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Abstract
The convective Allen–Cahn (CAC) equation has been widely used for simulating multiphase
flows of incompressible fluids, which contains an extra convective term but still maintains
the same maximum bound principle (MBP) as the classic Allen–Cahn equation. Based on
the operator splitting approach, we propose a second-order semi-Lagrangian exponential
time differencing method for solving the CAC equation, that preserves the discrete MBP
unconditionally. In our scheme, theACequationpart is first spatially discretizedvia the central
finite difference scheme, then it is efficiently solved by using the exponential time differencing
method with FFT-based fast implementation. The transport equation part is computed by
combining the semi-Lagrangian approach with a cut-off post-processing within the finite
difference framework.MBPstability and convergence analysis of our fully discretized scheme
are presented. In particular, we conduct an improved error estimation for the semi-Lagrangian
method with variable velocity, so that the error of our scheme is not spoiled by the reciprocal
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of the time step size. Extensive numerical tests in two and three dimensions are also carried
out to validate the theoretical results and demonstrate the performance of our scheme.

Keywords Convective Allen–Cahn equation · Semi-Lagrangian method · Variable
coefficients · Maximum bound principle · Exponential time differencing · Enhanced error
estimate

Mathematics Subject Classification 65M12 · 65M25 · 35B50 · 35K55

1 Introduction

In this paper we consider the convective Allen–Cahn (CAC) equation in the following form:

ut + v · ∇u = ε2Δu + f (u), t > 0, x ∈ Ω, (1.1)

subject to the periodic or homogeneous Neumann boundary condition. Here, Ω ⊂ R
d (d =

2, 3) is a connected, open, and bounded domain, Δ = ∇2 is the Laplace operator, the order
parameter u(x, t) ∈ R is the unknown function, the parameter ε is related to the thickness of
the transition layers, the bulk velocity v(x, t) ∈ R

d is solenoidal, i.e.,∇ ·v = 0. The reaction
term f (u) is a nonlinear function which will be specified in the following context.

The classicAllen–Cahn (AC) equation [1], obtained from (1.1) by removing the convective
term v · ∇u, can be regarded as the L2 gradient flow with respect to the following energy
functional

E[u] = ε2

2
(∇u,∇u) + (F(u), 1), (1.2)

with f (u) = −F ′(u) (F is often called the potential function), where (·, ·) represents the L2

inner product on Ω associated with the L2 norm ‖ · ‖0. In this case, the classic AC equation
satisfies the so-called energy dissipation law in the sense that

d

dt
E[u] =

∫
Ω

δE

δu
utdx = −

∫
Ω

∣∣ε2Δu + f (u)
∣∣2 dx ≤ 0.

However, the CAC equation (1.1) does not possess the above energy dissipation law evenwith
a divergence-free velocity field. As an another well-known characteristic of the AC equation,
the maximum bound principle (MBP) states that if the initial value and/or the boundary
values are pointwisely bounded by a certain positive constant in the absolute value, then
the solution is bounded by the same constant everywhere for all time. The CAC equation
(1.1) inherits the same MBP from the AC equation, which turns to be an indispensable
mathematical tool to study the underlying physical characteristics [22, 44], particularly for
the case of logarithmic nonlinear potential. Therefore, it is also crucial to maintain the MBP
in the discrete settings for discretization of the AC type equations. In addition, we should
note neither the above AC or CAC equation preserves the total mass.

Many numerical methods that preserve discrete MBPs have been proposed and studied
for the AC type equations in recent years. For the spatial discretization, different methods
have been considered, such as lumped-mass finite element method in [53, 54], finite differ-
ence method in [8, 58], and finite volume method in [41, 42]. For the temporal integration,
some stabilized linear first-order semi-implicit schemes were developed in [50, 55, 56] to
unconditionally preserve the MBP, but the corresponding second-order schemes only pre-
serve theMBP conditionally. The cut-off post-processing methods were studied in [35, 59] to
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preserve the MBP of the AC equation. However, there are still few similar works for uncon-
ditionally MBP-preserving numerical schemes for the CAC equation, especially for those
with higher than first-order accuracy in both space and time. Recently, the exponential time
differencing (ETD) method [6, 11–13, 25, 26, 30–32], has been widely applied and studied,
in combination with linear stabilization techniques, to discretely preserve the MBP for the
AC equation. Du et al. [18] proposed the first- and second-order stabilized ETD schemes
for the nonlocal Allen–Cahn equation that preserve the MBP unconditionally. Moreover, an
abstract framework on MBP-preserving ETD schemes for a class of semilinear parabolic
equations was established by Du et al. [19]. Then, their framework was extended further to
the mass-conserving AC equations in [29, 36]. In addition, an arbitrarily high-order ETD
multi-step method was presented by [35] by enforcing the maximum bound via an extra
cut-off post-processing.

As an another significant feature of the CAC equation (1.1), the convective term poses
extra difficulties for constructing efficient, stable and high-order accurate numerical schemes.
A common approach to deal with the convective term and design stable schemes is the
upwind strategy [9]. Shen et al. [46] and Cai et al. [8] both designed unconditionally MBP-
preserving schemes for the CAC equation based on the upwind approach. The former used the
upwindfinite differencemethod and achieved thefirst-order accuracy. The latter used theETD
framework and achieved the first- and second-order accuracy in time. The upwind approach
also has some drawbacks. It leads to variable coefficients in the linear system at each time
step, which impedes the implementation of FFT-based fast solver and significantly increases
the computational cost. It only has first-order spatial accuracy and is subject to a strict CFL
stability condition [20, Chapter 7], which make it hard to capture the dynamic interface
behavior of phase evolution in realistic simulations. To resolve these issues, a numerical
method with second-order spatial accuracy via the splitting approach was proposed in [33],
where the convective term is integrated separately as a fractional step and the reconstruction
with the limiter is adopted to achieve higher spatial accuracy. However, this scheme still
suffers from the strict CFL condition due to the convection part solver and thus only preserve
the MBP conditionally.

The semi-Lagrangian (SL) scheme (or called “the modified method of characteristic”) [2,
16, 43] is an another popularly used approach to handle the convective term and achieve
high-order accuracy in space. It finds the previous positions of the fluid particles that will
end up at the current mesh nodes. This way, the equation is solved on the fixed mesh, which
avoids remeshing and results in the linear systems with time-independent entries. It also
potentially allows for arbitrarily large time steps without breaking the CFL condition. The
SL method has been applied to solve many fluid models, e.g. see [5, 7, 47, 52–54, 57] and
the references cited therein. Error estimates for SL schemes often encounter a factor 1

τ
(τ

denotes the time step size) due to the interpolation, which ruins optimal convergence results.
Charles et al. [10] recently developed a new technique for enhanced convergence analysis
of SL schemes, in which they applied the shifted Strang’s schemes [28, 48] for the stability
and the B-splines techniques [45] for the truncation error. As a result, the factor h

τ
is then

replaced by min
{ h

τ
, 1

}
in the corresponding error estimates. The analysis framework in [10]

was only discussed for the one-dimensional case with constant-in-space velocity field (i.e.,
v(x, t) := v(t)), and it still remains open how to conduct enhanced error estimation for the
SL schemes on higher-dimensional cases with variable (in both time and space) velocities.
We also note that the techniques in [10, 48] do not apply to the SL schemes with variable
coefficients, because they rely on [34, Theorem 3.1], which requires that the characteristic
roots of different grid points are shifted by the same number of cells. This condition is not
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met by the SL schemes with variable velocity cases, unlike the numerical schemes that Strang
[48] proved to be stable.

The primary objective of this paper is twofold: one is to design unconditionally MBP-
preserving second-order numerical schemes for solving theCACequation (1.1) by combining
the ETD and SL methods, the other one is to conduct the enhanced error estimation on the
proposed method with variable coefficients in two or higher dimensions. We shall consider
the operator splitting approach [38, 39, 60] by decoupling the CAC equation into two AC
equations and one linear transport equation at each time step. Then finite difference method
is used to spatially discrete each subsystem, especially the central finite difference scheme
is applied for the AC equation. For the linear transport part, we will reformulate it into the
characteristic form and apply the SL method for its solution. Meanwhile, the Runge–Kutta
method is used to trace the characteristic curve, and the centered cubic Lagrange interpolation
with the cut-off post-processing is applied to approximate the value at the spatial mesh nodes.
Cut-off post-processing is usually not appropriate for the general transport equation with
discontinuities. However, since we have a smooth transported quantity for the CAC equation
(1.1) and a prescribed smooth velocity, we do not encounter any discontinuity. Therefore, we
can apply cut-off post-processing. For the AC equation part, the stabilized ETD schemes will
be used for its solution, where FFT-based fast implementation [32] can be naturally used for
solving the resulting linear systems on rectangular meshes. Furthermore, we are also devoted
to prove enhanced error estimate for the proposed scheme on the fully discretized system
where high dimensions and variable coefficients are present.

The rest of this paper is organized as follows. Section2 presents the conditions on the
nonlinear function for the MBP satisfaction of the CAC equation and introduces the charac-
teristic form for the linear transport equation. In Sect. 3, we present the second-order operator
splitting scheme which decouples the CAC equation into two classic AC equations and one
linear transport equation in the characteristic form. Their corresponding solvers, stabilized
ETDRK2 scheme for the AC equations and the SL scheme for the transport equation, are then
discussed with finite difference discretization in space. In Sect. 4, fully discrete second-order
SL-ETD scheme for the CAC equation is presented and its unconditional MBP preserva-
tion and enhanced error estimate are proved. Various numerical experiments in two and three
dimensions are performed to verify the theoretical results in Sect. 5. Finally, some conclusions
are drawn in Sect. 6.

2 Maximum Bound Principle and Characteristic Form

Let us briefly go over the prerequisites for the CAC equation (1.1) to retain theMBP property.
Suppose that f : Dom( f )(⊂ R) → R is continuously differentiable and the initial value of
u is given by

u(x, 0) = u0(x), x ∈ Ω. (2.1)

For simplicity, we will consider the rectangular domain Ω = ∏d
i=1(ai , bi ) imposed with the

periodic boundary condition. Note that the results derived below can be easily extended to
the case of homogeneous Neumann boundary condition. According to the classical theory
for the semilinear parabolic equations [51], there exists a unique smooth solution to the CAC
equation (1.1) under some suitable conditions on the nonlinear function f and the velocity
field v. As shown in [19], the following assumption on f is crucial for establishing the MBP
for (1.1).
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Assumption 1 There exists a constant β > 0 such that

f (β) ≤ 0 ≤ f (−β).

There are two types of classic potential functions F(u) (and f (u) = −F ′(u)) commonly
used in practice: one is the Flory–Huggins potential:

F(u) = θ

2
[(1 + u) ln(1 + u) + (1 − u) ln(1 − u)] − θc

2
u2 (2.2)

with θc > θ > 0 for which β ∈ [ρ, 1) with ρ being the positive root of f (ρ) = 0, the other
is the double-well potential:

F(u) = 1

4

(
u2 − 1

)2
(2.3)

for which β ∈ [1,∞). Under Assumption 1, the convective Allen–Cahn equation (1.1) with
the potential function (2.2) or (2.3) satisfies the MBP [22, 46], i.e., if |u0(x)| ≤ β for all
x ∈ Ω , then |u(x, t)| ≤ β for all x ∈ Ω and t ≥ 0. The CAC equation (1.1) can be regarded
as a special case of [46] with a constant mobility.

With respect to the supremum norm, the Laplace operator Δ can generate a contraction
semigroup {SΔ(t) = eΔt }t≥0 on Cper(Ω̄) [19, 21], where Cper(Ω̄) is the subspace of C(Ω̄)

satisfying the periodic boundary condition. Let ‖ · ‖∞ denote the supremum norm on C(Ω̄).
The following result holds with regard to the semigroup generated by A = Δ − αI, where
α > 0 is a constant and I is the identity operator.

Lemma 2.1 [19] The Laplace operator Δ generates a contraction semigroup with respect to
the supremum norm on the subspace Cper(Ω̄). Furthermore, for any α > 0, we have

‖SA(t)u‖∞ ≤ e−αt‖u‖∞, ∀ u ∈ Cper(Ω̄), t ≥ 0,

where {SA(t)}t≥0 is the semigroup generated by A = Δ − αI.

Thanks to Lemma 2.1, we now transform the CAC equation to the the following stabilized
form:

ut + v · ∇u = Lκu + fκ (u), (2.4)

with

Lκ = ε2Δ − κI, fκ (u) = κu + f (u),

where κ is a stabilizing parameter satisfying

κ ≥ max|ξ |≤β
| f ′(ξ)|. (2.5)

Since f is continuously differentiable, (2.5) is always well-defined. Moreover, the new non-
linear term fκ (u) has the following properties.

Lemma 2.2 [19] Assume that Assumption 1 and the stabilizing parameter condition (2.5)
hold, then we have

(I) | fκ(ξ)| ≤ κβ for any ξ ∈ [−β, β].
(II) | fκ(ξ1) − fκ (ξ2)| ≤ 2κ|ξ1 − ξ2| for any ξ1, ξ2 ∈ [−β, β].
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Next we review the material derivative and the characteristic form for the linear transport
equation

ut + v · ∇u = 0. (2.6)

Let (X(t), t) be the characteristic curve of the above transport equation (2.6) in Ω × (0, T ],
where X(t) represents the position of the particle at time t . By the chain rule, we have

Du

Dt
:= du(X(t), t)

dt
= ut (x, t)

∣∣
x=X(t) + ∂X(t)

∂t
· ∇xu(x, t)

∣∣
x=X(t) = ut + ∂X(t)

∂t
· ∇u,

(2.7)

where Du
Dt denotes the material derivative of u. Thus, by comparing (2.6) and (2.7), one can

find that if X(t) is determined by

∂X(t)

∂t
= v(X(t), t), (2.8)

or equivalently

X(t) = X(0) +
∫ t

0
v(X(s), s)ds,

and the linear transport equation (2.6) is equivalent to

du(X(t), t)

dt
= 0. (2.9)

3 Operator Splitting Scheme for the CAC Equation and Subsystem
Solvers

3.1 Second-Order Operator Splitting Schemewith the Characteristic Form

In this subsection, we shall adopt the operator splitting approach with the characteristic form
to decouple the convection part and the AC part in the CAC equation (2.4). Given a terminal
time T > 0 and a positive integer N > 0, for simplicity we choose the uniform time steps
as {tn = nτ }n≥0 with τ = T

N . Introduce X(x, tn+1; t) as the position vector at time t of a
fluid particle whose position is x at time t = tn+1. We consider the three-stage second-order
operator splitting, also known as the “Strang splitting”. Since the transport velocity v is
time-dependent, we need to put the AC equations at the first and third stages, and leave the
transport equation in the middle. Then the second-order operator splitting of (2.4) is written
as [33]: given u0(x) = u0(x), for n = 0, 1, . . . , N − 1, find un+1(x) = u∗∗∗(x, τ/2) such
that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u∗(x, s)
∂s

= Lκu
∗(x, s) + fκ (u∗(x, s)), s ∈ [0, τ/2] & u∗(x, 0) = un(x), (Allen − −Cahn)

du∗∗(X(x, tn+1; tn + s), s)

ds
= 0, s ∈ [0, τ ] & u∗∗(x, 0) = u∗(x, τ/2), (LinearTransport)

∂u∗∗∗(x, s)
∂s

= Lκu
∗∗∗(x, s) + fκ (u∗∗∗(x, s)), s ∈ [0, τ/2] & u∗∗∗(x, 0) = u∗∗(x, τ ). (Allen − −Cahn)

(3.1)

According to [27, Chapter IV], the splitting scheme (3.1) bears a local splitting error of O(τ 3)

in time.
For the linear transport equation (the second equation) in (3.1), the solution remains a

constant along the characteristic curve. For the simplicity, we denote the trajectory of such
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a particle (i.e., the characteristic curve) X(x, tn+1; t) as X(t), which is determined by the
following equation:

⎧⎨
⎩

d

dt
X(t) = v(X(t), t), ∀ t ∈ [tn, tn+1],

X(tn+1) = x,
(3.2)

The solution X(t) for t ∈ [tn, tn+1] also can be expressed as

X(t) = x −
∫ tn+1

t
v(X(s), s)ds, (3.3)

which is the integral form of the characteristic line equation.
To avoid the accuracy reduction, we shall adopt the second-order strong stability pre-

serving Runge–Kutta (SSPRK2) method for (3.3) to numerically compute Xn as the
approximation of X(tn) in (3.1), that is

{
X(1) = x − τv(x, tn+1),

Xn = 1
2x + 1

2

(
X(1) − τv(X(1), tn)

)
.

(3.4)

The error estimate regarding the SSPRK2 scheme (3.4) is given as follows [24, Chapter II.3].

Lemma 3.1 Assuming that v ∈ C2([0, T ],C2(Ω̄)d) and the exact solution X(t) to the char-
acteristic curve equation (3.3) belongs to C3[0, T ]. Let Xn be generated by SSPRK2 in the
interval [tn, tn+1], then it holds that for any τ > 0,

‖X(tn) − Xn‖∞ ≤ Cτ 3.

Remark 1 When we just conduct one step time-marching from tn to tn+1, Lemma 3.1 in fact
gives us the the truncation error of the SSPRK2 method.

3.2 Spatial Discretization and Subsystem Solvers

From now on, we are going to construct the numerical solvers for the two subsystems:
the AC equation and the transport equation. For simplicity, we here only consider the two-
dimensional case in terms of the illustration and analysis but all results can be again extended
to higher-dimensional cases.

Let the uniform discrete mesh Ωh of domain Ω be a set of nodes xi, j = (
xi , y j

)
with

xi = a1 + ih, y j = a2 + jh, 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny , where h = b1−a1
Nx

= b2−a2
Ny

.
Let uh(x) (or abbreviated as uh) be a grid function on Ωh with uh(xi, j ) = ui, j (xi, j ∈
Ωh). To deal with the periodic boundary condition, we set uh(xNx±i, j ) = uh(x0±i, j ) and
uh(xi,Ny± j ) = uh(xi,0± j ). For convenience, we can also view the discrete grid function
uh(x) as a Nx × Ny dimensional vector with entries ui, j .

3.2.1 Central Difference in Space and Exponential Time Differencing for the
Allen–Cahn Equation

The classic Allen–Cahn equation in the stabilized form reads

∂u(x, s)
∂s

= Lκu(x, s) + fκ (u(x, s)), x ∈ Ω, s > 0. (3.5)
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Note hereu(x, s) representsu∗(x, t)oru∗∗∗(x, t) in (3.1). The second-order central difference
scheme is adopted to discretize the Laplacian Δ as follows:

Δhuh(xi, j ) = uh(xi+1, j ) − 2uh(xi, j ) + uh(xi−1, j )

h2
+ uh(xi, j+1) − 2uh(xi, j ) + uh(xi, j−1)

h2
.

Then the spatial-discretization of (3.5) reads

duh(x, s)
ds

= Lκ,huh(x, s) + fκ (uh(x, s)), x ∈ Ωh, s > 0, (3.6)

where Lκ,h = ε2Δh −κIh and Ih is the identity operator (or the identity matrix if uh(x, s) is
viewedas a vector function). For the grid functionuh := uh(x) (x ∈ Ωh)withui, j = uh(xi, j ),
its discrete L∞ norm ‖ · ‖∞,h , and the L2 norm ‖ · ‖h are respectively defined as

‖uh‖∞,h := max
0≤i≤Nx−1,0≤ j≤Ny−1

|ui, j |, ‖uh‖h :=

√√√√√h2
Nx−1∑
i=0

Ny−1∑
j=0

u2i, j .

We will apply the second-order ETD Runge–Kutta scheme for the temporal integration
of the ODE system (3.6). By the definition of Lκ,h , it can generate the semigroup SLκ,h (t) =
eLκ,h t , which is a matrix exponential. DenotingUn

h as the numerical approximation of uh(tn),
we compute Un+1

h as follows:

⎧⎪⎪⎨
⎪⎪⎩
Ũ n+1
h = eLκ,hτUn

h +
∫ τ

0
eLκ,h (τ−s) fκ (Un

h )ds,

Un+1
h = eLκ,hτUn

h +
∫ τ

0
eLκ,h (τ−s)

(
τ − s

τ
fκ (Un

h ) + s

τ
fκ (Ũ n+1

h )

)
ds,

(3.7)

where the first row in (3.7) in fact is produced from the first-order ETD scheme. We will
denote (3.7) as Un+1

h = sETDRK2 (Un
h , τ ). Note that FFT-based fast algorithms can be

easily implemented for the aforementioned sETDRK2, see [19, 36] for more details.

3.2.2 Semi-Lagrangian Method for the Linear Transport Equation with Variable
Coefficients

Consider the linear transport equation (2.6) with variable coefficients in two dimensions

ut + v · ∇u = 0, t ∈ (0, T ), x ∈ Ω, (3.8)

where v(x, t) = (vx , vy)
T is a space- and time-dependent velocity field. Note here u(x, s)

represents u∗∗(x, t) in (3.1). Recalling (2.8) and (2.9), for X(tn) = X(x, tn+1; tn) defined in
(3.3), we have u(x, tn+1) = u(X(tn), tn). In practice, the position of the characteristic curve
is traced by numerical procedure as

Xi, j (tn) = X(xi, j , tn+1; tn) ≈ Xn
i, j

with the SSPRK2 scheme (3.4), i.e., u(xi, j , tn+1) ≈ u(Xn
i, j , tn).

Since Xi, j (tn) (and Xn
i, j ) may not locate at the spatial grid points, the polynomial inter-

polation is usually adopted for the SL method. Assume that Xn
i, j =

(
xni, j , y

n
i, j

)T
is obtained
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by using the SSPRK2 scheme (3.4), we have

xni, j = xi − vnx,iτ, yni, j = y j − vny, jτ,

(vnx,i , v
n
y, j )

T = 1

2
(v(xi, j , tn+1) + v(X(1)

i, j , tn)),

where X(1)
i, j = xi, j − τv(xi, j , tn+1) is obtained from the forward Euler scheme (i.e., the first

step of (3.4)). This implies

|vnx,i |, |vny, j | ≤ ‖v(·, ·)‖L∞(Ω×[tn ,tn+1]).

Without loss of generality, let us assume vnx,i , v
n
y, j > 0 and the other cases can be treated

similarly. We first locate the interval containing Xn
i, j . It holds(

xi − vnx,iτ, y j − vny, jτ
)

∈ [xi+rx , xi+rx+1) × [y j+ry , y j+ry+1)

such that

rx ≤ −vnx,i
τ

h
< rx + 1, ry ≤ −vny, j

τ

h
< ry + 1.

Define sx = i + rx , ex = i + rx + 1, sy = j + ry , and ey = j + ry + 1. Following the
notations from [10], we introduce the reduced Courant number μx and μy as follows:

μx = rx + 1 + vnx,iτ

h
, μy = ry + 1 + vny, jτ

h
, (3.9)

and clearly μx , μy ∈ (0, 1]. Moreover, for the general cases of vnx,i , v
n
y, j (even without the

positivity assumption), it can be verified that the following estimates hold:

(1 − μx )μx ≤ min

{ |vnx,i |τ
h

, 1

}
, (1 − μy)μy ≤ min

{ |vny, j |τ
h

, 1

}
. (3.10)

Asmentioned above, the interpolation is unavoidable for the SLmethod. To obtain a stable
interpolation scheme, Strang’s stencils [10, 15, 28, 48] are widely used. For a grid function
uni, j (for xi, j ∈ Ωh) under the periodic boundary condition, let us consider the Lagrange
interpolationIk,p over the sub-domain Ix,i×Iy, j , where k and p are twonon-negative integers
and determined by the specifically chosen interpolation, Ix,i = [xi+rx+1+k−p, xi+rx+1+k]
and Iy, j = [y j+ry+1+k−p, y j+ry+1+k]:

Ik,pun(x, y) =
lx=k∑

lx=k−p

ly=k∑
ly=k−p

Ix
ex+lx (x)I

y
ey+ly

(y)unex+lx ,ey+ly ,

where the Lagrangian polynomials are defined respectively by

Ix
ex+lx (x) =

k∏
q=k−p,q �=lx

x − xex+q

xex+lx − xex+q
, I y

ey+ly
(y) =

k∏
q=k−p,q �=ly

y − yey+q

yey+ly − yey+q
.

Let us define the function αlx (μx , k, p) [10] as

αlx (μx , k, p) = Ix
ex+lx (x

n
i ) = Ix

ex+lx (xi − vnx,iτ) =
k∏

q=k−p,q �=lx

q + μx

q − lx
,
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andαly (μy, k, p) can be defined similarly. Then the SLmethod for solving the linear transport
equation (3.8) can be written as

un+1
i, j =

lx=k∑
lx=k−p

ly=k∑
ly=k−p

αlx (μx , k, p)αly (μy, k, p)u
n
ex+lx ,ey+ly , (3.11)

where un(xi, j ) = uni, j is the numerical approximation of u(xi, j , tn), and the parameters
μx , μy at each index (i, j) is determined from Xn

i, j which is produced from the SSPRK2
scheme (3.4). We also note that the interpolation parameters μx and μy in (3.11) (or (3.12))
are generally different for each xi, j and n. Equivalently, we also can write the SL method
(3.11) for un := un(x) (x ∈ Ωh , n ≥ 0) as

un+1 = Rμx ,μy ,k,p,su
n, (3.12)

where s = 2 stands for the SSPRK2 scheme (3.4) (s indicates the order of solvers for tracing
the characteristic curve). By standard interpolation results, it yields that

u(Xn
i, j , tn) − Rνx ,νy ,k,p,su(xi, j , tn) = O(h p+1), s = 2,

which often leads to the term O(
( h

τ

)
h p) in the error estimate of the SL method for the linear

transport equation (3.8). In [10], an enhanced error estimate was successfully established for
the one-dimensional transport equation with constant-in-space velocity field. Their analysis
technique controls the interpolation errors and successfully proves an enhanced global error
estimate involving

O

(
min

{
h

τ
, 1

}
h p

)
.

Here we shall extend their results to the high-dimensional transport equation with variable
coefficients.

The local truncation error function Gn for the SL scheme (3.12) at time tn and point xi, j
can be expressed as

Gn
i, j = u(Xi, j (tn), tn) −

lx=k∑
lx=k−p

ly=k∑
ly=k−p

αlx (μx , k, p)αly (μy, k, p)u(xex+lx ,ey+ly , tn)

= u(Xi, j (tn), tn) − u(Xn
i, j , tn) + gni, j ,

(3.13)

where gni, j is the interpolation error given as

gni, j = u(Xn
i, j , tn) −

lx=k∑
lx=k−p

ly=k∑
ly=k−p

αlx (μx , k, p)αly (μy, k, p)u(xex+lx ,ey+ly , tn). (3.14)

By Taylor expansion, we can directly obtain u(Xi, j (tn), tn) − u(Xn
i, j , tn) = O(τ 3) for the

SSPRK2 scheme (3.4). We are left with estimating the interpolation error gni, j .
Let us first consider the one-dimensional problem. In [10], the authors derived and obtained

the interpolation error byusing the spline function and thePeano representation for the divided
differences [45] (although they only took into account of constant-in-space velocities), which
will be followed in our analysis. Suppose Qp+1

i is the spline function over the p + 2 points
xi − vnx,iτ and xi+r+1+l for l = k − p ≤ i ≤ k (following the same notations before by
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ignoring the y variable). Then the residue for the interpolation formula on a function w(x)
is given by

gni = w(xi − vnx,iτ) −
lx=k∑

lx=k−p

αlx (μx , k, p)w(xex+lx )

= ωi

p!
∫ xi+r+1+k

xi+r+1+k−p

Q p+1
i (x)w(p+1)(x)dx, (3.15)

with

ωi =
l=ex+k∏

l=ex+k−p

(xex − μxh − xl).

Assuming p = 2k + m with m ∈ {0, 1, 2}, k ≥ 0, then ωi can be bounded by

|ωi | ≤ 2μx (1 − μx )h
p+1((p − k)!)2 ≤ 2max{μx (1 − μx )}h p+1((p − k)!)2, (3.16)

which implies an enhanced interpolation error estimates for gni in (3.15) as

|gni | ≤ C max{μx (1 − μx )}h p+1 ≤ C min
{
1,

τ

h

}
h p+1.

With the help of this bound, the refined estimations on the interpolation error ‖gn‖∞,h and
the local truncation error ‖Gn‖∞,h can be easily obtained for the one-dimensional case. Now
we turn to deal with the more complicated two dimensional problem and our derivation and
result can be directly extended to higher dimensions d ≥ 3.

Lemma 3.2 Assume p = 2k + m with m ∈ {0, 1, 2} and k ≥ 0. If u(·, tn) is a sufficiently
smooth periodic function defined on Ω , then the interpolation error (3.14) satisfies

‖gn‖∞,h ≤ Ck,pμ(1 − μ)h p+1

(∥∥∥∥∂ p+1u(·, tn)
∂x p+1

∥∥∥∥
L∞(Ω)

+
∥∥∥∥∂ p+1u(·, tn)

∂ y p+1

∥∥∥∥
L∞(Ω)

)
,

(3.17)

where

μ(1 − μ) = max{max
xi, j

{μx (1 − μx )},max
xi, j

{μy(1 − μy)}},

andCk,p > 0 is a positive constant depending on k and p. In particular, we have the enhanced
error estimate as

‖gn‖∞,h ≤ Ck,p min
{
1,

v∞τ

h

}
h p+1

(∥∥∥∥∂ p+1u(·, tn)
∂x p+1

∥∥∥∥
L∞(Ω)

+
∥∥∥∥∂ p+1u(·, tn)

∂ y p+1

∥∥∥∥
L∞(Ω)

)
.

(3.18)

where v∞ = ‖v(·, ·)‖L∞(Ω×[tn ,tn+1]).

Proof We will make use of the tensor polynomial interpolation error formula discussed in
[14]. At Xn

i, j = (xni, j , y
n
i, j )

T , we have

xni, j = xi − vnx,iτ, yni, j = y j − vny, jτ,

xni, j = xex − μxh, yni, j = yey − μyh,
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where the set of mesh nodes used for interpolation are (xlx , yly )with ex +k− p ≤ lx ≤ ex +k
and ey − p ≤ ly ≤ ey + k. Recalling the tensor interpolation (3.11), the error gni, j (3.14) can
be decomposed as (see [14]):

gni, j = ωx (x
n
i, j )

ly=k∑
ly=k−p

I y
ey+ly

(yni, j )ξx (yly ) + ωy(y
n
j )

lx=k∑
lx=k−p

Ix
ex+lx (x

n
i, j )ξy(xlx ),

(3.19)

where

ωx (x
n
i, j ) =

l=ex+k∏
l=ex+k−p

(xex − μx h − xl), ωy(y
n
i, j ) =

l=ey+k∏
l=ey+k−p

(yey − μyh − yl),

the function ξx (y) is given by

ξx (y) =
∫ 1

0

∫ s1

0
· · ·

∫ sp−1

0
∂
p+1
x u(xn0 + s1δxn1 + · · · spδxnp, tn) dsp dsp−1 · · · ds1

(3.20)

with xnl = (xex+k−p+l , y) (for l = 0, 1, . . . , p) and δxnl = xnl − xnl−1, and the function ξy(x)
is given by

ξy(x) =
∫ 1

0

∫ s1

0
· · ·

∫ sp−1

0
∂
p+1
y u(yn0 + s1δyn1 + · · · spδynp, tn) dsp dsp−1 · · · ds1

(3.21)

with ynl = (x, yey+k−p+l) (for l = 0, 1, . . . , p) and δynl = ynl − ynl−1. Based on (3.19) and
(3.16), it is straightforward to get

|ωx (x
n
i, j )|, |ωy(y

n
i, j )| ≤ Cμ(1 − μ). (3.22)

On the other hand, the Lagrangian polynomials I y
ey+ly

(·) and Ix
ex+lx

(·) are bounded on the
intervals Iy, j and Ix,i , respectively. Thus, combining (3.20), (3.21), (3.22) and (3.19) together,
we get the estimates (3.17) and (3.18) by taking the supremum over all mesh nodes xi, j . ��

By using Lemma 3.2, we can easily obtain the following estimates for the local truncation
error Gn defined in (3.13).

Lemma 3.3 Assume v(x, t) ∈ C2([0, T ];C1(Ω)) and u(x, t) ∈ C([0, T ];C p+1(Ω)). The
local truncation error (3.13) for the SL scheme (3.12) with the SSPRK2 characteristic curve
solver satisfies

‖Gn‖∞,h ≤ C1τ
3 + C2 min

{
1,

τ

h

}
h p+1, 0 ≤ n ≤ T /τ − 1, (3.23)

where C1 and C2 are independent of τ , h and n.

To obtain the error estimates for the SL scheme (3.12), we also need its stability result
in addition to the local truncation errors presented in Lemma 3.3. Next we will present the
stability analysis of the SL scheme (3.12). Note that Ferretti showed in [23] the uncondi-
tional stability of the SL method with the centered Lagrange interpolation of odd degrees up
to 13 for the one-dimensional case with constant-in-space velocity and the tensor product of
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these Lagrange interpolations for higher-dimensional cases. He first uncovered the equiva-
lence between the SL method and the area-weighted Lagrange–Galerkin (LG) finite element
method [3, 4, 17, 40, 49] by showing that there exists an L2 basis such that the SL scheme
can be recast as an LG scheme with such a basis. As analyzed in [23], these results also can
be extended to higher-dimensional cases.

For simplicity, we will use the one-dimensional case to briefly review the idea and then
derive the result we need. Let us first denote {ηk} and {ζk} as the basis functions for the SL
scheme and the LG scheme defined on the uniform grids, which are obtained by the affine
mappings of two reference functions η and ζ , respectively. Then the SL method reads as:
given unh = {unk,h}, find un+1

h such that

un+1
i,h =

∑
k

unk,hηk(X
n
i ), (3.24)

or in the matrix form,

Un+1
h = Ψ nUn

h , (3.25)

where Un+1
h is the vector with un+1

i,h as its i-th component, Ψ n is the matrix with entries

Ψ n
i,k = ηk(Xn

i ). The area-weighted LG method read: given unh = {unk,h}, find un+1
h such that

∑
k

un+1
k,h

∫
Ω

ζi (ξ)ζk(ξ)dξ =
∑
k

unk,h

∫
Ω

ζi (ξ)ζk(ξ − xi + Xn
i )dξ, (3.26)

or in the matrix form,

MUn+1
h = Φ̃

n
Un
h , (3.27)

where M is the mass matrix and Φ̃
n
is the matrix with entries

Φ̃
n
jk =

∫
Ω

ζi (ξ)ζk(ξ − xi + Xn
i )dξ.

It was shown in [23] that there exists a basis for the area-weighted LG scheme satisfying
M = I and Φ̃

n = Ψ n , i.e., the equivalence between the SL method and the area-weighted
LG method, and consequently the unconditional stability of the SL scheme in L2 norm is
obtained from [40, Theorems 3.3 and 3.4].

Among the centered Lagrange interpolation, the centered cubic Lagrange interpolation
(k = 1, p = 3) belongs to the Strang’s stencils, which will be applied in our SL scheme
(3.12) so that the analysis techniques and results in [23] and [10] can be utilized. Moreover,
the SSPRK2 scheme is able to provide the consistent approximations for Xn to meet the
assumption in [23]. Thus the stability of the SL scheme with the centered cubic Lagrange
interpolation is stated below without proof.

Lemma 3.4 Assumev ∈ L∞(0, T ;W 1,∞(Ω))and consider the SLmethod (3.12)with k = 1,
p = 3, and the SSPRK2 scheme (3.4) for tracking the characteristic curve. Then there exists
a constant M, independent of h, n and τ , such that

‖un+1
h ‖h ≤ (1 + Mτ)‖unh‖h . (3.28)

We remark that it was first shown in [40] that the area-weighted LG scheme provides the
above estimation (3.28) in the whole domain Rd (d = 1, 2, 3), and then it was proven later
in [23] that the equivalence between the SL and area-weighted LG schemes also holds for
the bounded domain Ω .
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4 Second-Order Semi-Lagrangian Exponential Time Differencing
Scheme

Nowwe present our fully discrete second-order semi-Lagrangian exponential time differenc-
ing scheme for solving the CAC equation (1.1). For the linear transport equation (3.8), the
SL method often fails to preserve the MBP due to the use of high order interpolation, thus an
extra cut-off post-process is imposed to guarantee that. Suppose the transported quantity w

by the transport equation is continuous in the domain and should lie in the interval [m̃, M̃],
then we shall define the corrected quantity wc as

wc(xi, j ) = max{min{w(xi, j ), M̃}, m̃}, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1.

As shown in [35], the cut-off operator is contractive, i.e.,

‖wc − w̃c‖h ≤ ‖w − w̃‖h .
for any two quantity functions w and w̃ with the same expected minimum and maximum
values m̃ and M̃ .

Combining the sETDRK2 scheme with the SL method, the fully discretization of (3.1) is
as follows: given U 0

h (x) = u0(x) (x ∈ Ωh), for n = 0, 1, . . . , N − 1, find Un+1
h , such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U
∗,n+ 1

2
h = sETDRK2 (Un

h , τ/2),

U∗∗,n+1
h = Rμx ,μy ,1,3,2U

∗,n+ 1
2

h ,

U∗∗,n+1,c
h = max{min{U∗∗,n+1

h , M̃}, m̃},
with m̃ = min

i, j
{U∗,n+ 1

2
h }, M̃ = max

i, j
{U∗,n+ 1

2
h },

Un+1
h = sETDRK2 (U∗∗,n+1,c

h , τ/2).

(4.1)

We specially note that the values of m̃ and M̃ are updated based on the numerical solution
produced from the first AC equation solve by sETDRK at each time step. We will call (4.1)
as the SL-ETD2 scheme. Since the sETDRK2 scheme unconditionally preserves the discrete
MBP for solving the AC equation [19], we naturally have the following result.

Theorem 4.1 (Discrete MBP of SL-ETD2) Suppose that Assumption 1 and the condition
(2.5) hold, then the SL-ETD2 scheme (4.1) unconditionally preserves the discrete MBP, i.e.,
for any time step size τ > 0, the SL-ETD2 solution satisfies ‖Un

h ‖∞,h ≤ β for any n ≥ 0.

Next, we can turn to the error estimation.

Theorem 4.2 (Error estimate of SL-ETD2) Suppose that f (·) ∈ C4, Assumption 1
and the requirement (2.5) hold. Given the fixed terminal time T > 0, assume that
v ∈ C3([0, T ],C5(Ω̄)d), the exact solution u to the model equation (1.1) belongs to
C2([0, T ],C4

per (Ω̄)) and {Un
h }n≥1 is generated by the fully discrete SL-ETD2 scheme (4.1)

with U 0
h (x) = u0(x) for x ∈ Ωh. Then for any τ ∈ (0, 1], we have

‖u(x, tn) −Un
h (x)‖h ≤ C

(
τ 2 + h2 + min

{
h

τ
, 1

}
h3

)
, 0 ≤ n ≤ T /τ. (4.2)

Proof For 0 ≤ n ≤ T /τ − 1, setting u∗(x, 0) = u(x, tn) (x ∈ Ω) in (3.1), we claim that for
s ∈ [0, τ/2], s1 ∈ [0, τ ],

‖u∗(x, s)‖H4 + ‖u∗∗(x, s1)‖H4 + ‖u∗∗∗(x, s)‖H4 ≤ C̃, (4.3)
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and

‖u(x, tn+1) − u∗∗∗(x, τ/2)‖ ≤ Cτ 3 (4.4)

where C and C̃ are constants independent of τ , h and n.
The estimate (4.3) follows the MBP and regularity assumptions as well as theories for

parabolic and transport equations, and we shall omit the proof of this part. In addition, it
follows that ∂ks u

∗(x, s), ∂ks u∗∗∗(x, s), and ∂ks1u
∗∗(x, s1) (k = 1, 2) are bounded in L2 space.

Next, we turn to prove the estimate (4.4), which is the local error for the semi-discrete-
in-time splitting scheme (3.1). Recalling the splitting scheme (3.1), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u∗(x, s) = SLκ (s)u(x, tn) +
∫ s

0
SLκ (s − w) fκ (u∗(x, w))dw, s ∈ [0, τ/2],

u∗∗(x, s) = u∗(x, τ/2) −
∫ s

0
v(x, tn + w) · ∇u∗∗(x, w) dw, s ∈ [0, τ ],

u∗∗∗(x, s) = SLκ (s)u
∗∗(x, τ ) +

∫ s

0
SLκ (s − w) fκ (u∗∗∗(x, w))dw, s ∈ [0, τ/2].

(4.5)

By the property of the semigroup, it can be rewritten as

u∗∗∗(x, τ/2) = SLκ (τ )u(x, tn) −
∫ τ

0
SLκ (τ/2)

(
v(x, tn + s) · ∇u∗∗(x, s)

)
ds

+
∫ τ

2

0
SLκ (τ − s) fκ (u∗(x, s)) ds +

∫ τ
2

0
SLκ (τ/2 − s) fκ (u∗∗∗(x, s)) ds.

(4.6)

In addition, we have

u∗(x, s) − u(x, tn + s) = O(τ ), u∗∗∗(x, s) − u(x, tn + s + τ/2) = O(τ ),

u∗∗(x, s) − u∗(x, τ/2) = O(τ ).

Noticing

u∗∗(x, τ/2) = u∗(x + τ/2) −
∫ τ

2

0
v(x, tn + s) · ∇u∗(x, τ/2) ds + O(τ 2),

and applying themidpoint rule to the first line of (4.6) and the Trapezoidal rule to the integrals
on the second line of (4.6), respectively, we obtain

u∗∗∗(τ/2) = SLκ
(τ )u(tn) − τSLκ

(τ/2)

(
v
(
t
n+ 1

2

)
· ∇

(
u∗(τ/2) −

∫ τ
2

0
v(tn + s) · ∇u∗(τ/2) ds

))

+ τ

4

(SLκ
(τ ) fκ (u(tn)) + SLκ

(τ/2)
(
fκ (u∗(τ/2)) + fκ (u∗∗∗(0))

) + fκ (u∗∗∗(τ/2))
)

+ O(τ3),

(4.7)

where we have omitted the spatial variable x for simplicity. Recalling the Duhamel formula
for u(tn+1) as

u(tn+1) = SLκ (τ )u(tn) +
∫ τ

0
SLκ (τ − s) fκ (u(tn + s)) ds

−
∫ τ

0
SLκ (τ − s) (v(tn + s) · ∇u(tn + s)) ds.

(4.8)
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Applying the Simpson’s rule to the first integral and the midpoint rule to the second integral
in (4.8), respectively, we reach

u(tn+1) = SLκ (τ )u(tn) − τSLκ (τ/2)
(
v
(
tn+ 1

2

)
· ∇u(tn + τ/2)

)

+ τ

4

(SLκ (τ ) fκ (u(tn)) + 2SLκ (τ/2) fκ (u(τ/2)) + fκ (u(tn+1))
) + O(τ 3),

(4.9)

which implies that u∗∗∗(τ/2) − u(tn+1) = O(τ 2). By the Duhamel’s formula for u(tn+1/2)

(similar to (4.8)) and in view of that u∗(s)−u(tn+s) = O(τ ) andSLκ (τ/2−s) = I d+O(τ ),
we have

u(tn + τ/2) = u∗(τ/2) −
∫ τ

2

0
v(tn + s) · ∇u∗(τ/2) ds + O(τ 2). (4.10)

Since

1

2

(
u∗(τ/2) + u∗∗∗(0)

) = 1

2

(
u∗∗(0) + u∗∗(τ )

) = u∗∗(τ/2) + O(τ 2),

by Taylor expansion, it yields

1

2

(
fκ (u∗(τ/2)) + fκ (u∗∗∗(0))

) = fκ (u(tn + τ/2)) + O(τ 2). (4.11)

Combining the estimate u∗∗∗(τ/2) − u(tn+1) = O(τ 2), (4.10), (4.11), (4.7) and (4.9), we
then obtain (4.4).

Let En(x) = u(x, tn) − Un
h (x) (x ∈ Ωh, n ≥ 0) be the error function. From tn to tn+1,

on the computational domain x ∈ Ωh , by Taylor expansion and Duhamel’s formula the first
equation in (3.1) can be rewritten as

u∗(x, τ/2) = SLκ,h
(τ/2) u(x, tn) +

∫ τ
2

0
SLκ,h

(τ/2 − s) fκ (u∗(x, s))
)
ds + O(τh2), x ∈ Ωh .

Subtracting the first equation in (4.1) from the above equation, we have

u∗(x, τ/2) −U
∗,n+ 1

2
h = SLκ,h

(τ/2)
(
un(x) −Un

h
) + R1(x) + R2(x) + O(τh2), x ∈ Ωh ,

(4.12)

where

R1(x) =
∫ τ

2

0
SLκ,h (τ/2 − s)

(
fκ (u∗(x, s)) −

(
1 − 2s

τ

)
fκ (u∗(x, 0)) − 2s

τ
fκ (u∗(x, τ/2))

)
ds,

and

R2(x) =
∫ τ

2

0
SLκ,h (τ/2 − s)

(τ − 2s

τ

(
fκ (un(x)) − fκ (Un

h )
)

+ 2s

τ
( fκ (u∗(x, tn+ 1

2
)) − fκ (Ũ

∗,n+ 1
2

h ))
)
ds.

Here Ũ
∗,n+ 1

2
h is obtained via ETD1 with given Un

h , i.e.,

Ũ
∗,n+ 1

2
h = SLk,h (τ/2)Un

h +
∫ τ

2

0
SLk,h (τ/2 − s)

(
fκ (Un

h )
)
ds.
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By the linear interpolation properties, it is easy to show that

fκ (u∗(x, s)) − τ − 2s

τ
fκ (u∗(x, 0)) − 2s

τ
fκ (u∗(x, τ/2)) = O(τ 2), x ∈ Ω, s ∈ [0, τ/2],

which implies

‖R1‖h ≤ Cτ 2. (4.13)

By Lemma 2.2, using Taylor expansion, we have

‖u∗(x, τ/2) − Ũ
∗,n+ 1

2
h ‖h ≤ e− κτ

2 ‖En‖h + (2κ‖En‖h + C(τ + h2))
∫ τ

2

0
e−κ( τ

2 −s)ds

≤
(
1 + κτ

2

)
‖En‖h + C(τ 2 + τh2).

Thus we have∥∥∥∥
(
1 − 2s

τ

) (
fκ (u∗(x, 0)) − fκ (Un

h )
) + 2s

τ

(
fκ (u∗(x, τ/2)) − fκ (Ũ

∗,n+ 1
2

h )

)∥∥∥∥
h

≤
(
1 − 2s

τ

)
2κ‖En‖h + 2s

τ

[
2κ

(
1 + κτ

2

)
‖En‖h + C(τ 2 + τh2)

]

≤ 2κ(1 + κs)‖En‖h + C(τ + h2)s,

(4.14)

and consequently

‖R2‖h ≤
∫ τ

2

0
e−κ( τ

2 −s)[2κ(1 + κs)‖En‖h + C(τ + h2)s]ds

≤ 2(1 − e− κτ
2 )‖En‖h + 2(e− κτ

2 − 1 + κτ

2
)‖En‖h + C(τ 3 + τ 2h2)

≤ κτ‖En‖h + C(τ 3 + τ 2h2),

(4.15)

where we have used the inequality e−s ≤ 1 − s + s2
2 (s > 0). Combining (4.12)-(4.15), we

get

‖u∗(x, τ/2) −U
∗,n+ 1

2
h ‖h ≤

(
1 + κτ

2
+ κ2τ 2

8

)
‖En‖h + C

(
τ 3 + τ 2h2 + τh2

)
. (4.16)

By the same argument, using the local error bound in (4.4), we can have the following
estimate for the last step of SL-ETD2:

‖En+1‖h ≤ ‖u∗∗∗(x, τ/2) −Un+1
h ‖h + ‖u∗∗∗(x, τ/2) − u(x, tn+1)‖h

≤
(
1 + κτ

2
+ κ2τ 2

8

)
‖u∗∗(x, τ ) −U∗∗,n+1,c

h ‖h + C
(
τ 3 + τ 2h2 + τh2

)
.

(4.17)

Since m̃ ≤ u∗∗(x, τ ) ≤ M̃ , in view of the cut-off process, we get

‖u∗∗(x, τ ) −U∗∗,n+1,c
h (x)‖h = ‖max{min{u∗∗(x, τ ), M̃}, m̃} − max{min{U∗∗,n+1

h (x), M̃}, m̃}‖h
≤ ‖u∗∗(x, τ ) −U∗∗,n+1

h (x)‖h,
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where

u∗∗(x, τ ) −U∗∗,n+1
h (x) = u∗(X(tn), τ ) − Rμx ,μy ,1,3,2U

∗
h (x, τ )

= u∗(X(tn), τ ) − u∗(Xn, τ ) + u∗(Xn, tn+1) − Rμx ,μy ,1,3,2u
∗(x, τ )

+ Rμx ,μy ,1,3,2(u
∗(x, τ ) −U∗

h (x, τ )).

By using Lemmas 3.1, 3.4, 3.3 and 3.2, we obtain

‖u∗∗(x, τ ) −U∗∗,n+1
h ‖h ≤ (1 + Mτ)

∥∥u∗(x, τ

2
) −U

∗,n+ 1
2

h

∥∥
h + C

(
τ 3 + min

{
1,

τ

h

}
h4

)
.

Therefore,

‖u∗∗(x, τ ) −U∗∗,n+1,c
h ‖h ≤ ∥∥u∗∗(x, τ ) −U∗∗,n+1

h

∥∥
h

≤ (1 + Mτ)
∥∥u∗ (

x,
τ

2

)
−U

∗,n+ 1
2

h

∥∥
h + C

(
τ3 + min

{
1,

τ

h

}
h4

)
.

(4.18)

Next, combining (4.16), (4.17) and (4.18), we have for τ ∈ (0, 1],

‖En+1‖h ≤ (1 + Mτ)

(
1 + κτ

2
+ κ2τ 2

8

)2

‖En‖h + C
(
τ 3 + min

{
1,

τ

h

}
h4

)

≤ (1 + Cτ)‖En‖h + C
(
τ 3 + min

{
1,

τ

h

}
h4

)
, 0 ≤ n ≤ T /τ − 1. (4.19)

Recalling ‖E0‖h = 0, we finally obtain the desired estimates (4.2) by using the discrete
Gronwall’s inequality. ��
Remark 2 FromLemma 3.3 and Theorem 4.2, we can see that the term τ

h or h
τ
always appears

in the derivations, which is awell-known feature of the SLmethod.On the other hand, through
our delicate error analysis, it only appears inside min

{
1, τ

h

}
or min

{
1, h

τ

}
, which produces

an enhanced error estimate.

5 Numerical Experiments

In this section, we will demonstrate the performance of our proposed scheme via various
two- and three-dimensional numerical experiments. The computational domain is set to be
[0, 1]2 in two dimensions and [0, 1]3 in three dimensions. Because of the periodic boundary
condition, FFT-based fast solvers are implemented in the computation of ETD scheme.

5.1 Convergence Tests

Consider the CAC equation (1.1) in two dimensions with the initial condition

u0(x, y) = cos(2πx) cos(2π y)

and ε = 0.1. Additionally, the nonlinear function f = −F ′ is chosen as the double-well
potential (2.3), i.e., f (u) = u−u3. The stabilizing coefficient is κ = 2 and the terminal time
is T = 1. The velocity term is set to be

v(x, y) = e−t [sin(2π y), sin(2πx)]T
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Table 1 The discrete L∞ and L2

norm errors and their
corresponding convergence rates
produced the fully discrete
SL-ETD2 schemes for the
two-dimensional CAC (1.1) with
the double-well potential

τ h L∞ Error Rate L2 Error Rate

1/8 1/16 1.1587e−1 – 3.0356e−2 –

1/16 1/32 1.7736e−2 2.71 4.5647e−3 2.73

1/32 1/64 3.9315e−3 2.17 9.8732e−4 2.21

1/64 1/128 9.3782e−4 2.07 2.3198e−4 2.09

1/128 1/256 2.2839e−4 2.04 5.6128e−5 2.05

Table 2 The discrete L∞ and L2 norm errors and their corresponding convergence rates in time produced
the SL-ETD2 schemes for the two-dimensional CAC (1.1) with the double-well potential, where the time step
size τ is repeatedly halved while the spatial mesh size h being fixed

τ h = 1/128 h = 1/256
L∞ Error Rate L2 Error Rate L∞ Error Rate L2 Error Rate

1/8 3.2036e−02 – 1.0963e−02 – 3.1820e−02 – 1.0953e−02 –

1/16 9.0995e−03 1.82 2.9194e−03 1.91 8.8938e−03 1.84 2.9080e−03 1.91

1/32 2.6151e−03 1.80 7.7222e−04 1.92 2.4105e−03 1.88 7.5900e−04 1.94

1/64 9.3782e−04 1.48 2.3198e−04 1.74 6.7218e−04 1.84 1.9722e−04 1.94

1/128 5.3535e−04 0.81 1.0667e−04 1.12 2.2839e−04 1.56 5.6128e−05 1.81

1/256 4.3677e−04 0.29 7.9810e−05 0.42 1.1932e−04 0.94 2.3141e−05 1.28

satisfying the divergence-free condition. The centered cubic polynomial interpolation is used
in the SL method.

For the purpose of calculating approximation errors without knowing the exact solution,
the numerical solution obtained by the SL-ETD2 scheme with h = 1/2048 and τ = 1/2048
is treated as the referential value. We first simultaneously and repeatedly decrease the the
time step size τ and the spatial mesh size h by a factor of 2. The discrete L∞ and L2 norm
of the numerical errors and their corresponding convergence rates are presented in Table 1,
where the expected second-order temporal rate is clearly observed. Next we test the special
property of the enhanced error estimate by fixing h ( 1

128 and 1
256 , respectively ) and only

repeatedly decrease τ . The discrete L∞ and L2 errors and their corresponding convergence
rates in time are given in Table 2. As we can see, the errors get smaller with the smaller τ ,
which implies that the reciprocal of τ does not impact the error. Along with the decrease of
τ , the spatial error gradually dominates the whole error and the convergence rate degrades
from 2 and gets smaller and smaller.

5.2 MBPTests

We numerically simulate the CAC equation in two dimensions with ε = 0.01 and study the
discrete MBP with long-term phase separation processes. We start the simulations using the
SL-ETD2 scheme with the initial value given by the quasi-uniform state

u0(x, y) = 0.9 sin(100πx) sin(100π y)

and the velocity

v(x, y) = e−t [sin(2π y); sin(2πx)]T .
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Fig. 1 Numerical solution at t = 0.1, 0.8, 5 and 20 (top to bottom and left to right) for the two-dimensional
CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with τ = 0.1

The spatial mesh size is chosen as h = 1/512, and two different time steps τ = 0.1 and
τ = 0.01 are tested.

We first consider f as the double-well potential function case (2.3) with the bounding
constant β = 1 and the stabilizing coefficient is κ = 2 correspondingly. Figure1 shows
the snapshots of the numerical solution at t = 0.1, 0.8, 5 and 20 respectively, which are
obtained with τ = 0.1. The SL-ETD2 scheme with τ = 0.01 produces similar results.
The time evolutions of the supremum norm and energy (defined in (1.2)) with τ = 0.1 and
τ = 0.01 are presented in Fig. 2. We observe that the energy decreases monotonically and
the discrete MBP is preserved perfectly under both time step sizes. Next we consider the case
of Flory–Huggins potential (2.2) with two parameters θ = 0.8 and θc = 1.6. In this case, the
bounding constant β ≈ 0.9575 and the stabilizing coefficient is κ = 8.02 correspondingly
[19]. Figure3 presents the configurations of the numerical solution at t = 0.1, 0.8, 5 and 20
respectively, obtained with τ = 0.1. The time evolutions of the supremum norm and energy
with τ = 0.1 and τ = 0.01 are plotted in Fig. 4, and it is again observed that the energy
decreases monotonically and the discrete MBP is well-preserved numerically under both
time step sizes. In addition, we can observe the double-well potential and the Flory–Huggins
potential in the CAC equation behave very similarly in this problem.

5.3 Convective Tests

This subsection will consider the two-dimensional convective Allen–Cahn equation with
ε = 0.01. The initial value is generated by the random uniform distribution between −0.9
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Fig. 2 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for the two-
dimensional CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with
τ = 0.1 and τ = 0.01

Fig. 3 Numerical solutions at t = 0.1, 0.8, 5 and 20 (top to bottom and left to right) for the two-dimensional
CAC equation (1.1) with the Flory–Huggins potential, produced by the SL-ETD2 scheme with τ = 0.1

and 0.9. The velocity filed is chosen as a clockwise rotational one, taking the form

v(x, y) = [y − 0.5; 0.5 − x]T .

The spatial mesh size is chosen as h = 1/512.
Figure 5 presents the snapshots of the numerical solutions at t = 0.1, 5, 20, and 100

respectively for the double-well potential case, produced by the SL-ETD2 scheme with
τ = 0.1. The corresponding evolutions of supremum norm and energy are illustrated in

123



7 Page 22 of 29 Journal of Scientific Computing (2023) 97 :7

Fig. 4 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for the two-
dimensional CAC equation (1.1) with the Flory–Huggins potential, produced by the SL-ETD2 scheme with
τ = 0.1 and τ = 0.01

Fig. 6. The discrete MBP is indeed well preserved and the energy decays monotonically.
Moreover, we clearly observe the ordering and coarsening phenomena as well as the rotation
effect due to the convective term along the time evolution. We then simulate the case of Flory
Huggins potential function with θ = 0.8 and θc = 1.6. Figure7 depicts the configurations
of the numerical solution at t = 0.1, 5, 20 and 100 respectively, produced by the SL-ETD2
scheme with τ = 0.1. Corresponding evolutions of the supremum norm and the energy are
given in Fig. 8. It is observed that the discrete MBP is indeed well preserved and the energy
decays monotonically. Moreover, the rotational phenomena is also observed as expected.

5.4 Rotating Bubble in Three Dimenisons

We finally perform a three-dimensional simulation of the rotating bubble governed by the
convective Allen–Cahn equation with ε = 0.01. The simulations starts with the initial con-
figuration described by the discontinuous state

u0(x, y, z) =
{
0.9, (x − 0.3)2 + (y − 0.3)2 + (z − 0.5)2 < 0.22,
−0.9, otherwise.

The components of v are given by a clockwise rotational velocity field along z direction,
taking the form

v(x, y, z) = [y − 0.5, 0.5 − x, 0]T .

The spatial mesh size is chosen as h = 1/512 and the time step size τ = 0.1.
We first test the case of the double-well potential function (2.3). Figure 9 presents the

configurations of the numerical solutions at t = 1, 10 and 50. The corresponding evolutions
of the supremum norm, the energy, and the radius of the ball (zero level set) are plotted in
Fig. 10. It is clearly observed that the energy decays monotonically and the radius of the ball
gradually decreases to 0. When the radius is smaller than h, the mesh can not capture the
ball anymore, and jump occurs in the radius plot. Moreover, the discrete MBP for the CAC
equation is preserved perfectly. Next we consider the case of the Flory–Huggins potential
(2.2) with θ = 0.8 and θc = 1.6. Figure11 gives the configurations of the numerical solutions
at t = 1, 10 and 50 respectively. The corresponding developments of the supremum norm,
energy, and radius are plotted in Fig. 12 which shows the similar behaviors as those of the
double-well potential case.
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Fig. 5 Numerical solutions at t = 0.1, 5, 20 and 100 (top to bottom and left to right) for the two-dimensional
CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with τ = 0.1

Fig. 6 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for the two-
dimensional CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with
τ = 0.1

6 Conclusion

In this paper, we develop a second-order operator splitting-based unconditional MBP-
preserving numerical scheme, SL-ETD2, for the the convective Allen–Cahn equation. At
each time step, the CAC equation is split into three stages: the AC equation at the first and
third stage, and the linear transport equation at the second stage. For the AC part, we use
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Fig. 7 Numerical solutions at t = 0.1, 5, 20 and 100 (top to bottom and left to right) for the two-dimensional
CAC equation (1.1) with the Flory–Huggins potential, produced by the SL-ETD2 scheme with τ = 0.1

Fig. 8 Evolutions of the the energy (left) and supremum norm (right) of the numerical solution for for the
two-dimensional CAC equation (1.1) with the Flory–Huggins potential, produced by the SL-ETD2 scheme
with τ = 0.1

the stabilized ETDRK2 scheme for its time integration. Note that FFT-based fast algorithm
can be implemented for its solution. For the transport part, we rewrite it into a character-
istic form and solve it with a semi-Lagrangian method. A second-order SSPRK method is
used to back-track the roots of the characteristic curve at the previous time step and approx-
imate their values using a centered cubic polynomial interpolation. In addition, we apply
a cut-off post-processing on the SL solution to preserve the MBP. We prove that the pro-
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Fig. 9 Numerical solutions at t = 1, 10, and 50 respectively (from left to right) for the three-dimensional
CAC equation (1.1) with the double-well potential, produced by the SL-ETD2 scheme with τ = 0.1. In each
time panel, the top represents the isosurface (u = 0) and the bottom represents the numerical solution across
z = 0.5

Fig. 10 Evolution of the energy (left), the supremum norm (middle) and the radius of the ball (right) in the
numerical solution for the three-dimensional CAC equation (1.1) with the double-well potential, produced by
the SL-ETD2 scheme with τ = 0.1

posed SL-ETD2 scheme are second-order accurate in both space and time by conducting
an enhanced error estimation for the SL method with variable velocity. Finally, we con-
duct some numerical experiments to confirm the theoretical results and demonstrate our
proposed scheme’s performance. As an important application, the CAC equation is often
part of a multiphase flows system, and our future research will focus on how to extend
our proposed scheme to solve more complex coupled models and conserve their physical
quantities.
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Fig. 11 Numerical solution at t = 1, 10, and 50 respectively for the three-dimensional CAC (1.1) with the
FloryHuggins potential, produced by the SL-ETD2 schemewith τ = 0.1. In each time panel, the top represents
the isosurface and the bottom represents the approximated solution across the z = 0.5

Fig. 12 Evolution of the energy (left), the supremum norm (middle) and the radius of the ball (right) in the
numerical solution for the three-dimensional CAC equation (1.1) with the Flory Huggins potential, produced
by the SL-ETD2 scheme with τ = 0.1
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