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Abstract
This paper presents a novel Arrow–Hurwicz type method for approximating the steady-state
Navier Stokes equations using the finite element method. The novel method is inspired from
artificial compressibility regularization of unsteady incompressible flows and allows one to
circumvent solving saddle-point equations.We derive uniform boundedness and convergence
to the exact solution whenever the small data condition for uniqueness of the solution is
satisfied.A two-grid version of the scheme is also discussed.Numerical schemes show that the
novel scheme significantly accelerates the convergence,without any additional computational
cost or decreased accuracy.

Keywords Arrow–Hurwicz · Steady-state Navier–Stokes equations · Two-grid

1 Introduction

In this paper we consider an improved Arrow–Hurwicz (AH) method for solving the steady-
state Navier Stokes equations (NSE) in a domain � ⊂ R

d , d ∈ {2, 3}, with Lipschitz
boundary ∂� given by

u · ∇u − ν�u + ∇ p = f in�, (1.1)
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∇ · u = 0 in�, (1.2)

u = 0 on ∂�, (1.3)

where u is the fluid velocity, p the pressure, ν > 0 the kinematic viscosity and f represents
the prescribed external body force. A well-known result states that (1.1)–(1.3) always has a
solution and its uniqueness is guaranteed under a small data condition [34]:

� = ν−2M‖f‖−1 ≤ 1, (1.4)

where

M = sup
u,v,w∈H1

0 (�)

(u · ∇v,w)

‖∇u‖‖∇v‖‖∇u‖ . (1.5)

Theneed to solve stationaryNSE, (1.1)–(1.3) arises inmanyapplications. For instance, certain
hemodynamic flows occur at steady regimes [35].More commonly, numerical benchmarking
of high Reynolds number flows such the Taylor-Coutte flow [15, 29, 30] or the high Rayleigh
number natural convection problems [32, 33] is performed by continuation method, where
the simulations are usually initiated at smaller values of the physical parameters and are
gradually increased. In such circumstances, pseudo-time stepping with unsteady flow codes
usually takes a very large number of iterations or demands prohibitively fine mesh and there
is a need for alternative andmore efficient ways of finding the stationary solutions. One could
accelerate the convergence to steady-state by adopting the pseudo-time stepping algorithm
based on relaxation/penalty approach of [23], but we shall not pursue this approach here.

Numerical solution of (1.1)–(1.3) requires the linearization of the nonlinear term, com-
monly performed via Newton or Picard fixed point iterations [20], resulting in Oseen-type
equation. The spacial discretization of (1.1)–(1.3) then requires solution of large saddle point
problems [4], which are often solved by the preconditioned GMRES method [5, 31]. On the
other hand, numerical schemes decoupling the equations for velocity and pressure variables
are usually preferred due to their numerical efficiency. Usually such schemes are developed
for unsteady flows, the most well-known of them being the projection [18] and artifical com-
pressibility [16, 17] schemes. For steady Navier–Stokes Eqs. (1.1)–(1.3), classical methods
are the Uzawa methods [4], the iterated penalty Picard method [7] and the Arrow–Hurwicz
(AH) method [3].

The iterative AH scheme for solving the incompressible flow system (1.1)–(1.3) was first
introduced by Temam [34]:

− 1

ρ
�

(
un+1 − un) + un · ∇un+1 − ν�un + ∇ pn = f in�, (1.6)

α(pn+1 − pn) + ρ∇ · un+1 = 0 in�, (1.7)

and it was shown to be weakly convergent to the unique solution (u, p) of (1.1)–(1.3) under
some restrictions on the value of ρ and the condition (1.4). The classical AH method is an
inexact version of Uzawa algorithm and it has been applied for solving various saddle point
problems, cf. [19]. The finite element analysis of theAHalgorithm (1.6)–(1.7)was considered
in [6], where it shown to be a contractive algorithm under certain choices of parameters. Even
though the convergence rate was shown to be less than one, it was observed to require a very
large number of iterations even for small Reynolds number (Re) flow problems (e.g., more
than 700 iterations for Re = 100 two-dimensional cavity flow). A grad-div enhanced AH
algorithm (1.6)–(1.7) was recently investigated in [11]. It was shown that, under a certain
choice of parameters, the additional grad-div operator improves the convergence. However,
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the contractivity was shown to hold if � < 2
3 , which is more restrictive condition than (1.4).

The authors also considered an AH scheme synthesized with the Anderson accelaration
extrapolation technique and obtained much improved method at the cost of an additional
computational complexity.

The AHAlgorithm has also been studied with two-grid schemes. The general idea of two-
grid methods consist of solving the computationally “cheap” iterations on a coarser mesh
and then performing a few “expensive” runs on a fine mesh, thereby saving a large amount of
CPU time without sacrificing the accuracy. Some notable studies in the literature are made
by Ammi et al. [2], Layton et al. [26, 27], Girault et al. [13], and Li et al. [28]. For the steady
state NSE, He et al. developed the two-level stabilized finite element techniques in [21] and
a simplified two-level finite element method in [20]. Another related notable work is due
to Du et. al. [9], where the authors extended the two-grid AH methods that were originally
proposed by Xu et. al. [36, 37].

In the current study, we present novel and improved AH schemes inspired by the first
order in time artificial compressibility method. When this idea is adapted to the classical
AH system, the only change is observed in one term of the momentum equation. However,
the acceleration on convergence speed is notable in terms of CPU time. We utilize the same
idea for both single grid and two grid AH algorithms and the results obtained by various
numerical examples are quite promising.

The plan of the paper is as follows: Some well-known mathematical foundations and
notations used throughout the entire study are given in Sect. 2. Section 3 is devoted for
introduction andmathematical analysis for improvedAHscheme in single grid considerations
and Sect. 4 presents similar concepts for the two grid case. Section 5 demonstrates several
numerical examples which support theoretical findings and demonstrate the effectiveness of
the schemes introduced. The paper is finalized with some concluding remarks.

2 Notations and Preliminaries

Standard notations for Sobolev spaces and corresponding norms will be used throughout
the paper, see e.g., [1]. In particular, (·, ·) and ‖ · ‖ denote L2(�) inner product and the
corresponding norm, respectively. Hk , where k is an integer greater than zero, will denote
the space of vector valued functions each of whose n components belong to Hk , the Sobolev
space of real-valued functions with square integrable derivates of order up to k equipped with
the usuual norm ‖ · ‖k . The dual space of Hk will be denoted by H−k .

The equivalent weak formulation of (1.1)–(1.3) reads as follows: ∀(v, q) ∈ (X, Q), find
(u, p) ∈ (X, Q) satisfying

ν(∇u,∇v) + b∗(u,u, v) − (p,∇ · v) = (f, v), (2.1)

(∇ · u, q) = 0, (2.2)

where X := (H1
0 (�))d , Q := L2

0(�) and

b∗(u, v,w) = ((u · ∇)v,w) + 1

2
((∇ · u)v,w) , ∀u, v,w ∈ X .

The following basic inequalities holds for all u, v,w ∈ X, see [14, 34]:

b∗(u, v,w) ≤ M‖∇u‖‖∇v‖‖∇w‖, (2.3)

where M is defined in (1.5).
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Let Th be a conforming triangulation of the domain � and let h = max
K∈Th

hK denote

the diameter of mesh. Then the numerical approximation of NSE reads as follows: for all
(vh, qh) ∈ (Xh, Qh), find (uh, ph) ∈ (Xh, Qh) satisfying

ν(∇uh,∇vh) + b∗(uh,uh, vh) − (ph,∇ · vh) = (f, vh), (2.4)

(∇ · uh, qh) = 0. (2.5)

Herein Xh ⊂ X and Qh ⊂ Q are assumed to be conforming finite dimensional subspaces
satisfying inf-sup condition, i.e., there is a constant β > 0 independent of h such that

inf
qh∈Qh

sup
vh∈Xh

(qh, ∇ · vh)

|| ∇vh || || qh || ≥ β > 0. (2.6)

The error analysis in Sect. 4 uses the following estimations for trilinear term in 2d and 3d ,
respectively:

b∗(uh, vh,wh) ≤ M
√| ln h|‖∇vh‖‖∇wh‖‖uh‖, (2.7)

b∗(uh, vh,wh) ≤ Mh−1/2‖∇vh‖‖∇wh‖‖uh‖, (2.8)

we refer the reader to [14, 24] for a more detailed derivation of these results.
Similar to the continuous case, the discrete inf-sup condition (2.6) and (1.4) implies the

existence and uniqueness of a solution of discrete problem (2.4) –(2.5). The stability estimate
of the finite element solution is well known and the details of the proof can be found in [24,
34]: Let uh ∈ Xh , then we get

‖∇uh‖ ≤ ν−1‖f‖−1. (2.9)

We also recall the following finite element error estimate for the solution of (2.4)–(2.5):

Theorem 1 Assume (u, p) be the exact solution of (2.1)–(2.2) and (uh, ph) be the finite
element solution of (2.4)–(2.5) with (Xh, Qh) = (Pk, Pk−1), k ≥ 1 polynomials. Then we
get

‖u − uh‖ + h
(
ν‖∇(u − uh)‖ + ‖p − ph‖

)
≤ Ch2‖f‖. (2.10)

3 Improved AH Scheme

We first describe the derivation of our novel Algorithm. To this end, consider the classical
temporally first-order artificial compressibility approximation of unsteady Navier–Stokes:

un+1 − un

τ
+ un · ∇un+1 − ν�un + ∇ pn+1 = f in�, (3.1)

β(pn+1 − pn) + ∇ · un+1 = 0 in�, (3.2)

where τ 
 1 is a time-step and β = O(1). Comparing the above system to the classical AH

algorithm (1.6)–(1.7), we see that β = α

ρ
and the main difference between the two systems

is in the first term of the momentum equation. Replacing the time derivative approximation
un+1 − un

τ
by − 1

ρ
�

(
un+1 − un

)
, we obtain a novel AH scheme:
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Algorithm 1 (Improved AH method) Let ρ and α be positive parameters.
Step 1 For all (vh, qh) ∈ (Xh, Qh), let (u0h, p0h) ∈ (Xh, Qh) be obtained from Stokes

equation satisfying

ν(∇u0h,∇vh) − (p0h,∇ · vh) = (f, vh), (3.3)

(qh,∇ · u0h) = 0. (3.4)

Step 2 For n ≥ 0 and for all (vh, qh) ∈ (Xh, Qh), find (un+1
h , pn+1

h ) ∈ (Xh, Qh) such that

1

ρ
(∇(un+1

h − un
h),∇vh) + ν(∇un+1

h ,∇vh) + b∗(un
h,un+1

h , vh)

+ρ

α
(∇ · un+1

h ,∇ · vh) = (pn
h ,∇ · vh) + (f, vh), (3.5)

α(pn+1
h − pn

h , qh) + ρ(∇ · un+1
h , qh) = 0. (3.6)

Next we discuss the uniform boundedness of the solutions to the Algorithm 1.

Theorem 2 (Uniform boundedness) Let (uh, ph) ∈ (Xh, Qh) be the solution of (2.4)–(2.5)
and {un

h, pn
h } be the function sequence generated by (3.5)–(3.6). If � < 1 and

ρ ≤ 2(1 − �)

ν�2 , (3.7)

then {un
h, pn

h } are uniformly bounded with respect to h and n.

Proof The first step of the proof consists of subtracting (3.5)–(3.6) from (2.4)–(2.5) to get:

1

ρ
(∇en+1

h − ∇en
h,∇vh) + ν(∇en+1

h ,∇vh) + b∗(en
h,uh, vh) + b∗(un

h, en+1
h , vh)

+ρ

α
(∇ · en+1

h ,∇ · vh) − (δn
h ,∇ · vh) = 0,

(3.8)

α(δn+1
h − δn

h , qh) + ρ(∇ · en+1
h , qh) = 0,

(3.9)

where en
h = uh − un

h , δ
n
h = ph − pn

h . Letting vh = en+1
h , qh = δn

h in (3.8)–(3.9) and using
b∗(un

h, en+1
h , en+1

h ) = 0, we have

1

2ρ

(
‖∇en+1

h ‖2 − ‖∇en
h‖2 + ‖∇(en+1

h − en
h)‖2

)
+ ν‖∇en+1

h ‖2 + ρ

α
‖∇ · en+1

h ‖2

−(δn
h ,∇ · en+1

h ) = −b∗ (
en

h,uh, en+1
h

)

(3.10)
α

2ρ
(‖δn+1

h ‖2 − ‖δn
h‖2 − ‖δn+1

h − δn
h‖2) + (∇ · en+1

h , δn
h ) = 0. (3.11)

Also, setting qh = δn+1
h − δn

h in (3.9) produces

α

ρ
‖δn+1

h − δn
h‖2 = −(∇ · en+1

h , δn+1
h − δn

h ). (3.12)

Applying Cauchy–Schwarz inequality to (3.12) yields

‖δn+1
h − δn

h‖ ≤ ρ

α
‖∇ · en+1

h ‖. (3.13)
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Adding (3.10) to (3.11) yields

1

2ρ

(
‖∇en+1

h ‖2 − ‖∇en
h‖2 + ‖∇(en+1

h − en
h)‖2

)

+ν‖∇en+1
h ‖2 + ρ

α

(
‖∇ · en+1

h ‖2 − α2

2ρ2 ‖δn+1
h − δn

h‖2
)

+ α

2ρ
(‖δn+1

h ‖2 − ‖δn
h‖2) ≤ |b∗(en

h,uh, en+1
h )|. (3.14)

On the other hand, the right hand side of the Eq. (3.14) can be bounded by (2.3), (2.9) and
(1.4)

|b∗(en
h,uh, en+1

h )| ≤ �ν‖∇en
h‖‖∇en+1

h ‖
≤ �ν(‖∇(en+1

h − en
h)‖ + ‖∇en+1

h ‖)‖∇en+1
h ‖

≤ 1

2ρ
‖∇(en+1

h − en
h)‖2 +

(
�ν + ρ�2ν2

2

)
‖∇en+1

h ‖2. (3.15)

Inserting the estimation (3.15) into (3.14) yields
(

1

2ρ
+ ν − �ν − ρ�2ν2

2

)
‖∇en+1

h ‖2 + ρ

α

(
‖∇ · en+1

h ‖2 − α2

2ρ2 ‖δn+1
h − δn

h‖2
)

+ α

2ρ
‖δn+1

h ‖2 ≤ 1

2ρ
‖∇en

h‖2 + α

2ρ
‖δn

h‖2. (3.16)

Under the assumption (3.7), since ν − �ν − ρ�2ν2

2
≥ 0, using (3.13), dropping the non-

negative term in (3.16) gives

1

2ρ
‖∇en+1

h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ 1

2ρ
‖∇en

h‖2 + α

2ρ
‖δn

h‖2. (3.17)

Therefore, one has

1

2ρ
‖∇en+1

h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ 1

2ρ
‖∇e0h‖2 + α

2ρ
‖δ0h‖2. (3.18)

It is clear that {un
h, pn

h } is uniformly bounded if e0h and δ0h are. To show uniform boundness
of e0h and δ0h , subtract (3.3)–(3.4) from (2.4)–(2.5), which results

ν(∇e0h,∇vh) − (δ0h,∇ · vh) = −b(uh,uh, vh), (3.19)

(qh,∇ · e0h) = 0. (3.20)

Choosing vh = uh − u0h = e0h , qh = ph − p0h = δ0h in (3.19)–(3.20) and adding (3.19) to
(3.20) and applying (2.3) yields

ν‖∇e0h‖2 ≤ M‖∇uh‖2‖∇e0h‖. (3.21)

Finally, using (1.4) and (2.9) gives

ν‖∇e0h‖ ≤ M‖∇uh‖2 ≤ �‖ f ‖−1. (3.22)

By inf-sup condition, it follows that

‖δ0h‖ ≤ 2�β−1‖ f ‖−1. (3.23)
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Hence (3.18) becomes

‖∇en+1
h ‖2 + α‖δn+1

h ‖2 ≤ (ν−2 + 4αβ−2)�2‖ f ‖2−1. (3.24)

proving that {un
h, pn

h } are uniformly bounded, independent of n and h. ��

Remark 1 Note that the presence of the
1

ρ
(∇(un+1

h − un
h),∇vh) term in (3.5) is crucial in

being able to control the term
1

2ρ
‖∇(en+1

h −en
h)‖2 in (3.15). This would not be possible with

the artificial compressibility scheme (3.1).

Remark 2 Note that since we are proving standard uniform boundedness and convergence
results, the theoretical analysis is also a standard one. But the results are much improved
from those in [6] in a sense that, we have no additional restriction on � besides � < 1. In
addition, improved AH scheme requires much simpler inequality for ρ compared with ρ of
[6].

Next, we establish the contraction property of the Algorithm 1.

Theorem 3 Let (uh, ph) ∈ (Xh, Qh) be the solution of (2.4)–(2.5) and {un
h, pn

h } be the
function sequence generated by (3.5)–(3.6). Under the assumption that � < 1, the error
estimate satisfies

τ‖∇en+1
h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ κ
(
τ‖∇en

h‖2 + α

2ρ
‖δn

h‖2
)
, (3.25)

where τ, κ ∈ (0, 1) are independent of h and n.

Proof According to the Lemma 2, there exist a real number C1 such that ‖∇un
h‖ ≤ C1.

Utilizing inf-sup condition, (2.3), (1.4), and the inequality ‖∇ · en+1
h ‖ ≤ ‖∇en+1

h ‖ one gets

β‖δn
h‖ ≤ sup

vh∈Vh

(δn
h ,∇ · vh)

‖∇vh‖
≤ ρ−1‖∇en+1

h − ∇en
h‖ + ν‖∇en+1

h ‖ + M‖∇en
h‖‖∇uh‖

+ M‖∇un
h‖‖∇en+1

h ‖ + ρα−1‖∇ · en+1
h ‖

≤ ρ−1‖∇en+1
h ‖ + ρ−1‖∇en

h‖ + ν‖∇en+1
h ‖ + ν�‖∇en

h‖ + MC1‖∇en+1
h ‖

+ ρα−1‖∇en+1
h ‖

= (ρ−1 + ν�)‖∇en
h‖ + (ρ−1 + ν + MC1 + ρα−1)‖∇en+1

h ‖. (3.26)

Taking the square of both sides of the Eq. (3.26) and using the fact that (a +b)2 ≤ 2a2 +2b2

for any real numbers a and b, we have

β2‖δn
h‖2 ≤ 2(ρ−1 + ν�)2‖∇en

h‖2 + 2(ρ−1 + ν + MC1 + ρα−1)2‖∇en+1
h ‖2. (3.27)

Hence,

‖∇en+1
h ‖2 ≥ C2‖δn

h‖2 − C3‖∇en
h‖2, (3.28)

where C2 = 1

2

( β

ρ−1 + ν + MC1 + ρα−1

)2
and C3 =

( ρ−1 + ν�

ρ−1 + ν + MC1 + ρα−1

)2
< 1.
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Using (3.13) and dropping the second term on the left hand side of (3.16), we get
(

1

2ρ
+ D

)
‖∇en+1

h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ 1

2ρ
‖∇en

h‖2 + α

2ρ
‖δn

h‖2. (3.29)

where D = ν − �ν − ρ�2ν2

2
. Adding and subtracting the term ξ‖∇en+1

h ‖2 to (3.29) and

using (3.28) gives
(

1

2ρ
+ D − ξ

)
‖∇en+1

h ‖2 + α

2ρ
‖δn+1

h ‖2

≤
(

1

2ρ
+ ξC3

)
‖∇en

h‖2 +
(

α

2ρ
− ξC2

)
‖δn

h‖2, (3.30)

where ξ > 0 is to be determined. Suppose
1

2ρ
+ D − ξ > 0 and

α

2ρ
− ξC2 > 0, then

one can calculate the parameter ξ > 0 such that

1

2ρ
+ ξC3

1

2ρ
+ D − ξ

=
α

2ρ
− ξC2

α

2ρ

. (3.31)

Reorganizing (3.31) gives

ξ2C2 −
(

C2D + α

2ρ
+ 1

2ρ
(C2 + αC3)

)
ξ + α

2ρ
D = 0. (3.32)

The discriminant of the quadratic Eq. (3.32) is

b2 − 4ac =
(

C2D + α

2ρ
+ 1

2ρ
(C2 + αC3)

)2 − 2C2αD

ρ

>
(

C2D + α

2ρ

)2 − 2C2αD

ρ

=
(

C2D − α

2ρ

)2 ≥ 0. (3.33)

Under the assumption

max

{
2ρC2D,

C2(4ρD + 1)

2 − C3

}
< α <

C2

C3
, (3.34)

(3.32) has two real, distinct roots ξ1,2 =
(
S ±

√
S2 − 2C2αD

ρ

)
/2C2, where S = C2D +

1

2ρ
(α + C2 + αC3). We select

ξ =
S −

√
S2 − 2C2αD

ρ

2C2
. (3.35)

Inserting (3.35) into (3.30) produces

τ‖∇en+1
h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ κ
(
τ‖∇en

h‖2 + α

2ρ
‖δn

h‖2
)
, (3.36)
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where τ = 1

2ρ
+ D − ξ and κ = 1 − 2ρξC2

α
. This completes the proof. ��

One can deduce an error estimate of u − uh and p − ph by applying Theorem 3 and the
triangle inequality.

Corollary 1 Let (uh, ph) and (un
h, pn

h ) be the solutions of (2.4)–(2.5) and Algorithm 1, respec-
tively. For � < 1, the error estimate satisfies the following bound

‖∇(uh − un+1
h )‖2 ≤ κn+1 (

ν−2 + 2α(ρτ)−1β−2) �2‖f‖2−1, (3.37)

‖ph − pn+1
h ‖2 ≤ κn+1 (

2ρτα−1ν−2 + 4β−2) �2‖f‖2−1, (3.38)

where τ, κ ∈ (0, 1) are independent of h and n.

Proof From Theorem 3, we get

τ‖∇en+1
h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ κ
(
τ‖∇en

h‖2 + α

2ρ
‖δn

h‖2
)
, (3.39)

where en
h = uh − un

h , δ
n
h = ph − pn

h . This yields

τ‖∇en+1
h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ κn+1
(
τ‖∇e0h‖2 + α

2ρ
‖δ0h‖2

)
. (3.40)

We now use (3.22) and (3.23) to get

τ‖∇en+1
h ‖2 + α

2ρ
‖δn+1

h ‖2 ≤ κn+1 (
τν−2 + 2αρ−1β−2) �2‖f‖2−1, (3.41)

which produces (3.37)–(3.38). ��
Theorem 4 Assume (u, p) and (un+1

h , pn+1
h ) solve (2.1)–(2.2) and Algorithm 1, respectively.

Then, we have

ν‖∇(u − un+1
h )‖ + ‖p − pn+1

h ‖
≤ Ch +

( ν√
τ

+
√
2ρα−1

)√
κn+1(τν−2 + 2αρ−1β−2)�‖f‖−1. (3.42)

Proof Applying triangle inequality produces

ν‖∇(u − un+1
h )‖ + ‖p − pn+1

h ‖
≤ ν‖∇(u − uh)‖ + ‖p − ph‖ + ν‖∇(uh − un+1

h )‖ + ‖ph − pn+1
h ‖.

Combining Theorem 1 and Corollary 1, yields the stated result. ��

3.1 Extension to Nonhomogeneous and Open Boundary Conditions Case

The analysis we presented in the preceding section uses homogeneous Dirichlet boundary
conditions. We now briefly comment on the extension of our AH Algorithm 1 to a more
general boundary conditions case:

u · ∇u − ν�u + ∇ p = f in�, (3.43)

∇ · u = 0 in�, (3.44)

u = g on ∂�D, (3.45)

−ν∇u · n + pn = 0 on ∂�N . (3.46)
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In the above, we assume that � is bounded, locally Lipschitz domain and g ∈ H1/2 (�D),
which is crucial for the existence of the appropriate solenoidal extension of g (still denoted
by g) to � [10, Lemma IX.4.2]. , we look for the solution as

u = û + g,

where (̂u, p) now solve:

û · ∇û + û · ∇g + g · ∇û − ν�û + ∇ p = f + ν�g − g · ∇g in�, (3.47)

∇ · û = 0 in�, (3.48)

û = 0 on ∂�D, (3.49)

−ν∇û · n + pn = ν∇g · n on ∂�N . (3.50)

The derivation of the weak formulation and the extension of our Algorithm 1 to the above sys-
tem is immediate: After appropriate initialization, for n ≥ 0 and for all (vh, qh) ∈ (Xh, Qh),
find (̂un+1

h , pn+1
h ) ∈ (Xh, Qh) such that

1

ρ
(∇ (̂un+1

h − ûn
h),∇vh) + ν(∇ûn+1

h ,∇vh) + b∗(̂un
h, ûn+1

h , vh)

+ b∗(g, ûn+1
h , vh) + b∗(̂un+1

h , g, vh)

+ ρ

α
(∇ · ûn+1

h ,∇ · vh) = F(vh) (3.51)

α(pn+1
h − pn

h , qh) + ρ(∇ · ûn+1
h , qh) = 0, (3.52)

where F(vh) represents all the terms on the right-hand side. Thus, using the crucial bound

|b∗(v, g, v)| ≤ ε‖∇v‖2,
for all ε > 0, one can extend the earlier results to this case as well.

4 Improved Two-Grid AHMethod

For two-grid algorithm, consider conforming triangulation TH of the domain � such that Th

is refinement of TH with XH ⊂ Xh and Q H ⊂ Qh . Let (XH , Q H ) be inf-sup stable spaces
such that (2.6) is fulfilled. Three kinds of two grid methods are introduced by in [9]. We
modify Algorithm 3 of [9] to present improvement of our method for that two grid approach.

Algorithm 2 (Improved Two-Grid AH method) Let ρ and α be positive parameters satisfying
(3.7) and (3.34), respectively.

Step 1 (Initialize on coarse grid) For all (vH , qH ) ∈ (XH , Q H ), let (u0H , p0H ) ∈
(XH , Q H ) be obtained from Stokes equation satisfying

ν(∇u0H ,∇vH ) − (p0H ,∇ · vH ) = (f, vH ), (4.1)

(qH ,∇ · u0H ) = 0. (4.2)

Step 2 (Coarse grid AH) For n = 0, m − 1 and for all (vH , qH ) ∈ (XH , Q H ), find
(un+1

H , pn+1
H ) ∈ (X H , Q H ) such that

1

ρ
(∇(un+1

H − un
H ),∇vH ) + ν(∇un+1

H ,∇vH ) + b∗(un
H ,un+1

H , vH )
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+ρ

α
(∇ · un+1

H ,∇vH ) = (pn
H ,∇ · vH ) + (f, vH ), (4.3)

α(pn+1
H − pn

H , qH ) + ρ(∇ · un+1
H , qH ) = 0. (4.4)

Step 3 (Fine grid mixed problem) For all (vh, qh) ∈ (Xh, Qh), let (umh, pmh) ∈ (Xh, Qh)

be the solution of

ν(∇umh,∇vh) − (pmh,∇ · vh) + b∗(um
H ,umh, vh) = (f, vh), (4.5)

(∇ · umh, qh) = 0. (4.6)

The well-posedness of the two-grid Algorithm 2 is easily established.

Theorem 5 Assume umh solves Algorithm 2, then one gets

‖∇umh‖ ≤ ν−1‖f‖−1. (4.7)

Proof Letting vh = umh and qh = pmh in (4.5), and using the skew symmetry property we
have

ν‖∇umh‖2 = (f,umh). (4.8)

Applying Cauchy–Schwarz yields the stated result. ��
Next we shall establish the error bounds for Algorithm 2.

Theorem 6 Assume (umh, pmh) solves Algorithm 2, then the following bounds hold in 2d
and 3d, respectively:

‖∇(uh − umh)‖ + ‖ph − pmh‖ ≤ C�
√| ln h|

(
H2 +

√
κn+1(ν−2 + 2α(ρτ)−1β−2)�‖f‖−1

)
,

(4.9)

‖∇(uh − umh)‖ + ‖ph − pmh‖ ≤ C�h−1/2
(

H2 +
√

κn+1(ν−2 + 2α(ρτ)−1β−2)�‖f‖−1

)
.

(4.10)

Proof We begin the proof by subtracting (4.5)–(4.6) from (2.4)–(2.5):

ν(∇emh,∇vh) − (δm
h ,∇ · vh) + b∗(uh − um

H ,uh, vh) + b∗(um
H , emh, vh) = 0, (4.11)

(∇ · emh, qh) = 0. (4.12)

where emh = uh −umh , δm
h = ph − pmh . Setting vh = emh , qh = δm

h in (4.11)–(4.12), using
b∗(um

H , emh, emh) = 0, and adding (4.11) to (4.12), we get

ν‖∇emh‖2 ≤ |b∗(uh − um
H ,uh, emh)|. (4.13)

Utilizing (1.4), (2.7), (2.8), (2.9), and applying Corollary 1 and Theorem 1, Poincaré’s
inequality, the nonlinear term in (4.13) can be bounded as

|b∗(uh − um
H ,uh, emh)| ≤ �ν

√| ln h|‖∇emh‖‖uh − um
H ‖

≤ �ν
√| ln h|‖∇emh‖(‖uh − u‖ + ‖u − uH ‖ + ‖uH − um

H ‖)
≤ �ν

√| ln h|‖∇emh‖
(

H2 + C p

√
κn+1(ν−2 + 2α(ρτ)−1β−2)�‖f‖−1

)

(4.14)
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in 2d and as

|b∗(uh − um
H ,uh, emh)| ≤ �νh−1/2‖∇emh‖

(
H2 + C p

√
κn+1(ν−2 + 2α(ρτ)−1β−2)�‖f‖−1

)

(4.15)

in 3d .
Inserting (4.14), (4.15) into (4.13), we have

‖∇emh‖ ≤ C�
√| ln h|

(
H2 +

√
κn+1(ν−2 + 2α(ρτ)−1β−2)�‖f‖−1

)
in 2d, (4.16)

and

‖∇emh‖ ≤ C�h−1/2
(

H2 +
√

κn+1(ν−2 + 2α(ρτ)−1β−2)�‖f‖−1

)
in 3d. (4.17)

Moreover, using inf-sup condition (2.6) yields following bound for pressure error:

‖δm
h ‖ ≤ β−1 sup

vh∈Xh

(δm
h , ∇ · vh)

|| ∇vh || . (4.18)

Under the assumption (1.4), utilizing (2.7), (2.9), (4.16) produces

‖δm
h ‖ ≤ β−1

(
ν‖∇emh‖ + M

√| ln h|‖∇uh‖‖uh − um
H ‖ + M‖∇um

H ‖‖∇em
h ‖

)

≤ β−1
(
ν(1 + �)‖∇emh‖ + �ν

√| ln h|‖uh − um
H ‖

)

≤ C�
√| ln h|

(
H2 +

√
κn+1(ν−2 + 2α(ρτ)−1β−2)�‖f‖−1

)
(4.19)

in 2d . Analogous bound is easily obtained in 3d . Combining (4.16) with (4.19) yields the
stated result. ��

5 Numerical Experiments

In this part of the paper, we present some numerical tests to verify the theoretical findings
and to demonstrate the effectiveness of the proposed Algorithms 1 and 2. We first perform
a convergence test with a manufactured solution. Then, we carry out a detailed comparison
between the Algorithm 1 and the classical AH scheme for Kovasznay flow [25] problem.
Next we extensively test our schemes on a classical lid driven cavity flow problem at different
Reynolds numbers. The last numerical test will be on flowaround a step problem.We consider
the Taylor-Hood finite element pair throughout all computations and direct solvers for all
linear systems. The finite element software FreeFem++ [22] is used for implementation along
entire study.

5.1 Convergence Test

To measure the error and define the convergence rates, we first consider a manufactured
solution of (1.1)–(1.2) in the unit square as:

u =
(

2θ(x2 − x)2(y2 − y)(2y − 1)
−2θ(y2 − y)2(x2 − x)(2x − 1)

)
, p = θ(2x − 1)(2y − 1), (5.1)
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Table 1 Errors and rates for θ = 2, α = 1 and ρ = 543.1 with a single grid Algorithm 1

h ‖eh‖ Rate ‖∇eh‖ Rate ‖∇ · eh‖ Rate ‖δh‖ Rate nb of iterations

1.77e−1 1.07e−3 – 2.67e−2 – 4.56e−4 – 1.15e−2 – 13

8.84e−2 1.95e−4 2.45 9.62e−3 1.47 3.11e−4 0.55 2.74e−3 2.1 13

4.42e−2 2.61e−5 2.9 2.57e−3 1.9 1.45e−4 1.1 5.24e−4 2.38 13

2.21e−2 2.55e−6 3.36 5.2e−4 2.31 4.96e−5 1.55 7.85e−5 2.73 13

1.11e−2 1.95e−7 3.7 8.4e−5 2.62 1.42e−5 1.81 9.4e−6 3.1 13

5.5e−3 1.33e−8 3.87 1.25e−5 2.74 3.7e−6 1.94 9.67e−7 3.28 13

Table 2 Errors and rates for θ = 1, α = 1 and ρ = 2240.4 with a single grid Algorithm 1

h ‖eh‖ Rate ‖∇eh‖ Rate ‖∇ · eh‖ Rate ‖δh‖ Rate nb of iterations

1.77e−1 5.95e−4 – 1.49e−2 – 6.28e−5 – 6.29e−3 – 10

8.84e−2 1.32e−4 2.17 6.63e−3 1.17 5.5e−5 0.19 1.83e−3 1.18 10

4.42e−2 2.45e−5 2.43 2.42e−3 1.45 3.81e−5 0.52 4.67e−4 1.97 11

2.21e−2 3.31e−6 2.89 6.51e−4 1.89 1.79e−5 1.1 9.14e−5 2.35 11

1.11e−2 3.26e−7 3.34 1.32e−4 2.3 6.17e−6 1.54 1.39e−5 2.72 11

5.5e-3 2.5e−8 3.7 2.12e−5 2.64 1.77e−6 1.8 1.68e−6 3.1 11

Table 3 CPU times (in seconds)
for θ = 1, α = 1 and ρ = 2240.4

h Single-grid Two-grid

1.77e−1 2.08911e−1 6.1074e−2

8.84e−2 8.583463 4.07308e−1

4.42e−2 1.587391e+1 9.888664

2.21e−2 4.578917e+1 2.032775e+1

1.11e−2 1.919163e+2 7.341746e+1

5.5e−3 1.037067e+3 3.184335e+2

where θ is used to adjust the value of �. The right-hand side f corresponding to (5.1) is

promptly computed. We choose ν = 1, ρ = 2(1 − �)

ν�2 and α = 1 for varying spatial mesh

sizes h. The initial velocity and pressure fields are obtained from the Stokes system. The
stopping criteria is taken as

max

{
‖un+1

h − un
h‖∞

‖un
h‖∞

,
‖pn+1

h − pn
h‖∞

‖pn
h‖∞

}

≤ 10−6.

Corresponding errors in various norms and convergence rates for the Algorithm 1 are
presented in Tables 1 and 2. As could clearly be deduced from the table, expected rates of
convergence are achieved for all quantities and the number of iterations is nearly uniform.

Next we test the two-grid the Algorithm 2 and compare the results with the single grid
Algorithm 1. In this part of the experiment, we only consider the case of ρ = 2240.4 and
always take H = h

2 . Firstly, the CPU times comparison for various runs are listed in Table
3. As expected, the two-grid Algorithm needs considerably less execution time.
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Table 4 Comparison of velocity and pressure errors between two the Algorithms

‖eh‖ ‖∇eh‖ ‖δh‖
h Single grid Two grid Single grid Two grid Single grid Two grid

1.77e−1 5.95e−4 3.812226e−5 1.49e−2 2.549661e−3 6.29e−3 2.69639e−4

8.84e−2 1.32e−4 4.695747e−6 6.63e−3 6.525849e−4 1.83e−3 2.400404e−5

4.42e−2 2.45e−5 5.853814e−7 2.42e−3 1.642817e−4 4.67e−4 2.104301e−6

2.21e−2 3.31e−6 7.316313e−8 6.51e−4 4.114818e−5 9.14e−5 1.975012e−7

1.11e−2 3.26e−7 9.147053e−9 1.32e−4 1.029213e−5 1.39e−5 1.935703e−8

5.5e−3 2.5e−8 1.143242e−9 2.12e−5 2.573358e−6 1.68e−6 1.735247e−9

The errors for both grids are reported in Table 4. Interestingly enough, in this particular
test, not only the two grid algorithm is more faster, but it also yields more accurate solutions.

5.2 Kovasznay Flow

Herein we use the well-known Kovasznay flow problem [25] to test the stability and conver-
gence of our scheme against the classical Arrow–Hurwicz scheme of [6] and the grad-div
stabilized algorithm studied in [11]. The exact solution is

u1 = 1 − eλx cos(2π y), u2 = λ

2π
eλx sin(2π y), p = −e2λx

2
+ p0,

where

λ = 1

2ν
−

√
1

4ν2
+ 4π2

and p0 ∈ R1 is chosen so that p has a mean value zero. The flow domain is taken to be
� = (−0.5, 1) × (−0.5, 0.5), triangulated with a uniform 100 × 80 mesh.

Recall that our scheme is uniformly bounded and convergent under condition (3.7):

ρ ≤ 2(1 − �)

ν�2 and ∀ α > 0,

while the classical scheme [6] has more complex condition for both ρ and α:

if ρ ≤ 1

ν
, then α >

ρ

2ν(1 − �)
,

and if
1

ν
< ρ <

ρ

2ν(1 + �)
, then α >

ρ2

2(2 − ρν(1 + �))
.

Thus, for all schemes, ρ should not be too large, and α should be chosen large for the
classical scheme and the grad-div stabilized scheme [11].

We tested all the schemes for ν = 0.01 and ν = 0.001 cases for range of values of ρ

and α. The findings are summarized in the Tables 5 and 8. For brevity, we shall refer to our
results as “AH3”, to the results of the classical scheme as “AH1” and to those of the [11] as
“AH2”.

As the Tables 5, 6, 7 and 8 reveal, our scheme was observed to be always stable and
convergent. However, the classical scheme either experienced numerical instability or did
not converge at all in any of our simulations. The grad-div stabilized scheme converged only
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Table 5 Number of iterations needed for convergence for ν = 0.01

ρ = 10 ρ = 100

α AH1 AH2 AH3 α AH1 AH2 AH3

1 Unstable Unstable 110 1 Unstable Unstable 51

50 No convergence 232 273 10 Unstable No convergence 56

100 No convergence 440 478 100 Unstable 51 97

Table 6 ρ = 500 and ν = 0.01
α AH1 AH2 AH3

10 Unstable Unstable 51

100 Unstable Unstable 59

200 Unstable Unstable 68

500 Unstable Unstable 98

Table 7 Number of iterations needed for convergence for ν = 0.001

ρ = 10 ρ = 100

α AH1 AH2 AH3 α AH1 AH2 AH3

1 No convergence No convergence 929 1 Unstable Unstable 104

50 No convergence 889 903 10 Unstable 419 104

100 No convergence 892 904 100 Unstable 93 110

Table 8 ρ = 500 and ν = 0.001
α AH1 AH2 AH3

1 Unstable Unstable 49

50 Unstable No convergence 55

100 Unstable No convergence 60

200 Unstable No convergence 71

500 Unstable 52 102

in some cases. Interestingly, optimal parameter values for the AH3 scheme is large ρ and
small α, while the other schemes tend to perform better for large values of both α and ρ.

5.3 Lid Driven Cavity Flow

In this subsection we test our Algorithms on a well known lid driven cavity flow problem.
The computational domain is � = (0, 1)2, where the top lid is moving in the positive x
direction with a unit speed. The boundary conditions are taken to be no-slip along other the
walls. In order to avoid the irregularity of the solution at the upper corners, we consider a
regularized initial data at the upper boundary as was proposed in [8]:

u(x, 1) = (u1(x), 0)T
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Table 9 Comparison of the vertical/horizontal components of the velocity along the segment x at Re = 1000
with the results of [12] on single grid

Re = 1000, vertical component Re = 1000, horizontal component

x [12] 83907 dof 148739 dof y [12] 83907 dof 148739 dof

1.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

0.9688 −0.21388 −0.22734 −0.226477 0.9766 0.65928 0.659245 0.658424

0.9609 −0.27669 −0.293028 −0.291823 0.9688 0.57492 0.575349 0.574304

0.9531 −0.33714 −0.354132 −0.35309 0.9609 0.51117 0.511289 0.510447

0.9453 −0.39188 −0.408762 −0.40785 0.9531 0.46604 0.467068 0.46623

0.9063 −0.51550 −0.524997 −0.52369 0.8516 0.33304 0.335252 0.334406

0.8594 −0.42665 −0.424343 −0.424281 0.7344 0.18719 0.188234 0.187606

0.8047 −0.31966 −0.318506 −0.318112 0.6172 0.05702 0.0571512 0.0569494

0.5000 0.02526 0.0264927 0.0263912 0.5000 −0.06080 −0.0614573 −0.061415

0.2344 0.32235 0.324452 0.323888 0.4531 −0.10648 −0.10745 −0.107319

0.2266 0.33075 0.332948 0.332362 0.2813 −0.280189 −0.279206 −0.278857

0.1563 0.37095 0.374188 0.373423 0.1719 −0.38289 −0.386396 −0.385818

0.0938 0.32627 0.329508 0.328721 0.1016 −0.29730 −0.298378 −0.297642

0.0781 0.30353 0.305985 0.305649 0.0703 −0.22220 −0.221412 −0.220784

0.0703 0.29012 0.292448 0.292074 0.0625 −0.20196 −0.201144 −0.20041

0.0625 0.27485 0.27737 0.276599 0.0547 −0.18109 −0.180072 −0.179556

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

u1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − 1

4

(
1 − cos

(
0.1 − x

0.1
π

))2

0 ≤ x ≤ 0.1,

1 0.1 < x < 0.9,

1 − 1

4

(
1 − cos

(
x − 0.9

0.1
π

))2

0.9 ≤ x ≤ 1.

We run the code for four different values of Reynolds number, Re = 1000, 3200, 5000 and
10, 000. In all runs, we set ρ = 100 and α = 1. Meshes with various resolutions were tested,
and we only report the results done on two finest meshes 96×96 and 128×128. All runs are
again initiated by solving a steady Stokes equation. For a quantative comparison, we use the
reference values of the velocity components at the centerlines through the domain given in
Ghia et. al. [12]. In Table 9, we have the values obtained with the Algorithm 1 for Re = 1000.
As it can be seen, the results are quite accurate and in both cases, our scheme converged in
145 iterations. Next in Table 10, we report the results obtained on the finest mesh with the
two-grid Algorithm 2 at Re = 10000. The results are again satisfactory even though the flow
is not fully resolved.

The streamlines patterns obtain via our methods are shown in Figs. 1 and 2. All plots
demonstrate the correct formation of eddies in the corners. Finally, the iteration count vs.
error plots for Re = 5000 and 10000 are included in Fig. 3 which show overall smooth
convergence to a steady state solution.

It should be pointed out that the classical AH algorithm requires over 700 iterations even
Re = 100 case [6] and no convergence was obtained for the Re = 1000 flow for α = Re and
ρ = 1, 10, 20, 50.Moreover, the grad-div stabilized Arrow-Hurzwich algorithm described in
[11] could not achieve the convergence in any case with the Taylor-Hood finite element pair.
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Table 10 Comparison of the vertical/horizontal components of the velocity along the segment x at Re = 10000
with the results of [12] with two-grid scheme

Re = 10000, vertical component Re = 10000, horizontal component

x [12] 148739 dof y [12] 148739 dof

1.0 0.0 0.0 1.0 1.0 1.0

0.9688 −0.54302 −0.554456 0.9766 0.47221 0.464771

0.9609 −0.52987 −0.511624 0.9688 0.47783 0.468555

0.9531 −0.49099 −0.467844 0.9609 0.48070 0.46848

0.9453 −0.45863 −0.442968 0.9531 0.47804 0.462731

0.9063 −0.41496 −0.401293 0.8516 0.34635 0.326376

0.8594 −0.36737 −0.347906 0.7344 0.20673 0.194951

0.8047 −0.30719 −0.287881 0.6172 0.08344 0.0806239

0.5000 0.00831 0.0100617 0.5000 0.03111 −0.0252313

0.2344 0.27224 0.257845 0.4531 −0.07540 −0.0664965

0.2266 0.28003 0.265312 0.2813 −0.23186 −0.216163

0.1563 0.35070 0.333565 0.1719 −0.32709 −0.310728

0.0938 0.41487 0.397532 0.1016 −0.38000 −0.369965

0.0781 0.43124 0.417205 0.0703 −0.41657 −0.408504

0.0703 0.43733 0.42632 0.0625 −0.42537 −0.421861

0.0625 0.43983 0.432345 0.0547 −0.42735 −0.431023

0.0 0.0 0.0 0.0 0.0 0.0

Fig. 1 Streamlines: Re = 1000 (left) and Re = 3200 (right)

5.4 Channel Flow Over a Full Step

As a final qualitative numerical test, we consider a two dimensional flow in a channel with
an obstacle step. The computational domain is a 30 × 10 rectangle with a 1 × 1 obstacle
positioned at 5 units in the bottom of the channel. We use the Taylor-Hood finite element
pair as in other tests with a total degree of freedom of 19177 for the mesh used in Algorithm
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Fig. 2 Streamlines: Re = 5000 (left) and Re = 10000 (right)

Fig. 3 Errors vs iteration count for the lid driven cavity problem: Re = 5000 (top) and Re = 10000 (bottom)
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Fig. 4 Streamlines over velocity contours for the channel flow with ν = 0.01
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Fig. 5 Errors vs iteration count for the channel flow: Algorithm 1 (left) and Algorithm 2 (right)

1. The coarse mesh scale is selected as H = √
h wherever Algorithm 2 is considered. We

study with ν = 0.01 along with various ρ selections and α = 1
ν
.

The streamlines over velocity contours obtained with our schemes are depicted in Fig. 4.
The correct eddy formation behind the step is easily observable, which is key indicator for
the accuracy of our schemes.

We also give iteration history for both schemes according to varying ρ values in Fig. 5.
The pictures reveals that, as the value of ρ increases the number of iterations to reach the
steady state decreases for both schemes. So the selection of ρ plays a vital role when one
use these algorithms to solve any problem. On the other hand, the number of iterations to
converge is higher for Algorithm 2, especially for smaller ρ values. This is due to the fact that
two-grid schemes run on a coarser grid and is less resolved. However, as Table 11 reveals,
although the number of iterations needed to convergence is higher for Algorithm 2, there is
a meaningful difference in CPU times. Especially, for higher ρ the two-grid scheme is 3 to
5 times faster than single-grid scheme which was also observed in the preceding examples.
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Table 11 CPU times (in seconds)
for varying ρ values in channel
flow example

ρ Single-grid Two-grid

50 167 69

100 80 311

200 34 13

500 30 5

6 Concluding Remarks

In this paper a novel Arrow–Hurwicz type method for solving the steady-state Navier–Stokes
equations is proposed. Key of the idea is based on changing one term in momentum equation,
that is inspired from artificial compressibility method. Uniform boundedness and conver-
gence to the exact solution under reasonable assumptions were studied. We also presented
its extension to a two-grid setting and proved the corresponding convergence result as well.
A comprehensive numerical studies showed a significant efficiency in terms of computing
times, accuracy and robustness over the existing methods for our proposed AH algorithms.
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