed lines: SSDFMT; long-dash-dotted lines:
SERKW2D3; dotted lines: reference line with slope 2
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Fig. 5 Log-log plots of the relative error versus h for the expectation and second moment in (19). Solid lines:
split SROCK2 (s = 3, 4, 5, 7, 10); long-dashed lines: SROCK2 (s = 3, 4, 5, 7, 10); dashed lines: SSDFMT;
dotted lines: reference line with slope 2

statistical errors. The split SROCK2 methods with several stages follow after them and show
smaller errors than the SROCK2methods in the approximation to the expectation. In contrast
to this, the relative error versus h for the second moment is almost the same between the split
SROCK2 and the two exponential methods. In addition, the split SROCK2 methods with
several stages show much smaller errors than the SROCK2 methods in the approximation to
the second moment when h is large.

In this example, the two exponential methods have shown the best performance since the
dimension of the SDE is small and especially the drift term has a diagonal matrix. However,
when the dimension of SDEs is very large, the methods have high computational cost for
matrix exponential functions unless some techniques, such asKrylov subspace projection, are
provided in order to calculate them efficiently. If the SDEs come from a spatial discretization
of multidimensional stochastic partial differential equations, for example, their dimension
can be very large.

A multidimensional stochastic Burgers equation has been studied in [8]. As a third exam-
ple, we consider the following 2-dimensional stochastic Burgers equation with zero Dirichlet
boundary conditions

∂u(t, x, y)

∂t
= γ

(
∂2u

∂x2
(t, x, y) + ∂2u

∂ y2
(t, x, y)

)

+u(t, x, y)
∂u

∂x
(t, x, y) + v(t, x, y)

∂u

∂x
(t, x, y)

+β1
∂3W̃1

∂t∂x∂ y
(t, x, y),

∂v(t, x, y)

∂t
= γ

(
∂2v

∂x2
(t, x, y) + ∂2v

∂ y2
(t, x, y)

)
(20)

+u(t, x, y)
∂v

∂x
(t, x, y) + v(t, x, y)

∂v

∂x
(t, x, y)

+β2
∂3W̃2

∂t∂x∂ y
(t, x, y), (t, x, y) ∈ [0, 1/2] × [0, 1] × [0, 1],

[u(0, x, y) v(0, x, y)] = [u0(x, y) v0(x, y)] (w.p.1),

(x, y) ∈ [0, 1] × [0, 1],
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where W̃i (t, x, y), i = 1, 2, are independent Brownian sheets on [0, 1/2] × [0, 1] ×
[0, 1], and where γ > 0 and β1, β2 ∈ R are parameters. We discretize the space
intervals by N + 2 equidistant points xi and yk , i, k = 0, 1, . . . , N + 1, and define
an R

N2
- vector valued function U (t) by [ũ1(t)� ũ2(t)� . . . ũN (t)�], where ũi (t) =

[u(t, x1, yi ) u(t, x2, yi ) . . . u(t, xN , yi )]�. In addition, we define another vector function
V (t) similarly, by replacing ũi (t) and u(t, ·, ·) with ṽi (t) and v(t, ·, ·), respectively. Then,
the application of finite differences [4, 13] to (20) yields the 2N 2-dimensional SDE with
diagonal and additive noise

dU (t) =
{
γ (N + 1)2AU (t) + N + 1

2

[
U (t) ∗ B1U (t) + V (t) ∗ B2U (t)

]}
dt

+ β1(N + 1)dW1(t),

dV (t) =
{
γ (N + 1)2AV (t) + N + 1

2

[
U (t) ∗ B1V (t) + V (t) ∗ B2V (t)

]}
dt

+ β2(N + 1)dW2(t),

(21)

whereW1(t),W2(t) are N 2-dimensional independent standardWiener processes, andwhere
A, B1, B2 are N 2 × N 2 matrices given in the following and vectors use ∗ as component wise
multiplication. In order to express A, B1, B2 concretely, let us introduce the notation

tridiag(C1, D,C2) =

⎡

⎢⎢⎢⎢⎢⎣

D C2

C1 D C2
. . .

. . .
. . .

C1 D C2

C1 D

⎤

⎥⎥⎥⎥⎥⎦
∈ R

(kN )×(kN )

for C1, D,C2 ∈ R
k×k , which can be used to give a tridiagonal matrix or a block tridi-

agonal matrix when k = 1 or k = N , respectively. In (21), A = tridiag(I , T , I ),
B1 = tridiag(O, S, O), B2 = tridiag(−I , O,−I ), where T = tridiag(1,−4, 1), S =
tridiag(−1, 0, 1), and I and O denote the N × N identity and zero matrices. If we use
expressions in Remark 1 for (21), then H( y) is a 2N 2-dimensional zero vector, and H̃( y, z)
is a 2N 2-dimensional vector whose j-th component is β1(N + 1)

√
hξ j ( j = 1, 2, . . . , N 2)

or β2(N + 1)
√
hξ j ( j = N 2 + 1, N 2 + 2, . . . , 2N 2).

In this example, let us set N = 127, β1 = β2 = 1/(N +1), γ = 1/10, u0(x, y) = 4y(1−
y) sin(πx), and v0(x, y) = sin(πx) sin2(2π y), and simulate 1000 independent trajectories
for a given h. Then, the dimension of the SDE is 32258. In order to solve the SDE numerically
stably with reasonable cost when a step size h is given, we set the smallest stage number
for each of the SROCK2 and split SROCK2 methods to solve it stably. As a result, we set
s = 4, 5, and7 for theSROCK2methodswhenh = 1/2048, 1/1024, and1/512, respectively,
whereas for the split SROCK2 method we set s = 80 when h = 1/4. We also investigate the
SERKW2D3 and SSDFMT methods for h = 1/4. Taking computational time into account,
we set ρ = 100 and 30 for Krylov subspace projection techniques in the SERKW2D3 and
SSDFMT methods, respectively.

The results are indicated in Figs. 6 and 7. In Fig. 6, we show numerical approximations
to the expectation of u(t, x, y) at t = 1/2. The left-hand plot shows an approximate mean
by the split SROCK2 method with s = 80 for h = 1/4, whereas the right-hand plot shows
an approximate mean by the SROCK2 method with s = 7 for h = 1/512. The difference
between them is clearly visible. Although we have omitted plots given by the SROCK2
method with s = 5 for h = 1/1024, its difference from the left-hand plot is still visible. If we
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Fig. 6 Approximations to the expectation of u in (21) by the split SROCK2 method with s = 80 for h = 1/4
or the SROCK2 method with s = 7 for h = 1/512 over 1000 trajectories

Fig. 7 Approximations to the expectation and second moment of u at y = 1/2 over 1000 trajectories in (21).
Solid line: split SROCK2 (s=80, h=1/4); dashed line: SSDFMT (h=1/4); long-dash-dotted line: SERKW2D3
(h=1/4); long-dashed line: SROCK2 (s=7, h=1/512); thick long-dashed line: SROCK2 (s=5, h=1/1024)

choose a smaller step size (for example, h = 1/2048 (s = 4)) for the SROCK2 method, then
such a difference completely becomes invisible. These facts imply that when we approximate
an expectation over not very large number of trajectories by the SROCK2 method with not
sufficiently small h, the approximate mean might be largely contaminated by errors. On the
other hand, we can get other plots by the SERKW2D3 and SSDFMT methods for h = 1/4,
which are almost the same as the left-hand plot, and the difference between them is invisible.
Thus, in order to check differences among all the methods in detail, we give Fig. 7. In the
left-hand plot, we can see a slight difference between the split SROCK2 method for h = 1/4
and each of the SERKW2D3 and SSDFMT methods for h = 1/4, but if we set h = 1/8 for
the SERKW2D3 and SSDFMT methods, then the difference becomes invisible. Instead of
omitting approximations to E[u] given by the SROCK2methods, we show approximations to
E[u2] given by them in the right-hand plot. We can see that their approximations are heavily
influenced by errors. Especially, a line corresponding to the approximation by the SROCK2
method with s = 7 and h = 1/512 looks serrated.

In the left-hand plot of Fig. 6, we would like to emphasize that the smoothness does not
come from the fact that for the split SROCK2method the noise term is evaluated fewer times.
In fact, we can get a smooth plot by the split SROCK2 method with s = 28 and h = 1/32.
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Fig. 8 Approximations to the expectation of u and the second moment of u at y = 1/2 in (21) by the SROCK2
method with s = 30 for h = 1/32 over 1000 trajectories

Table 4 Comparisons of
computational cost in one step
and one trajectory

Method ne nr

SROCK2 with s stages s + 5m + 1 2m

Split SROCK2 with s stages 2s + 5m 2m

In contrast to this, the SROCK2 methods cannot solve the SDE numerically stably for a
larger h than 1/32. In addition, even for h = 1/32, the SROCK2 methods need a larger
stage number s = 30 than 28 to avoid a numerical explosion. Figure8 gives a result by the
SROCK2 method with s = 30 and h = 1/32. The method can avoid a numerical explosion,
but it is heavily influenced by computational errors

Remark 6 This is a typical example where the SROCK2methods suffer from errors. Now, the
eigenvalues in the linear part of the drift term are distributed in a wide interval. Thus, λh’s for
them are also distributed in a wide interval when a large step size h is given. As a result, the
SROCK2 methods are heavily influenced by the errors due to wildly distributed λh’s. This
fact is suggested in Fig. 2, although the present SDE has additive noise, not multiplicative
noise.

From all results in the present experiment, we can see that the split SROCK2 method
for h = 1/4 has better precision than not only the SERKW2D3 and SSDFMT methods for
h = 1/4, but also the SROCK2method for h = 1/1024, and especially say that the SROCK2
methods suffer from precision when a sufficiently small step size such as h = 1/2048 is not
given, even if they can solve the SDE numerically stably.

Incidentally, Table 4 indicates comparisons of computational cost for each of the SROCK2
and split SROCK2 methods in one step and one trajectory. In the table, ne and nr stand for
the number of evaluations on d-dimensional functions in the drift or diffusion coefficients,
and the number of generated pseudorandom numbers, respectively. Note that if the SDEs
have diagonal noise, then ne reduces to a smaller number obtained by the substitution of
m = 1 due to Remark 1. In the above example, since the SROCK2 method has s = 4 and
h = 1/2048 for the SDE with diagonal noise, the method evaluates the drift or diffusion
coefficients 5120 times up to t = 1/4. On the other hand, the split SROCK2 method with
s = 80 and h = 1/4 evaluates them merely 165 times up to t = 1/4. From a comparison
between Tables 2 and 3, we can see that the efficiency of the stabilization procedures for the
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Table 5 Average computational time (second) per 1000 trajectories simulation up to t = 1/2

SROCK2 with s = 4, h = 1/2048 Split SROCK2 with s = 80, h = 1/4

870.6 (SD 1.1) 11.7 (SD 0.6)

SERKW2D3 with ρ = 100, h = 1/4 SSDFMT with ρ = 30, h = 1/4

1058.9 (SD 1.3) 263.8 (SD 1.4)

SROCK2 methods is 2.87 times higher than that for the split SROCK2 methods. However,
this numerical experiment shows that the split SROCK2 method with s = 80 and h = 1/4
has 0.03 times fewer number of the function evaluations than the SROCK2 method with
s = 4 and h = 1/2048, whereas they have invisible errors in the plots of E[u] and E[u2].

Although we are concerned with weak second order methods, we give a brief comment on
the SK-ROCK methods, corresponding to Remark 4. When η = 2.0, the SK-ROCK method
with s = 11 and h = 1/128 gives the same profiles as those by the split SROCK2 method
with s = 80 and h = 1/4 in Fig. 7. It is known that the SK-ROCK methods work very well
for SDEs with additive noise [5]. In spite of it, this numerical experiment shows that the split
SROCK2 method with s = 80 and h = 1/4 has 0.43 times fewer number of the function
evaluations than the SK-ROCK method with s = 11 and h = 1/128, whereas they have
invisible errors in the plots of E[u] and E[u2].

We have also investigated computational time. The numerical experiments were carried
out on Microsoft Windows 10 Pro 64-bit Operating System with an Intel XeonW-2133 CPU
@3.60GHz and 64GB RAM. We used Intel C and Fortran compilers in Intel oneAPI 2022.
We simulated 16 batches of 1000 trajectories for each method. The average and standard
deviation (SD) of time are indicated in Table 5. The split SROCK2 method clearly shows
the best performance. Krylov subspace projection techniques are used in the SERKW2D3
and SSDFMT methods. As the SSDFMT method uses a smaller dimension ρ of a Krylov
subspace since it does not have ϕ1 and ϕ2 functions, it recorded much shorter computational
time than the SERKW2D3 method.

Incidentally, as we mentioned in Remark 5, in [18] the authors have proposed another
efficient algorithm based on Taylor series for the product of the matrix exponential and a
vector, and they [18] and some researchers [19] have indicated that it could work much faster
than the Krylov subspace projection techniques. For this, we have tested it, which is called the
expmvtay2 algorithm. As the algorithm is slightly more sensitive than the Krylov subspace
projection techniques, we chose h = 1/8 and carried out simulations up to t = 1/2. On
average, the SSDFMTmethod with the expmvtay2 algorithm took 1491.0 s (SD 4.8), and the
SSDFMT method with the Krylov subspace projection techniques took 409.9 s (SD 4.1) per
1000 trajectories simulation. Thus, we can see that theKrylov subspace projection techniques
are more efficient than the algorithm in this high-dimensional problem.
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6 Concluding Remarks

We have derived a class of split SROCK2 methods that have a free parameter α and which
achieve weak order 2 for noncommutative Itô SDEs. To decide the value of α, we have
provided a linear error analysis on one-step methods for SDEs. On the basis of the analysis,
we have decided the optimal value of α for each stage s such that the errors on the expectation
and the second moment of the amplification factor of the methods become small if the noise
term of the SDE is not very large. As a result, we have shown that the split SROCK2methods
have much smaller errors than the SROCK2 methods in the linear error analysis.

In order to check the computational accuracy and performance of the methods, we carried
out three numerical experiments. Although the selection for α was based on an error analysis
in a linear case, the numerical experiments suggest that it is valid also in other cases. In the first
experiment, the dampednonlinearKubooscillatorwas considered. The experiment confirmed
that the values of α we decided are appropriate for the split SROCK2 methods. In fact, the
split SROCK2 method with s = 3 showed smaller errors than the SROCK2 method with
s = 3. In the second experiment, we dealt with a linear SDE which cannot be transformed
to decoupled scalar SDEs. The experiment showed the superiority of the split SROCK2
methods over the SROCK2 methods in the approximation to not only the expectation, but
also the second moment when the step size is large. In the third experiment, we considered
a multidimensional stochastic Burgers equation with a multidimensional space-time white
noise, which leads to a very high-dimensional SDE with a high-dimensional, diagonal, and
additive noise after finite differences. This experiment showed again the superiority of our
method over the SROCK2 methods in terms of computational accuracy for relatively large
time-step size. In addition, themethodwas superior to the stochastic exponential RKmethods
in terms of computational time.

A significant advantage of the methods based on the ROCK2 methods is that they can
numerically stably cope with high-dimensional stiff SDEs whose drift term has eigenvalues
lie near the negative real axis, by just increasing the stage number. In some types of SDEs
such as the third example, however, the SROCK2 methods require a very small step size for
computational accuracy, not for numerical stability. The split SROCK2 methods do not have
such a step size restriction.

Finally, we should make some remarks. We have considered the case of −1/2 ≤ r ≤ 0 in
the error analysis. If r becomes close to−2, thenmaxl(r)<λT0<0 |Ê (0)| becomes close to 1 for
the methods based on the ROCK2 methods, whereas Ê (0) = 0 for λT0 = 0 (σ 2 = rλ). This
means that we have to choose h such that |λh| is sufficiently small for accuracy if we apply the
methods in which the ROCK2 methods are embedded, to SDEs with large noise even if they
are linear SDEs. This is a disadvantage of these methods, compared with other methods such
as stochastic exponential RKmethods. On the other hand, stochastic exponential RKmethods
also have a disadvantage, namely the computational cost for high-dimensional SDEs. As we
have seen in Sect. 4.2, even when a step size h is large such as h = 1/4, we need small
Δt’s to calculate the products of matrix exponential functions and vectors precisely, which
substantially increase the computational cost.
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