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Abstract
In this study, we propose a unified, general framework for the direct discontinuous Galerkin
methods. In the new framework, the antiderivative of the nonlinear diffusion matrix is not
needed. This allows a simple definition of the numerical flux, which can be used for general
diffusion equations with no further modification. We also present the nonlinear stability
analyses of the new direct discontinuous Galerkin methods and perform several numerical
experiments to evaluate their performance. The numerical tests show that the symmetric and
the interface correction versions of the method achieve optimal convergence and are superior
to the nonsymmetric version, which demonstrates optimal convergence only for problems
with diagonal diffusion matrices but loses order for even degree polynomials with a non-
diagonal diffusion matrix. Singular or blow up solutions are also well captured with the new
direct discontinuous Galerkin methods.

Keywords Discontinuous Galerkin method · Nonlinear diffusion equations · Stability ·
Convergence

Mathematics Subject Classification 65M12 · 65M60

1 Introduction

In this paper, we continue to study direct discontinuous Galerkin method [1] and other three
versions of the direct discontinuous Galerkin (DDG) method [2–4] for solving the nonlinear
diffusion equation

∂U

∂t
= ∇ · (A(U )∇U ), (x, t) ∈ � × (0, T ), (1)
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with the initial data U0(x) = U (x, 0). Nonlinear diffusion matrix A(U ) ∈ R
d×d can be

anisotropic and none symmetric, but is assumed to have real and nonnegative eigenvalues.
We adapt � ⊂ R

d to denote the computational domain. In this study, we consider a 2-
dimensional setting with d = 2. Our focus is to derive a generalized and unified DDG
method for nonlinear diffusion Eq. (1) that can be easily extended and applied to system and
multi dimensional cases.

The discontinuousGalerkin (DG)methodwasfirst introduced byReed andHill for neutron
transport equations in 1973 [5]. However, it is after a series of papers by Cockburn, Shu et
al. [6–9] that the DG method became the archetype of high order methods used in the
scientific community. Essentially, the DG method is a finite element method, but with a
discontinuous piecewise polynomial space defined for the numerical solution and test function
in each element. Due to this property, the DGmethod has a smaller and more compact stencil
compared to its continuous counterpart. Hence, the data structure required to implement DG
methods is extremely local, which allows efficient parallel computing and hp-adaptation.

One of the key features of the DG method is that the communication between computa-
tional elements is established through a numerical flux defined at element interfaces. In this
regard, the DG method bears a striking similarity to finite volume method, where a Riemann
solver is employed to calculate the numerical flux. Therefore, the DG method enjoys the
high-order polynomial approximations as a finite element method while benefiting from the
characteristic decomposition of the wave propagation provided by Riemann solvers as a finite
volume method. For this reason, the DG method has been successfully applied to hyperbolic
problems, i.e. compressible Euler equations, in the last three decades, cf. [10–12].

On the other hand, for elliptic and parabolic problems, i.e. linear/nonlinear diffusion
equations, the numerical flux must involve a proper definition for the solution gradient at
element interfaces. It is, in fact, the variety of this definition that leads to several DGmethods
such as the interior penalty (IPDG) methods [13–15], the nonsymmetric interior penalty
(NIPG) method [16, 17] and the symmetric interior penalty (SIPG) method [18–20]. Another
important group of DG methods for solving diffusion problems include the method of Bassi
and Rebay (BR) and its variations [21–24]; the local DG (LDG) method [25–27]; the method
of Baumann and Oden (BO) [28, 29]; hybridized DG (HDG) method [30]. Recent works
include the weakly over-penalized SIPG method [31]; weak DG [32] method and ultra weak
DG method [33, 34]. For a review of these methods, we refer to [35, 36] and the references
therein. Among the many DG methods mentioned, there is little discussion of nonlinear
diffusion equations except Bassi and Rebay [21] and Local DG related methods [25, 30].

In addition to all the efforts mentioned above to devise a numerical flux for the diffusive
terms in elliptic/parabolic equations, Liu and Yan [1] introduced Direct DG (DDG) method
for nonlinear diffusion equations. Inspired by the exact trace formula corresponding to the
solution of heat equation with a smooth initial data that contains a discontinuous point, Liu
and Yan derived a simple formula for the numerical flux to compute the solution derivative
at the element interface. Although DDG method is proven to converge to the exact solution
optimally when measured in an energy norm, it suffers from an order loss in the L2-norm
when the solution space is approximated by even degree polynomials. In order to recover
optimal convergence, Liu and Yan [2] developed the direct DG method with interface cor-
rection (DDGIC). In their subsequent studies, Yan and collaborators presented symmetric
and nonsymmetric versions of the DDG method [3, 4]. Even though DDG methods degen-
erate to the IPDG method with piecewise constant and linear polynomial approximations,
there exist a number of advantages with DDG methods for higher order approximations. For
such advantages, we refer to the discussions on a third order bound preserving scheme in
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[37], superconvergence to ∇U in [38, 39] and elliptic interface problems with different jump
interface conditions in [40].

Despite the aforementioned favorable features, in the previous versions of DDG meth-
ods, the numerical flux definition is based on the antiderivative of the nonlinear diffusion
matrix A(U ). However, this antiderivative might not exist if the diffusion matrix A(U ) is
complicated enough. Therefore, the previous DDG methods are not applicable to nonlinear
equations with such diffusion matrices. One important example where the diffusion matrix
A(U ) cannot be integrated explicitly is the energy equation of compressible Navier–Stokes
equations. A similar difficulty arises for the interface terms involving test function. This prob-
lem is addressed by defining a new direction vector on element interfaces, which depends
on the nonlinear diffusion matrix A(U ) and geometric information of the interface. With the
introduction of the nonlinear direction vector, the evaluation of the nonlinear numerical flux
is greatly simplified. Interface terms can also be clearly defined with no ambiguity. Danis
and Yan recently applied the method in [41] to solve compressible Navier–Stokes equations
with DDGIC method. This treatment of a generic diffusion process opens up the possibility
of a straightforward extension of all DDG versions to the complicated nonlinear diffusion
equations, which motivates this study.

In this paper, the concept of the nonlinear direction vector is extended to all versions of
DDGmethod in a generalized, unified framework. The new framework does not only address
the problem of calculating the antiderivative of the diffusion matrix, but also provides an easy
and practical recipe for using the DDG methods for general system of conservation laws.
Moreover, interface terms of all versions of DDG methods are presented within a unified
format that is clean and easy to be evaluated. Nonlinear stability analyses are presented for
the newDDGIC, symmetric DDG and nonsymmetric DDGmethods, and we investigate their
performance in several numerical experiments. Since DDGmethods degenerate to the IPDG
method with low order approximations as mentioned, all numerical tests are conducted with
high order polynomial approximations. In the numerical tests, optimal order of accuracy are
obtained for DDGIC and symmetric DDG methods over uniform triangular meshes while a
slight fraction of order loss is observed for nonsymmetric DDG method with even degree
polynomial approximations. It is also shown that singular or blow up phenomena can be well
captured under the new DDG framework.

Throughout the paper, we denote the exact solution of Eq. (1) by the uppercase U and
the DG solution of Eq. (1) by the lowercase u. The rest of the paper is organized as follows.
In Sect. 2, we briefly review the direct DG methods. In Sect. 3, the new methodology is
described. In Sect. 4, nonlinear stability analysis are presented. Implementation details of the
new methods are explained and several numerical examples are presented in Sect. 5. Finally,
we draw our conclusions in Sect. 6.

2 A Review of Direct DGMethods

In this section, we will present a brief review of the original direct DG methods [1–4] and
the required notation for later use.

We consider a shape regular triangular mesh partition Th of � such that � = ∪K∈Th K .
For each element K , we denote the diameter of the inscribed circle by hK . Furthermore, we
define the numerical solution space as

V
k
h := {v ∈ L2(�) : v(x, y)

∣
∣
K ∈ Pk(K )},
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where h = maxK {hK } and Pk(K ) represents the space of polynomials of degree k in two
dimensions. Note that this solution space is discontinuous across element interfaces. For this
purpose, we adopt the following notation for the interface solution jump and average

�u� = u+ − u−, {{u}} = u+ + u−

2
, ∀(x, y) ∈ ∂K ,

where u+ and u− are the solution values calculated from the exterior and interior of the
element K .

Next, for a test function v ∈ V
k
h , we multiply Eq. (1) by v, integrate it by parts and apply

the divergence theorem to obtain the weak form of Eq. (1). Along with the initial projection,
the weak form is then given by

∫

K
utv dxdy +

∫

K
A(u)∇u · ∇v dxdy −

∫

∂K
Â(u)∇u · n v ds = 0, ∀v ∈ V

k
h, (2)

∫

K
u(x, y, 0)v(x, y) dxdy =

∫

K
U0(x, y)v(x, y) dxdy, ∀v ∈ V

k
h . (3)

In Eq. (2), the volume integration is performed over individual elements K and the surface
integral is performed over the element boundary ∂K . Here, n is the outward unit normal
vector on ∂K . Furthermore, since u(x, y, t) is discontinuous across the elements, A(u)∇u
is multi-valued on ∂K . For this reason, A(u)∇u is written with a hat in the surface integral
term in Eq. (2). In fact, Â(u)∇u is known as the numerical flux. The original DDG method
[1] defines the numerical flux as

̂ai j (u)ux j = β0

he
�bi j (u)�n j + {{bi j (u)x j }} + β1he�bi j (u)x1x j n1 + bi j (u)x2x j n2�, (4)

where we denote by ai j (u) the i j component of the diffusion matrix A(u). Here, bi j (u) are
the components of the matrix B(u). Basically, the components of B(u) are the antiderivatives
of ai j (u) and it is defined as bi j (u) = ∫ u ai j (s)ds. In Eq. (4), he is the average of the element
diameters sharing the edge ∂K , n j are the components of the unit normal n for j = 1, 2,
and the subscripts x j denote the partial derivative with respect to the corresponding spatial
coordinate axis for j = 1, 2. Furthermore, (β0, β1) is a pair of coefficients that affects the
stability and optimal convergence of the DDG method. Along with Eqs. (2) and (4), the
definition of the original direct DG method [1] is now completed.

It is well-known that the original DDGmethod loses an order for even degree polynomials
[1]. This problem is fixed either by including a jump term for the test function or introducing
a numerical flux for the test function. What determines the name of the corresponding DDG
version is in fact how these additional terms are implemented.

2.1 The DDGMethod with Interface Correction

The scheme formulation of the original DDGIC method [2] is given as
∫

K
utv dxdy +

∫

K
A(u)∇u · ∇v dxdy

−
∫

∂K
Â(u)∇u · n v ds +

∫

∂K
�B(u)�{{∇v}} · n ds = 0, ∀v ∈ V

k
h,

where the numerical flux Â(u)∇u is calculated using Eq. (4).

123



Journal of Scientific Computing (2023) 96 :44 Page 5 of 26 44

2.2 The Symmetric DDGMethod

The scheme formulation of the original symmetric DDG method [3] is given by
∫

K
utv dxdy +

∫

K
A(u)∇u · ∇v dxdy

−
∫

∂K
Â(u)∇u · n v ds +

∫

∂K
�B(u)�∇̂v · n ds = 0, ∀v ∈ V

k
h .

As in the DDGIC method, the numerical flux Â(u)∇u is calculated by Eq. (4) while the
numerical for the test function is given as

v̂x = β0
�v�

he
n1 + {{vx }} + β1he�vxxn1 + vyxn2�,

v̂y = β0
�v�

he
n2 + {{vy}} + β1he�vxyn1 + vyyn2�.

(5)

2.3 The Nonsymmetric DDGMethod

The scheme formulation of the original nonsymmetric DDG method [4] is given by
∫

K
utv dxdy +

∫

K
A(u)∇u · ∇v dxdy

−
∫

∂K
Â(u)∇u · n v ds −

∫

∂K
Ã(v)∇v · n�u� ds = 0, ∀v ∈ V

k
h .

Similar to the other DDG versions, the numerical flux Â(u)∇u is calculated by Eq. (4). The
numerical flux for the test function is defined similarly but with a different penalty coefficient
β0v:

˜ai j (v)vx j = β0v

he
�bi j (v)�n j + {{bi j (v)x j }} + β1he�bi j (v)x1x j n1 + bi j (v)x2x j n2�. (6)

3 The NewDDG Framework for Nonlinear Diffusion Equations

As can be seen in the previous section, the numerical flux definition of original DDG versions
is based on calculating an antiderivative matrix B(u) that is calculated according to

B(u) =
∫ u

A(s)ds.

A major drawback occurs when the components of the diffusion matrix A(u) cannot be
integrated explicitly. In such cases, none of the original DDG versions can be implemented.
A striking example is the energy equation of compressible Navier–Stokes equations. This
drawback limits the use of the original DDG versions only to simple applications where the
antiderivative matrix B(u) is available.

The new framework is based on the adjoint-property of inner product, which was used in
the proof of a bound-preserving limiter with DDGIC method [37]. On the continuous level,
the integrand of the surface integral in the weak form Eq. (2) can be rewritten as

A(u)∇u · n = ∇u · A(u)T n.
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K

K ′
n

ξ

Fig. 1 The new direction vector ξ

By applying the adjoint-property, we define a new direction vector ξ(u) = A(u)T n. As
shown in Fig. 1, the new direction vector is simply obtained by stretching/compressing and
rotating the unit normal vector n through diffusion matrix A(u). On the discrete level, the
new direction vector can be calculated by

ξ ({{u}}) = A({{u}})T n. (7)

The numerical flux can suitably be defined as

Â(u)∇u · n = ∇̂u · ξ ({{u}}) ,

where the numerical flux ∇̂u = (̂ux , û y) can be computed by the original DDG numerical
flux formula for the heat equation [1]:

ûx = β0
�u�

he
n1 + {{ux }} + β1he�uxxn1 + uyxn2�,

û y = β0
�u�

he
n2 + {{uy}} + β1he�uxyn1 + uyyn2�.

(8)

Now, we reformulate all DDG versions for Eq. (1) according to the new framework: Find
u ∈ V

k
h such that

∫

K
utv dxdy +

∫

K
A(u)∇u · ∇v dxdy

−
∫

∂K
∇̂u · ξ({{u}})v ds + σ

∫

∂K
�u�∇̃v · ξ({{u}}) ds = 0, ∀v ∈ V

k
h,

(9)

where σ = 0 for the basic DDG scheme, σ = 1 for DDGIC and symmetric DDG schemes,
and σ = −1 for the nonsymmetric DDG scheme. Furthermore, we denote by ∇̃v = (̃vx , ṽy)

the numerical flux for the test function v ∈ V
k
h . Along with the following definitions of the

numerical flux for the test function, Eq. (9) defines the new DDG versions:
The baselineDDG scheme (σ = 0):

∇̃v = 0. (10)

TheDDGIC scheme (σ = 1):

∇̃v = {{∇v}}. (11)
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The symmetric DDG scheme (σ = 1):

ṽx = β0
�v�

he
n1 + {{vx }} + β1he�vxxn1 + vyxn2�,

ṽy = β0
�v�

he
n2 + {{vy}} + β1he�vxyn1 + vyyn2�.

(12)

The nonsymmetric DDG scheme (σ = −1):

ṽx = β0v
�v�

he
n1 + {{vx }} + β1he�vxxn1 + vyxn2�,

ṽy = β0v
�v�

he
n2 + {{vy}} + β1he�vxyn1 + vyyn2�.

(13)

In [37], the adjoint property of inner product was only used in the proof of positivity-
preserving (Theorem 3.2). All numerical tests of [37] involving nonlinear diffusion equations
were implemented with the original DDGIC scheme formulation [2].

3.1 Boundary Conditions

We briefly discuss the implementation of boundary conditions. For all edges falling on the
domain boundaries, i.e. ∂K ∈ ∂�, the second derivative term in the numerical flux Eq. (8)
is dropped and only the solution jump and gradient average are explored to approximate the
numerical flux on the domain boundary

ûx = β0
�u�

he
n1 + {{ux }},

û y = β0
�u�

he
n2 + {{uy}}.

For periodic boundary conditions where the periodicity is given asU (x, y) = U (x+Lx , y+
Ly), the boundary condition for exterior “ + " state is set from the interior “ − " state of the
periodic boundary such that

u+(x, y) = u−(x + Lx , y + Ly),

∇u+(x, y) = ∇u−(x + Lx , y + Ly).

For Dirichlet boundary condition where the solution on a part of the domain boundary is
given, U (x, y)|(x,y)∈∂� = uD(x, y), we simply set

u+(x, y) = uD(x, y),

∇u+(x, y) = ∇u−(x, y).

For Neumann boundary condition where the solution flux along the outward normal on a part
of the domain boundary is given, i.e. A(u)∇U (x, y) · n|(x,y)∈∂� = uN (x, y), we set

Â(u)∇u · n = uN (x, y).

We comment that there is no need to adapt direct DG method numerical flux formula (8) on
the solution’s gradient when Neumann type boundary condition is considered.

Remark 1 We summarize the main features and advantages of the generalized DDGmethods
(9) for nonlinear diffusion Eq. (1).
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• Nonlinearity of the diffusion process goes into the corresponding new direction vector
defined at the cell interface that greatly simplifies the implementation of theDDGmethod.

• Numerical flux for the solution’s gradient∇u can be approximated by the linear numerical
flux formula of the original DDG. Since the solution’s gradient is independent of the
governing equation, this allows the code reuse for general nonlinear diffusion problems.

• The nonlinear direction vectors are further applied to define the nonlinear interface terms
involving test function.

4 Nonlinear Stability of the NewDDGMethods

In this section, we will discuss the nonlinear stability theory of the DDG methods developed
in Sect. 3. To simplify the discussion, we will assume periodic boundary conditions on the
domain boundaries. The important inequalities used in the proofs of the main theorems are
discussed later in Appendix A.

We say that the DDG method is stable in L2 sense if
∫

�

u2(x, y, T ) dxdy ≤
∫

�

U 2
0 (x, y) dxdy, ∀T ≥ 0.

Note that the primal weak formulation of the new DDG methods is obtained by summing
Eqs. (3) and (9) over all element K ∈ Th .

∫

�

utv dxdy + B(u, v) = 0, ∀v ∈ V
k
h . (14)

∫

�

u(x, y, 0)v(x, y) dxdy =
∫

�

U0(x, y)v(x, y) dxdy, ∀v ∈ V
k
h, (15)

Here, U0(x, y) denotes the initial data and B(u, v) is given by

B(u, v) =
∫

�

A(u)∇u · ∇v dxdy +
∑

e∈Eh

∫

e

(

�v�∇̂u + σ �u�∇̃v
) · ξ({{u}}) ds = 0. (16)

where Eh = ∪K∈Th ∂K represents the set of all element edges.

Theorem 2 (Stability of nonsymmetric DDG method) Let the model parameter σ = −1 in
the scheme formulation Eq. (9) that is equipped with the numerical flux for the gradient of
the numerical solution Eq. (8) and the numerical flux for the gradient of the test function Eq.
(13). If β0 ≥ β0v , then we have

∫

�

u2(x, y, T ) dxdy ≤
∫

�

U 2
0 (x, y) dxdy, ∀T ≥ 0.

Proof By setting u = v, we integrate Eq. (14) with respect to time over (0, T ).

1

2

∫

�

u2(x, y, T ) dxdy +
∫ T

0
B(u, u) dt = 1

2

∫

�

u2(x, y, 0) dxdy, (17)

where
∫ T

0
B(u, u) dt =

∫ T

0

∫

�

A(u)∇u · ∇u dxdy dt

+
∑

e∈Eh

∫ T

0

∫

e
�u�(∇̂u − ∇̃u) · ξ({{u}}) ds dt . (18)
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Since A(u) is positive definite, we have A(u)∇u · ∇u = ∇uT A(u)∇u≥0 and thus,
∫ T

0

∫

�

A(u)∇u · ∇u dxdy dt ≥ 0, ∀T ≥ 0. (19)

Furthermore, we have that

∇̂u − ∇̃u = β∗
0

he
�u�n,

where β∗
0 = β0 − β0v ≥ 0 by the assumptions of the theorem. Recalling that ξ({{u}}) =

A({{u}})T n and A(u) is the positive definite, we can write

�u�(∇̂u − ∇̃u) · ξ({{u}}) = β∗
0

he
�u�2

(

n · A({{u}})T n
)

≥0.

Thus, we have
∫ T

0

∫

e
�u�(∇̂u − ∇̃u) · ξ({{u}}) ds dt ≥ 0, ∀e ∈ Eh, ∀T ≥ 0. (20)

Substituting Eqs. (19) and (20) into Eq. (18), and then Eq. (18) into Eq. (17), we obtain
∫

�

u2(x, y, T ) dxdy ≤
∫

�

u2(x, y, 0) dxdy, ∀T ≥ 0.

Finally, we apply the Schwarz inequality to the initial projection Eq. (15) with v = u(x, y, 0)
and obtain

∫

�

u2(x, y, 0) dxdy ≤
∫

�

U 2
0 (x, y) dxdy,

which completes the proof. 
�
Theorem 3 (Stability of symmetric DDG method) Assume that A(u) is a positive definite
matrix with positive eigenvalues and there exists γ, γ ∗ ∈ R

+ such that the eigenvalues
(γ1(u), γ2(u))of A(u) lie between [γ, γ ∗] for∀u ∈ V

k
h . Furthermore, let themodel parameter

σ = 1 in the scheme formulation Eq. (9) that is equipped with the numerical flux for the
gradient of the numerical solution Eq. (8) and the numerical flux for the gradient of the test

function Eq. (12). If β0 ≥ C(β1)k2
(

γ ∗
γ

)2
β2
1 , then we have

1

2

∫

�

u2(x, y, T ) dxdy +
(

1 − C(β1)k
2
(

γ ∗

γ

)2 β2
1

β0

)
∫ T

0

∫

�

A(u)∇u · ∇u dxdy dt

≤ 1

2

∫

�

U 2
0 (x, y) dxdy,

where C(β1) = C1/2β2
1 + 2C2 > 0 and C1,C2 > 0 are constants.

Proof By setting u = v, Eq. (14) becomes

1

2

d

dt

∫

�

u2 dxdy + B(u, u) = 0, (21)

where

B(u, u) =
∫

�

A(u)∇u · ∇u dxdy + 2
∑

e∈Eh

∫

e
�u�∇̂u · ξ({{u}}) ds = 0. (22)
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Note that

�u�∇̂u · ξ({{u}}) = β0

h
�u�2n · ξ({{u}}) + �u�{{∇u}} · ξ({{u}}) + β1h�u��∇(∇u · n)� · ξ({{u}}).

Therefore, invoking Lemmas 10 to 12, we get

∑

e∈Eh

∫

e
�u�∇̂u · ξ({{u}}) ds

≥
∑

e∈Eh

γβ0

h

∥
∥�u�

∥
∥
2
L2(e)

−
∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥2
L2(e) −

∑

K∈Th

C1
(γ ∗k)2

4γβ0
‖∇u‖2L2(K )

−
∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥
2
L2(e) −

∑

K∈Th

C2
(γ ∗β1k)2

γβ0
‖∇u‖2L2(K )

= −
∑

K∈Th

C1
(γ ∗k)2

4γβ0
‖∇u‖2L2(K )

−
∑

K∈Th

C2
(γ ∗β1k)2

γβ0
‖∇u‖2L2(K )

= −
∑

K∈Th

1

2

(

C1

2β2
1

+ 2C2

)

(γ ∗β1k)2

γβ0
‖∇u‖2L2(K )

.

This can be rewritten as

∑

e∈Eh

∫

e
�u�∇̂u · ξ({{u}}) ds ≥ −C(β1)k2

2

(γ ∗)2

γ

β2
1

β0

∑

K

‖∇u‖2L2(K )
.

where C(β1) = C1/2β2
1 + 2C2. Next, we use the assumption on the eigenvalues of A(u):

∑

K

‖∇u‖2L2(K )
≤ 1

γ

∑

K

∫

K
∇u · A(u)∇u dxdy,

and obtain

∑

e∈Eh

∫

e
�u�∇̂u · ξ({{u}}) ds ≥ −C(β1)k2

2

(
γ ∗

γ

)2 β2
1

β0

∑

K

∫

K
∇u · A(u)∇u dxdy. (23)

Substituting this Eq. (23) into Eq. (22), and then, Eq. (22) into Eq. (21) gives

1

2

d

dt

∫

�

u2 dxdy +
(

1 − C(β1)k
2
(

γ ∗

γ

)2 β2
1

β0

)
∫

�

A(u)∇u · ∇u dxdy ≤ 0. (24)

Lastly, we integrate Eq. (24) over (0, T ) and recall
∫

�

u2(x, y, 0) dxdy ≤
∫

�

U 2
0 (x, y) dxdy,

from the proof of Theorem 2. This completes the proof provided that we have β0 ≥
C(β1)k2

(
γ ∗
γ

)2
β2
1 . 
�

123



Journal of Scientific Computing (2023) 96 :44 Page 11 of 26 44

Theorem 4 (Stability of DDGICmethod) Assume that A(u) is a positive definite matrix with
positive eigenvalues and there exists γ, γ ∗ ∈ R

+ such that the eigenvalues (γ1(u), γ2(u)) of
A(u) lie between [γ, γ ∗] for ∀u ∈ V

k
h . Furthermore, let the model parameter σ = 1 in the

scheme formulation Eq. (9) that is equipped with the numerical flux for the gradient of the
numerical solution Eq. (8) and the numerical flux for the gradient of the test function Eq.

(11). If β0 ≥ C(β1)k2
(

γ ∗
γ

)2
β2
1 , then we have

1

2

∫

�

u2(x, y, T ) dxdy +
(

1 − C(β1)k
2
(

γ ∗

γ

)2 β2
1

β0

)
∫ T

0

∫

�

A(u)∇u · ∇u dxdy dt

≤ 1

2

∫

�

U 2
0 (x, y) dxdy.

where C(β1) = C1/β
2
1 + C2 > 0 and C1,C2 > 0 are constants.

Proof The proof is very similar to the proof of Theorem 3. Therefore, we will only lay out
the sketch of the proof. By setting u = v, Eq. (14) becomes

1

2

d

dt

∫

�

u2 dxdy + B(u, u) = 0,

where

B(u, u) =
∫

�

A(u)∇u · ∇u dxdy +
∑

e∈Eh

∫

e
�u�

(∇̂u + {{∇u}}) · ξ({{u}}) ds = 0.

Note that

�u�
(∇̂u + {{∇u}}) · ξ({{u}}) = β0

h
�u�2n · ξ({{u}})

+ 2�u�{{∇u}} · ξ({{u}}) + β1h�u��∇(∇u · n)� · ξ({{u}}).
As in the proof of Theorem 3, we invoke Lemmas 10 to 12:

∑

e∈Eh

∫

e
�u�

(∇̂u + {{∇u}}) · ξ({{u}}) ds

≥
∑

e∈Eh

γβ0

h

∥
∥�u�

∥
∥
2
L2(e)

−
∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥2
L2(e) −

∑

K∈Th

C1
(γ ∗k)2

γβ0
‖∇u‖2L2(K )

−
∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥2
L2(e) −

∑

K∈Th

C2
(γ ∗β1k)2

γβ0
‖∇u‖2L2(K )

= −C(β1)k
2 (γ ∗)2

γ

β2
1

β0

∑

K

‖∇u‖2L2(K )
,

where C(β1) = C1/β
2
1 + C2. Then, following the same lines of steps as in the proof of

Theorem 3 will lead to the desired result. 
�
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(a) h (b) h/2 (c) h/4 (d) h/8

Fig. 2 The set of structured meshes with h = L/5, where L is the square domain size

5 Numerical Examples

In this section, the results of several numerical examples are presented. A set of uniform
triangular meshes is used to discretize the computational domain � as shown in Fig. 2.
In all simulations, we set β0 = (k + 1)2, β0v = β0

2 and β1 = 1
2k(k+1) in the numerical

flux definitions. The time integration is performed by a third order explicit strong stability-
preserving (SSP) Runge–Kutta scheme [42]. Unless stated otherwise, the time step size �t
is determined by the following Courant-Friedrichs-Levy (CFL) rule

μ
�t

minK h2K
< λ,

where λ = 1
2k+1 is the CFL number taken for Pk polynomials (refer to Table 2.2 in [43]).

In this paper, unless stated, we choose a uniform CFL value of λ = 0.1 for all P2, P3 and
P4 approximations. Here μ is the diffusion constant. Since positivity-preserving limiter is
used in Example 5.5 and Example 5.6, a more restrictive time step size is applied through all
numerical tests

μ
�t

minK h2K
< ωk λ, (25)

whereωk depending on the degree k is theminimumquadratureweight to guarantee positivity
[44]. We highlight that such polynomial point values used to evaluate positivity limiter are
different to those in [37, 39]. Nevertheless, the quadrature points [44] applied to Example
5.5 and Example 5.6 for positivity all work well. The focus of the article is to verify the
effectiveness of the new numerical flux formula and the accuracy of the new direct DG
methods, we adapt a small time step size (25) to reduce the errors in time and leave spatial
discretization errors being the dominant error.

The convergence rates are reported in the L2 and L∞ norms. To do that, we employ the
(k + 1)th order quadrature rule to calculate the L2-error while the L∞-errors are measured
using 361 points generated by the same quadrature rule in each element.

Example 5.1 In this example, we consider the heat equation

∂U

∂t
= μ�U ,

with periodic boundary conditions on � = [0, 1] × [0, 1] where μ is a constant diffusion
coefficient. Note that the diffusion matrix A(u) is given as

A(u) = μI,
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Table 1 L2 errors for Example 5.1 at T = 1

L2 errors and orders for the DDGIC method

h h/2 Order h/4 Order h/8 Order

k = 2 2.47E−03 3.10E−04 3.00 3.88E−05 3.00 4.85E−06 3.00

k = 3 1.87E−04 1.17E−05 4.00 7.29E−07 4.00 4.55E−08 4.00

k = 4 1.16E−05 3.64E−07 5.00 1.14E−08 5.00 3.55E−10 5.00

L2 errors and orders for the symmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 2.82E−03 3.55E−04 2.99 4.45E−05 2.99 5.56E−06 3.00

k = 3 2.10E−04 1.30E−05 4.01 8.10E−07 4.00 5.06E−08 4.00

k = 4 1.28E−05 4.02E−07 4.99 1.26E−08 5.00 3.93E−10 5.00

L2 errors and orders for the nonsymmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 2.29E−03 2.88E−04 2.99 3.73E−05 2.95 5.20E−06 2.84

k = 3 1.85E−04 1.15E−05 4.01 7.21E−07 4.00 4.50E−08 4.00

k = 4 1.13E−05 3.66E−07 4.95 1.26E−08 4.86 5.12E−10 4.62

where I ∈ R
2×2 is the identity matrix. The initial condition for this example is obtained from

the following exact solution at t = 0

U (x, y, t) = e−8π2μt cos (2π(x + y)) .

In this example, we set μ = 0.01 and carry out direct DG approximations up to T = 1. In
addition, all quadrature rules are exact up to polynomials of degree 2k + 1. On the coarsest
mesh h, time step values of �t = 9.21× 10−4, 2.77× 10−4 and 1.0× 10−4 for k = 2, 3, 4
are applied. We highlight that these small time step sizes are used in all accuracy tests for
linear problems.

The L2 and L∞ errors are listed in Tables 1 and 2, respectively. We observe that optimal
(k + 1)th order convergence is obtained by the DDGIC and symmetric DDG methods. For
nonsymmetric DDG method, a slight order loss is observed with even degree polynomial
approximations, i.e. k = 2 and k = 4. Recall in [4] for one-dimensional problems and on
uniform mesh, optimal convergence order is observed for the nonsymmetric DDG method.

Example 5.2 In this numerical test, we now consider an anisotropic diffusion equation with
mixed derivatives

∂U

∂t
= μ

(

2Uxx + 3Uxy + 3Uyy
)

,

with periodic boundary conditions on � = [0, 1] × [0, 1]. Note that this equation is still
linear, i.e. diffusion matrix A(u) is a constant coefficient matrix. Moreover, it can be written
in a nonsymmetric form

A(u) = μ

(

2 1
2 3

)

.
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Table 2 L∞ errors for Example 5.1 at T = 1

L∞ errors and orders for the DDGIC method

h h/2 Order h/4 Order h/8 Order

k = 2 8.58E−03 1.03E−03 3.06 1.31E−04 2.97 1.65E−05 2.99

k = 3 7.77E−04 5.40E−05 3.85 3.43E−06 3.98 2.17E−07 3.98

k = 4 4.63E−05 1.35E−06 5.10 4.23E−08 4.99 1.32E−09 5.00

L∞ errors and orders for the symmetric DDG method

h h/2 Order h/4 Order h/8 Order

k = 2 6.15E−03 7.01E−04 3.13 8.96E−05 2.97 1.13E−05 2.99

k = 3 6.18E−04 4.36E−05 3.83 2.83E−06 3.94 1.79E−07 3.98

k = 4 3.39E−05 1.01E−06 5.07 3.26E−08 4.96 1.03E−09 4.99

L∞ errors and orders for the nonsymmetric DDG method

h h/2 Order h/4 Order h/8 Order

k = 2 1.14E−02 1.39E−03 3.03 1.83E−04 2.92 2.32E−05 2.98

k = 3 9.58E−04 6.56E−05 3.87 4.10E−06 4.00 2.59E−07 3.98

k = 4 6.04E−05 1.86E−06 5.02 6.08E−08 4.94 1.96E−09 4.96

A nonsymmetric diffusion matrix is chosen to see how the new DDGmethods would behave
in such a setting. The initial condition is set from the following exact solution at t = 0

U (x, y, t) = e−32π2μt cos(2π y) cos(4πx − 2π y). (26)

As in the previous example, we set μ = 0.01 and output the approximations at T = 1, and
all quadrature rules are exact up to polynomials of degree 2k + 1.

The L2 and L∞ errors are listed in Tables 3 and 4, respectively. TheDDGIC and symmetric
DDG methods behave similarly in all cases with optimal convergence order obtained. The
nonsymmetric DDGmethod demonstrates optimal (k+1) convergence only for k = 3 while
it loses an order for even degree polynomials, which is clearer compared to Example 5.1.

Remark 5 This problem has been also tested equivalently with the diffusion matrix

A(u) = μ

(

2 1.5
1.5 3

)

,

which is symmetric-positive definite.We note that the performance of the newDDGmethods
does not change with this diffusionmatrix and the same results in Tables 3 and 4 are obtained.
Therefore, those results are not reported.

Example 5.3 In this example, we consider the porous medium equation

∂U

∂t
= μ�(U γ ), (27)

where γ is a model parameter. Note that this equation models a nonlinear diffusion process
for γ �= 1, i.e. coefficients of the diffusion matrix A(u) are functions of u:

A(u) = μ

(

γ uγ−1 0
0 γ uγ−1

)

= μγ uγ−1
I,
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Table 3 L2 errors for Example 5.2 at T = 1

L2 errors and orders for the DDGIC method

h h/2 Order h/4 Order h/8 Order

k = 2 1.34E−02 2.59E−03 2.37 2.14E−04 3.60 1.76E−05 3.61

k = 3 3.37E−03 1.16E−04 4.87 5.31E−06 4.45 3.12E−07 4.09

k = 4 4.62E−04 1.19E−05 5.29 3.73E−07 4.99 1.18E−08 4.99

L2 errors and orders for the symmetric DDG method

h h/2 Order h/4 Order h/8 Order

k = 2 1.41E−02 3.01E−03 2.22 2.56E−04 3.56 1.96E−05 3.71

k = 3 3.68E−03 1.27E−04 4.86 5.51E−06 4.53 3.20E−07 4.11

k = 4 4.92E−04 1.22E−05 5.33 3.88E−07 4.98 1.22E−08 4.99

L2 errors and orders for the nonsymmetric DDG method

h h/2 Order h/4 Order h/8 Order

k = 2 1.17E−02 2.47E−03 2.25 4.34E−04 2.51 9.21E−05 2.24

k = 3 3.67E−03 2.00E−04 4.20 1.07E−05 4.23 6.35E−07 4.07

k = 4 5.70E−04 1.15E−05 5.63 5.70E−07 4.34 3.47E−08 4.04

Table 4 L∞ errors for Example 5.2 at T = 1

L∞ errors and orders for the DDGIC method

h h/2 Order h/4 Order h/8 Order

k = 2 2.28E−02 4.33E−03 2.40 4.03E−04 3.43 4.04E−05 3.32

k = 3 7.81E−03 3.68E−04 4.41 2.18E−05 4.08 1.41E−06 3.96

k = 4 1.30E−03 3.48E−05 5.22 1.22E−06 4.84 3.97E−08 4.94

L∞ errors and orders for the symmetric DDG method

h h/2 Order h/4 Order h/8 Order

k = 2 2.38E−02 4.96E−03 2.26 4.71E−04 3.40 4.54E−05 3.37

k = 3 8.33E−03 4.03E−04 4.37 2.03E−05 4.31 1.28E−06 3.99

k = 4 1.37E−03 3.61E−05 5.25 1.27E−06 4.82 4.17E−08 4.94

L∞ errors and orders for the nonsymmetric DDG method

h h/2 Order h/4 Order h/8 Order

k = 2 2.13E−02 4.40E−03 2.28 8.01E−04 2.46 1.69E−04 2.25

k = 3 8.39E−03 5.87E−04 3.84 4.10E−05 3.84 2.66E−06 3.95

k = 4 1.49E−03 3.44E−05 5.43 1.50E−06 4.52 6.94E−08 4.44

where I ∈ R
2×2 is the identity matrix. The diffusion matrix is diagonal, but for γ > 1, Eq.

(27) becomes highly nonlinear. In order to assess the performance of the new DDG methods
on a highly nonlinear diffusion problem and measure the convergence rate, we solve Eq. (27)
on � = [0, 1] × [0, 1] with γ = 3 and employ the method of manufactured solutions by
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Table 5 L2 errors for Example 5.3 at T = 1

L2 errors and orders for the DDGIC method

h h/2 Order h/4 Order

k = 2 3.19E−03 4.02E−04 2.99 5.00E−05 3.01

k = 3 2.46E−04 1.29E−05 4.26 7.48E−07 4.10

k = 4 1.74E−05 5.63E−07 4.95 1.54E−08 5.20

L2 errors and orders for the symmetric DDG method

h h/2 Order h/4 Order

k = 2 3.26E−03 4.37E−04 2.90 5.64E−05 2.95

k = 3 2.87E−04 1.43E−05 4.33 8.33E−07 4.10

k = 4 1.85E−05 6.12E−07 4.91 1.69E−08 5.18

L2 errors and orders for the nonsymmetric DDG method

h h/2 Order h/4 Order

k = 2 2.93E−03 4.41E−04 2.73 5.19E−05 3.09

k = 3 2.09E−04 1.31E−05 3.99 8.54E−07 3.94

k = 4 1.72E−05 5.23E−07 5.04 1.50E−08 5.13

enforcing the solution

U (x, y, t) = e−8π2μt sin(2π(x + y)).

The initial condition for this problem is obtained from this manufactured solution at t =
0. Also, note that the boundary conditions are periodic. Furthermore, we set μ = 0.01
and conduct approximations to T = 1, and employ quadrature rules that are exact up to
polynomials of degree 4k+1. On the coarsest mesh h, time step values of�t = 10−4, 1.94×
10−5 and 5.31 × 10−6 for k = 2, 3, 4 are applied, respectively.

The L2 and L∞ errors are listed in Tables 5 and 6. We observe that all DDG methods
converge with optimal (k+1)th order accuracy for all reported cases. Although this problem
is nonlinear, the optimal convergence might be due to the diagonal structure of the nonlinear
diffusion matrix A(u).

Example 5.4 In this example, we consider the same equation as in Example 5.3 but with the
model coefficientγ = 2 on� = [−10, 10]×[−10, 10]. Here,we investigate the performance
of the new DDG methods for two initially disconnected, merging bumps which are defined
by the following:

U0(x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

e
−1

6−(x−2)2−(y+2)2 , (x − 2)2 − (y + 2)2 < 6

e
−1

6−(x+2)2−(y−2)2 , (x + 2)2 − (y − 2)2 < 6

0, otherwise.

Note that U (x, y, t) = 0 on ∂� for t ≥ 0. In this case, we solve the problem on h/16 mesh
along with μ = 1 and up to T = 4. In Fig. 3, we present a third order (k = 2) symmetric
DDG solution. The solutions corresponding to other DDG versions are similar, hence they
are not included. We observe that bumps are diffused quickly and merged with finite time.
The results are in good agreement with those in literature [3, 4, 45].
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Table 6 L∞ errors for Example 5.3 at T = 1

L∞ errors and orders for the DDGIC method

h h/2 Order h/4 Order

k = 2 2.42E−02 3.87E−03 2.65 5.33E−04 2.86

k = 3 2.29E−03 7.78E−05 4.88 3.45E−06 4.49

k = 4 2.60E−04 1.06E−05 4.62 3.50E−07 4.92

L∞ errors and orders for the symmetric DDG method

h h/2 Order h/4 Order

k = 2 2.29E−02 3.54E−03 2.69 4.97E−04 2.83

k = 3 2.05E−03 5.61E−05 5.19 2.78E−06 4.33

k = 4 2.45E−04 1.02E−05 4.59 3.41E−07 4.90

L∞ errors and orders for the nonsymmetric DDG method

h h/2 Order h/4 Order

k = 2 2.69E−02 4.46E−03 2.59 6.06E−04 2.88

k = 3 2.45E−03 6.97E−05 5.14 4.32E−06 4.01

k = 4 2.79E−04 1.15E−05 4.61 3.70E−07 4.95

Example 5.5 In this example, we continue to study the same equation as in Example 5.3
but with the model coefficient γ = 2 on � = [−1, 1] × [−1, 1]. Zero boundary condition
U (x, y, t) = 0 on ∂� for t ≥ 0 is applied and the initial condition is defined as

U0(x, y) =
{

1, (x, y) ∈ [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ]

0, otherwise.

We set μ = 1, solve the problem on h/16 mesh and run the simulations to T = 0.005.

Since the initial condition is discontinuous, a maximum-principle-satisfying (MPS) lim-
iter is employed to guarantee the stability of the numerical solutions obtained by new DDG
methods. The limiter in [39], which is similar to the linear scaling limiter in [46], is imple-
mented to keep the numerical solution in 0 ≤ u(x, y, t) ≤ 1 for t ≥ 0. Note that the CFL
condition Eq. (25) is still in use, and the DDG parameters β0 and β1 are kept the same.

In Fig. 4, the numerical solution obtained by the DDGIC method for a third order approx-
imation (k = 2) is shown. We observe that the numerical solution diffuses out smoothly in a
stable manner and is in good agreement with Example 5.7 of [47].

Example 5.6 In this example, we consider

∂U

∂t
= μ

(

2Uxx + 3(U 1.5)yy

)

+U 2, (28)

with the initial conditionU0(x, y) = 200 sin (πx) sin (π y) on � = [0, 1]× [0, 1]. We apply
the homogeneous Dirichlet boundary condition. Due to the last term on the right-hand side
of Eq. (28), the solution eventually blows up. If a positivity-preserving limiter is not used, the
numerical solution immediately becomes negative in the region near the initial bump. This
leads to an execution error due to square-root of a negative number. Therefore, the linear
scaling limiter of [39] (similar to the limiter in [46]) is employed to maintain the stability
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Fig. 3 The contour plot corresponding to the third (k = 2) order symmetric DDG solution for Example 5.4.
17 equally spaced contours are used between 0 and 0.8
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Fig. 4 The third (k = 2) order numerical solution obtained by DDGIC with MPS limiter for Example 5.4 at
T = 0.005. a The solution along y = 0, b surface plot. 19 equally spaced contour levels are used between 0
and 1

of the numerical approximation. However, the limiter’s lower bound is set to 0 to preserve
the positivity of the numerical solution. Furthermore, since the solution does not have an
upper bound due to the source term, the CFL condition in Eq. (25) is not able to maintain the
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Fig. 5 The third (k = 2) order numerical solution obtained by DDGIC with MPS limiter for Example 5.6 at
T = 1.81552 × 10−2

stability of the nonlinear diffusion process. Therefore, we follow [48] and modify Eq. (25)
as

μ
�t

minK h2K
< min

(

ωkλ,
1

maxK u

)

.

The modified CFL condition adaptively decreases �t while the solution u gets bigger. As
in the previous example, the DDG parameters β0, β1 are kept the same. The h/16 mesh
is used to solve this problem. We set the CFL value as λ = 0.01 and choose μ = 1, and
the quadrature rules are exact up to polynomials of degree (2k + 1)th. As for the stopping
criterion, we follow [48] and take �t < 10−13. However, it is worth emphasizing that the
focus of this paper is not to design a positivity-preserving limiter. Instead, we simply explore
the performance of the new DDG methods in computationally challenging cases. We follow
[49] and restart the Runge-Kutta time stepwith�t/2when it is no longer possible tomaintain
the positivity of the numerical solution in one or more cells.

For a third (k = 2) order solution, we observe that the restart algorithm is only activated
at the last time-step at t = 1.8155 × 10−2 for all DDG versions. However, it turns out that
the time step becomes smaller than the machine precision ε, i.e. �t < ε, during the restart
procedure. Thismeans that it is no longer possible to continue time-steppingwithout violating
the positivity in one or more cells. Therefore, we denote t = 1.81552× 10−2 as the blow-up
time. Note that this value is slightly smaller than the blow-up time t = 1.82378 × 10−2

reported in [48]. Thus, we obtain slightly lower values for maxK uK . In Fig. 5, we show
the simulation for a third order (k = 2) numerical solution obtained by the DDGIC method
when the solution blows up at t = 1.81552×10−2. Since the results obtained by other DDG
versions are similar, they are not shown. We observe that the numerical solution does not
have oscillations and qualitatively similar to that in [48].
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6 Concluding Remarks

In this paper, we have unified the new framework for direct discontinuous Galerkin (DDG)
methods by extending the new DDGIC method [41] to the symmetric and the nonsymmetric
DDG versions. Unlike their original counterparts, the new DDG methods do not require
evaluating an antiderivative of the nonlinear diffusionmatrix. By constructing a new direction
vector at each element interface, a linear numerical flux is used regardless of the problem type.
Furthermore, the nonlinear linear stability theory of the new methods has been developed
and several numerical experiments have been conducted to perform the error analysis. In
all numerical examples, the DDGIC and symmetric DDG methods demonstrated optimal
(k + 1)th order convergence and their performances were assessed to be equivalent. On
the other hand, the performance of the nonsymmetric DDG method varied in all numerical
examples. The nonsymmetric DDG method achieved optimal (k + 1)th order convergence
for odd degree polynomials in all examples while an order loss was observed with the even
degree polynomials except for the cases with diagonal diffusion matrices. In short, a high-
order accuracy is achieved by all new DDG methods. However, the DDGIC and symmetric
DDG methods were found to be superior to the nonsymmetric version.

Funding Research work of the author is supported by National Science Foundation grant DMS-1620335 and
Simons Foundation grant 637716.

A. Important Inequalities

In this section, we discuss important inequalities used in the proofs of the stability analysis
for symmetric DDG and DDGIC methods.

Lemma 6 (Young’s inequality) Suppose that a, b ≥ 0, 1 < p, q,∞, and that 1
p + 1

q = 1.
Then, we have that

ab ≤ a p

p
+ bq

q
.

A corollary to Lemma 6 can be obtained by considering ab = (aε1/p)(b/ε1/p) for ε > 0.

Corollary 7 Suppose that a, b ≥ 0, 1 < p, q,∞, and that 1
p + 1

q = 1. Furthermore, if ε > 0,
then

ab ≤ εa p

p
+ bq

qεq/p
.

We will also recall the following lemma due to Ern and Guermord [50]:

Lemma 8 Let K be an element in themesh partitionTh of the computational domain� ⊂ R
d ,

v ∈ V
k
h and l ∈ N. There exists a constant C > 0 for any non-negative integer m ≤ l such

that

|v|Wl,p(K ) ≤ Ch
m−l+d

(
1
p − 1

r

)

K |v|Wm,r (K ) , ∀p, r ∈ [1,∞].
Proof See the proof of Lemma 12.1 in [50]. 
�

Next, we will derive a series of essential inequalities used in the proof of the stability
results for symmetric DDG and DDGIC methods.
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Lemma 9 Assume that A(u) ∈ R
2×2 is positive definite with positive eigenvalues and there

exist γ, γ ∗ ∈ R
+ such that the eigenvalues (γ1(u), γ2(u)) of A(u) lie between [γ, γ ∗] for

∀u ∈ R. If ξ(u) is given as in Eq. (7), then ∀x ∈ R
2 there holds

|ξ(u) · x| ≤ γ ∗ ‖x‖ ,

where we denote by ‖·‖ the Euclidean norm in R
2.

Proof Using the Scharwz inequality, we have

|ξ(u) · x| ≤ ‖ξ(u)‖ ‖x‖ .

Let e1, e2 be the orthonormal eigenvectors corresponding to the eigenvaluesγ and γ ∗, respec-
tively. Since A(u) is positive-definite, its eigenvectors form a basis of R

2. Then, the unit
normal vector can be written as n = n1e1 + n2e2, and then, it follows that

‖ξ(u)‖2 =
∥
∥
∥A({{u}})T n

∥
∥
∥

2 = ‖γ1n1e1 + γ2n2e2‖2 = γ 2
1 n

2
1 + γ 2

2 n
2
2

≤ (γ ∗)2
(

n21 + n22
) = (γ ∗)2

and the conclusion holds. 
�

Lemma 10 Suppose that A(u) ∈ R
2×2 is positive definite with positive eigenvalues and

there exist γ, γ ∗ ∈ R
+ such that the eigenvalues (γ1(u), γ2(u)) of A(u) lie between [γ, γ ∗]

for ∀u ∈ R. If β0 ≥ 0, then we have that

∑

e∈Eh

∫

e

β0

he
�u�2n · ξ({{u}}) ds ≥

∑

e∈Eh

∫

e

γβ0

he
�u�2 ds.

Proof Recall the definition of the new direction vector ξ{{u}} = A({{u}})T n. Then,
β0

he
�u�2n · ξ({{u}}) = β0

he
�u�2n · A({{u}})T n.

Since n · A({{u}})T n ≥ γ1 ≥ γ , the conclusion follows. 
�

Lemma 11 Suppose that A(u) ∈ R
2×2 is positive definite with positive eigenvalues and

there exist γ, γ ∗ ∈ R
+ such that the eigenvalues (γ1(u), γ2(u)) of A(u) lie between [γ, γ ∗]

for ∀u ∈ V
k
h . If β0 ≥ 0, then there exists a constant C > 0 such that

∑

e∈Eh

∫

e
�u�{{∇u}} · ξ({{u}}) ds ≥ −

∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥2
L2(e) −

∑

K∈Th

C
(γ ∗k)2

4γβ0
‖∇u‖2L2(K )

.

Furthermore, under the same assumptions, there also holds

∑

e∈Eh

∫

e
�u�{{∇u}} · ξ({{u}}) ds ≥ −

∑

e∈Eh

γβ0

4h

∥
∥�u�

∥
∥
2
L2(e) −

∑

K∈Th

C
(γ ∗k)2

2γβ0
‖∇u‖2L2(K )

.
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Proof Note that {{∇u}} = 1
2 (∇u)+ + 1

2 (∇u)−. Then, we have
∑

e∈Eh

∫

e
�u�{{∇u}} · ξ({{u}}) ds

= 1

2

∑

e∈Eh

∫

e
�u�

(

(∇u)+ + (∇u)−
) · ξ({{u}}) ds

≥ −1

2

∑

e∈Eh

∫

e

∣
∣�u�

∣
∣
(∣
∣(∇u)+ · ξ({{u}})∣∣ + ∣

∣(∇u)− · ξ({{u}})∣∣) ds

≥ −γ ∗

2

∑

e∈Eh

∫

e

∣
∣�u�

∣
∣
∥
∥(∇u)+

∥
∥ ds − γ ∗

2

∑

e∈Eh

∫

e

∣
∣�u�

∣
∣
∥
∥(∇u)−

∥
∥ ds,

where we have invoked Lemma 9 in the last step. Moreover, by Corollary 7 with ε = γβ0
γ ∗h ,

we obtain

γ ∗
∫

e

∣
∣�u�

∣
∣
∥
∥(∇u)±

∥
∥ ds ≤ γβ0

2h

∥
∥�u�

∥
∥
2
L2(e) + (γ ∗)2h

2γβ0

∥
∥(∇u)±

∥
∥
2
L2(e) . (29)

So that we have
∑

e∈Eh

∫

e
�u�{{∇u}} · ξ({{u}}) ds

≥ −
∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥2
L2(e)

−
∑

e∈Eh

(γ ∗)2h
4γβ0

∥
∥(∇u)+

∥
∥
2
L2(e) −

∑

e∈Eh

(γ ∗)2h
4γβ0

∥
∥(∇u)−

∥
∥
2
L2(e) .

(30)

Note that the last two terms above are simply summations over individual edges in the trian-
gulation Th , and each summation is responsible for accumulating

∥
∥(∇u)±

∥
∥2
L2(e) only from

one side of the edge. In the global sense, these summations accumulate
∥
∥(∇u)interior

∥
∥
2
L2(∂K )

for each cell K in the domain. Thus, they can be converted into a single summation over
cells. That is,

∑

e∈Eh

(γ ∗)2h
4γβ0

∥
∥(∇u)+

∥
∥
2
L2(e) +

∑

e∈Eh

(γ ∗)2h
4γβ0

∥
∥(∇u)−

∥
∥
2
L2(e) =

∑

K∈Th

(γ ∗)2h
4γβ0

‖∇u‖2L2(∂K )
.

(31)

This expression is useful since we can invoke the trace inequality

∑

K∈Th

(γ ∗)2h
4γβ0

‖∇u‖2L2(∂K )
≤

∑

K∈Th

C
(γ ∗k)2

4γβ0
‖∇u‖2L2(K )

, (32)

for some constant C > 0. Thus, substituting Eqs. (31) and (32) into Eq. (30) completes
the first part of the proof. The second part follows after following the same steps but using
ε = γβ0

2γ ∗h in Eq. (29) instead. 
�

Lemma 12 Suppose that A(u) ∈ R
2×2 is positive definite and there exist γ, γ ∗ ∈ R

+ such
that the eigenvalues (γ1(u), γ2(u)) of A(u) lie between [γ, γ ∗] for ∀u ∈ V

k
h . If β0 ≥ 0, then
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there exists a constant C > 0 such that
∑

e∈Eh

∫

e
β1h�u��∇(∇u · n)� · ξ({{u}}) ds

≥ −
∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥2
L2(e) −

∑

K∈Th

C
(γ ∗β1k)2

γβ0
‖∇u‖2L2(K )

.

Proof By convention, the outward unit normal vector n is understood as n = n+. Also, it
can be understood in terms of the inward unit normal vector as n = −n−. Therefore, the
jump term for the second derivatives can be rewritten as

�∇(∇u · n)� = (∇(∇u · n))+ + (∇(∇u · n))− .

With this understanding, we have that
∫

e
β1h�u��∇(∇u · n)� · ξ({{u}}) ds

=
∫

e
β1h�u�

(

(∇(∇u · n))+ + (∇(∇u · n))−
) · ξ({{u}}) ds

≥ −
∫

e
β1h

∣
∣�u�

∣
∣
∣
∣
(

(∇(∇u · n))+ + (∇(∇u · n))−
) · ξ({{u}})∣∣ ds

≥ −γ ∗
∫

e
β1h

∣
∣�u�

∣
∣
(∥
∥(∇(∇u · n))+

∥
∥ + ∥

∥(∇(∇u · n))−
∥
∥
)

ds.

Note that we have invoked Lemma 9 and triangle inequality in the last step. Furthermore, by
Corollary 7 with ε = γβ0

2γ ∗β1h2 , we obtain

γ ∗
∫

e
β1h

∣
∣�u�

∣
∣
∥
∥(∇(∇u · n))±

∥
∥ ds ≤ γβ0

4h

∥
∥�u�

∥
∥2
L2(e) + (γ ∗β1)

2h3

γβ0

∥
∥(∇(∇u · n))±

∥
∥
2
L2(e) .

Thus,
∑

e∈Eh

∫

e
β1h�u��∇(∇u · n)� · ξ({{u}}) ds ≥ −

∑

e∈Eh

γβ0

2h

∥
∥�u�

∥
∥2
L2(e)

−
∑

e∈Eh

(γ ∗β1)
2h3

γβ0

∥
∥(∇(∇u · n))+

∥
∥
2
L2(e)

−
∑

e∈Eh

(γ ∗β1)
2h3

γβ0

∥
∥(∇(∇u · n))−

∥
∥
2
L2(e) .

(33)

As in the proof of Lemma 11, we convert the summations over edges to a summation over
cells:

∑

e∈Eh

(γ ∗β1)
2h3

γβ0

∥
∥(∇(∇u · n))+

∥
∥
2
L2(e) +

∑

e∈Eh

(γ ∗β1)
2h3

γβ0

∥
∥(∇(∇u · n))−

∥
∥
2
L2(e)

=
∑

K∈Th

(γ ∗β1)
2h3

γβ0
‖∇(∇u · n)‖2L2(∂K )

.

(34)

At this point, it might be tempting to invoke the trace theorem for the norm on the right-hand
side of the above equation. However, a more useful inequality can be obtained by considering
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the Euclidean norm ‖∇(∇u · n)‖2. We first note that

‖∇(∇u · n)‖2 = (uxxn1 + uyxn2)
2 + (uxyn1 + uyyn2)

2

= (u2xx + uxy)
2n21 + (u2yx + uyy)

2n22 + 2n1n2(uxxuyx + uxyuyy).

For the cross-product term above, we invoke Lemma 6 with p = q = 2

2n1n2(uxxuyx + uxyuyy) = 2
(

(n2uxx )(n1uyx ) + (n2uxy)(n1uyy)
)

≤ (u2xx + uxy)
2n22 + (u2yx + uyy)

2n21.

Since n21 + n22 = 1, we obtain

‖∇(∇u · n)‖2 ≤ u2xx + u2xy + u2yx + u2yy .

Using this and the trace inequality gives

‖∇(∇u · n)‖2L2(∂K )
=

∫

∂K
‖∇(∇u · n)‖2 ds

≤
∫

∂K

(

u2xx + u2xy + u2yx + u2yy
)

ds

≤ C
k2

h

∫

K

(

u2xx + u2xy + u2yx + u2yy
)

dxdy = C
k2

h
|u|2H2(K )

.

By Lemma 8 with d = l = p = r = 2 and m = 1, we have

|u|H2(K ) ≤ C

h
|u|H1(K ) = C

h
‖∇u‖L2(K ) ,

which leads to

‖∇(∇u · n)‖2L2(∂K )
≤ C

k2

h3
‖∇u‖2L2(K )

. (35)

Finally, substituting Eqs. (34) and (35) in Eq. (33) leads to the desired result. 
�
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