
Journal of Scientific Computing (2023) 96:56
https://doi.org/10.1007/s10915-023-02281-8

New Low-Dissipation Central-Upwind Schemes

Alexander Kurganov1 · Ruixiao Xin1

Received: 10 October 2022 / Revised: 16 June 2023 / Accepted: 17 June 2023 /
Published online: 4 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we develop new second-order low-dissipation central-upwind (LDCU) schemes
for hyperbolic systems of conservation laws. Like all of the Godunov-type schemes, the pro-
posed LDCU schemes are developed in three steps: reconstruction, evolution, and projection.
Amajor novelty of our approach is in the projection step,which is basedon a subcell resolution
and designed to sharper approximate contact waves while ensuring a non-oscillatory property
of the projected solution. In order to achieve this goal, we take into account properties of the
contact waves. We design the LDCU schemes for both the one- and two-dimensional Euler
equations of gas dynamics. The new schemes are tested on a variety of numerical examples.
The obtained results clearly demonstrate that the proposed LDCU schemes contain substan-
tially smaller amount of numerical dissipation and achieve higher resolution compared with
their existing counterparts.

Keywords Hyperbolic systems of conservation laws · Low-dissipation central-upwind
schemes · Subcell resolution · Contact discontinuities · Euler equations of gas dynamics

Mathematics Subject Classification 76M12 · 65M08 · 76N15 · 35L65 · 35L67

1 Introduction

We focus on the development of high-resolution finite-volume schemes for hyperbolic sys-
tems of conservation laws. We consider one-dimensional (1-D),

U t + F(U)x = 0, (1.1)

and two-dimensional (2-D),

U t + F(U)x + G(U)y = 0, (1.2)

B Alexander Kurganov
alexander@sustech.edu.cn

Ruixiao Xin
xinrx@mail.sustech.edu.cn

1 Department of Mathematics, Shenzhen International Center for Mathematics and Guangdong Provincial
Key Laboratory of Computational Science and Material Design, Southern University of Science and
Technology, Shenzhen 518055, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02281-8&domain=pdf
http://orcid.org/0000-0003-0231-986X

56 Page 2 of 33 Journal of Scientific Computing (2023) 96 :56

systems. Here, x and y are spatial variables, t is the time, U ∈ R
d is a vector of unknowns,

and F and G are the x- and y-directional fluxes.
Development of highly accurate and robust numerical methods for the hyperbolic systems

of conservation laws is a quite challenging task as solutions of (1.1) and (1.2) may develop
complicated structures including shock waves, contact discontinuities, rarefaction and shear
zones, as well as their interactions. Finite-volume Godunov-type schemes for (1.1) and (1.2)
are popular as they rely on the integral formulations of these systems, which better fit the
definition of weak solutions to be numerically captured. In general, Godunov-type schemes
are constructed as follows.Given the cell averages of the solution, first a piecewise polynomial
approximation (needed to increase the accuracy of the resulting scheme) is constructed and
then the solution is evolved to the next time level by integrating (1.1) or (1.2) over a set of
space-time control volumes (CVs).

Depending on the way these CVs are selected, we may or may not need to solve the
(generalized) Riemann problems in order to integrate the fluxes along the boundaries of the
CVs. Solving (generalized) Riemann problems (either exactly or approximately) is required
to develop upwind schemes, which are typically quite accurate as they take into account the
properties of the exact solutions of (1.1) or (1.2). A drawback of upwind schemes, however,
is in the fact that solving (generalized) Riemann problems may be hard, computationally
expensive, or even impossible. In fact, most of the existing upwind schemes are developed
for the 1-D system (1.1) and then extended to the multidimensional case in a “dimension-by-
dimension” manner as (even approximately) solving 2-D Riemann problems is an extremely
challenging task. Over years, a variety of upwind schemes have been developed; see, e.g.,
the monographs [3, 17, 33] and references therein.

Godunov-type central schemes provide a much simpler alternative to their upwind coun-
terparts as they are based on the CVs selected in such a way (for example, using a staggered
mesh) that solving (generalized) Riemann problems can be avoided. Instead, the flux inte-
grals are approximated using appropriate quadratures: this is possible as in the central setting
the fluxes are integrated over the smooth parts of the solution. This makes central schemes
simple and easily applicable “black-box” solvers for a wide variety of hyperbolic systems
(1.2). Staggered central schemes were first proposed in [24] and then further developed in
[1, 2, 4, 9, 18–20, 23, 26] to name just a few.

A major drawback of Godunov-type central schemes, however, is their relatively large
numerical dissipation, which might smear discontinuities and especially linearly degenerate
contact waves. In order to reduce the amount of numerical dissipation present in central
schemes, a new class of central-upwind (CU) schemes was proposed in [12, 15, 16]. The key
idea behind the construction of the CU schemes for the 1-D system (1.1) is to select the CVs
of the size proportional to the local speeds of propagation so that all of the nonlinear and
potentially nonsmoothwaves stay inside those “nonsmooth” CVs. In addition, “smooth” CVs
are set between the “nonsmooth” ones and the solution is evolved (using the integral form of
the system (1.2) without solving any (generalized) Riemann problems) in both of them. This
leads to doubling the number of computed cell averages at the end of each time step. In order
to develop a practically feasible scheme, at the end of each time step the evolved solution has
to be projected back onto the original finite volumemesh. The projection should be carried out
in a very careful manner as the projection step may bring an excessive amount of numerical
dissipation into the resulting scheme as was the case in the original CU schemes introduced
in [12, 15, 16]. In order to more accurately project the solution, we had used in [10] a sharper
piecewise linear reconstruction of the evolved (intermediate) solution. This helped to reduce
the amount of numerical dissipation, but the improvement in the resolution, especially in the
resolution of linearly degenerate contact waves was rather minor. Another advantage of the

123

Journal of Scientific Computing (2023) 96 :56 Page 3 of 33 56

CU schemes over the staggered central schemes is that the CU schemes admit a particularly
simple semi-discrete formulation. The 2-D extension of the semi-discrete CU schemes in
[15, 16] was carried out in a straightforward “dimension-by-dimension” manner. Second-
and third-order 2-D semi-discrete CU schemes were rigorously derived in [10, 12, 13], and
a genuinely 2-D fully discrete CU scheme was introduced in [14].

In this paper, we develop a new way to perform the projection step, which leads to new
semi-discrete low-dissipation CU (LDCU) schemes containing substantially reduced amount
of numerical dissipation, especially in the contact wave areas and shear zones. A major
novelty of our approach is that instead of using a sharper piecewise linear reconstruction of
the intermediate solution (as in [10]), we now use a subcell resolution. In the 1-D case, we
reconstruct the intermediate solution at each cell interface using two constant pieces for each
component ofU . Thiswaywewill need to have 2d pieces of information at each cell interface,
for which we will have d conservation requirements and d degrees of freedom, which can be
used to ensure high accuracy of the projection step in the vicinities of contact waves. The 2-D
extension of the new LDCU scheme is performed in a “dimension-by-dimension” approach,
but taking into account specific properties of the quasi 1-D contact waves.

The new projection technique relies on the properties of contact waves of a particular
hyperbolic system at hand. In this paper, we first consider the 1-D Euler equations of gas
dynamics and enforce continuity of the velocity and pressure across the reconstructed inter-
mediate solution at each cell interface. We then extend the 1-D LDCU numerical flux to the
2-D case. The extension is not straightforward as in 2-D, one has an additional degree of
freedom related to the tangentional velocity.

The rest of the paper is organized as follows. In Sect. 2, we give an overview of the CU
schemes. In Sect. 3.1, we develop the new projection step for the 1-D Euler equations of gas
dynamics and use it to develop a new semi-discrete LDCU scheme. In Sect. 3.2, we present
the 2-D extension of the new semi-discrete LDCU scheme. Finally, in Sect. 4, we test the
proposed LDCU schemes on a number of 1-D and 2-D numerical examples and demonstrate
the superiority of the proposed schemes over the CU schemes from [10].

2 Second-Order CU Schemes: An Overview

In this section, we provide an overview of the fully and semi-discrete second-order CU
schemes for general 1-D hyperbolic systems of conservation laws (1.1).

We cover the computational domain with the finite volume cells C j = [x j− 1
2
, x j+ 1

2
]

centered at x j = (x j− 1
2

+ x j+ 1
2
)/2. For simplicity of presentation, we assume that the cells

are uniform, that is, x j+ 1
2

− x j− 1
2

≡ �x .

2.1 Fully Discrete CU Scheme

Weassume that the solution, realized in termsof its cell averages U
n
j : = 1

�x

∫
C j

U(x, tn) dx ,

is available at a certain time level t = tn . In order to develop CU schemes, we follow the
following three consecutive steps: reconstruction, evolution, and projection.
Reconstruction We reconstruct a second-order piecewise linear interpolant

Ũ(x, tn) =
∑

j

[
U

n
j + (U x)

n
j (x − x j)

]
X j (x), (2.1)

123

56 Page 4 of 33 Journal of Scientific Computing (2023) 96 :56

where X j (x) is the characteristic function of the cell C j , (U x)
n
j are the slopes which are

supposed to be computed using a nonlinear limiter to ensure a non-oscillatory nature of
(2.1). In the numerical experiments reported in Sect. 4, we have used a generalized minmod
limiter (see, e.g., [21, 24, 32, 34]),

(U x)
n
j = minmod

(

θ
U

n
j+1 − U

n
j

�x
,

U
n
j+1 − U

n
j−1

2�x
, θ

U
n
j − U

n
j−1

�x

)

,

θ ∈ [1, 2], (2.2)

applied in a componentwise manner. Here, the minmod function is defined by

minmod(c1, c2, . . .) =

⎧
⎪⎨

⎪⎩

min(c1, c2, . . .) if ci > 0, ∀i,
max(c1, c2, . . .) if ci < 0, ∀i,
0 otherwise,

(2.3)

and θ is used to control the oscillations: larger values of θ correspond to sharper but, in
general, more oscillatory reconstructions.
Evolution CU schemes are Godunov-type schemes and thus the solution is evolved by inte-
grating the system (1.1) over the space-timeCVs. To this end, we recall that the reconstruction
(2.1) is generically discontinuous at the cell interfaces x = x j+ 1

2
and the nonlinear waves

generated there may also be discontinuous. On the other hand, they propagate with a finite
speed, which makes it possible to contain all of the nonsmooth parts of the solution inside the
CVs. In order to achieve this goal, we first need to evaluate the local speeds of propagation
using the eigenvalues λ1(U) < · · · < λd(U) of the Jacobian ∂F

∂U . For instance, the left- and
right-sided speeds can be estimated by

a−
j+ 1

2
= min

{

λ1
(
U−

j+ 1
2

)
, λ1
(
U+

j+ 1
2

)
, 0

}

, a+
j+ 1

2
= max

{

λd
(
U−

j+ 1
2

)
, λd
(
U+

j+ 1
2

)
, 0

}

,

(2.4)

where U−
j+ 1

2
and U+

j+ 1
2
denote the left- and right-sided values of the piecewise linear recon-

struction (2.1)–(2.3) at x = x j+ 1
2
, respectively:

U−
j+ 1

2
= lim

x→x−
j+ 1

2

Ũ(x, tn) = U
n
j + �x

2
(U x)

n
j ,

U+
j+ 1

2
= lim

x→x+
j+ 1

2

Ũ(x, tn) = U
n
j+1 − �x

2
(U x)

n
j+1. (2.5)

We then conclude that on the time interval [tn, tn+1], where tn+1 := tn+�tn , the solution
may be nonsmooth only inside the “nonsmooth” CVs [x j+ 1

2 ,�, x j+ 1
2 ,r] × [tn, tn+1], where

x j+ 1
2 ,� := x j+ 1

2
+ a−

j+ 1
2
�tn and x j+ 1

2 ,r := x j+ 1
2

+ a+
j+ 1

2
�tn . In order to prevent the

overlapping of the “nonsmooth” CVs, we use the CFL number 1/2 and set

�tn ≤ �x

2amax
, amax = max

j

{

max

(

−a−
j+ 1

2
, a+

j+ 1
2

)}

.

This condition ensures that x j− 1
2 ,r ≤ x j+ 1

2 ,� for all j . Moreover, since we use the one-
sided local speeds of propagation to set up “nonsmooth” CVs, there will be gaps between the

123

Journal of Scientific Computing (2023) 96 :56 Page 5 of 33 56

Fig. 1 “Nonsmooth” and
“smooth” CVs

“nonsmooth”CVs,whichwewill fill inwith the “smooth” ones, [x j− 1
2 ,r , x j+ 1

2 ,�]×[tn, tn+1];
see Fig.1. This way, the entire computational domain will be covered with the CVs and we
evolve the solution in each of them as follows.

First, we integrate the system (1.1) over the “nonsmooth” CVs to obtain

U
int
j+ 1

2
≈ 1

x j+ 1
2 ,r − x j+ 1

2 ,�

x
j+ 1

2 ,r∫

x
j+ 1

2 ,�

U(x, tn+1) dx

= 1

x j+ 1
2 ,r − x j+ 1

2 ,�

[
x
j+ 1

2 ,r∫

x
j+ 1

2 ,�

U(x, tn) dx −
tn+1∫

tn

{
F
(
U(x j+ 1

2 ,r , t)
)

−F
(
U(x j+ 1

2 ,�, t)
)}

dt

]

.

(2.6)

The spatial integral on the right-hand side (RHS) of (2.6) is evaluated exactly, while the
temporal integral there is approximated using the midpoint rule. This results in

U
int
j+ 1

2
= 1

a+
j+ 1

2
− a−

j+ 1
2

{

Un
j+ 1

2 ,r
a+
j+ 1

2
− (U x)

n
j+1

2

(
a+
j+ 1

2

)2
�tn − Un

j+ 1
2 ,�

a−
j+ 1

2

+ (U x)
n
j

2

(
a−
j+ 1

2

)2
�tn −

[

F
(
U

n+ 1
2

j+ 1
2 ,r

)− F
(
U

n+ 1
2

j+ 1
2 ,�

)
] }

,

(2.7)

where

U n
j+ 1

2 ,�
:= Ũ(x j+ 1

2 ,�, t
n) = U

n
j + (U x)

n
j

(
�x

2
+ a−

j+ 1
2
�tn
)

,

U n
j+ 1

2 ,r
:= Ũ(x j+ 1

2 ,r , t
n) = U

n
j+1 − (U x)

n
j+1

(
�x

2
− a+

j+ 1
2
�tn
)

,

are computed using the piecewise linear reconstruction (2.1), and the midpoint values,

U
n+ 1

2

j+ 1
2 ,r

≈ U
(
x j+ 1

2 ,r , t
n+ 1

2
)
and U

n+ 1
2

j+ 1
2 ,�

≈ U
(
x j+ 1

2 ,�, t
n+ 1

2
)
, are obtained using the Taylor

expansions about (x j+ 1
2 ,r , t

n) and (x j+ 1
2 ,�, t

n), respectively, which gives

U
n+ 1

2

j+ 1
2 ,�

= Un
j+ 1

2 ,�
− �tn

2
F
(
Un

j+ 1
2 ,�

)
x , U

n+ 1
2

j+ 1
2 ,r

= Un
j+ 1

2 ,r
− �tn

2
F
(
Un

j+ 1
2 ,r

)
x . (2.8)

123

56 Page 6 of 33 Journal of Scientific Computing (2023) 96 :56

Here, the slopes F
(
Un

j+ 1
2 ,�

)
x and F

(
Un

j+ 1
2 ,r

)
x can be computed, for example, using the

generalized minmod limiter; see [10] for details.
We then integrate the system (1.1) over the “smooth” CVs to obtain

U
int
j ≈ 1

x j+ 1
2 ,� − x j− 1

2 ,r

x
j+ 1

2 ,�∫

x
j− 1

2 ,r

U(x, tn+1) dx

= 1

x j+ 1
2 ,� − x j− 1

2 ,r

[
x
j+ 1

2 ,�∫

x
j− 1

2 ,r

U(x, tn) dx −
tn+1∫

tn

{
F
(
U(x j+ 1

2 ,�, t)
)

−F
(
U(x j− 1

2 ,r , t)
)}

dt

]

.

(2.9)

The integrals on the RHS of (2.9) are evaluated precisely the same way of the integral on the
RHS of (2.6), and this results in

U
int
j = U

n
j + (U x)

n
j

2
(a+

j− 1
2

+ a−
j+ 1

2
)�tn

− �tn

�x − (a+
j− 1

2
− a−

j+ 1
2
)�tn

[

F
(
U

n+ 1
2

j+ 1
2 ,�

)− F
(
U

n+ 1
2

j− 1
2 ,r

)
]

.
(2.10)

Projection At the final step, we project the evolved solution, which is realized in terms of

the intermediate cell averages { U
int
j , U

int
j+ 1

2
} onto the original grid. In order to ensure

the second order of the resulting scheme, we first need to reconstruct a piecewise linear
interpolant

Ũ
int

(x) =
∑

j

{

Ũ
int
j+ 1

2
(x)X[x

j+ 1
2 ,�

,x
j+ 1

2 ,r
] + U

int
j X[x

j− 1
2 ,r

,x
j+ 1

2 ,�
]
}

, (2.11)

sketched in Fig. 2. Here,

Ũ
int
j+ 1

2
(x) = U

int
j+ 1

2
+ (U x)

int
j+ 1

2

(

x −
x j+ 1

2 ,r + x j+ 1
2 ,�

2

)

, (2.12)

where the slopes (U x)
int
j+ 1

2
in (2.11) can be computed, for instance, as in [10]:

(U x)
int
j+ 1

2
= minmod

⎛

⎜
⎝
U int

j+ 1
2 ,r

− U
int
j+ 1

2

δ
,

U
int
j+ 1

2
− U int

j+ 1
2 ,�

δ

⎞

⎟
⎠ ,

δ := �tn

2

(
a+
j+ 1

2
− a−

j+ 1
2

)
, (2.13)

and similarly to (2.8), U int
j+ 1

2 ,�
≈ U(x j+ 1

2 ,�, t
n+1) and U int

j+ 1
2 ,r

≈ U(x j+ 1
2 ,r , t

n+1) are

evaluated using the Taylor expansions:

U int
j+ 1

2 ,r
= Un

j+ 1
2 ,r

− �tnF
(
Un

j+ 1
2 ,r

)
x , U int

j+ 1
2 ,�

= Un
j+ 1

2 ,�
− �tnF

(
Un

j+ 1
2 ,�

)
x .

(2.14)

123

Journal of Scientific Computing (2023) 96 :56 Page 7 of 33 56

Fig. 2 Piecewise linear
interpolant (2.11) and its
projection onto the cell C j

Equipped with the piecewise linear interpolant Ũ
int
, we average it over the cell C j to end

up with

U
n+1
j = 1

�x

∫

C j

Ũ
int

(x) dx = U
int
j + �tn

�x

[
a+
j− 1

2

(
U

int
j− 1

2
− U

int
j

)

− a−
j+ 1

2

(
U

int
j+ 1

2
− U

int
j

)

+ �tn

2

{
a+
j+ 1

2
a−
j+ 1

2
(U x)

n+1
j+ 1

2
− a+

j− 1
2
a−
j− 1

2
(U x)

n+1
j− 1

2

}]
.

(2.15)

This completes the construction of the fully discrete second-order CU scheme, which is quite
complicated, but admits a very simple semi-discrete form.

Remark 2.1 We note that the slopes (U x)
int
j+ 1

2
in (2.12) have to be at least first-order approx-

imations of the spatial derivatives at the centers of the intervals [x j+ 1
2 ,�, x j+ 1

2 ,r]. This is
required in order to keep the resulting fully discrete CU scheme to be second order.

2.2 Semi-Discrete CU Scheme

We now reduce the fully discrete scheme from Sect. 2.1 to the semi-discrete form by taking
the following temporal limit:

d

dt
U j (t

n) = lim
�tn→0

U
n+1
j − U

n
j

�tn
= lim

�tn→0

U
int
j − U

n
j

�tn

+ 1

�x

[
a+
j− 1

2
lim

�tn→0
U

int
j− 1

2
+ (a−

j+ 1
2

− a+
j− 1

2

)
lim

�tn→0
U

int
j − a−

j+ 1
2

lim
�tn→0

U
int
j+ 1

2

+ 1

2
a+
j+ 1

2
a−
j+ 1

2
lim

�tn→0

{
�tn(U x)

int
j+ 1

2

}− 1

2
a+
j− 1

2
a−
j− 1

2
lim

�tn→0

{
�tn(U x)

int
j− 1

2

}]
. (2.16)

This limit is evaluated by substituting (2.7) and (2.10) into (2.16), which results in the second-
order semi-discrete CU scheme:

d

dt
U j (t) = −

F j+ 1
2
(t) − F j− 1

2
(t)

�x
, (2.17)

where F j+ 1
2
are CU numerical fluxes given by

F j+ 1
2

=
a+
j+ 1

2
F
(
U−

j+ 1
2

)− a−
j+ 1

2
F
(
U+

j+ 1
2

)

a+
j+ 1

2
− a−

j+ 1
2

123

56 Page 8 of 33 Journal of Scientific Computing (2023) 96 :56

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[

U+
j+ 1

2
− U−

j+ 1
2

− δU j+ 1
2

]

. (2.18)

Here, δU j+ 1
2
is the “built-in” anti-diffusion term given by

δU j+ 1
2

=
a+
j+ 1

2
− a−

j+ 1
2

2
lim

�tn→0

{
�tn(U x)

int
j+ 1

2

}

= minmod

(

U+
j+ 1

2
− U∗

j+ 1
2
,U∗

j+ 1
2

− U−
j+ 1

2

)

(2.19)

with U∗
j+ 1

2
obtained by passing to the limit in (2.7), namely,

U∗
j+ 1

2
= lim

�tn→0
U

int
j+ 1

2
=

a+
j+ 1

2
U+

j+ 1
2

− a−
j+ 1

2
U−

j+ 1
2

− {F(U+
j+ 1

2

)− F
(
U−

j+ 1
2

)}

a+
j+ 1

2
− a−

j+ 1
2

.

(2.20)

Note that all of the indexed quantities in (2.18)–(2.20) are time dependent, but from now on
we will omit this dependence for the sake of brevity.

Remark 2.2 We note that when the 1-D schemes are implemented, the computation of the
CU numerical fluxes in (2.18) needs to be desingularized at those cell interfaces x = x j+ 1

2

where both of the local speeds are very small. This means that wherever a+
j+ 1

2
− a−

j+ 1
2

< ε

for a small positive ε, we replace (2.18) with

F j+ 1
2

=
F(U−

j+ 1
2
) + F(U+

j+ 1
2
)

2
.

Remark 2.3 The semi-discretization (2.17) is a system of time-dependent ODEs, which has
to be numerically integrated. In all of the numerical experiments reported in Sect. 4.1, we
have used the three-stage third-order strong stability preserving (SSP) Runge-Kutta method;
see, e.g., [7, 8].

Remark 2.4 We stress that the order of accuracy of the semi-discretization (2.17)–(2.20) is
determined by the order of reconstruction ofU±

j+ 1
2
and is independent on the accuracy of the

projection step as the size of the interval [x j+ 1
2 ,�, x j+ 1

2 ,r] shrinks to 0 when �tn → 0. Thus,

even if we take (U x)
int
j+ 1

2
≡ 0, which would remove the anti-diffusion term δU j+ 1

2
from the

CU numerical flux (2.18) and reduce the scheme (2.17)–(2.20) to the original CU scheme
from [12], the formal order of accuracy will still be determined by the accuracy U±

j+ 1
2
are

computed with.

3 A New Family of the LDCU Schemes

In this section, we present a new family of the LDCU schemes. Our goal is to further reduce
the amount of numerical dissipation present in the CU schemes without risking oscillations.

First, we recall that the amount of dissipation present in both fully and semi-discrete CU
schemes canbe controlled by theway the projection step is conducted.This, in fact, boils down

123

Journal of Scientific Computing (2023) 96 :56 Page 9 of 33 56

Fig. 3 The new projection step

to the way the slopes (U x)
int
j+ 1

2
are evaluated. Formulae (2.13)–(2.14) lead to an intermediate

reconstruction (2.11), which is much sharper than the one used in the original papers [12, 15],
and thus to the “built-in” anti-diffusion term (2.19)–(2.20) appearing in the CU numerical
flux (2.18). However, the use of the linear pieces (2.12), which is necessary to ensure the
second order of accuracy of fully discrete CU schemes, has its limitations as these pieces
are continuous across the cell interfaces x = x j+ 1

2
. As mentioned in Remark 2.3, preserving

high order of the semi-discrete CU scheme is easier and this gives us more flexibility in
designing the projection step.

We therefore propose a new and completely different projection procedure. Instead of the
linear piece (2.12), we will use a subcell resolution approach and replace (2.12) with

Ũ
int
j+ 1

2
(x) =

⎧
⎨

⎩

U
int,L
j+ 1

2
, x < x j+ 1

2
,

U
int,R
j+ 1

2
, x > x j+ 1

2
,

(3.1)

which consists of two constant pieces; see Fig. 3. Notice that (3.1) is generically discon-
tinuous at x = x j+ 1

2
and one can take an advantage of this fact in order to design a very

sharp intermediate interpolation (2.11), (3.1). We also note that (3.1) contains 2d pieces of
information. The conservation property of (3.1) will be enforced by requiring the following

d relations between U
int,L
j+ 1

2
and U

int,R
j+ 1

2
quantities to be satisfied:

a+
j+ 1

2
U

int,R
j+ 1

2
− a−

j+ 1
2

U
int,L
j+ 1

2
= (a+

j+ 1
2

− a−
j+ 1

2
) U

int
j+ 1

2
. (3.2)

This leaves one with d degrees of freedom, which can be used to improve the quality of
the local approximation achieved by (3.1). We propose to use these degrees of freedom in
order to improve the resolution of linearly degenerate contact waves, which are typically
much harder to accurately capture due to their linear nature and lack of the self-sharpening
mechanisms possessed by the nonlinear shock waves. In order to achieve this goal, we will
use specific properties of the contact waves arising in the studied hyperbolic systems of
conservation laws. In the rest of the paper, we restrict our consideration to the Euler equation
of gas dynamics.

123

56 Page 10 of 33 Journal of Scientific Computing (2023) 96 :56

3.1 New LDCU Scheme for the 1-D Euler Equations of Gas Dynamics

The 1-D Euler equations of gas dynamics reads as (1.1) with

U =
⎛

⎝
ρ

ρu
E

⎞

⎠ and F(U) =
⎛

⎝
ρu

ρu2 + p
u(E + p)

⎞

⎠ , (3.3)

where ρ is the density, u is the velocity, p is the pressure, and E is the total energy. The
system (1.1), (3.3) is closed using the equation of states (EOS), which is in the case of ideal
gas is

p = (γ − 1)
[
E − 1

2
ρu2
]
, γ = Const. (3.4)

In order to develop the new CU scheme for the system (1.1), (3.3), (3.4), we first use
the generalized minmod reconstruction (2.2), (2.3), (2.5) to obtain the point values ρ±

j+ 1
2
,

(ρu)±
j+ 1

2
and E±

j+ 1
2
, which can be used to evaluate the corresponding point values of u and

p:

u±
j+ 1

2
=

(ρu)±
j+ 1

2

ρ±
j+ 1

2

, p±
j+ 1

2
= (γ − 1)

[
E±

j+ 1
2

− 1

2
ρ±
j+ 1

2

(
u±
j+ 1

2

)2]
. (3.5)

We then estimate the one-sided local speeds of propagation according to (2.4), which reduces
to

a−
j+ 1

2
= min

{

u+
j+ 1

2
− c+

j+ 1
2
, u−

j+ 1
2

− c−
j+ 1

2
, 0

}

,

a+
j+ 1

2
= max

{

u+
j+ 1

2
+ c+

j+ 1
2
, u−

j+ 1
2

+ c−
j+ 1

2
, 0

}

,

where c±
j+ 1

2
=
√

γ p±
j+ 1

2
/ρ±

j+ 1
2
are the corresponding point values of the speed of sound.

We then proceed with the evolution of the subcell averages U
int,L
j+ 1

2
= (

ρ
int,L
j+ 1

2
,

(ρu)
int,L
j+ 1

2
, E

int,L
j+ 1

2

)	 and U
int,R
j+ 1

2
= (

ρ
int,R
j+ 1

2
, (ρu)

int,R
j+ 1

2
, E

int,R
j+ 1

2

)	 required in

(3.1). Our goal is to develop a new projection procedure designed to accurately approxi-
mate isolated contact waves, which consist of jump discontinuities in ρ propagating in the
region with constant u and p. We therefore use two of the remaining three degrees of freedom
to enforce the continuity of u and p across the cell interfaces by setting

(ρu)
int,L
j+ 1

2

ρ
int,L
j+ 1

2

=
(ρu)

int,R
j+ 1

2

ρ
int,R
j+ 1

2

, E
int,L
j+ 1

2
−
(
(ρu)

int,L
j+ 1

2

)2

2 ρ
int,L
j+ 1

2

= E
int,R
j+ 1

2
−
(
(ρu)

int,R
j+ 1

2

)2

2 ρ
int,R
j+ 1

2

,

(3.6)

where we have used the EOS (3.4). Next, (3.6) together with the conservation requirement
for ρu and E , namely (see (3.2)),

a+
j+ 1

2
(ρu)

int,R
j+ 1

2
− a−

j+ 1
2
(ρu)

int,L
j+ 1

2
= (a+

j+ 1
2

− a−
j+ 1

2

)
(ρu) int

j+ 1
2
,

a+
j+ 1

2
E

int,R
j+ 1

2
− a−

j+ 1
2

E
int,L
j+ 1

2
= (a+

j+ 1
2

− a−
j+ 1

2

)
E

int
j+ 1

2
,

123

Journal of Scientific Computing (2023) 96 :56 Page 11 of 33 56

form a system of four algebraic equations equations, which we solve for (ρu)
int,L
j+ 1

2
,

(ρu)
int,R
j+ 1

2
, E

int,L
j+ 1

2
, and E

int,R
j+ 1

2
, and express these quantities in terms of ρ

int,L
j+ 1

2
and

ρ
int,R
j+ 1

2
:

(ρu)
int,L
j+ 1

2
=

(
a+
j+ 1

2
− a−

j+ 1
2

)
ρ

int,L
j+ 1

2

a+
j+ 1

2
ρ

int,R
j+ 1

2
− a−

j+ 1
2

ρ
int,L
j+ 1

2

(ρu) int
j+ 1

2
,

(ρu)
int,R
j+ 1

2
=

(
a+
j+ 1

2
− a−

j+ 1
2

)
ρ

int,R
j+ 1

2

a+
j+ 1

2
ρ

int,R
j+ 1

2
− a−

j+ 1
2

ρ
int,L
j+ 1

2

(ρu) int
j+ 1

2
,

E
int,L
j+ 1

2
= E

int
j+ 1

2
+

a+
j+ 1

2

(
a+
j+ 1

2
− a−

j+ 1
2

)(
ρ

int,L
j+ 1

2
− ρ

int,R
j+ 1

2

)

2
(
a+
j+ 1

2
ρ

int,R
j+ 1

2
− a−

j+ 1
2

ρ
int,L
j+ 1

2

)2
(
(ρu) int

j+ 1
2

)2
,

E
int,R
j+ 1

2
= E

int
j+ 1

2
+

a−
j+ 1

2

(
a+
j+ 1

2
− a−

j+ 1
2

)(
ρ

int,L
j+ 1

2
− ρ

int,R
j+ 1

2

)

2
(
a+
j+ 1

2
ρ

int,R
j+ 1

2
− a−

j+ 1
2

ρ
int,L
j+ 1

2

)2
(
(ρu) int

j+ 1
2

)2
.

(3.7)

We finally need to determine ρ
int,L
j+ 1

2
and ρ

int,R
j+ 1

2
, which are related by the conservation

requirement for ρ, namely (see (3.2)),

a+
j+ 1

2
ρ

int,R
j+ 1

2
− a−

j+ 1
2

ρ
int,L
j+ 1

2
= (a+

j+ 1
2

− a−
j+ 1

2

)
ρ int

j+ 1
2
, (3.8)

leaving uswith one remaining degree of freedom.Sincewewould like to have the sharpest (yet
non-oscillatory) approximation of the jump in ρ, we need to make the difference ρ

int,R
j+ 1

2
−

ρ
int,L
j+ 1

2
as close as possible to ρint

j+ 1
2 ,r

−ρint
j+ 1

2 ,�
, but without creating any new local extrema

in ρ, that is, ensuring that

min
{
ρint
j+ 1

2 ,�
, ρ int

j+ 1
2
, ρint

j+ 1
2 ,r

}
≤ ρ

int,L(R)

j+ 1
2

≤ max
{
ρint
j+ 1

2 ,�
, ρ int

j+ 1
2
, ρint

j+ 1
2 ,r

}
,

(3.9)

where ρint
j+ 1

2 ,�
and ρint

j+ 1
2 ,r

are predicted using (2.14). In order to achieve this goal, we denote

by

S−
j+ 1

2
:= −a−

j+ 1
2

(
ρ int

j+ 1
2

− ρint
j+ 1

2 ,�

)
and S+

j+ 1
2

:= a+
j+ 1

2

(
ρint
j+ 1

2 ,r
− ρ int

j+ 1
2

)
,

(3.10)

and then determine ρ
int,L
j+ 1

2
and ρ

int,R
j+ 1

2
according to the following algorithm.

Algorithm 3.1 (Computation of ρ
int,L
j+ 1

2
and ρ

int,R
j+ 1

2
)

• If S−
j+ 1

2
S+
j+ 1

2
≥ 0, then set

ρ
int,L
j+ 1

2
= ρ int

j+ 1
2

and ρ
int,R
j+ 1

2
= ρ int

j+ 1
2
, (3.11)

to avoid creation of new local extrema;

123

56 Page 12 of 33 Journal of Scientific Computing (2023) 96 :56

• If S−
j+ 1

2
S+
j+ 1

2
< 0 and |S−

j+ 1
2
| < |S+

j+ 1
2
|, then set

ρ
int,L
j+ 1

2
= ρint

j+ 1
2 ,�

, ρ
int,R
j+ 1

2
=
(
a+
j+ 1

2
− a−

j+ 1
2

)
ρ int

j+ 1
2

+ a−
j+ 1

2
ρ

int,L
j+ 1

2

a+
j+ 1

2

;

(3.12)

• If S−
j+ 1

2
S+
j+ 1

2
< 0 and |S−

j+ 1
2
| > |S+

j+ 1
2
|, then set

ρ
int,R
j+ 1

2
= ρint

j+ 1
2 ,r

, ρ
int,L
j+ 1

2
=
(
a+
j+ 1

2
− a−

j+ 1
2

)
ρ int

j+ 1
2

− a+
j+ 1

2
ρ

int,R
j+ 1

2

−a−
j+ 1

2

.

(3.13)

Remark 3.1 It is easy to verify that the values ρ
int,L
j+ 1

2
and ρ

int,R
j+ 1

2
computed in either (3.11),

(3.12), or (3.13) satisfy both the conservation (3.8) and non-oscillatory (3.9) requirements.

Remark 3.2 Notice that formulae (3.11)–(3.13) can be written in a compact form as

ρ
int,L
j+ 1

2
= ρ int

j+ 1
2

+
δ j+ 1

2

a−
j+ 1

2

, ρ
int,R
j+ 1

2
= ρ int

j+ 1
2

+
δ j+ 1

2

a+
j+ 1

2

, δ j+ 1
2

:= minmod(S−
j+ 1

2
, S+

j+ 1
2
), (3.14)

which, in turn, can be substituted into (3.7) to simplify it and obtain

(ρu)
int,L

j+ 1
2

= (ρu) int
j+ 1

2
+

δ
j+ 1

2

a−
j+ 1

2

uint
j+ 1

2
, (ρu)

int,R

j+ 1
2

= (ρu) int
j+ 1

2
+

δ
j+ 1

2

a+
j+ 1

2

uint
j+ 1

2
,

E
int,L

j+ 1
2

= E
int
j+ 1

2
+

δ
j+ 1

2

2a−
j+ 1

2

(
uint
j+ 1

2

)2
, E

int,R

j+ 1
2

= E
int
j+ 1

2
+

δ
j+ 1

2

2a+
j+ 1

2

(
uint
j+ 1

2

)2
,

uint
j+ 1

2
:=

(ρu) int
j+ 1

2

ρ int
j+ 1

2

.

(3.15)

3.1.1 Fully Discrete Scheme

We now derive a new fully discrete LDCU scheme based on the new projection step. To this
end, we integrate the piecewise constant interpolant (2.11), (3.1) over the cell C j and obtain
(compare with (2.15)) for ρ:

ρ n+1
j = ρ int

j + �tn

�x

[
a+
j− 1

2

(
ρ

int,R
j− 1

2
− ρ int

j

)− a−
j+ 1

2

(
ρ

int,L
j+ 1

2
− ρ int

j

)]

(3.14)= ρ int
j + �tn

�x

[
a+
j− 1

2

(
ρ int

j− 1
2

− ρ int
j

)

− a−
j+ 1

2

(
ρ int

j+ 1
2

− ρ int
j

)+ δ j− 1
2

− δ j+ 1
2

]
,

(3.16)

123

Journal of Scientific Computing (2023) 96 :56 Page 13 of 33 56

for ρu:

(ρu) n+1
j = (ρu) intj + �tn

�x

[
a+
j− 1

2

(
(ρu)

int,R
j− 1

2
− (ρu) intj

)

− a−
j+ 1

2

(
(ρu)

int,L
j+ 1

2
− (ρu) intj

)]

(3.15)= (ρu) intj + �tn

�x

[
a+
j− 1

2

(
(ρu) int

j− 1
2

− (ρu) intj

)

− a−
j+ 1

2

(
(ρu) int

j+ 1
2

− (ρu) intj

)

+ δ j− 1
2
uint
j− 1

2
− δ j+ 1

2
uint
j+ 1

2

]
,

(3.17)

and for E :

E
n+1
j = E

int
j + �tn

�x

[
a+
j− 1

2

(
E

int,R
j− 1

2
− E

int
j

)− a−
j+ 1

2

(
E

int,L
j+ 1

2
− E

int
j

)]

(3.15)= E
int
j + �tn

�x

[

a+
j− 1

2

(
E

int
j− 1

2
− E

int
j

)− a−
j+ 1

2

(
E

int
j+ 1

2
− E

int
j

)

+
δ j− 1

2

2

(
uint
j− 1

2

)2 −
δ j+ 1

2

2

(
uint
j+ 1

2

)2
]

. (3.18)

We stress that the resulting fully discrete scheme (3.16)–(3.18), (2.7), (2.10), (3.14) is quite
cumbersome. Moreover, it is formally first-order accurate due to the fact that it is based on
a piecewise constant interpolant (2.11), (3.1). We, however, are not going to test this fully
discrete scheme on any numerical examples. Instead, we will pass to the semi-discrete limit
and, as explained in Remark 2.4, the use of the piecewise constant interpolant at the projection
step will not affect the order of the resulting semi-discrete scheme.

3.1.2 Semi-Discrete Scheme

We now pass to the semi-discrete limit �tn → 0 in (3.16). This results in

d

dt
ρ j (t

n) = lim
�tn→0

ρ n+1
j − ρ n

j

�tn
= lim

�tn→0

ρ int
j − ρ n

j

�tn

+ 1

�x

[

a+
j− 1

2
lim

�tn→0
ρ int

j− 1
2

+ (a−
j+ 1

2
− a+

j− 1
2

)
lim

�tn→0
ρ int

j − a−
j+ 1

2
lim

�tn→0
ρ int

j+ 1
2

+ lim
�tn→0

(δ j− 1
2

− δ j+ 1
2
)

]

.

We then proceed as in Sect. 2.2 and end up with the following semi-discretization of the ρ

equation in (3.3):

d

dt
ρ j = −

Fρ

j+ 1
2

− Fρ

j− 1
2

�x
, (3.19)

123

56 Page 14 of 33 Journal of Scientific Computing (2023) 96 :56

where

Fρ

j+ 1
2

=
a+
j+ 1

2
(ρu)−

j+ 1
2

− a−
j+ 1

2
(ρu)+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[

ρ+
j+ 1

2
− ρ−

j+ 1
2

]

+ q j+ 1
2

(3.20)

is a LDCU numerical flux with the modified “built-in” anti-diffusion term

q j+ 1
2

= lim
�tn→0

δ j+ 1
2

(3.10), (3.14)= lim
�tn→0

minmod
(

− a−
j+ 1

2

(
ρ int

j+ 1
2

− ρint
j+ 1

2 ,�

)
, a+

j+ 1
2

(
ρint
j+ 1

2 ,r
− ρ int

j+ 1
2

))

= minmod
(

− a−
j+ 1

2

(
ρ∗
j+ 1

2
− ρ−

j+ 1
2

)
, a+

j+ 1
2

(
ρ+
j+ 1

2
− ρ∗

j+ 1
2

))
, (3.21)

where ρ∗
j+ 1

2
is given by (2.20).

Similarly, we pass to the semi-discrete limit �tn → 0 in (3.17) and (3.18), and proceed
as in Sect. 2.2 to end up with the following semi-discretizations of the ρu and E equations
in (3.3):

d

dt
(ρu) j = −

Fρu
j+ 1

2
− Fρu

j− 1
2

�x
,

d

dt
E j = −

F E
j+ 1

2
− F E

j− 1
2

�x
, (3.22)

where the corresponding LDCU numerical fluxes are

Fρu
j+ 1

2
=

a+
j+ 1

2

[
ρ−
j+ 1

2

(
u−
j+ 1

2

)2 + p−
j+ 1

2

]
− a−

j+ 1
2

[
ρ+
j+ 1

2

(
u+
j+ 1

2

)2 + p+
j+ 1

2

]

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[

(ρu)+
j+ 1

2
− (ρu)−

j+ 1
2

]

+ u∗
j+ 1

2
q j+ 1

2
,

(3.23)

F E
j+ 1

2
=

a+
j+ 1

2

[
u+
j+ 1

2

(
E+

j+ 1
2

+ p+
j+ 1

2

)]− a−
j+ 1

2

[
u+
j+ 1

2

(
E+

j+ 1
2

+ p+
j+ 1

2

)]

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[

E+
j+ 1

2
− E−

j+ 1
2

]

+
(
u∗
j+ 1

2

)2

2
q j+ 1

2
.

(3.24)

In (3.23) and (3.24), u±
j+ 1

2
and p±

j+ 1
2
are given by (3.5), and in the “built-in” anti-diffusion

terms on the RHS of (3.23) and (3.24), q j+ 1
2
is given by (3.21) and u∗

j+ 1
2

= (ρu)∗
j+ 1

2
/ρ∗

j+ 1
2
,

where ρ∗
j+ 1

2
and (ρu)∗

j+ 1
2
are given by (2.20).

Remark 3.3 As in Sect. 2.2, the computation of the LDCU numerical fluxes in (3.20), (3.23)
and (3.24) needs to be desingularized; see Remark 2.2 for details.

123

Journal of Scientific Computing (2023) 96 :56 Page 15 of 33 56

3.2 New LDCU Scheme for the 2-D Euler Equations of Gas Dynamics

In this section, we extend the new LDCU scheme from Sect. 3.1 to the 2-D Euler equations
of gas dynamics, which read as (1.2) with

U =

⎛

⎜
⎜
⎝

ρ

ρu
ρv

E

⎞

⎟
⎟
⎠ , F(U) =

⎛

⎜
⎜
⎝

ρu
ρu2 + p

ρuv

u(E + p)

⎞

⎟
⎟
⎠ , G(U) =

⎛

⎜
⎜
⎝

ρv

ρuv

ρv2 + p
v(E + p)

⎞

⎟
⎟
⎠ . (3.25)

Here, ρ is the density, u and v are the x- and y-velocities, respectively, p is the pressure, and
E is the total energy. The system (1.2), (3.25) is closed using the following EOS for the ideal
gas:

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
, γ = Const. (3.26)

.
The 2-D extension of the new semi-discrete LDCU scheme (3.19)–(3.24) will be carried

out in the “dimension-by-dimension” manner and the 2-D semi-discretization will read as

d

dt
U j,k = −

F j+ 1
2 ,k − F j− 1

2 ,k

�x
−

G j,k+ 1
2

− G j,k− 1
2

�y
, (3.27)

where U j,k :≈ 1
�x�y

∫∫
C j,k

U(x, y, t) dxdy are the computed cell averages of U over
the Cartesian cells C j,k = [x j− 1

2
, x j+ 1

2
] × [yk− 1

2
, yk+ 1

2
] centered at (x j , yk) = ((x j− 1

2
+

x j+ 1
2
)/2, (yk− 1

2
+ yk+ 1

2
)/2). For the sake of simplicity, the cells are assumed to be uniform

with x j+ 1
2
− x j− 1

2
≡ �x and yk+ 1

2
− yk− 1

2
≡ �y for all j, k. In (3.27),F j+ 1

2 ,k and G j,k+ 1
2

are the x- and y-numerical fluxes.
Before evaluating the numerical fluxes, we reconstruct the second-order piecewise linear

interpolant

Ũ(x, y) =
∑

j,k

[
U j,k + (U x) j,k(x − x j) + (U y) j,k(y − yk)

]X j,k(x, y), (3.28)

where X j,k(x, y) is the characteristic function of the cell C j,k , and (U x) j,k and (U y) j,k are
the slopes which are supposed to be computed using a nonlinear limiter to ensure a non-
oscillatory nature of (3.28). In the numerical experiments reported in Sect. 4, we have used
the generalized minmod limiter:

(U x) j,k = minmod

(

θ
U j+1,k − U j,k

�x
,

U j+1,k − U j−1,k

2�x
, θ

U j,k − U j−1,k

�x

)

,

(U y) j,k = minmod

(

θ
U j,k+1 − U j,k

�y
,

U j,k+1 − U j,k−1

2�y
, θ

U j,k − U j,k−1

�y

)

,

θ ∈ [1, 2],

(3.29)

where the minmod function (2.3) is applied in a componentwise manner.

123

56 Page 16 of 33 Journal of Scientific Computing (2023) 96 :56

We then use the reconstruction (3.28)–(3.29) to compute the point values of U inside the
cell C j,k , which we denote by

U−
j+ 1

2 ,k
:= lim

x→x−
j+ 1

2

Ũ(x, yk) = U j,k + �x

2
(U x) j,k,

U+
j+ 1

2 ,k
:= lim

x→x+
j+ 1

2

Ũ(x, yk) = U j+1,k − �x

2
(U x) j+1,k,

U−
j,k+ 1

2
:= lim

y→y−
k+ 1

2

Ũ(x j , y) = U j,k + �y

2
(U y) j,k,

U+
j,k+ 1

2
:= lim

y→y+
k+ 1

2

Ũ(x j , y) = U j,k+1 − �y

2
(U y) j,k+1.

We now develop the LDCU numerical fluxes F j+ 1
2 ,k and G j,k+ 1

2
using the “dimension-

by-dimension” approach. To this end,F j+ 1
2 ,k is designed by considering the 1-D restrictions

of the system (1.2), (3.25) along the lines y = yk :

U t (x, yk, t) + F
(
U(x, yk, t)

)
x = 0. (3.30)

Similarly, in order to designG j,k+ 1
2
one needs to consider the 1-D restrictions of (1.2), (3.25)

along the lines x = x j :

U t (x j , y, t) + G
(
U(x j , y, t)

)
y = 0.

Notice that the 1-D systems in (3.30) do not coincide with the original 1-D Euler equation
of gas dynamics (1.1), (3.3), as (3.30) has an additional equation

(ρv)t + (ρuv)x = 0,

which is, in fact, just a transport equation for ρv. Therefore, when an isolated contact wave
propagates in the x-direction along y = yk , ρv will jump across the contact wave similarly

to ρ. This helps us to extend the construction of the subcell averages U
int,L

and U
int,R

introduced in §3.1 to the quasi 1-D case considered here.
Recall that the 1-D LDCU fluxes (3.20), (3.23), and (3.24) have been derived through

the fully discrete framework. Therefore, we have to go through the quasi 1-D fully discrete
scheme derivation for the systems in (3.30). To this end, we follow all of the steps in §2.1 and
§3.1 and we now focus on the details, which are different from what has been done there.

First, (3.1) now reads as

Ũ
int
j+ 1

2 ,k(x, yk) =
⎧
⎨

⎩

U
int,L
j+ 1

2 ,k, x < x j+ 1
2
,

U
int,R
j+ 1

2 ,k, x > x j+ 1
2
,

and the conservation requirements (3.2), which become

a+
j+ 1

2 ,k
U

int,R
j+ 1

2 ,k − a−
j+ 1

2 ,k
U

int,L
j+ 1

2 ,k = (a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)
U

int
j+ 1

2 ,k, (3.31)

123

Journal of Scientific Computing (2023) 96 :56 Page 17 of 33 56

are still valid with a±
j+ 1

2 ,k
being the one-sided local speeds of propagation in the x-direction

along y = yk . These speeds can be estimated using the eigenvalues λ1(U) < · · · < λ4(U)

of the Jacobian ∂F
∂U as follows:

a−
j+ 1

2 ,k
:= min

{

u−
j+ 1

2 ,k
− c−

j+ 1
2 ,k

, u−
j+ 1

2 ,k
− c−

j+ 1
2 ,k

, 0

}

,

a+
j+ 1

2 ,k
:= max

{

u+
j+ 1

2 ,k
+ c+

j+ 1
2 ,k

, u+
j+ 1

2 ,k
+ c+

j+ 1
2 ,k

, 0

}

,

where

u±
j+ 1

2 ,k
=

(ρu)±
j+ 1

2 ,k

ρ±
j+ 1

2 ,k

, v±
j+ 1

2 ,k
=

(ρv)±
j+ 1

2 ,k

ρ±
j+ 1

2 ,k

,

p±
j+ 1

2 ,k
= (γ − 1)

[

E±
j+ 1

2 ,k
−

ρ±
j+ 1

2 ,k

2

((
u±
j+ 1

2 ,k

)2 + (v±
j+ 1

2 ,k

)2)
]

, c±
j+ 1

2 ,k
=

√√
√
√
√

γ p±
j+ 1

2 ,k

ρ±
j+ 1

2 ,k

.

In addition to the four conservation constraints given by (3.31), wewill enforce the continuity
of u and p across the cell interfaces x = x j+ 1

2
by setting

(ρu)
int,L
j+ 1

2 ,k

ρ
int,L
j+ 1

2 ,k

=
(ρu)

int,R
j+ 1

2 ,k

ρ
int,R
j+ 1

2 ,k

,

E
int,L
j+ 1

2 ,k −
(
(ρu)

int,L
j+ 1

2 ,k

)2 + ((ρv)
int,L
j+ 1

2 ,k

)2

2 ρ
int,L
j+ 1

2 ,k

= E
int,R
j+ 1

2 ,k −
(
(ρu)

int,R
j+ 1

2 ,k

)2 + ((ρv)
int,R
j+ 1

2 ,k

)2

2 ρ
int,R
j+ 1

2 ,k

,

and then proceed as in Algorithm 3.1 to obtain the formulae analogous to (3.10), (3.14) for
both the ρ - and ρv-components:

ρ
int,L
j+ 1

2 ,k
= ρ int

j+ 1
2 ,k

+
δ
ρ

j+ 1
2 ,k

a−
j+ 1

2 ,k

, ρ
int,R
j+ 1

2 ,k
= ρ int

j+ 1
2 ,k

+
δ
ρ

j+ 1
2 ,k

a+
j+ 1

2 ,k

,

(ρv)
int,L
j+ 1

2 ,k
= (ρv) int

j+ 1
2 ,k

+
δ
ρv

j+ 1
2 ,k

a−
j+ 1

2 ,k

, (ρv)
int,R
j+ 1

2 ,k
= (ρv) int

j+ 1
2 ,k

+
δ
ρv

j+ 1
2 ,k

a+
j+ 1

2 ,k

,

(3.32)

where

δ
ρ

j+ 1
2 ,k

= minmod

(

−a−
j+ 1

2 ,k

[
ρ int

j+ 1
2 ,k

− (ρint
j+ 1

2 ,k

)
�

]
, a+

j+ 1
2 ,k

[(
ρint
j+ 1

2 ,k

)
r − ρ int

j+ 1
2 ,k

])

,

δ
ρv

j+ 1
2 ,k

= minmod

(

−a−
j+ 1

2 ,k

[
(ρv) int

j+ 1
2 ,k

− ((ρv)int
j+ 1

2 ,k

)
�

]
, a+

j+ 1
2 ,k

[(
(ρv)int

j+ 1
2 ,k

)
r

−(ρv) int
j+ 1

2 ,k

])
.

123

56 Page 18 of 33 Journal of Scientific Computing (2023) 96 :56

Here, the values
(
ρint
j+ 1

2 ,k

)
�
,
(
ρint
j+ 1

2 ,k

)
r ,
(
(ρv)int

j+ 1
2 ,k

)
�
, and

(
(ρv)int

j+ 1
2 ,k

)
r are obtained using

the Taylor expansions as it was done in (2.14).
We then proceed as in §3.1.2 and end up with the LDCU numerical fluxes for the first

three components ρ, ρu, and ρv. The ρ - and (ρv)-fluxes are similar to (3.20) and they are

Fρ

j+ 1
2 ,k

=
a+
j+ 1

2 ,k
(ρu)−

j+ 1
2 ,k

− a−
j+ 1

2 ,k
(ρu)+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[

ρ+
j+ 1

2 ,k
− ρ−

j+ 1
2 ,k

]

+ qρ

j+ 1
2 ,k

,

Fρv

j+ 1
2 ,k

=
a+
j+ 1

2 ,k
ρ−
j+ 1

2 ,k
u−
j+ 1

2 ,k
v−
j+ 1

2 ,k
− a−

j+ 1
2 ,k

ρ+
j+ 1

2 ,k
u+
j+ 1

2 ,k
v+
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[

(ρv)+
j+ 1

2 ,k
− (ρv)−

j+ 1
2 ,k

]

+ qρv

j+ 1
2 ,k

,

(3.33)

while the ρu-fluxes are similar to (3.23) and they are

Fρu
j+ 1

2 ,k
=

a+
j+ 1

2 ,k

[
ρ−
j+ 1

2 ,k

(
u−
j+ 1

2 ,k

)2 + p−
j+ 1

2 ,k

]
− a−

j+ 1
2 ,k

[
ρ+
j+ 1

2 ,k

(
u+
j+ 1

2 ,k

)2 + p+
j+ 1

2 ,k

]

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

[

(ρu)+
j+ 1

2 ,k
− (ρu)−

j+ 1
2 ,k

]

+ u∗
j+ 1

2 ,k
qρ

j+ 1
2 ,k

,

(3.34)

In (3.33) and (3.34),

(ρu)∗
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
(ρu)+

j+ 1
2 ,k

− a−
j+ 1

2 ,k
(ρu)−

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

−
[
ρ+
j+ 1

2 ,k

(
u+
j+ 1

2 ,k

)2 + p+
j+ 1

2 ,k

]
−
[
ρ−
j+ 1

2 ,k

(
u−
j+ 1

2 ,k

)2 + p−
j+ 1

2 ,k

]

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

ρ∗
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
ρ+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

ρ−
j+ 1

2 ,k
− {(ρu)+

j+ 1
2 ,k

− (ρu)−
j+ 1

2 ,k

}

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

u∗
j+ 1

2 ,k
=

(ρu)∗
j+ 1

2 ,k

ρ∗
j+ 1

2 ,k

,

and

qρ

j+ 1
2 ,k

= minmod

(

−a−
j+ 1

2 ,k

(
ρ∗
j+ 1

2 ,k
− ρ−

j+ 1
2 ,k

)
, a+

j+ 1
2 ,k

(
ρ+
j+ 1

2 ,k
− ρ∗

j+ 1
2 ,k

)
)

,

qρv

j+ 1
2 ,k

= minmod

(

−a−
j+ 1

2 ,k

(
(ρv)∗

j+ 1
2 ,k

− (ρv)−
j+ 1

2 ,k

)
, a+

j+ 1
2 ,k

(
(ρv)+

j+ 1
2 ,k

− (ρv)∗
j+ 1

2 ,k

)
)

,

123

Journal of Scientific Computing (2023) 96 :56 Page 19 of 33 56

where

(ρv)∗
j+ 1

2 ,k

=
a+
j+ 1

2 ,k
(ρv)+

j+ 1
2 ,k

− a−
j+ 1

2 ,k
(ρv)−

j+ 1
2 ,k

− {ρ+
j+ 1

2 ,k
u+
j+ 1

2 ,k
v+
j+ 1

2 ,k
− ρ−

j+ 1
2 ,k

u−
j+ 1

2 ,k
v−
j+ 1

2 ,k

}

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

.

The LDCU numerical fluxes for the fourth component are, however, different from (3.24)
since in the 2-D case, the EOS (3.26) contains the ρv variable. In order to derive F E

j+ 1
2 ,k

, we

first write down the 2-D analogue of (3.18):

E
n+1
j,k = E

int
j,k + �tn

�x

[

a+
j− 1

2 ,k

(
E

int,R
j− 1

2 ,k − E
int
j,k

)− a−
j+ 1

2

(
E

int,L
j+ 1

2 ,k − E
int
j,k

)

+
δ
ρ

j− 1
2 ,k

2

(
uint
j− 1

2 ,k

)2 −
δ
ρ

j+ 1
2 ,k

2

(
uint
j+ 1

2 ,k

)2

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

{
(
(ρv)

int,R
j+ 1

2 ,k

)2

2 ρ
int,R
j+ 1

2 ,k

−
(
(ρv)

int,L
j+ 1

2 ,k

)2

2 ρ
int,L
j+ 1

2 ,k

}

−
a+
j− 1

2 ,k
a−
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

{
(
(ρv)

int,R
j− 1

2 ,k

)2

2 ρ
int,R
j− 1

2 ,k

−
(
(ρv)

int,L
j− 1

2 ,k

)2

2 ρ
int,L
j− 1

2 ,k

}
⎤

⎥
⎦ ,

(3.35)

where uint
j± 1

2 ,k
= ρu int

j± 1
2 ,k

/ ρ int
j± 1

2 ,k
and the last two terms reflect the contribution of the

ρv variable. We then substitute (3.32) into (3.35) to obtain

E
n+1
j,k = E

int
j,k + �tn

�x

[

a+
j− 1

2 ,k

(
E

int
j− 1

2 ,k − E
int
j,k

)− a−
j+ 1

2

(
E

int
j+ 1

2 ,k − E
int
j,k

)

+
δ
ρ

j− 1
2 ,k

2

(
uint
j− 1

2 ,k

)2 −
δ
ρ

j+ 1
2 ,k

2

(
uint
j+ 1

2 ,k

)2

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝(ρv) int
j+ 1

2 ,k
+

δ
ρv

j+ 1
2 ,k

a+
j+ 1

2 ,k

⎞

⎠

2

2

⎛

⎝ ρ int
j+ 1

2 ,k
+

δ
ρ

j+ 1
2 ,k

a+
j+ 1

2 ,k

⎞

⎠

−

⎛

⎝(ρv) int
j+ 1

2 ,k
+

δ
ρv

j+ 1
2 ,k

a−
j+ 1

2 ,k

⎞

⎠

2

2

⎛

⎝ ρ int
j+ 1

2 ,k
+

δ
ρ

j+ 1
2 ,k

a−
j+ 1

2 ,k

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

−
a+
j− 1

2 ,k
a−
j− 1

2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝(ρv) int
j− 1

2 ,k
+

δ
ρv

j− 1
2 ,k

a+
j− 1

2 ,k

⎞

⎠

2

2

⎛

⎝ ρ int
j− 1

2 ,k
+

δ
ρ

j− 1
2 ,k

a+
j− 1

2 ,k

⎞

⎠

−

⎛

⎝(ρv) int
j− 1

2 ,k
+

δ
ρv

j− 1
2 ,k

a−
j− 1

2 ,k

⎞

⎠

2

2

⎛

⎝ ρ int
j− 1

2 ,k
+

δ
ρ

j− 1
2 ,k

a−
j− 1

2 ,k

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

123

56 Page 20 of 33 Journal of Scientific Computing (2023) 96 :56

and pass to the semi-discrete limit �tn → 0 as in §3.1 to end up with

F E
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
u−
j+ 1

2 ,k

(
E−

j+ 1
2 ,k

+ p−
j+ 1

2 ,k

)− a−
j+ 1

2 ,k
u+
j+ 1

2 ,k

(
E+

j+ 1
2 ,k

+ p+
j+ 1

2 ,k

)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E+
j+ 1

2 ,k
− E−

j+ 1
2 ,k

−

⎛

⎝(ρv)∗
j+ 1

2 ,k
+

qρv

j+ 1
2 ,k

a+
j+ 1

2 ,k

⎞

⎠

2

2

⎛

⎝ρ∗
j+ 1

2 ,k
+

qρ

j+ 1
2 ,k

a+
j+ 1

2 ,k

⎞

⎠

+

⎛

⎝(ρv)∗
j+ 1

2 ,k
+

qρv

j+ 1
2 ,k

a−
j+ 1

2 ,k

⎞

⎠

2

2

⎛

⎝ρ∗
j+ 1

2 ,k
+

qρ

j+ 1
2 ,k

a−
j+ 1

2 ,k

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
(
u∗
j+ 1

2 ,k

)2

2
qρ

j+ 1
2 ,k

. (3.36)

The LDCU numerical fluxes in the y-direction are obtained in a similar way and they are
given by

Gρ

j,k+ 1
2

=
b+
j,k+ 1

2
(ρu)−

j,k+ 1
2

− b−
j,k+ 1

2
(ρu)+

j,k+ 1
2

b+
j,k+ 1

2
− b−

j,k+ 1
2

+
b+
j,k+ 1

2
b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

[

ρ+
j,k+ 1

2
− ρ−

j,k+ 1
2

]

+ qρ

j,k+ 1
2
,

Gρu
j,k+ 1

2
=

b+
j,k+ 1

2
ρ−
j,k+ 1

2
u−
j,k+ 1

2
v−
j,k+ 1

2
− b−

j,k+ 1
2
ρ+
j,k+ 1

2
u+
j,k+ 1

2
v+
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

+
b+
j,k+ 1

2
b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

[

(ρu)+
j,k+ 1

2
− (ρu)−

j,k+ 1
2

]

+ qρu
j,k+ 1

2
,

Gρv

j,k+ 1
2

=
b+
j,k+ 1

2

[
ρ−
j,k+ 1

2

(
v−
j,k+ 1

2

)2 + p−
j,k+ 1

2

]
− b−

j,k+ 1
2

[
ρ+
j,k+ 1

2

(
v+
j,k+ 1

2

)2 + p+
j,k+ 1

2

]

b+
j,k+ 1

2
− b−

j,k+ 1
2

+
b+
j,k+ 1

2
b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

[

(ρv)+
j,k+ 1

2
− (ρv)−

j,k+ 1
2

]

+ v∗
j,k+ 1

2
qρ

j,k+ 1
2
,

GE
j,k+ 1

2
=

b+
j,k+ 1

2
v−
j,k+ 1

2

(
E−

j,k+ 1
2

+ p−
j,k+ 1

2

)− b−
j,k+ 1

2
v+
j,k+ 1

2

(
E+

j,k+ 1
2

+ p+
j,k+ 1

2

)

b+
j,k+ 1

2
− b−

j,k+ 1
2

123

Journal of Scientific Computing (2023) 96 :56 Page 21 of 33 56

+
b+
j,k+ 1

2
b−
j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E+
j,k+ 1

2
− E−

j,k+ 1
2

−

⎛

⎝(ρu)∗
j,k+ 1

2
+

qρu
j,k+ 1

2

b+
j,k+ 1

2

⎞

⎠

2

2

⎛

⎝ρ∗
j,k+ 1

2
+

qρ

j,k+ 1
2

b+
j,k+ 1

2

⎞

⎠

+

⎛

⎝(ρu)∗
j,k+ 1

2
+

qρu
j,k+ 1

2

b−
j,k+ 1

2

⎞

⎠

2

2

⎛

⎝ρ∗
j,k+ 1

2
+

qρ

j,k+ 1
2

b−
j,k+ 1

2

⎞

⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
(
v∗
j,k+ 1

2

)2

2
qρ

j,k+ 1
2
. (3.37)

Here, b±
j,k+ 1

2
are the one-sided local speeds of propagation in the y-direction along the line

x = x j . These speeds can be estimated using the eigenvalues μ1(U) < · · · < μ4(U) of the
Jacobian ∂G

∂U as follows:

b−
j,k+ 1

2
:= min

{

v−
j,k+ 1

2
− c−

j,k+ 1
2
, v−

j,k+ 1
2

− c−
j,k+ 1

2
, 0

}

,

b+
j,k+ 1

2
:= max

{

v+
j,k+ 1

2
+ c+

j,k+ 1
2
, v+

j,k+ 1
2

+ c+
j,k+ 1

2
, 0

}

,

where

u±
j,k+ 1

2
=

(ρu)±
j,k+ 1

2

ρ±
j,k+ 1

2

, v±
j ,k+ 1

2
=

(ρv)±
j ,k+ 1

2

ρ±
j ,k+ 1

2

,

p±
j,k+ 1

2
= (γ − 1)

[

E±
j ,k+ 1

2
−

ρ±
j ,k+ 1

2

2

((
u±
j ,k+ 1

2

)2 + (v±
j ,k+ 1

2

)2
)]

,

c±
j,k+ 1

2
=

√√
√
√
√
√

γ p±
j,k+ 1

2

ρ±
j,k+ 1

2

,

(ρv)∗
j ,k+ 1

2
=

b+
j,k+ 1

2
(ρv)+

j ,k+ 1
2

− b−
j ,k+ 1

2
(ρv)−

j ,k+ 1
2

b+
j ,k+ 1

2
− b−

j ,k+ 1
2

−

[
ρ+
j,k+ 1

2

(
v+
j ,k+ 1

2

)2 + p+
j ,k+ 1

2

]
−
[
ρ−
j ,k+ 1

2

(
v−
j ,k+ 1

2

)2 + p−
j,k+ 1

2

]

b+
j ,k+ 1

2
− b−

j ,k+ 1
2

,

ρ∗
j,k+ 1

2
=

b+
j,k+ 1

2
ρ+
j,k+ 1

2
− b−

j ,k+ 1
2
ρ−
j ,k+ 1

2
− {(ρv)+

j ,k+ 1
2

− (ρv)−
j,k+ 1

2

}

b+
j ,k+ 1

2
− b−

j ,k+ 1
2

,

v∗
j,k+ 1

2
=

(ρv)∗
j,k+ 1

2

ρ∗
j,k+ 1

2

,

123

56 Page 22 of 33 Journal of Scientific Computing (2023) 96 :56

(ρu)∗
j,k+ 1

2
=

b+
j,k+ 1

2
(ρu)+

j ,k+ 1
2

− b−
j ,k+ 1

2
(ρu)−

j ,k+ 1
2

− {ρ+
j ,k+ 1

2
u+
j,k+ 1

2
v+
j,k+ 1

2
− ρ−

j,k+ 1
2
u−
j,k+ 1

2
v−
j,k+ 1

2

}

b+
j ,k+ 1

2
− b−

j,k+ 1
2

,

qρ

j,k+ 1
2

= minmod

(

−b−
j ,k+ 1

2

(
ρ∗
j ,k+ 1

2
− ρ−

j ,k+ 1
2

)
, b+

j ,k+ 1
2

(
ρ+
j,k+ 1

2
− ρ∗

j,k+ 1
2

)
)

,

qρu

j,k+ 1
2

= minmod

(

−b−
j ,k+ 1

2

(
(ρu)∗

j ,k+ 1
2

− (ρu)−
j ,k+ 1

2

)
, b+

j,k+ 1
2

(
(ρu)+

j,k+ 1
2

−(ρu)∗
j,k+ 1

2

)
)

.

Remark 3.4 We note that as in the 1-D case, the computation of the LDCU numerical fluxes
needs to be desingularized. In particular, if a+

j+ 1
2 ,k

< ε and a−
j+ 1

2 ,k
> −ε for a small positive

ε, we replace the x-numerical fluxes with

F j+ 1
2 ,k =

F
(
U−

j+ 1
2 ,k

)+ F
(
U+

j+ 1
2 ,k

)

2
.

Similarly, if b+
j,k+ 1

2
< ε and b−

j,k+ 1
2

> −ε, we replace the y-numerical fluxes with

G j,k+ 1
2

=
G
(
U−

j,k+ 1
2

)+ G
(
U+

j,k+ 1
2

)

2
.

In addition, the computation of the energy numerical fluxes (3.36) and (3.37) have to be
desingularized even in the case when only one of the local speeds is very small. In particular,

if a+
j+ 1

2 ,k
< ε but a−

j+ 1
2 ,k

< −ε, we take F E
j+ 1

2 ,k
= u−

j+ 1
2 ,k

(
E−

j+ 1
2 ,k

+ p−
j+ 1

2 ,k

);
if a−

j+ 1
2 ,k

> −ε but a+
j+ 1

2 ,k
> ε, we take F E

j+ 1
2 ,k

= u+
j+ 1

2 ,k

(
E+

j+ 1
2 ,k

+ p+
j+ 1

2 ,k

);
if b+

j,k+ 1
2

< ε but b−
j,k+ 1

2
< −ε, we take GE

j,k+ 1
2

= v−
j,k+ 1

2

(
E−

j,k+ 1
2

+ p−
j,k+ 1

2

);
if b−

j,k+ 1
2

> −ε but b+
j,k+ 1

2
> ε, we take GE

j,k+ 1
2

= v+
j,k+ 1

2

(
E+

j,k+ 1
2

+ p+
j,k+ 1

2

)
.

Remark 3.5 As in the 1-D case, the 2-D new LDCU scheme results in a system of time-
dependent ODEs (3.27), which has to be solved using a stable and sufficiently accurate ODE
solver. In all of the numerical experiments reported in §4.2, we have used the three stage
third-order SSP Runge–Kutta method; see, e.g., [7, 8]. The time steps have been selected
adaptively using the following CFL condition:

�t ≤ 1

2
min

{
�x

amax
,

�y

bmax

}

,

where

amax := max
j,k

[

max

{

a+
j+ 1

2 ,k
,−a−

j+ 1
2 ,k

}]

, bmax := max
j,k

[

max

{

b+
j,k+ 1

2
,−b−

j,k+ 1
2

}]

.

4 Numerical Examples

In this section, we present both 1-D and 2-D numerical examples. Our main goal is to demon-
strate that the new LDCU schemes contain substantially smaller amount of the numerical

123

Journal of Scientific Computing (2023) 96 :56 Page 23 of 33 56

Table 1 Example 1: The L1-errors and experimental convergence rates for the density ρ, momentum ρu, and
total energy E

�x ρ ρu E

Error Rate Error Rate Error Rate

1/200 3.93e−05 2.05 1.05e−04 2.06 5.02e−04 2.06

1/400 9.74e−06 2.03 2.57e−05 2.04 1.24e−04 2.04

1/800 2.18e−06 2.09 5.76e−06 2.09 2.76e−05 2.10

1/1600 5.23e−07 2.08 1.37e−06 2.08 6.59e−06 2.08

1/3200 1.27e−07 2.06 3.33e−07 2.07 1.60e−06 2.07

dissipation compared with the old CU schemes from [10], which we will refer to as the CU
schemes. We will show that despite having less numerical dissipation, the LDCU schemes
produce non-oscillatory results and also achieve higher resolution than the CU ones. The
advantages will be especially pronounced when the numerical solutions contain contact
waves, shear layers, vortices as well as small-scale 2-D structures.

In Examples 1–10, we take γ = 1.4, while in Example 11, we take γ = 5/3. In all of the
examples, we have used the CFL number 0.475, the generalized minmod parameter θ = 1.3,
and the small parameter ε = 10−12.

4.1 One-Dimensional Examples

Example 1 (1-D Accuracy Test) In the first example taken from [5], we consider the problem
subject to the following smooth initial data:

u(x, 0) = sin
(πx

5
+ π

4

)
, ρ(x, 0) =

[
γ − 1

2
√

γ
(u(x, 0) + 10)

] 2
γ−1

, p(x, 0) = ργ (x, 0).

We impose the periodic boundary conditions and compute the numerical solution on the
computational domain [0, 10] until the final time t = 0.1 using the LDCU scheme on a
sequence of uniform meshes with �x = 1/50, 1/100, 1/200, 1/400, 1/800, 1/1600, and
1/3200.

We then compute the L1-errors and estimate the experimental convergence rates using
the following Runge formulae, which are based on the solutions computed on the three
consecutive uniform grids with the mesh sizes �x , 2�x , and 4�x and denoted by (·)�x ,
(·)2�x , and (·)4�x , respectively:

Error(�x) ≈ δ212

|δ12 − δ24| , Rate(�x) ≈ log2

(
δ24

δ12

)

.

Here, δ12 := ||(·)�x − (·)2�x ||L1 and δ24 := ||(·)2�x − (·)4�x ||L1 . The computed L1-errors
and corresponding convergence rates for the density,momentum, and total energy are reported
in Table 1, where one can clearly see that the second order of accuracy is achieved.

Example 2 (Moving Contact Wave) In the second example, we consider the following initial
conditions:

(ρ(x, 0), u(x, 0), p(x, 0)) =
{

(1.4, 0.1, 1), x < 0.3,

(1.0, 0.1, 1), x > 0.3,

123

56 Page 24 of 33 Journal of Scientific Computing (2023) 96 :56

Fig. 4 Example 2: Density (ρ)
computed by the LDCU and CU
schemes

prescribed in the computational domain [0, 1] subject to the free boundary conditions. We
compute the solution which contains an isolated moving contact discontinuity, until the final
time t = 2 by the LDCU and CU schemes on a uniform mesh with �x = 1/100. The
obtained densities are presented in Fig. 4, where one can see that the LDCU scheme clearly
outperforms the CU one.

We also measure the CPU times consumed by the LDCU and CU schemes on a uniform
meshwith�x = 1/2000. They are about 24.60 s for theCU scheme and 21.54 s for the LDCU
schemea (the computations have been carried out on the Lenovo ThinkPad T480 laptop). This
shows that the computational cost is reduced by about 12% when the LDCU scheme is used,
which gives an additional evidence of the advantage of the proposed LDCU scheme over its
predecessor.Wewould like to stress that the only difference between the two studied schemes
is in the “built-in” anti-diffusion terms, which are clearly more computationally expensive
in the CU scheme.

Example 3 (Stationary Contact Wave and Traveling Shock and Rarefaction) In this example
taken from [10], we consider the following Riemann initial data:

(ρ(x, 0), u(x, 0), p(x, 0)) =
{

(1,−19.59745, 1000), x < 0.8,

(1,−19.59745, 0.01), x > 0.8,

prescribed in the computational domain [0, 1] subject to the free boundary conditions. The
exact solution of this initial-value problem consists of a stationary contact wave, a traveling
shock, and a traveling rarefaction wave. We compute the LDCU and CU solutions until the
final time t = 0.012 on a uniform mesh with �x = 1/200. The obtained densities together
with the reference solution computed using the LDCU scheme on a much finer uniformmesh
with�x = 1/10000 are plotted in Fig. 5. As one can see, the LDCU scheme achieves a much
sharper resolution around the contact discontinuity area despite producing a small overshoot.

Example 4 (“Shock-Bubble” Interaction) In the fourth example, we consider the initial data
that correspond to a left-moving shock, initially located at x = 0.75, and a “bubble” of radius
0.25, initially located at the origin:

(ρ(x, 0), u(x, 0), p(x, 0)) =

⎧
⎪⎨

⎪⎩

(13.1538, 0, 1), |x | < 0.25,

(1.3333,−0.3535, 1.5), x > 0.75,

(1, 0, 1), otherwise.

These data are prescribed in the computational domain [−1, 1] subject to the solid wall
boundary conditions on the left and free boundary conditions on the right.

123

Journal of Scientific Computing (2023) 96 :56 Page 25 of 33 56

Fig. 5 Example 3: Density (ρ) computed by the LDCU and CU schemes (left) and zoom at the contact
discontinuity area (right)

Fig. 6 Example 4: Density (ρ) computed by the LDCU and CU schemes (left) and zoom at [−0.75, 0] (right)

Fig. 7 Example 4: Velocity (u) (left) and pressure (p) (right) computed by the LDCU and CU schemes

We compute the solutions by the LDCU and CU schemes until the final time t = 3 on a
uniform mesh with �x = 1/100 and obtain the reference solution using the LDCU scheme
on a much finer mesh with �x = 1/4000. The obtained densities are plotted in Fig. 6, where
one can see that the LDCU scheme achieves a slightly better resolution. We also plot the
computed velocities and pressure (see Fig. 7), where the advantage of the LDCU scheme is
more pronounced. This clearly indicates that the LDCU scheme outperforms the CU one.

123

56 Page 26 of 33 Journal of Scientific Computing (2023) 96 :56

Table 2 Example 5: The L1-errors and experimental convergence rates for the density ρ, momenta ρu and
ρv, and total energy E

�x = �y ρ ρu ρv E

Error Rate Error Rate Error Rate Error Rate

1/100 6.59e−04 – 6.59e−04 – 4.62e−04 – 4.91e−04 –

1/200 1.54e−04 2.10 1.54e−04 2.10 1.08e−04 2.10 1.15e−04 2.10

1/400 3.68e−05 2.06 3.68e−05 2.06 2.58e−05 2.06 2.74e−05 2.06

1/800 8.11e−06 2.18 8.11e−06 2.18 5.67e−06 2.18 6.04e−06 2.18

4.2 Two-Dimensional Examples

Example 5 (2-D Accuracy Test) In the first 2-D example taken from [14], we consider the
2-D Euler equations of gas dynamics subject to the following periodic initial conditions:

ρ(x, y, 0) = 1 + 1

2
sin(π(x + y)), u(x, y, 0) ≡ 1, v(x, y, 0) ≡ −0.7, p(x, y, 0) ≡ 1.

The exact solution of this initial value problem is given by

ρ(x, y, t) = 1 + 1
2 sin(π(x + y − 0.3t)),

u(x, y, t) ≡ 1, v(x, y, t) ≡ −0.7, p(x, y, t) ≡ 1.

We first compute the numerical solution on the computational domain [−1, 1] × [−1, 1]
until the final time t = 0.1 using the LDCU scheme on a sequence of uniform meshes with
�x = �y = 1/50, 1/100, 1/200, and 1/400. We then measure the L1-errors and compute
the corresponding experimental convergence rates. The obtained results presented in Table
2 confirm that the second order of accuracy is achieved by the LDCU scheme.

Example 6 (Moving Contact Wave) In the second 2-D example which was proposed in [11],
we consider an isolatedmoving contactwave in the computational domain� = [−0.2, 0.2]×
[0, 0.8] with the following initial data:

(
ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)

) =
{

(1.4, 0, 0.2, 1), (x, y) ∈ D,

(1.0, 0, 0.2, 1), otherwise,

where D is the domain consisting of the points (x, y) ∈ � satisfying the following conditions:

{−0.1 < x < 0.1, 0 < y < 0.02}
⋃

{−0.02 < x < 0.02, 0.02 < y < 0.1}
⋃

{
(x + 0.02)2 + (y − 0.02)2 < 0.082

}⋃ {
(x − 0.02)2 + (y − 0.02)2 < 0.082

}
.

We apply free boundary conditions and compute the solution until the final time t = 2 on
the uniform mesh with �x = �y = 1/250. The densities computed by the LDCU and CU
schemes are plotted in Fig. 8. As one can see, the solution computed by the CU scheme is
much more smeared due to a substantially larger amount of dissipation present in the CU
scheme compared with the LDCU scheme. This is especially pronounced in the x-direction,
in which the LDCU solution maintains almost perfect jump discontinuities.

We also measure the CPU times consumed by the LDCU and CU schemes. They are about
145.69 s for the CU scheme and 111.77 s for the LDCU scheme (the computations have been

123

Journal of Scientific Computing (2023) 96 :56 Page 27 of 33 56

Fig. 8 Example 6: Density (ρ) computed by the CU (left) and LDCU (right) schemes

carried out on the Lenovo ThinkPad T480 laptop). This shows that the computational cost is
reduced by about 23% when the LDCU scheme is used, which gives an additional evidence
of the advantage of the proposed LDCU scheme over its predecessor. Notice that in the 2-D
case, the difference in the consumed CPU times is bigger than in the 1-D case since the
due to the “built-in” anti-diffusion term in the 2-D CU scheme is increasingly computational
expensive.

Example 7 (Two-DimensionalRiemannProblem) In this example,we considerConfiguration
3 of the 2-D Riemann problems from [16]; also see [27, 28, 35]. The initial conditions,

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0))

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1.5, 0, 0, 1.5), x > 1, y > 1,

(0.5323, 1.206, 0, 0.3), x < 1, y > 1,

(0.138, 1.206, 1.206, 0.029), x < 1, y < 1,

(0.5323, 0, 1.206, 0.3), x > 1, y < 1,

are prescribed on the domain [0, 1.2] × [0, 1.2] subject to free boundary conditions. We
compute the solution until the final time t = 1 on a uniform mesh with �x = �y = 0.0012.
The densities computed by the LDCU and CU schemes are presented in Fig. 9. As one can
observe, both schemes maintain the diagonal symmetry of the jet. However, one can clearly
see that the LDCU scheme captures a sideband instability of the jet in the zones of strong
along-jet velocity shear and the instability along the jet’s neck with a much higher resolution.
One may also notice the presence of the certain numerical oscillation in the LDCU solution,
which is expected to occur when the numerical dissipation is reduced.

Example 8 (Explosion Problem) We now consider the explosion problem taken from [22].
The initial conditions,

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =
{

(1, 0, 0, 1), x2 + y2 < 0.16,

(0.125, 0, 0, 0.1), otherwise,

are prescribed in the computational domain [0, 1.5]×[0, 1.5] subject to the solid wall bound-
ary conditions at x = 0 and y = 0 and free boundary conditions at x = 1.5 and y = 1.5.
We compute the solution until the final time t = 3.2 by the LDCU and CU schemes on a
uniform mesh with �x = �y = 3/800. The obtained densities are presented in Fig. 10.

123

56 Page 28 of 33 Journal of Scientific Computing (2023) 96 :56

Fig. 9 Example 7: Density (ρ) computed by the CU (left) and LDCU (right) schemes

Fig. 10 Example 8: Density (ρ) computed by the CU (left) and LDCU (right) schemes

The advantage of the LDCU scheme can be seen in the fact that the contact wave captured
by the LDCU scheme is much “curlier”. This demonstrates that the amount of the numerical
dissipation present in the LDCU scheme is substantially smaller compared with the CU one.

Example 9 (Implosion Problem) In this example, we test the implosion problem also taken
from [22]. The initial conditions,

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =
{

(0.125, 0, 0, 0.14), |x | + |y| < 0.15,

(1, 0, 0, 1), otherwise,

are prescribed in the computational domain [0, 0.3]×[0, 0.3] subject to the solid wall bound-
ary conditions. We compute the solution until the final time t = 2.5 by the LDCU and CU
schemes on a uniform mesh with �x = �y = 1/2000. The obtained densities are presented
in Fig. 11. As one can observe, the jet generated by the LDCU scheme propagates to a much
larger extent than the jet produced by the CU scheme. This once again demonstrates that the
LDCU scheme has a much smaller amount of numerical dissipation compared with the CU
one.

Example 10 (Kelvin–Helmholtz (KH) Instability) In this example, we consider the KH insta-
bility, which occurs in many natural phenomena: the so-called “wind-over-water” and “clear
air turbulence” instabilities. The KH instability is triggered by shear flows, often also involv-
ing fluids with different densities, and grows exponentially until the primary billows break,
subsequently leading to a two-phase turbulence. In order to show better capabilities of the
LDCU scheme in capturing small scale turbulent structures, we take the following initial

123

Journal of Scientific Computing (2023) 96 :56 Page 29 of 33 56

Fig. 11 Example 9: Density (ρ) computed by the CU (left) and LDCU (right) schemes

conditions studied in [6, 11, 25]:

(ρ(x, y, 0), u(x, y, 0)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1,−0.5 + 0.5e(y+0.25)/L), y ∈ [−0.5,−0.25),

(2, 0.5 − 0.5e(−y−0.25)/L), y ∈ [−0.25, 0),

(2, 0.5 − 0.5e(y−0.25)/L), y ∈ [0, 0.25),
(1,−0.5 + 0.5e(0.25−y)/L), y ∈ [0.25, 0.5],

v(x, y, 0) = 0.01 sin(4πx), p(x, y, 0) ≡ 1.5,

where L is a smoothing parameter taken to be 0.00625, which corresponds to a thin shear
interface with a periodic vertical velocity field v. We use the computational domain is
[−0.5, 0.5] × [−0.5, 0.5] and set the periodic boundary conditions.

We compute the solution until the final time t = 4 by the LDCU and CU schemes on a
uniform mesh with �x = �y = 1/1024. The density snapshots at times t = 1, 2.5, and 4
are presented in Fig. 12. As one can see, at time t = 1, the vortex sheets formed by the CU
scheme are quite smeared by the numerical dissipation, while in the LDCU scheme these
vortex sheets are much more pronounced. At the later times t = 2.5 and 4, one can observe
muchmore complicated vortices and the two-phase turbulence in the “swirls” in the densities
computed by the LDCU scheme. This indicates that the LDCU scheme can capture the KH
instabilities much better than the CU scheme.

Example 11 (Raleigh–Taylor (RT) Instability) In the final example, we investigate the RT
instability, which naturally occurs when a layer of heavier fluid is placed on top of a layer of
lighter fluid. In order to study the RT instability, we solve the following 2-D Euler equations
with gravitation acting upward in the y-direction:

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = ρ,

Et + (u(E + p))x + (v(E + p))y = ρv.

(4.1)

In the performed simulations, the cell averages of the source terms in (4.1) have been approx-
imated in a straightforward way, namely, using a midpoint rule.

We use the setting from [29] and consider the following initial conditions:

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0))

123

56 Page 30 of 33 Journal of Scientific Computing (2023) 96 :56

Fig. 12 Example 10: Density (ρ) computed by the CU (left column) and LDCU (right column) schemes at
times t = 1 (top row), t = 2.5 (middle row), and t = 4 (bottom row)

=
{

(2, 0,−0.025c cos(8πx), 2y + 1), y < 0.5,

(1, 0,−0.025c cos(8πx), y + 1.5), otherwise,

where c = √
γ p/ρ is the speed of sound. The computational domain is [0, 1/4]× [0, 1]. We

impose the solid wall boundary conditions at x = 0 and x = 1/4 and the following Dirichlet
boundary conditions at the top and bottom boundaries:

(ρ, u, v, p)
∣
∣
∣
y=1

≡ (1, 0, 0, 2.5) and (ρ, u, v, p)
∣
∣
∣
y=0

≡ (2, 0, 0, 1).

We compute the solution by the LDCU and CU schemes until the final time t = 2.95 on a
uniform mesh with �x = �y = 1/1024 and plot the obtained densities in Fig. 13. As one
can see, the LDCU scheme captures much more complicated structures than the CU one,

123

Journal of Scientific Computing (2023) 96 :56 Page 31 of 33 56

Fig. 13 Example 11: Density (ρ) computed by the CU (left) and LDCU (right) schemes

which clearly indicates that the amount of numerical dissipation in the LDCU scheme is
substantially smaller.

5 Conclusion

In this paper, we have developed a new second-order semi-discrete low-dissipation central-
upwind (LDCU) scheme. Compared with the central-upwind (CU) scheme from [10], the
LDCU scheme contains substantially smaller amount of numerical dissipation and yet leads
to stable solutions, which are essentially non-oscillatory, that is, when the oscillations are
developed, they are small and controllable. In order to achieve this goal, we modify the
projection step in the construction of the CU schemes. The new projection step is based on a
subcell resolution and it is designed to better approximate contactwaves,whose resolution are
typically strongly affected by excessive numerical dissipation present inmany non-oscillatory
central and CU Godunov-type schemes.

We have developed the LDCU schemes for 1-D and 2-D Euler equations of gas dynamics
and tested the proposed schemes on a variety of numerical examples. In the 1-D examples, we
have demonstrated that the LDCU schemes clearly outperforms the CU scheme from [10],
especially when capturing contact waves. In the 2-D examples, we have illustrated that the
LDCU scheme can handle not only the contact waves, but also the small-scale structures and a
variety of instabilities with amuch higher resolution compared with the 2-DCU scheme from
[10]. The performed numerical experiments indicate that the amount of numerical dissipation
present in the LDCU schemes is substantially smaller than in the CU schemes from [10].

The proposedLDCUnumerical flux canbe used as a basis for the derivation of higher-order
schemes within, for example, the weighted essentially non-oscillatory (WENO) framework;

123

56 Page 32 of 33 Journal of Scientific Computing (2023) 96 :56

see, e.g., the recent review papers [30, 31] and references therein. Development of such
schemes is a subject of our future work.

Funding The work of A. Kurganov was supported in part by NSFC Grants 12171226 and 12111530004, and
by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No.
2019B030301001).

Data andSoftwareAvailability The data that support the findings of this study andFORTRANcodes developed
by the authors and used to obtain all of the presented numerical results are available from the corresponding
author upon reasonable request.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Arminjon, P., St-Cyr, A., Madrane, A.: New two- and three- dimensional non-oscillatory central finite
volume methods on staggered Cartesian grids. Appl. Numer. Math. 40, 367–390 (2002)

2. Arminjon, P.,Viallon,M.-C.,Madrane,A.:Afinite volumeextensionof theLax–Friedrichs andNessyahu–
Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9, 1–22 (1997)

3. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann Problems in Computational Fluid Dynamics. Cam-
bridge Monographs on Applied and Computational Mathematics, vol. 11. Cambridge University Press,
Cambridge (2003)

4. Bianco, F., Puppo, G., Russo, G.: High order central schemes for hyperbolic systems of conservation
laws. SIAM J. Sci. Comput. 21, 294–322 (1999)

5. Chertock, A., Chu, S., Herty, M., Kurganov, A., Lukáčová-Medviďová, M.: Local characteristic decom-
position based central-upwind scheme. J. Comput. Phys., 473 (2023). Paper No. 111718, 24 pp

6. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer.
25, 567–679 (2016)

7. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep time
Discretizations. World Scientific Publishing Co Pte. Ltd., Hackensack, NJ (2011)

8. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.
SIAM Rev. 43, 89–112 (2001)

9. Jiang, G.-S., Tadmor, E.: Nonoscillatory central schemes for multidimensional hyperbolic conservation
laws, SIAM J. Sci. Comput. 19, pp. 1892–1917 (electronic) (1998)

10. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun.
Comput. Phys. 2, 141–163 (2007)

11. Kurganov, A., Liu, Y., Zeitlin, V.: Numerical dissipation switch for two-dimensional central-upwind
schemes. ESAIM Math. Model. Numer. Anal. 55, 713–734 (2021)

12. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation
laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001)

13. Kurganov, A., Petrova, G.: A third-order semi-discrete genuinely multidimensional central scheme for
hyperbolic conservation laws and related problems. Numer. Math. 88, 683–729 (2001)

14. Kurganov, A., Prugger, M., Wu, T.: Second-order fully discrete central-upwind scheme for two-
dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 39, A947–A965 (2017)

15. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and
convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

16. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without
Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18, 584–608 (2002)

17. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathe-
matics, Cambridge University Press, Cambridge (2002)

18. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws.
Modél. Math. Anal. Numér. 33, 547–571 (1999)

19. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation
laws. SIAM J. Sci. Comput., 22, pp. 656–672 (electronic) (2000)

123

Journal of Scientific Computing (2023) 96 :56 Page 33 of 33 56

20. Levy, D., Puppo, G., Russo, G.: A fourth-order central WENO scheme for multidimension hyperbolic
systems of conservation laws. SIAM J. Sci. Comput. 24, 480–506 (2002)

21. Lie, K.-A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central
difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24, 1157–1174 (2003)

22. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the
Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2003)

23. Liu, X.-D., Tadmor, E.: Third order nonoscillatory central schemes for hyperbolic conservation laws.
Numer. Math. 79, 397–425 (1998)

24. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Com-
put. Phys. 87, 408–463 (1990)

25. Panuelos, J., Wadsley, J., Kevlahan, N.: Low shear diffusion central schemes for particle methods, J.
Comput. Phys., 414. Paper No. 109454, 23 pp (2020)

26. Qiu, J., Shu, C.-W.: On the construction, comparison, and local characteristic decomposition for high-
order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

27. Schulz-Rinne, C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J.
Math. Anal. 24, 76–88 (1993)

28. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-
dimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394–1414 (1993)

29. Shi, J., Zhang,Y.-T., Shu,C.-W.:Resolution of high orderWENOschemes for complicatedflowstructures.
J. Comput. Phys. 186, 690–696 (2003)

30. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems.
SIAM Rev. 51, 82–126 (2009)

31. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer.
29, 701–762 (2020)

32. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J.
Numer. Anal. 21, 995–1011 (1984)

33. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction,
third ed. Springer, Berlin (2009)

34. vanLeer, B.: Towards the ultimate conservative difference scheme.V.A second-order sequel toGodunov’s
method. J. Comput. Phys., 32, pp. 101–136 (1979)

35. Zheng, Y.: Systems of Conservation Laws: Two-Dimensional Riemann Problems, Progress in Nonlinear
Differential Equations and their Applications, 38. Birkhäuser Boston Inc, Boston, MA (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	New Low-Dissipation Central-Upwind Schemes
	Abstract
	1 Introduction
	2 Second-Order CU Schemes: An Overview
	2.1 Fully Discrete CU Scheme
	2.2 Semi-Discrete CU Scheme

	3 A New Family of the LDCU Schemes
	3.1 New LDCU Scheme for the 1-D Euler Equations of Gas Dynamics
	3.1.1 Fully Discrete Scheme
	3.1.2 Semi-Discrete Scheme

	3.2 New LDCU Scheme for the 2-D Euler Equations of Gas Dynamics

	4 Numerical Examples
	4.1 One-Dimensional Examples
	4.2 Two-Dimensional Examples

	5 Conclusion
	References

