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Abstract

We study the non-Newtonian Stokes—Darcy—Forchheimer system modeling the free fluid
coupled with the porous medium flow with shear/velocity-dependent viscosities. The unique
existence is proved by using the theory of nonlinear monotone operator and a coupled inf-sup
condition. Moreover, we apply the discontinuous Galerkin (DG) method with P¥/pP*=1-
DG element for numerical discretization and obtain the well-posedness, stability, and error
estimate. For both the continuous and the discrete problem, we explore the convergence of
the Picard iteration (or called Kacdnov method). The theoretical results are confirmed by the
numerical examples.

Keywords Non-Newtonian flow - Stokes—Darcy—Forchheimer - Nonlinear monotone
theory - Discontinuous Galerkin method - Error estimates - Picard iteration

1 Introduction

The Stokes—Darcy system modeling the interaction between the free Newtonian fluid and
porous medium flow finds a wide application in engineering simulations. The mathemat-
ical and numerical analysis of this model has been extensively studied in recent years.
However, many real-world fluid problems involve the non-Newtonian fluid (e.g., molten
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plastics, biological fluids, and engine oils with polymeric additives), and the Newtonian
models are not suitable to apply. Several models exist for non-Newtonian free fluids, as dis-
cussed in [26]. These models include the Stokes/Navier—Stokes equations with varying types
of shear-dependent viscosity (commonly referred to as the generalized Newtonian flow), the
Oldroyd-B model, and the Peterlin viscoelastic model, among others. When dealing with
non-Newtonian flow in a porous medium, it is generally agreed that the Darcy-Forchheimer
model [13], which takes into account viscosity that varies with velocity, is a more suitable
approach than the Darcy system. In this paper, we focus on the Stokes—Darcy—Forchheimer
system with shear/velocity-dependent viscosities for the non-Newtonian fluid flow passing
through the coupled porous medium region, which has massive applications in real-world
simulation [17, 24], such as industrial filtering, plasma separation from blood, and so on.

There exist numerous works on numerical methods for coupled fluid models. We only
select a few to introduce in the following, which we think are closely related to our model. For
the non-Newtonian Stokes—Darcy equations with Beavers—Joseph—Saffman(BJS) interface
condition, the finite element method (FEM) is proposed and analyzed [10], as well as the
mortar FEM [11] and domain decomposition approach [19]. For the Newtonian (Navier—
)Stokes—Darcy—Forchheimer model, the well-posedness and numerical discretization have
been studied in [1, 2, 6, 7, 9], including the FEM, the fully-Mixed FEM, and a study on
the residual-based a posteriori error estimates. The discontinuous Galerkin (DG) method
satisfying the local conservation law is popular for coupled fluid computation. For the Stokes—
Darcy system, [27, 29, 33] employs the DG method and mixed FEM for discretization, while
[35, 36] adopts the DG scheme combined with the penalty and Nitsche’s approaches to
treating the interface condition. In the present work, we apply the DG method for the non-
Newtonian Stokes—Darcy—Forchheimer model with shear/velocity-dependent viscosities. To
our knowledge, the well-posedness and numerical analysis have not been investigated for
this nonlinear system.

It is important to note that various non-Newtonian fluids exhibit varying types of viscos-
ity that are dependent on shear. In this article, we will provide some models for viscosity
commonly utilized in describing biological fluids, paints, and similar substances [8, 10]. We
denote by D(u) := (Vu + VTu)/Z the deformation tensor of fluids, and by g; (| D(u)|) the
dynamic viscosity [31] as a function of D(u) expressed as

g1(ID@))) = voo + (W — V)G (V2| D@)]) (v > voo > 0). (1.1)

The effective viscosity g2(-) [10, 25] for the non-Newtonian porous media flow is determined
by

g2(ul) = voo + (10 — Vo) G(V2[u]) (Vo > Voo > 0). (1.2)

We listed some choices of G(s) in Table 1.

The strong nonlinearity of g;(-) and g>(-) (see the above models), together with the
Forchheimer term Cr|uz|uz (see (2.2a)), lead to analytical difficulties. The motivation of
the present paper is to develop the well-posedness and numerical analysis for the Stokes—
Darcy—Forchheimer model with shear/velocity-dependent viscosities. For the PDE model,
we utilize the monotone theory [15, 23] to show the well-posedness. And we demonstrate
a coupled inf-sup condition (see Lemma 2.4) to show the existence of pressure. The Picard
iteration (or called Kacdnov method) is applied to solve the nonlinear coupled system, and
we develop the convergence theorems under different assumptions on g1 (-) and g>(-).

For numerical approximation, we adopt the DG method with P¥/P¥=1.DG element
(k = 1, 2) for the velocity and pressure in both the Stokes and Darcy—Forchheimer regions.
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Table 1 The models for the dynamic viscosity of the non-Newtonian flow

Model G(s)

Carreau (14 (Ks)2H)r=b/2 0<r<l
Carreau—Yasuda 1+ (Ks)®)r—D/a a>0,0<r<l1

Cross 1+ Ks)H~! 0<r<l

Modified cross (14 (Ks)"H? r>0,a<0,ar+1>0
Powell-Eyring sinh~ (K s)/(Ks)

We show the well-posedness and a-priori estimates, and also investigate the convergence of
the Picard iteration for the nonlinear discrete problem. For error analysis, we introduce the
Lagrange multiplier formulation (cf. [21]) using P¥-DG element for the Lagrange multi-
plier, and obtain the error estimate O (h¥) for both velocity and pressure. Several numerical
experiments are provided to confirm the theoretical results.

The rest of this article is arranged as follows. In Sect.2, we derive the variational form
of the coupled system and show the well-posedness. Moreover, we prove two convergence
theorems for the Picard iteration. The DG scheme is presented in Sect.3. We demonstrate
the well-posedness, the convergence of Picard iteration, and the error estimates. Section4 is
devoted to numerical experiments.

2 The PDE Model and the Well-Posedness
2.1 The PDE Model and Notations

Let © be an open smooth bounded domain in RY d = 2,3) consisting of the free fluid
region 21 and porous medium region €2, separated by the interface I'. We denote by n the
unit outward normal vector to d€2, and by n12 the unit normal vector to I" outward €25, and
setI'; := dQ;\I" (( = 1,2) and np1 := —ny3. The velocities and pressures of the fluids in
(21, ) are denoted by u = (u1, u2) and p = (p1, p2). The model below represents the
coupled non-Newtonian flow in €1 and €2;.

The free flow in 2 is governed by the non-Newtonian Stokes equations with shear-
dependent viscosity and no-slip boundary condition on I';:

V- (g1(ID@))D@y) — pil) = fi  inQ, (2.1a)
V-our =0 in Qp, (2.1b)
uy =0 onI. (2.1c)

The flow in the porous medium domain €27 is described by the Darcy—Forchheimer system
with the velocity-dependent viscosity g2 (|uz|):

K~ 'gr(luahuz + Crlusluz + Vpr = fo  in Qo, (2.2a)
V-u =90 in o, (2.2b)
uy-n=20 on I, (2.2¢)
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where Cr is the Forchheimer coefficient and K is a symmetric positive definite matrix
representing the permeability of the porous medium satisfying

kmax|£|2 = 'STKS = kmin|£|2 with kmax > kmin > 0, V& € RY.

We will make assumptions on the boundedness and continuity of g;(-) and g>(-) (see (2.4)
and (2.5)).

On interface I', we enforce the conservation law, force balance, and the BJS condition,
stated as follows:

uy-npp+uz-ny3=0 onl, (2.3a)

p1— (g1(ID@))D(m)n1z) -n12 = py onT, (2.3b)

up -ty +r(g1(ID@))D@wpnyz) -4 =0 onT, (2.3¢)

where r; denote frictional constants and # denote the tangent vectoron ' (/ = 1,...,d —1).

Remark 2.1 Beavers and Joseph proposed an experimental condition (called the BJ condition)
that states the connection between the slip velocity and the shear stress along the interface,
ie.,

(w1 —uz)  ty = —%((mbml) —pia) 4 onT, I=1,....d-1,

where ¢; is the frictional constant, w is the viscosity. In view of the fact that the tangent
velocity of the porous medium is much smaller than the other terms, Saffman proposed
simplified interface condition [20, 30], also known as the BJS condition:

uy -ty = —2uriD(uy)ny - 4 onl', I=1,...,d—1.

In this work, we use the same BJS condition as [10, 21] with dynamic viscosity and
demonstrate the well-posedness of the coupling model. It is worth mentioning that the
well-posedness of the BJ condition is unclear.

We assume that gj(-) is positive, bounded and Lipschitz continuous, and g;(]A|)A is
strongly monotone, i.e., there exist positive constants Vi, V10, Cg; and C such that, for any
symmetric matrices A, B € RAxd,

Vieo < g1(|A]) < vio, (2.4a)
lg1(|A]) — g1(IB])| < Cq 1A — B, (2.4b)
(¢1(1ADA — g1(IB))B, A — B) > C|A — B|*. (2.4¢)

Likewise, we suppose g»(-) satisfies the positivity, boundedness and Lipschitz continuous,
and g»(|a|)a is strongly monotone, saying for all @, b € R,

Moo < g2(lal) < v, (2.5a)
|g2(lal) — g2(1b)| < Cg,la — bl (2.5b)
(g2(1aD)a — g2(1b))b,a — b) > Cla — b, (2.5¢)

where V200, 120, Cg,, and C are all positive constants.
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Remark 2.2 Suppose g1(s), g2(s) € C'(R). We see that

g
gMMm—anmw=/4—&MB+HA—mmmB+aA—mﬂ

o dé&
1 (B+£(A—B),A—B)
= "(IB A—B
A [¢1(1B+ &4 - B) Briaop

+EA—B) + (B +EA - BIA - B)|ds,

1
g2(lapa — g2(lb)b :/0 g2(1b+&@—b)l)@—b)

(b+&@—b),a—b)

+g5(1b+&@— b)) b+ E@—b)

(b+&@@—b)) dt.

Since we have assumed g1(-) > Vis > 0and g2(-) > vy, > 0, the monotonicity (2.4c) and
(2.5¢) follow if g1 (s) and g»(s) are nondecreasing, i.e., g](-), g5(-) > 0. Otherwise, we have
to assume that g} (JA|)A and g} (|a|)a are bounded such that

min (104D = [g14D[14]) = €. min (g2(ab ~ [g(aD]lal) = C.

sym

Remark 2.3 Note that the viscosity of the non-Newtonian fluid model we present in Table 1
displays shear-thinning behavior, which means that viscosity monotonically decreases as the
shear rate increases, i.e., G’(s) < 0. Most fluids show the shear thinning behavior in real life,
such as blood, food, and beverages modeled by the famous Carreau fluid, and the flow in the
porous medium, the Cross model, is generally considered [14, 18]. It is easy to observe that
that G (s) presented in Table 1 satisfies

G'(s) <0, limG(s)=1, lim G(s)=0.
SLO §—>00

We see that g1 (-) (resp. g2(-)) given by (1.1) (resp. (1.2)) allows a wide range of shear rate
values, where the zero shear-rate (resp. velocity) corresponds to viscosity vg, and infinite
shear-rate (resp. velocity) corresponds to v, indicating the above assumptions (2.4a) (resp.
(2.5a)). In addition, it is not difficult to validate that the assumptions (2.4b) and (2.4c) (resp.
(2.5b) and (2.5¢)) also hold for the models listed in Table 1.

To state the weak formulation, we introduce the function spaces:

X ={meH'®@)?: vy =0 onTy}, M :=L*Q),

Xy :={v2€ L3()? : V- v2 € L*(R),v2-n21 =0 on Ty}, My := L%(Sb),
X =X x Xo ={v=(v1,v2) :v1 € X1, vz € X2},

M :={q = (q1,92) € M\ x M2 : (q1, D@, + (g2, Da, =0},

where (-, -),, represents the L?(w) inner product. We endow the above spaces with the
following norms:

loallx, = vl gy, gl = llgulim + llg2llm, = llgill2q,) + ||qz||L%(Qz),

lvallx, = o2l 23, + IV - 020130, lIvlx = llvtllx, + [lv2]lx,-
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13
Noting that vz - n12 € (Wy, * (I')* for all v; € X, we set the space

13
VistweX: [ uonmatonmn ds =0 i e Wiyt ),
r
which weakly enforces the interface condition (2.3a), i.e., the continuity of normal velocities

onl.
For any u = (u1, uz), v = (v1, v2) € X and g = (g1, q2) € M, we set

ay(uy, vy) :=/Q g1(ID(uy))D(uy): D(vy) dx

d-1
+ Z/ ri(uy - ) (vr - ) ds,
r
1=1

ar(uz, v3) = / (K~ g2(JuaDuz + Crluzluz) - v dx,
Q)

bi(v1,q1) := —/ p1V - vy dx, by(v2, q2) = —/ p2V vz dx,
Q1 Q2
a(u,v) :=ai(uy, vy) +ax(uz, v2),  b(v, p) := b1 (v1, p1) + b2(v2, p2),

(f,v) = f1~v1dx+/ fr-v2dx.
Q o

2.2 Weak Formulation

Testing (2.1a) and (2.2a) by v; € X and vz € X» respectively, applying the integration by
parts, and using the interface conditions (2.3), we obtain the weak formulation:
Find (u, p) € V x M such that

a(u,v)+bw,p)=(f,v) YveV, 2.6)
b(u,q) =0 YgeM. '
13
We introduce the space A := W, > (') withthe norm [|e]| o := |||l 13 , and the bilinear
Wg'2 ()

form
br(v, L) ::/-A.(vl'n12+vz'n21) ds MveX, Led),
r

which satisfies the inf-sup condition [10, Lemma 3.2]: there is a constant §; > 0 such that

br(v, ) br(v, )
Brlrla < sup < sup ) 2.7
(v1,02)EWL3(Q1)x X2 lvillwisq,) + llv2llx, ~ vex lvllx
It follows from (2.7) that (2.6) is equivalent to the Lagrange multiplier form:
Find (u, p,A) € X x M x A such that
a(u,v) +bw, p)+b;(v,A)=(f,v) YvelkX,
b(u,q) =0 VgeM, (2.8)

by, ) =0 YoueA.
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In fact, for sufficiently smooth (u, p), one can verify that

A= py=pi—(g1(ID@))D(mpnyz) -nz onT. (2.9

2.3 The Unique Existence of Weak Solution

We now turn to the well-posedness of (2.6) (also (2.8)). To this end, we first prove that (2.11)
admits a unique solution u. Then, we derive a coupled inf-sup condition, which implies the
unique existence of p such that (u, p) solves (2.6). The well-posedness of (2.8) is a direct
result from (2.7) and the unique existence of (2.6).

Setting

\o/:={v€ V:V.vy=0 ae.onQq, V-v =0 a.e. on 2},
and V* the dual of f/, we define a nonlinear operator A : V — \D/*,
(A@),v) = a(m,v) NVu,veV), (2.10)

and consider the weak formulation:
Find u € V such that

(Aw),v) = (f,v) YveV. (2.11)

Let us consider the existence and uniqueness of the (2.11). According to [23], we need
to verify the hemicontinuity, coercivity, and monotonicity of A, which are illustrated by the
following lemmas.

Lemma 2.1 The operator A : V — V* is continuous and bounded with the estimate

IA@) . < cllurllx, + lluzlx, + lu2llk,). (2.12)

Proof For any u = (uy,u3) € V, we have D(up) € L2(Q1)?*9 and uy € L3(Q)¢ by
the definition of space X. And the continuity condition of g;(-) and g>(-) (see (2.4b) and
(2.5b)) implies g1 (|D(u1(x))|) and g>(|u2(x)|) are measurable on €2 and 2, respectively.
We begin by proving the boundedness of A. Recalling the definition of operator norm and
applying (2.10), we get

(A(u), v) _ ai(uy, v1) + ax(uz, v2)

Il AG@) . = sup
oo ol o lollx

By using (2.4a), (2.5a) and Holder’s inequality [12],

(2.13)

aj(uy, vr) < violl D@Dl 2@ 1P 2q,) + clluall 2y llvill L2
< clluilx, lvillx,,

a2, v2) < c(luall ey + 121175, 1v2lxs
< c(luallx, + llu2ll%,)llv2llx,.

Combining (2.13) with these inequalities, we get (2.12).

We proceed to show the continuity of A. Let {u"} be a sequence in V satisfying lut™ —
ulx — 0. Then there exists a subsequence {u™)} and a function & = (hy, hy) € V such
that

uinl)(x) — u1(x) ae x €, ué"/)(x) — uz(x) ae.xcflh, (2.14)
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0] = (] Vo', ae x € @i, fuf ()] < 1ha(0)] VA, aex € Q. (215)

For any w € v,

(A@™) — A@u), w)|
A d_l I
< ’/ 1 D(wy) dx‘+‘Zfr;11§”’(w1-t,)ds
Q =1 r

! _1 !
< 1 2@ lwill 2y + 7 TS 12 llws - a2

+c

/ Iz(”/)wz dx‘
Q

(n")
+c||I 3
cll 3 ”L%(Qz)

(n") (n") (n")
< 1 + |7 + |1 k
< C(ll L 2y I ey + 11 ||L%(Qz)

lw2ll 3@,
Jwllx, (2.16)

where

1" = a1 (D@ D@) — g1 1D@))D@y), 1" = @™ —uy) -4
1 = o (" Dul” — gr(luahus + 031w — |uzlus.

According to (2.15),

1 2@y + 12y
= C(”D(hl)”LZ(Ql) + llh1llx, + ”D(ul)”LZ(QI) + w1l x,),

70 5 o <cllihall 3 o+ k2l g, + luall

2
K u .
LQ(QZ) - Li(Qz) + ” 2||L3(QZ))

3
L2 ()

By (2.14) and the continuity of g1(-) and g>(-), we obtain

gl(ID(uin/)(X))l) — g1(ID(u1(x))]) ae. x €y,

22(ud” () — g2(u2(x))) ae. x € Q,

which implies
M), @) >0 aexe, ") >0 aexe.
Then, we conclude by the dominated convergence theorem [5] that

1 M@y = 00 1B ey — 0, 15" -0. (2.17)

L% (€22)
It follows from (2.16) and (2.17) that

14" =A@l < (1" Ny + 15 Nz + 1570, 5 ) =0

The proof is completed. O
Remark 2.4 The continuity implies A is hemicontinuous, i.e., Vu, v, w € f/,

lim (A(u 4+ &v) — A(u), w) = 0.

£—0

Lemma 2.2 The operator A is coercive, i.e.,
(A(v), v)

as ||v|]|x — oo. (2.18)
llvllx
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In particular,

V200

(A4@®),v) = clurlF, + ¢
max

1020172, + Crliv2lly, (YveV). (2.19)

Proof For all v = (v, v2) € 10/, by the Korn inequality [12], Poincaré inequality [5] and
V.vy =0,

V2co

(A@),v) = a(®,v) Z VixlIDEDI32 g, + 7 1020172, + CFlIv2l3q,,

kmax
V200

kmax
Hence, we obtain (2.19), which implies (2.18). ]

2 2 3
> cllon|ly, + V21172, + Crllv2ll}sq,) = 0.

Lemma 2.3 The operator A is strongly monotone, i.e., for allu, v € v,

(A@) = A@W), u —v) = c(lur — vilk, + lluz = 020175 q))- (2.20)

Proof Letu = (uy,u3), v = (vy, 12) € V. We make the decomposition
(A(w) — A(), u — ) = (a1 (u1, ug — v1) — a1 (vy, ug — vy))

+f K (g2(luzDuz — g2(1v2))v2) - (w2 — v3) dx

Qo

+/ Cr(lualuz — |v2|v2) - (w2 —v2) dx = I + L + 1.
2

By the monotonicity (2.4¢) of g1 (-), Korn inequality and Poincaré inequality, we have

I = C|ID(uy — vp)l|72 = CCLl|V(ur — w72 > cll@r — vk, (221)

For I, (2.5¢) implies

b > clluy — (2.22)

2
vZHLZ(Qz)'

For I3, we calculate as follows

lda
132/ CF/ df[|vz+$(u2—vz)](vz+§(u2—v2))]-(uz—vz)dx
2 o d§

_ / c / l[((”2+$(uz—vz))z’("Z_”Z)z) (2.23)
" Ja, F 0 [v2 +&(u2 — v2)|

+ |2 + E (2 — vl (2 — v2)? | d dx = 0.

Hence, we conclude (2.20). ]

Theorem 2.1 There exists a unique solution u € V to (2.11) satisfying
2 2 3 2 3
letlly, + llu2llya g, + lu2lix, < CUAIK: + 12015 (2.24)

Proof Since A : V — V* is hemicontinuous, coercive, and monotone (by Lemmas 2.1 to
2.3), the unique existence of Au = f follows from [23, Theorem 2.1]. To obtain the a-priori
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estimate, we substitute v = u into (2.11) and apply (2.19)

C”ul”%(l k ||u2||L2(Qz) + CF”"ZHL%(Q ) = (A(u) u) - a(u u) fa u)
ma:

||f1||x;<||u1||xI + 1 f2llxz ezl x,

IA

1 2 ¢ 2 23,1 5 Cr 3
= 27”f1||x7 + 5””1”){1 + (§)2CF 1211y + 7|I”2I|L3(92),
where we have used Young’s inequality and [luzllx, = lluzllz3(q,) (by V - uz2 = 0) in the

last inequality. Hence, we conclude (2.24). O

We have obtained the existence of u. Now let us prove an inf-sup condition which implies
the unique existence of p € M to (2.6).

Lemma 2.4 There is a constant 8 > 0 such that

b(v,
sup—2 2P g (2.25)
peMyey IVl x 1Pl M

Remark 2.5 A different inf-sup condition for the linear Stokes—Darcy equations is established
in [21, Lemma 3.2]:

inf b(v, p)
sup
I’€L2(§21)><L2(S22),,EH0 (Q1)x H (div: Q; )(”vl”Wl 2 T ||v2||H(d1v Qz))”p”LZ(Q)

We modify this inf-sup condition and prove (2.25) to handle the case with vy € L3(2),
V.vp e L3(Q) and pr € L3 (Q).

Proof We make decomposition p; = p1 + &1, p» = p2 + &, where

(p1,Dg, =0, & = 7(171,1)9, (P2, Do, =0, &= f(l)z, Dg,.
1 |Q | 1 2 |Q | 2

Since [o, q1dx + [q, g2dx = 0, we discover
&11Q21] + &[22 = 0. (2.26)

There exists a 91 € WS’Q(QI) such that

o °1 2
Vb= —L i@, iy, < 07”13 2 <C. 2D
1511720 121120
1 .
We select py = 21272 ¢ L3(Q) (note that 120230y = 1), and set & =
Ip2112 5
L2 ()
mlizl( p2. Dy, p2 := pa — &. By Holder’s inequality, we have
£ < I s Ap2ll <! (2.28)
2= 5 P23 = —71- :
|sz 3@ RO
Note that
dx = 2.29
/92 pap2 P2l 3 6 (2.29)
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For 1%2, there exists a 52 IS W01’3(§22) satisfying

—V.by=pr inQp o2l 3@ < C”p2”um ) (2.30)

For arbitrary constant C* > 0, there exist v1, v such that

* *
-V = in;, v1=0 onl'j, v1=—-——ny; onl, (2.31)
€211 I
* *
-V 93 = —@ inQy, v3=0 onlp, V3= |F|n12 onl, (2.32)
I91llwr2@,) < CC*, 1020lwosiv.y) < II92llw13q,) < CC*. (2.33)

Now, we set vy := 01 + V1, v3 = 12)2 + v3. In view of (2.27), (2.31) and the definition of py,
we find

—(V-v1, prg, = (LPI) ( c »Pl)

Q1
||P11|L2(sz,) 1€21] (234)
= ———(P1, p1 +EDq, + C*&1 = |p1ll2(q,) + C*&1.
71 ||L2(Ql)
It follows from (2.30) and (2.32) that,
o * ~
—(V -2, p2)a, = (P2, p2)a, — % —(1, p2)a, = (P2 — &2, p2)a, — C*6
[€22] (2.35)
- -5q, - = — 56| — C*&.
||1??2||L2(Q ) E2(1, pr)a, — C*& = ”p2”L2(Q ) £262[80| - C78
Combining (2.34) and (2.35), and applying (2.26) and (2.28), we get
—(V-v, po,—(V-v2, p2)o,
2
> Ipill2 @) + ||172||L7(Q ,t C*& — |36 — C*%
bl +Ipall 3 (14 e 4 gy
i@y 2177 )3
Taking sufficiently large y and C* = y é' » We obtain
—(V v, po, — (V-v2, p2)a,
= Uiz + 12l 3 o+ 7 (14 (o) 6+ —opt
L2 () €221/ 1811 Q)3
> ill2)) + HPZHL%(QZ + Colil = Ipill2e)y + ||l72||L2(Q y
Next, by the triangle inequality, (2.27) and (2.33), we have
lvillwiz,) = 191+ V1llwrzg,) < 01llwizg) + I01llwizg,)
<C+CC*<C+y). (2.36)
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Similarly,

lv2llwos giv,0,) < lV2llwi3q,) < ||'°)2||W173(Qz) + 1921wy
<Clpall 3 +CC* (by(2.33)and(2.30))
L2 ()
R . (2*.37)
< Dy — * < h Q|73
<Clp2 SzllL%(Qz) +CC" = C(IIPzIIL;(QZ) +1273)+CC
<C(l+vy) (by(2.28)).
Therefore,
lvillx, + llv2llx, = C(1 +y).
In summary, for any p € M, we have found (v1, v2) satisfying
b(v, p) lpill2e,) + P2l
sup . >
vev Iv1llx, + lv2llx, C+y
which implies (2.25). O

3
L2 ()

)

Remark 2.6 In view of the first inequality of (2.37), we can replace ||v2 || x, of the above two
inequalities by [[v2ly13(q,), Which results

b(v,
sup ®.p) > Cliply (¥ p e M), (2.38)

vew lV1llwizq)) + lv2llwis g,

where
. . 1,2 d 1,3 d
W={v = (v1,v2) 1 1 € Wy (1), v2 € Wy (€2)%, by (v, w) =0 (Vi € A)}.

Theorem 2.2 There exists a unique p € M and » € A such that (u, p) solves (2.6) and
(u, p, )) solves (2.8). Moreover, we have

4 3
1Pl +12la < CALfl; + Ifallgs + 1f2lxs + 120 x)- (2.39)

Proof 1t follows from Theorem 2.1 and Lemma 2.4 that there exists a unique (u, p) € V x M
of (2.6). Furthermore, by (2.25)

b(v’ p) _ (f? v) - a(uv v)

lpllm < Csup =
vev lvlix llvllx
In view of

(fv) = ILAlx:llvallx, + 120 o2, (2.40a)

V20

a(u, U) < C”lll”Xl ”U] ”X] + r||u2||L2(QZ) ||v2||L2(92)

min

+ Crlluzllzs g, vzl 3@y (2.40b)

together with L3(€2)  L%(2) and Theorem 2.1, we obtain
1Pl < CALfullxs + I fallxs + Naallx, + 2l 20, + 22125 )

4 3 (2.41)
=Clflx: + ||f1||§q + ||f2||§; + 1f20x3)-
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Moreover, applying (2.7), we have the unique existence of (2.8), and the boundedness of A:
bl(v7)\’) (fvv)_a(uvv)_b(v5 )
|4l < Csup = P
vex llvllx veX lvllx

By (2.40a), (2.40b) and

b, p)I < IV -villp2plipilizzy + 1V - v2ll 130, ”pZHL%(Qz)
< Clvlxliplim,
we get

IAla = CAUfalx: + 1 20xs + lluallx, + luzli2q,) + IquIIis(QZ) + llplian).
Together with (2.41) we conclude (2.39). O

2.4 Picard Iteration

To solve the nonlinear coupled problem (2.11), we utilize the Picard iterative method (also
called Kacanov method) [3, 34]. For any w, u, v € V, we define

Gy (wi; w1, v7) = / 1D D(uy): D(vy) dx

Q)
d—1
+Z/ ri uy - ) (o1 ) ds,
r
=1

o (wa; Uz, v3) = / (K~ g2(|lw2Duz + Crlwaluz) - vz dx,

Q)
a(w; u, v) ;= aj(wy; ug, vy) + a(w2; uz, v2).

Note thata (uy; uy, v1) = a;(uy, v1) and ax (uz; uz, v2) = ax(uz, v3).(2.11)isequivalently
expressed as:
Find u € V such that

aw;u,v)=(f,v) YoeV. (2.42)

The Kac¢anov method is stated as follows.
Given u©® = (u(lo), u(zo)), forl =1,2,..., findu® € V such that

A"V u® vy =(f,v) YveV. (2.43)

(2.43) is a linear elliptic problem admitting a unique solution. We turn to the convergence of
Kacanov method. For briefness, we set

n ! !
e® = (e;), eg)) = (uy — u(l), uz — ”(2))'

CZ
Theorem 2.3 Set the constants C| = % and Cr = (];';—j‘.;‘)z(,%i + Cr)% Under the

loo

assumption that

max (C1 | D@1)l|7(q,). C2llu2lieq,) = C1 < 1, (2.44)
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The unique solution u" of Picard iteration (2.43) converges to u. In particular,

V200

Yleo O} @2
2 ”D( )”LZ(QI) 2k ” ”LZ(QZ)

(2.45)

1 _
= ¢/ (S21DeE I

)-

&€
(@ 2kmax 2

Proof Subtracting (2.43) from (2.42) and taking v = &V, we have
a;u, ey —a@'=V;u®, Dy =0,
which yields

d—1
2 V2 /
Vicoll D(ey >||Lz(gl)+z ey - a3 a ) + km°°||€<>”L2(Qz)

+CF_/ |u(l 1)|(e;[))2dx 5&(u(l’l);u,e(l))—&(u;u,e(“)
Q0
=/ (210P@{™")) - g1(D@D) @) : Dee) dx
Y
+/ K (23 ™") — g2(u2))uz - 63 dx
2

+/ (Iu(l D~y uz - ez)dx
Q)

-1 !
scg1||D(u1>||Loo<Ql)||D<s§ MezapIPEMD 2@,

1
+ ( 2 4 CF)””Z”LO“(QQ)”ez )||L2(92)||6‘§)||L2(92)-

mln
Applying the Schwarz inequality to the above inequality, we achieve (2.45), which implies
I I
that ||D(e§))||L2(Q |+ e 112, < CCh L Oasl— coif Cf < 1. o

Remark 2.7 If ||D(u1)||%oo(gl) and |luz|| L~ (g,) are sufficiently small, then the assumption
(2.44) is satisfied and the convergence is guaranteed. However, since the boundedness of
| D @uyp)? Loo@)) and ||u2|| L (q,) is unprescribed, the assumption (2.44) is nontrivial to verify.
Nevertheless, our numerical examples show the Picard iteration is quite applicable (see
Sect.4).

Next we consider the case that Cr = 0 (i.e., the absence of the Forchheimer term Cr|uz|u3)
and gi(-), g2(-) are non-increasing functions. We show that the Picard iteration converges
without the assumption (2.44). In this case, the model becomes the non-Newtonian Stokes—
Darcy system, and we introduce the function spaces:

X := (v = (v1, v2) € H'(Q1) x H(div; ) : v1|r, =0, v2 - n|r, =0},

~ ~ 1
:{veX:/M(v1~n12+v2-n21)ds:0\fueHOZO(F)},
r

1)

:{veV:V-vlzo, V.vy =0}
Given w € \7, we define the bilinear form: for any u, v € \7,
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B(w; u, v) :=/Q g1(ID(w))D(uy): D(vy) dx
1

d—1
+Z/ "1_1("1 ) (v1 -tl)dS-l-/ K~ 'gr(lwaus - vz dx.
1=17T

2

The variational form and the Picard iteration are presented as follows.
Find u € V such that

B(u;u,v)=(f,v) YveV. (2.46)
Given u® = (u(lo), u(zo)), forl=1,2,..., findu® € V such that
B, u® vy = (f,v) VoeV. (2.47)

It is apparent that, under (2.4) and (2.5), (2.47) admits a unique solution.

Proposition 2.1 Ifg;(-) < 0and g>(-)’ < 0, then the Picard iteration (2.47) converges, i.e.,
u >u inV (- oo).

Proof We define a functional F : ‘7 — R:

X 1D @)
F(u) =2~ (/Q /(; g1(r) dr dx
1

d-1 leey-1|? luf?
+Z/rfl[ ldt ds—l—/ K_I/ g (1) dr dx).
= JT 0 o33 0

It is easy to check that

(F'(w),v—w)=Bu;u,v—w) Vu,v,weV.

Since g1(-) < 0and g2(-) <0,

B
gi(ﬂ)(ﬁ—a)if gi(mdr =gi(@)(p—-—a) O=a=p<oo, i=12),

o
which implies
F(v) — Fu) <27 (B(u; v,v) — B(u; u,u)). (2.48)
Moreover, B(w; -, -) satisfies the continuity and coercivity (by (2.4a), (2.5a), Korn inequality

andV~u=V~v=0):forallu,ve‘7,

V20
|B(w; u, v)| < V10||D(u1)||L2(Q,)||D(U1)||L2(Q,) + %Huzllu(gz) lv2ll 220,

(2.492)
= C||u||H1(Q|)xH(div,Qz)||U||H1(Q])xH(div,S22)’
B(w;u —v,u—v) 2 i Dt = vl + ]‘:Lx’lluz — s,
max (2.49b)
> Cllu — v”i]‘(Ql)xH(div,Qz)’
It follows from (2.48), (2.49) and [34, Theorem 25.L] that u) — u in V. |
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3 Discretization Scheme

We adopt the discontinuous Galerkin method to discretize the coupled system (2.1)—(2.3). In
this section, we first prove the unique existence of the discrete solution and investigate the
convergence of the Picard iteration, and then show the error estimates.

3.1 The Discontinuous Galerkin Approximation

We denote by ’];h a regular and quasi-uniform triangulation of €2;, by Fih the set of interior
facets, by hg := diam(E) the diameter of the element E, and by & := max eTinT} hE the
mesh size. We introduce the discontinuous finite element spaces:

= (! e LX) 1 Mg € PKE)! (YE € T}, X" = XT x XL,
M= 1{q! € M; : q!'lr € P*"1(E) (VE € TM),
"= {q" = (q}. 4}) e M} x MY : (], g, + (¢}, Dg, =0},

where the P¥(E) is the space of polynomials of degree k on the element E (k = 1 or 2).
Let £ be a scalar or vector-valued function. We now introduce the average {£} and jump
[[£]] on each interior facete € 0E| U dE3,

1
{5} = §(§|E1 +&lEy), [l =¢&lE —§lE,.

Ife € 9 and e € Ej, then {§} = &|E,, [§] = &|g,. The norms of the above spaces are
given as follows

h . h
Iof g = Vo iz +( 20 I IG)
eelur,
1
h . h 2
1ol = 1022y + (D ||||[[v2 nellag )
eerur,
h . h h h
llvy ”X’Z’,W‘)v"(div) = vyl + IV - vy @) +livy ||X§u
1
h . h h 2 2
19815 w2 = 108 o2y + 199 Ml +( 20 00,
eelur,
h . h h
1"l 2= o s + 1921

h
lg" g = llg? llagr + llgs laey = gy 2@y + llg5 IILZ(Q )

where the parameters o1, and o7, are positive constants, |e| is the length of edge e, and for
i=1,2,

h
IV 32 = D IV I 2y IV 01T 20y = D IV 05170
Ee?; EeTh

The following trace inequalities (cf. [28]) will be used for analysis.

IVo - nell7a,, < Cothg 0N ) + hEIRIGn ) (Y0 € HA(E), Ve CIE),  (3.1a)

1
”Vv 'ne”LZ(e) < CthEz ||Vv||L2(E) (VU € Pk(E), Ve C 8E). (31b)
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Assume that Tlh and ’2'2” match each other at interface I'. We denote by £ the partition of
the interface I inherited from ’Tlh (also ’Z'lh), and set

A" = e LAY : p, € PR(e) (Ve € €M) (k= 1,2),

Vit e X' Y [t o ds =0 (v € A1),

ecll €

For any uh = (ui’, u;’), vt = (v{’, vé‘) € X" and qh = (q{’, qé’) e M", we set

af . vf) ==Y ngl(w(ui')DD(u’;): D) dx
EeTlh

- > /{{mﬂD(ui’)DD(u’,’)ne}} o ds

eelur
o1 d—1
e h h —1,.h h
+ 3 feﬁ[[”l]]'[[”‘]]d“rzz [t w as.
eerhur, [=1 eel
ayuy, vp) =y / (K~ g2(luzhus + Crlujluy) - vy dx
Ee’TZh E
o
+ > /ﬁ[[u’z’-ne]][[vé’-ne]]ds,
eerlur, *°
PRl gl ==Y fq,-th?dH > /{{q,-"}}[[v!’~"ellds(l’=1’2>’
Ee’Z;" E eEFl.hUl",' ¢

a"@" ") =af @}, v}) + a3 (uj, v3), B ", p") =B p) + b2(v], PY).

Multiplying the equations with the test function v{’ eX {’ and vé’ e XxI, integrating by parts
over element £ and summing over all element, we obtain the discrete scheme:
Find (u", ph) € V" x M" such that
al@" oy + b, phy = (f, ") VYot e VI, 3.2)
pruh, ¢g" =0 Vg e M". '
We introduce the quasi-local interpolation [29, 33] IT := (I1y, IT7) : X — X} satisfying
bl (Miv; —v;, pl) =0 (Vp" e M}, i =1,2), (33)
and the stability and error estimates
IMvillx, <clvillx,, o —villx, < ch*olgs@y (1<s<k+1), (34
and, for any E € Th,
IT2vy — v2l gm ey < chg ™ |v2lHs(E) (I<s<k+1,m=0,1), (3.5a)
IV - (Mav2 — v2)ll12(g) < chplV - v2lus(E) 0<s<k). (3.5b)

By the definition of TT» ( [29, 33]), we have by(TTovs — v2,¢%) = 0 (V¢! € MY) and
[,(Tavy — v2) - new? - ne ds = 0 (Yw? € X7%), which also implies that

I[TT2v2 - rellll 2y =0 (Ve € F§’ U Ty),
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IV - Thawz[llzr@y) = C IV w2l  (Vr € (1,00)).
Together with
||H2')2||L3(S22) = ||1)2||L3(§22) + [lv2 — H2v2”L3(§22)
< v2llz3(q,) + chllvzllwiszg,) =< cllv2llwisg,)
we see that
||n202||X121,W043(div) = C||”2||W1v3(92)

is valid. Noting that [Tv € V" (Vv € V), we have (by (2.38)): for all p" € M",

b" (", ph) b" (v, p")
sup — W > su
shevn 1] “X’]’ + [lv; ||X£’,WU-3(div) veV ”Hlvl”)({' + ||H2v2”X§’,W0-3(div)
b(v, p") b(v, p")
= sup > csup
vev Thivellxr + I1T2v2ll g wos@iy — vew llV1llwrz@)) + lv2llwis gy
> Bl p" - (3.6)
The following inf-sup condition can be proved analogously:
b (", ph)

> cBUP 2@y + 1P2 I 20y) (YP" € MM, 3.7

7 n
ohevillog llxn + vzl xn w2

Moreover, we set the bilinear form

Prh =" [ @} np 4ok onan)ds (vt e XM aM e AT,

eeln V¢
which satisfies (see [36, Lemma 4.6] for the definition of the discrete H -3 norm | - || _ 1Ak ):
A
sup — IR ey (338)
3
e 108 + 10l .

It follows from (3.8) that (3.2) is equivalent to the discrete Lagrange multiplier problem:
Find (uh, ph, Ah) e VI x M" x A" such that
a" @, o") + "W, p") + b ") = (f ") Vol e X,
b ", q") =0 VqheM, (3.9)
bh@h, ity =0 v oul e AP,
For pressure p and Lagrange multiplier A, we introduce the L>-projection. Define Py, :
L2(Q) — M, Py : L) — Ay,

/ q'(p— Pyp)dx =0 Vgl e M!' (i=1,2), (3.10a)

Q;

h _ h h

/ W (P —2)ds =0 vul e A (3.10b)

r

The following error estimates are valid:

1Py p — pllame) < chl™ | plyk e VEe T m=0,1), (3.11a)
IPAL = Mlsmiey < chs ™™ M iy (he = diam(e), Ve € &", m =0, 1). (3.11b)
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3.2 Existence and Uniqueness of the Discrete Problem

We consider the well-posedness of (3.9) (also (3.13)) in this subsection. Set
Vi =" e Vi bh ", gM) =0, (v¢" € M)},
and denote by (\o/h)* the dual of V", Define the nonlinear operator Al VR (\7h)*,
(A" @"), vy = a" @, ") (val, o e VM. (3.12)

We consider the discrete problem:
Find u” € V" such that

A"@™), o™ = (f, o) vt e V. (3.13)

As with Sect.2.3, we will verify the hemicontinuity, coercivity, and monotonicity of Al
which are presented by the following lemmas.

Lemma 3.1 The operator A" is continuous and bounded, satisfying: for any u®, v* € v,
he h h h h
(A" "), v")| < c(lluy e 107 1

(3.14)
2
+ gl 03 1 + 103175 0, 193 11305))-

Proof In the following, we only prove the boundedness (3.14). The continuity can be proved

in the same way as Lemma 2.1. For any uh = (u{’, ué’), v = (v{’, v;’) € \O/h, using (3.1b)
and Schwarz inequality, we calculate as

-y /{{g1(|D(u’;>|>D<ui‘)ne}} vy ds

eerur,
h h h h h

< ¢ D0 I Vautllaes + I Vel 1of g < cllug il llof

Ee'Tlh

Ole . ph h
> /—uulﬂ-uv,]}ds
’ e lel
CEFIUFI
1 1
Ole B2 2 Ole hyn2 2 h h

=( X H||[[ul]]||L2(e)) (> Ter i D))" = g o .

eelury eelhury

where ET and E~ represent the two elements to which the edge e belongs. It follows from
HRIder’s inequality that,

> f (K ga(ul Dult + Crlul|ub) - v} dx
E

EE'Tzh
V20 . h h 2 h
= Ko luzll2 vyl e + Crlluy ||L3(Qz) llvy ||L3(g22)-
Hence, combining the above inequalities, we deduce (3.14). O

Lemma 3.2 If o1, is sufficiently large, then A" is coercive, i.e.,
(A" "), o")

- — 400 as [v"|yn — . (3.15)
lv™ [l xn

@ Springer



24 Page 20 of 33 Journal of Scientific Computing (2023) 97:24

In particular,

A", o) = e(I0f 15y +19315,) + CrIG s, (V0" eVh.  G16)
Proof For all v = (v{’ , vh) € ‘ofh, by the discrete Korn’s inequality [4, 28] and (2.4a)

3 fg1<|D(v{'>|>D<v1) DY) dx

EeT*’

1 2
= Y vl DD = ||Wv1 72, —Vieo D el e,
EeT! eertur

Applying (2.4a), (3.1b) and Young’s inequalities,

- > /{{gluu(v{’)DD(v{')ne}} [ ds

e
eelury

Co 1
>= D Sl 10(l Vo ll 2y + 1 VO ll2e) 1T T 120

eelhury
Voo h h 2
> @(n Vorlaes + 1 Vot lie-)
eelury !
CiC 10
- > 5 Oo| |M e
eelhur,
Voo C3 2
z—5c IV o sy — 2 T

eelur
By taking sufficiently large o1, such that o7, — viec — C3 > 0,

Ole — Vlco

a1<v1,v{’)>f2 Vo 72, + D ||[[v111||L2(e)_c||v1 I

eelur,

Moreover, by (2.5a), we have

diwholy= 3 2 o 03 ey + Cr 3 19515
max

EeTh EeTh
+ 3 2 ||[[v2 nellZz = clv3 3 + Crllvylzs g,
eel“z U] )
Hence, we obtain (3.16), which implies (3.15). m]

Lemma 3.3 We assume the boundedness of g (|A]A, i.e.,
lgl(1AD]IA] = C (VA e RDX). (3.17)

sym

For sufficiently large o1., A" is monotone, i.e., there is positive constant co such that, for all
h h 7h
u v e Vi

(Al @y — A" "), uh — o) > co(lult v{'lli,l, + fluk — v§||§g). (3.18)
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Proof Let u" = (u", uh), v* = (v, v¥) e V". By |g|(IAD]|A| < C and (3.1b), we
calculate as

-y /{{glul)(ui’n)u(ui’)ne—g1(|D<v{')|)D(v{'>ne}}-[[ul—vlllds

E[{{gl(m(v{' +E@ — o)D) + £ - v{'))ne}}] ds

>— > Quo—Ol{D@] — v}l 20 1Ty — v 2
eerur,

> —c|| Vi - o)) I} > 4 it — o2

= 17 " ez = le] "1 T (e

eelur,

Taking o1, > C4 + C, together with (2.4c) and Korn’s inequality, we obtain

he h _h h heh h h
ay(uy,uy —vy) —aj(vy,uy —vy)
Ole — hi2
=c |H v(ul vl) H'LZ(Q ) + E | | ”[[ 1 ]]”Lz(e) - C””l v] ”Xllz

eerur,

It follows from (2.22) and (2.23) that
aé‘(ué’, u’z’ — vé’) — aé’(vé’, u’z’ — v;’) > cllué’ — vé’lli,zq.
Hence, we conclude (3.18). O

Theorem 3.1 Under the assumptions (2.4), (2.5), (3.17), f1 € L3(2) and fr e L%(Qz),
there exists a unique solution u" € V" of (3.13). Moreover, there is a unique p" € M” such
that (u®, ph) solves (3.2), and exists a unique A" e A" such that (u”, ph, A"y satisfies (3.9).
Moreover,

3
h 2 h 2 hy3 2 2
”ul ”th + ||u2||X£t + ||u2 ”LS(QZ) = C <||f1 ”LZ(SZ]) + ||f2||L%(Qz)> s (3193)
3
1P agn + 1A 11 a0 < CLAl20y + 120175
2 L2(22)

Proof Since A" : VI — (Vh)* is continuous (so that hemlcontmuous) coercive, and mono-
tone, there exists a unique u” € V" of (3.13). Substituting v" = u” into (3.13) and using
(3.16)

c(luf I + g %,) + Crlluz s g, < (A" @), ") = (f, u")
1 2
h h
< fillpzop llet 2,y + ||f2||L%(QZ)||u2 232

2.3 1 3 Cr
h2 5 2 2 h)3
“‘fl”Lz(Q]) + = ”ul ||L2(Ql) + (g)ch ||f2||L%( ) + 2 ”u2”L3(Qz)’ (320)

Q0
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which implies (3.19a). By the discrete inf-sup condition (3.6), there is a unique p” € M"
such that (u”, ph) solves (3.2), and we have the boundedness of ph:

" (", pt)
1p" llyn < C sup —;
vhevi llvy xr +lv2llxn wos iy
(f, oMy —al(uh, vt

h )
whevr llvf xr +lv2llxn wos iy

In view of
ja” @, o™ < Cllug I 107 1o
+ Cllugllyr + 18311750, U193 1 + 193 11230)
< C(llu lyr + g g + N3 1730, (07 lr + 193 1 wos aivy)-
and together with (3.20), we obtain the boundedness of ph of (3.19b). The unique existence

of A" € A" and (3.19b) follows from (3.8). o

3.3 Picard Iteration for the Discrete Problem

As with Sect. 2.4, we apply the Picard iteration to solve the nonlinear discrete problem (3.13).
We set

&h(wh; u”, vh) =4 (w{’; u’l’, v{') +a, (w;'; ué’, v;’) (th, = ‘o/h),
where

ay (wis uf, vf) = Y /Eg1<|D<w{’)|)D(u’f>: D) dx

EeTlh
- /{{g1(|D<wi')|)D(ui')ne}} v} 1 ds
eertur, ¢
o1 d—1
+ ) /ﬁ[[u’l’]]'llv{’]] ds+Y > [ 7@l o) ) ds,
eerhur, °¢ I=1 el V¢
aywyuy, vy) =Y [ (K g2(lwghuz + Crlwyuy) - vy dx
EeTZI’
)
+ > /Vlellué’-ne]]llvé’-ne]] ds.
eerhur, *¢
Note that af uh; ul v¥) = al@" vt) and al@t;ul, o) = ai@h, o). (3.13) is

equivalently expressed by:
Find u”* € V" such that

at@; ul "y = (f, 0" vt e VI (3.21)

The Picard iteration is stated as follows.

@ Springer



Journal of Scientific Computing (2023) 97:24 Page230f33 24

Given u©® = (u;"(o), u;"(o)), forl=1,2,..., findu® ¢ V! such that
a" @D O Wy = (f M) v e VI (3.22)

Setting e @) = (sh (D ghs (Z)) (u” ui’ D ,ult — u;"(l)), we turn to the convergence of
the iteration.

2 2 2
Theorem 3.2 We set the constants C; := C2 Civeetd Cy = (krn%.s) (% + CF) Af

81 21)1200 V2 Kmin
O1e is sufficient large and

max (C1[| D @) qy)r C2lluh 17 q,) =1 C1 < 1, (3.23)

then the Picard iteration (3.22) converges. In particular,

l
—= || D(ey ™ mml)

1
b ”LZ(QZ)

2k (3.24)

h,(I-1)
=< C[ (7 H| D( 1 ”Lz(QZ))

Proof Same with the proof of Theorem 2.3, we subtract (3.22) from (3.21), and choose
h _ oh()
v =g

2k

a@"; uh, MOy — gh @D, O ghy — ¢, (3.25)

Applying (2.4b), (3.1b) and Young’s inequalities, we have

> fﬂ(gl(lD(ul)l) —a1(D@; D) D@hn) - 16V ds

eerur,
Co1 01 h
< X Gl I{p@h i
eerhury
-1 h,(I-1 h,(
(1D 2y + 1D ET 2 )T VT2
C?c?
g1t h -1 RO)
< D@Dy | D) a0, + D2 ||IIHI LR

eelur,

and

2 / {a10D@] DD Dine} - el V1 ds

e
eelury

Vioco l ()
< T IDE D) 20, + D ||[[1 11220,
eer"url

2
where C = “10=C Therefore (3.25) yields

Vlico () Gle— (D
S IDE ) agy + D D= L2 C et M2
eelur
C2vioo +4 -1
CL =2 D@) s Il DT DI2 g,-

4y
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V2oo h,(), 2 h, (D)
L R > O ||[[ ‘nelll7ay,
ethUFQ
k Ceo -1
< (2 4 O oy e T2 -

~ 2V200 Kmin

Summing up the above two inequalities and taking sufficiently large o1, such that oy, — 1 —
C > 0, we conclude (3.24). ]

3.4 The Error Estimates

Theorem 3.3 Let (u, p, )) and (u”, ph, A1 be the solutions of (2.8) and (3.9), respectively.
For k = 1,2, suppose we have the regularity uy € (H**'(Q1)) N W-(Q)) and u, €
(H*($22)) N WY () (r = d) and p; € H*(Q) (i = 1,2). Then, under the assumptions
(2.4), (2.5) and (3.17), we have
lu— " n < Ch*(luall grst @y + P11 k) + 02l gk @y + P21k gy)). (3:26a)
Ip1 = P2, + 102 = PRIz < ¥ P11k, + P2l Hky) + cllu — u®llxn.
(3.26b)

Proof For briefness, we set the notations:
hy .__ ~h .__ Th ._
(ul, uy) ;= (IMuy, Mauz), p":=Pyp, A" := Pph.

By the triangle inequality and interpolation/projection errors (3.4), (3.5) and (3.11), it suffices
to evaluate ||i¢h - uhllxh and IIﬁf’ — pf’lle(Qi).
It follows from (3.18) that

ca(lla] —uf iy + 135 —u3l3,) < (A"@" — A" @"), @ —u") .
= (A"@") = At @ —u") + (AP @) — AP, @ =y =1L

The task is to bound I and II. To this end, we decompose I into three parts {I; }?:1 and estimates
them as follows. By (2.4a), (2.4b) and (3.4),

L= ) / (s1(D@HND@Y) — g1(ID@))D(uy)): D@y — uy) dx
EeTh

Z/ @ (ID@HHD @} — up) — (81D @D — g1 (ID@H)) D))

EeT!
“h ok ~p “h ok
: D@y —uy)dx < Coor ||| V@ay —u) |2 V@7 — a2

—152k 2 ~
SCT] h |u1|H"+1(Ql) + n H| V(u ul)H|L2(Q1)’

where Coor = (V10 + Cg1l|D(u1)l L)), and 1 is an arbitrary positive constant. Let
Iyvi e X i’ be the Lagrange interpolation of v; satisfying

1pvr = villamey < BT gl s gy (YE € T, m=0,1,2, k=1,2). (3.28)
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By using (3.1b) and (3.1a), noting that {fth}} = a", {u} = u and [[fth]] = [[u]] = 0, we
calculate as (the last inequality follows from (3.4) and (3.28))

hi= Y [u - ul
eerhur, ¢
A1 D@HHD @) — g1 (1D (uy))) D(wr)) D@y — up)n ) ds

< Y Coa(IDG@ = hunnel 2 + IDUnur — un)nell 2 ) 1Tut 1 2
eerhur,

_ ~ 2
<en™ (| V(u" — o) |2y +Thun — w1l g, + lelilThun — w1l 2 g,))

Ui
2 II[[ulﬂlle(e)_cn LTSS D [ L2 (2

eer"url eelur,
In view of
~h ~h
lus Lo, < luy — uzllLo(@,) + lluzllLe(,)
1-
<ch IIVuzllwl (@) T lluzllLe@,) <c (r>d),

we derive (by (2.5a), (2.5b) and (3.5a))
L i=dl @k, iy — ul) — all(uy, iy — ub)
= 1@ — w2l 2 ) 185 — w4120 (Kimax (20 + Cozlluzllzom()
+ Cr(luzlle@y + Nl @) )
<en W ual g, + 0y — w3l g,

Summing up the above estimates of {I; }?: 1» we achieve

~
I < cn 1h2 |u1|Hk+1(Ql) + cn 1h2k|u2|Hk(Qz) + n |H V(ul - u{l)‘”iZ(Ql)

+ Z IIIIui’]llle(e)anll — 31720, (3.29)
eerhurl

Now we turn to the estimates of II. Subtracting (3.9) from (2.8), we obtain
al(u, vy —a"@" o) + b p — p") + B A M) =0 vl e X,
b, g" — bW g" =0 Vgh e M,
bl (u, A"y — bl Ay =0 vl e Al
(3.30)

b _ uh into (3.30), we have

Substituting v" = @
a"w,@" —u"y —a"@", @ — w4+ 6" @" —u", p— p" + @ —ut x - 2" =0,
which yields

U=p@ —a" p—p"+pi@" —a", » -3,
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It follows from (3.10a), (3.10b) and (3.11a) that

= Z /{Pl—ﬁ{’}[[(u{‘—ﬁ{'yne]]ds

e

eelur
+ 2 /{m—ﬁé’}[{(ué’—a’;)-neﬂds5cn*‘h2k|p1|§ml)
eertur, ¢
_ Ui
+en ' W pal g,y DL Qllllui'lllliz(e)+ > ||||[[u2 nelll7a-

eelur eelur,
Together with (3.29), we get

[+11 < glla" — a2,
—172k 2 2 2 2
+cn h (|ul|Hk+l(Ql) + |P1|Hk(91) + |u2|H"(Qz) + |P2|Hk(92))-
By (3.27), the triangle inequality and taking ¢, — 1 > 0, we conclude (3.26a).

It remains to estimate the error of pressure. Applying the inf-sup condition (3.7), (3.30)
and (3.10b),

" (", p" — p")
h =h h_ ~h ,
It = Pillz@)y +1IP2 = PallL2@, = € sup —; 7
vheyh ”vl ||X/11 + ||1)2 ”Xét,Wl,Z

a(u, vy — a @, o) + " ", p — pt)

= C sup
h h
vheyh ”v] ||X11" + ||U2 ”XQ,WLZ

The numerator is bounded as follows.

Y, p— ") < cvf g + 195 g wi)B* (1Pt P2l ik o)
a"u, vy —a" @ 0" <o || Vr —ul) |2, IV 2@
+ D ViellVa —uDlze rur[v{']]ny(e)
eelUIy
+ (¢ + Cr(luzllL=@,)
+||uh|| _ . h h h
2 L3(Qz)))”u2 uy 12, U0z 220y + 102 1 26(0,))
+ 3 2 [[(uz —u) - nelllv; - nell ds,

eerhur2

where ||u£’|| 13, is bounded by Theorem 3.1. By the discrete Sobolev embedding

h h .
03 I8y = Cllvllxs w12, we obtain

Ipt = Btz + 108 = Bhll 2, < ch*Upilgk,) + P2l k) + clle — u™[xn.

Together with the triangle inequality and the projection error (3.11a), we conclude (3.26b).
]
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4 Numerical Experiments

We first carry out the numerical experiments using P¥/P*~1-DG element with k = 1,2
respectively, and investigate the experimental convergence rates and the performance of the
Picard iteration. Secondly, we present a simulation of the industrial filtration system (cf. [17,
22]) with curved interface I'. Then the non-constant permeability [16, 32, 33] is considered
with a curved interface in the porous medium.

4.1 Example 1: The Experimental Convergence Rates

Weset Q) = {(x,y) : 0 <x <1, 1 <y <?2and 2 = {(x,y): 0 < x <
1, 0 < y < 1} with the interface I' = {(x,1) : 0 < x < 1} and the boundaries 'y =
dQ\I', ', = 92\I". Choose the parameters Cr = 1, K = I, and the viscosity functions
g21(|D(u1)|) and g2 (Juz|) of the Carreau model with vis, = V206 = 0.001, vig = vy9 = 0.5,
Gi(IDp)|) = (1 +0.5|D@p)|>)™%% and Ga(luz|) = (1 + 0.5/uz|*)~%?. The exact
solution is stated as follows.

ur(x,y) = (— %sinz(nx)(y — 1?2, mwsin(rx) cos(rx)(y — 1)),

1 . 2 . t
uz(x,y) = ((5 — y)sin(wx)”, msin(wx)cos(mx)y(y — 1)) ,
pi1(x,y) = e“cos(wy), pa(x,y) =e* cos(my) — (g1(|D(u1)))D(u1)n12) - n1z,

where n1; = (0, —1)". We replace the homogeneous Dirichlet boundary condition (2.1c)
with the inhomogeneous one. The solutions #1 and u, are divergence-free in 21 and 2,
respectively. In particular, the BJS condition (2.3c¢) is satisfied with r; = 1.

Taking o1, = 0.5 and 02, = 1, we carry out the simulation using P! / PY-DG element
and P2/ P'-DG element, respectively. The numerical solutions with P2/ P1-DG element and
h = 6i4 are plotted in Fig. 1. The experimental errors and convergence rates are presented
in Tables 2 and 3, where we observe the O(hk)—convergence of the errors for both the
velocity and pressure in two subregions. The experimental results confirm the theoretical

1) uh (2) [uh|

Fig. 1 The numerical solution (u , D ) with P2 / P1.DG element and h = &
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Table 2 The experimental errors of p! /PO-DG element

h T6 » 5 %
llug — ul Iy 431e—01 2.14e—01 1.07e—01 5.32¢—02
Rate - 1.01 1.01 1.00
pr = Pl 2, 6.44e—02 3.21e—02 1.60e—02 8.01e—03
Rate - 1.00 1.00 1.00
llwy — ult| Xl 1.54e—01 7.65e—02 3.81e—02 1.90e—02
Rate - 1.01 1.01 1.00
P2 = PAIl 20y 1.20e—01 6.00e—02 2.99e—02 1.50e—02
Rate - 1.00 1.00 1.00
1A = 2" 2y 2.63¢—03 6.49¢—04 1.35e—04 4.07e—05
Rate - 2.02 2.27 1.73

Table 3 The experimental errors of P2/P!-DG element

h i 5 6 =

llug — ul) xh 4.01e—01 1.02¢—01 2.53¢—02 6.33e—03
Rate - 1.98 2.00 2.00

lp1 — p{’lle(Ql) 1.01e—01 2.20e—02 5.00e—03 1.18e—03
Rate - 2.27 2.14 2.08

lluy — ul uxg 1.16e—01 2.88e—02 7.15e—03 1.87e—03
Rate - 2.00 2.01 1.93

P2 — Phl2 @) 4.86e—02 9.37¢—03 2.41e—03 6.27¢—04
Rate - 2.38 1.96 1.94

2 = A" 2y 3.29¢e—02 5.08¢—03 8.20e—04 1.47e—04
Rate - 2.70 2.63 2.48

error estimates obtained by Theorem 3.3. We also compute the experimental L2-error of the
Lagrange multiplier A, on the interface (see Tables 2 and 3), where the exact A is obtained
by using the formula (2.9).

Furthermore, at[-thiterationstep (I = 1, 2, .. .), we compute the errors Eul@ = "D —
w0 and Ep” = 1p0Y = pl V) g, (i = 1,2), and plot them in Fig. 2(1)
in log-scalel. We see the iteration error decreases exponentially fast, indicating the Picard
iteration’s good applicability.

4.2 Example 2: The Dead-end Filter Domain
We consider the region of a concentric quarter circular. The entire domain is divided into

the Stokes region Q21 = {(x,y) : 2 < x4 y2 < 3,x > 0,y > 0} and the Darcy region
Qo ={(x,y): 1 <x?+y2<2,x >0,y > 0} with the interface T" = {(x, y) : x2 4+ y* =
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10° B o Eu) 10 b B o B LA B o Eu) 10° ) £ o Eu)
o B B O e e o e e wEd) 5 +Ey) vyl
5 . 50 8 5" 50 by
e RN e i a IS
10 N Y * "~ Y
1070 10°° - ; 108 L
0 5 10 o 2 4 6 o 5 10 o 5 10
Iterations Iterations Iterations Iterations
(1) Example 1 (2) Example 2 (3) Example 3 with (4) Example 3 with
periodic k;rle random k;Tle
Fig.2 The convergence of the Picard iteration
W 1 1 1.9
l“/ M/H//// 9
14/
11794, 1
l/ / 71,007,
i ’ Wy, 08 0.8
Lo LY s
'v/,/i%/fif/f/////// < = 0 c
2 5 | !
0 2 =2 a
5% 0.6 0.6 -1
i =
17 o i
///// ‘—{‘k/;’ii 2
= === Moa 0.4
h h h
(1) w (2) [u™] @ p
1.7E+05
l8.0E+04
4
-5.0E+04 o
I-1.5E+05
- -2.5E+05
h h h
(1) w (2) |[u™| @)p

Fig.4 The velocity and pressure with permeability K = 10757 and C r=1

2}, and the boundaries I'y = 9\, Ty = 9\, oy = {(x,y) : x2 + y? = 1} and
' = I \IM21. The following boundary conditions are imposed.

X y T
up(x,y) = ( ) onI,

a4y X242
uy-n=1 only, uy-n=0 only.

We take g1(|D(uy1)|) and go(Juz|) of the Carreau model with G{(|D(uy)|) = (1 +
0.5|Dm1)|?) %%, Gy (Jluz]) = (140.5]u2|%) 7942, vjs = 0.001,vj9 = 0.1, Voo = 1 and
Vo0 = 10. We adopt PZ/PI-DG element with 1, = 10 and 0», = 10, and plot the numerical
solutions with different permeability K and Forchheimer coefficient Cr in Figs.3, 4, 5, 6,
7. The velocity fields of these four cases are almost the same. In contrast, the magnitude of
the pressure behaves differently, which depends on the permeability K and the Forchheimer
coefficient Cr. The filtration pressure increases dramatically when K <« 1 or Cr > 1. 1In
this example, we also observe exponentially fast decreasing errors of the Picard iteration (see
Fig. 2(2) with K = 10731 and Cr = 1).
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0.99 0.99 1.7E+03
l l l5.0E+02
los lo.8
E ; 1.0E403 o
=) -1.0E+03 o
0.6 0.6
-2.0E+03
0.4 0.4
-3.3E+03

(1) uh (2) |uh| 3)p"

Fig.5 The velocity and pressure with permeability K = / and Cp = 104

" 1.8E+05
li’/}ﬂﬂﬂ/l//}/ i 1 1
70,
,/ / 11, 8.0E+04
itz 08

u_h|

11117307 0.8
.,%%/;% ‘ = S -5.0E+04 o
W 0.6 0.6
Wiy, é‘f////’:’/ 1.5E
7 2 /:;//",,: -1.5E+05
= ===
= ="=-04 0.4
e -2.6E+05
1) uh (2) [uh| (3) p"
Fig.6 The velocity and pressure with permeability K = 10757 and C F= 104
I 1 ' 1.6E+10
5.0E+09
0.8
= <
5 -5.0E+09 o
0.6
-1.5E+10
0.4
-2.4E+10

(3) p"
Fig.7 The velocity and pressure with permeability K = 10-197 and € F= 10*

4.3 Example 3: The Varying Permeability Models

In the previous example, the permeability is chosen as a constant. To be more realistic, in
this subsection, we explore the velocity and pressure behavior in the coupled domain for
non-constant permeability. Particularly, we use the same Stokes and Darcy region, boundary
conditions and the non-Newtonian models configuration as in Example 2.

First, we carry out the simulation with a periodic permeability K = k.1 with

k=1 =300 ( 1+ sin [ 12arcsin [ —2— )| ) + 100.

k;el, is plotted in Fig. 8(1). We utilize the P2/P'-DG element to calculate u” and Ph, and

observe that the velocity and pressure behave periodically as permeability (see Fig. 9).
Next, we randomly selecte a value for k;elr between 500 and 2000 in a coarse mesh (see

Fig. 8(2)). Note that to ensure the accuracy of the calculation, we compute the solution on a
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7.0E+02 1.9E+03
l 5.3E+02 I 1.5E+03
3.5E402 .,-x*g 1.0E+03 qxg

I 1.8E+02 I 5.0E+02
0 0

(1) k;elr: a periodic permeabil- (2) k;el,az a random permeabil- (3) A refined mesh for the
ity ity random permeability

Fig.8 The periodic and random permeability fields and a refined mesh for the case of random permeability
4.2E+02
2.0E+01

3 3
I 25 I 2.5
2 2
c | -=|
1.5 5 1.5 5 -3.8E+02 o
- 1 74 1 -
-7.8E+02
I 05 — I 05 A a "
-1.1E+03

(1) uh (2) [u| (3) p"

Ju_h|

Fig.9 The velocity and pressure with a periodic permeability

l1.8
1.4

2.1E+03

6.5E+02

-8.0E+02
\ I -2.3E+03
-3.8E+03

(1) uh (2) |uh| (3) p"

[u_h|

Fig. 10 The velocity and pressure with a random permeability

refined mesh (see Fig. 8(3)). Figure 10 displays the simulation results, which show that the
fluid tends to flow towards with higher permeability in the porous medium region.

In addition, the iteration errors for both the periodic and random permeability cases are
plotted in Fig. 2(3)(4), indicating the good applicability of the Picard iteration.

Concluding Remark

In this remark, we summarize the assumptions made during our theoretical analysis. To
establish the well-posedness of the non-Newtonian Stokes-Darcy-Forchheimer model (see
Theorems 2.1), we assume the positivity, boundedness, Lipschitz continuity, and strong
monotonicity of g;(-) and g>(-) (as described in (2.4) and (2.5)). We have discussed these
assumptions in Remark 2.3, and can confirm that they are satisfied for various non-Newtonian
models, such as the Carreau model, Cross model, Powell-Eyring model, and so on, which are
listed in Table 1. In order to establish the well-posedness of the P¥/ P¥~1-DG approximation
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problem (3.2) (as stated in Theorem 3.1), it is necessary to take sufficiently large coefficients
o1, and oy, for the stabilization terms (as explained in Lemmas 3.2 and 3.3). Additionally,
we assume that g} (JA[)A is bounded (see Lemma 3.3), which is true for the models with
parameters listed in Table 1.

Furthermore, to obtain the error analysis of the DG method (see Theorem 3.3), we make
the regularity assumption u1 € (H**1(Q1)) N Wh°(Q)) and uy € (H*(Q23)) N W7 (2y)
(r>d)and p; € H k@i (i =1,2).To guarantee the convergence of the Picard iteration
of the continuous (resp. discrete) problem (see Theorem (2.3) (resp. 3.2)), we introduce a
sufficient condition (2.44) (resp. (3.23)), which takes into account the (WL %) _norm of
(uy, uyz) (or (ui’, ué’)). However, validating this condition can be challenging. Despite this,
we find that the Picard iteration is effective in simulating various types of permeability, as
demonstrated in our numerical examples.

Data availibility The authors confirm that the data supporting the findings of this study are available within
the article.
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