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Abstract
We propose a novel class of arbitrarily high-order mass or energy conservative numerical
schemes for the generalized Benjamin–Ono equation on the whole real line. The spatial dis-
cretization is achieved by the pseudo-spectral method with the rational basis functions. By
reformulating the spatial discretized system into the different equivalent forms, either the
spatial semi-discretized mass or energy can be preserved exactly under the continuous time
flow. Combined with the symplectic Runge–Kutta, with or without the scalar auxiliary vari-
able reformulation, the fully discrete (space-time discrete sense) energy or mass conservative
schemes can be constructed with arbitrarily high-order temporal accuracy, respectively. Our
numerical results show the conservation of the proposed schemes, and also the superior
accuracy and stability to the non-conservative (Leap-frog) scheme.

Keywords gBO · Rational basis functions · High order conservative schemes · Hamiltonian
system · Unbounded domain

1 Introduction

This paper considers the numericalmethods for solving thegeneralizedBenjamin–Ono (gBO)
equation {

ut = −(−Hux + 1
m um)x , x ∈ R, t > 0, m ∈ Z

+,

u(x, 0) = u0,
(1.1)

where u ∈ L1(R) is the velocity potential, and the Hilbert transform H is defined by

H f (x) = 1

π
p.v.

∫ ∞

−∞
f (y)

x − y
dy, (1.2)
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where p.v. stands for the principle value of the indefinite integral, or equivalently, Ĥ f (ξ) =
−isgn(ξ) f̂ (ξ) on the Fourier frequency side. When m = 2, it is the well-known Benjamin–
Ono (BO) equation

ut − Huxx + ux u = 0, (1.3)

derived by Benjamin [5] in 1967 and Ono [54] in 1975. This Eq. (1.3) models the one-
dimensional waves in deep water. The BO equation is closely related to the Korteweg-de
Vries (KdV) equation, where the Hilbert transform termHuxx is replaced by uxxx . The KdV
equation models the one-dimensional shallow water waves. Both equations, BO and KdV,
are completely integrable, and the Lax pair can be constructed as described in e.g., [2, 3,
27, 34, 52]. Without loss of generality, we can consider other nonlinearities. One example
is to consider the power nonlinearities as of in Eq. (1.1). They are relevant in various other
models of water waves, e.g., see [1, 8, 9, 22]. When m = 3, the Eq. (1.1) is typically referred
to as the modified Benjamin–Ono (mBO) equation. When m ≥ 3, the Eq. (1.1) is typically
referred to as the generalized Benjamin–Ono (gBO) equation. In general, the gBO equation
(1.1) conserves the following three quantities

I [u(t)] def=
∫

u(x, t)dx = I [u0]; (1.4)

M[u(t)] def=
∫

[u(x, t)]2dx = M[u0]; (1.5)

E[u(t)] def=
∫ [

1

2

(
(H∂x )

1
2 u(x, t)

)2 − 1

m(m + 1)
(u(x, t))m+1

]
dx = E[u0]. (1.6)

The first one is called the momentum, or the conservation of the first integral, or the hyper-
bolic conservation law, and the last two are often called mass and energy (Hamiltonian),
respectively.

Besides its physical applications, the gBO equation attracts great interest in investigating
from the mathematical point of view, since it is a good example to study the fractional partial
differential equations. The well-posedness theory for the Cauchy problem has been discussed
initially in [37, 63]. Futher improvements on the well-posedness questions were done in [16,
17, 35, 41, 50, 51, 67, 70]. The gBO equation possesses the scaling invariance property,

i.e., suppose u(x, t) is the solution to (1.1), then, uλ = λ
2

m−1 u(λx, λ2t) is also a solution
to (1.1) for some constant λ. Moreover, when considering the homogeneous Sobolev norm
‖u‖Ḣ sc = ‖uλ‖Ḣ sc (where ‖u‖Ḣ sc = ‖|ξ |sc û(ξ)‖L2 ), we have the relation sc = 1

2 − 1
m−1 .

When sc < 0 (m < 3), it refers to the L2-subcritical case; when sc = 0 (m = 3), it refers
to the L2-critical case; and when sc > 0 (m > 3), it refers to the L2-supercritical case. The
soliton resolution conjecture are one of the most interesting topics in the L2-subcritical case;
and for the L2-critical and L2-supercritical cases, there may exist blow-up solutions. This
was numerically observed in [10] and our recent paper [59]. Besides the blow-up solutions,
there are still many open questions, such as the soliton stability and the dispersion limit. These
kind of questions have been studied both numerically and analytically. Compared with the
(generalized) KdV equation (e.g., [11, 30, 31], etc.), however, the gBO equation is less well
studied (e.g., [49, 56] and review [62]). Therefore, a stable, efficient and accurate numerical
algorithm would be desired the future study.

Numerical investigations on the BO equation have been started some time ago. Related
articles can be found in [10, 24, 68] for the domain truncation approach; [12, 13, 71] for the
computation of the Hilbert transform on R; [15, 32] for the pseudo-spectral method with the
rational basis functions; and [14] for a comparison between the domain truncation and the
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pseudo-spectral method on R. Despite some years of investigations, there are still far less
studies about numerical methods for the gBO equations than the gKdV equations. To our best
knowledge, there are no results concerning the conservative schemes for the gBO equation
on the whole real line R so far. On the other hand, the conservative schemes are always
preferable in simulating the PDE’s with conserved quantities, especially for studying the long
time solution behavior, since it generally possesses good accuracy and stability. One possible
reason is the numerical approximation of the Hilbert transform on R, which is not as well
studied as on a finite domain. However, if considering the conventional domain truncation
spatial discretization strategy (e.g., the finite difference or Fourier spectral methods), the
Hilbert transform usually leads to a slow decaying function, and consequently, to a relatively
large domain truncation error.

The purpose of this paper is to construct the conservative schemes for the gBO equation
(1.1) on the whole real line R, with arbitrarily high order accuracy in time. The spatial
discretization is achieved by the rational basis functions with the pseudo-spectral approach
from [32]. We first notice that the pseudo-spectral discretization from the rational basis
functionswill result in the operatorswith the “SBP"property discussed in [57].Next,weprove
that by reformulating into the different forms, and applying the Hermitian or anti-Hermitian
properties of the resulting spatial semi-discretized system, either the spatial semi-discretized
mass or energywill be preserved. For the temporal discretization, theCrank–Nicolsonmethod
with the conventional reformulation of the nonlinear potential term (e.g., see [25] for the
nonlinear Schrödinger (NLS) equation case) will lead to the conservation of the energy in
the discrete time flow. Furthermore, the high order mass and energy conservative schemes
can be constructed from the scalar auxiliary variable (SAV) approach (see [21, 65, 66] for
applications to dispersive PDEs). By using the symplectic Runge–Kutta (SRK) method, the
three invariant quantities (1.4)–(1.6) [with proper modifications for energy (1.6)] will be
preserved exactly in the discrete time flow. However, due to the limitation of the spatial
discretization, we can only conserve either the discrete mass or the discrete energy in the
space-time fully discrete sense. In fact, this strategy is universal. By a similar space-time
discretization, it is easy to construct the conservative schemes for the gKdV equations and
the structure-preserving schemes (the discrete mass and energy are preserved exactly at
the same time) for the NLS equations, as well as their high dimensional generalization by
applying the tensor product. This will be useful in studying the long time behavior of the
solutions for those equations, as well as the slow decaying solutions, since the traditional
domain truncation strategy (e.g., [29, 45, 46, 73]) requires large computational domain, and
consequently, it results in large number of nodes in spatial discretization.

This paper is organized as follows. In Sect. 2, we introduce the pseudo-spectral spatial
discretization strategy from the rational basis functions. Then, we define the discrete inner
product with respect to the collocation points from such rational basis functions. Finally,
we give the mass-conservative or the energy-conservative spatial semi-discretized form of
the gBO equation (1.1). In Sect. 3, we first introduce the Crank–Nicolson types of temporal
discretization. We show that the Crank–Nicolson method with its conventional modification
on the nonlinear term, will preserve the energy exactly in the discrete time flow. Combining
with the previous results in Sect. 2, we give two fully discretized schemes for the gBO
equation, which conserve either the discrete mass or the discrete energy. Next, we consider
the high-order conservative schemes achieved by the symplectic Runge–Kutta method with
the SAV reformulation. From the classical argument on the symplectic Runge–Kutta method
(e.g. [20, 60]), we show that the reformulated system preserves the quantities (1.4)–(1.6)
exactly in the discrete time flow. Again, combined with the spatial discretization results
in Sect. 2, we give two fully discretized schemes with high order temporal accuracy—one
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conserves the discretemass and the other conserves the discrete energy. In Sect. 4,we illustrate
the numerical examples. As a comparison, we also show the numerical results obtained from
the non-conservative semi-implicit Leap-Frog scheme. Our numerical results show that the
proposed schemes preserve the designate quantities based on the type of conservative scheme
we choose. Compared with the non-conservative scheme, these conservative schemes also
possess better accuracy in most cases, especially in simulating the soliton type solutions,
which is of great physical interest. Additionally, the error from the temporal discretization
decreases on the order as expected (second order for the IRK2 and Leap-Frog schemes, and
fourth order for the IRK4 schemes). These results show the validity and efficiency of the
numerical methods proposed.

2 Spatial Discretization

In this section, we describe the rational basis functions inR used for the spatial discretization.
The review of basis functions can be found in [19, 71]. One advantage of this discretization is
that it can easily represent the Hilbert transform. Then, we define the discrete inner product
corresponding to the collocation points from the rational basis functions. Finally,we introduce
two types of the spatial discretization for the gBO equation (1.1): one is mass-conservative
and the other one is energy-conservative.

2.1 Rational Basis Functions

Consider the rational basis functions on the whole real lineR, which comes from the Fourier
transform of the Laguerre functions (functions of parabolic cylinder), and behaves as x−1 at
infinity, i.e.,

u(x, t) =
∞∑

k=−∞
ûk(t)ρk(x), ρk(x) = (α + i x)k

(α − i x)k+1 , (2.1)

where i is the complex number, and α is a mapping parameter that we will describe later. In
[19], it is shown that {ρk(x)}∞k=−∞ form a complete orthogonal basis in L2(−∞,∞) with
the following orthogonality

∫ ∞

−∞
ρ j (x)ρk(x)dx =

{
π/α, j = k

0, j �= k.
:= π

α
δ j,k . (2.2)

Therefore, we have

ûk(t) = α

π

∫ ∞

−∞
u(x, t)ρk(x)dx .

From the rational expansion (2.1), the Hilbert transform can be easily calculated [71] by

H(u(t, x)) =
∞∑

k=−∞
−i ûk(t)sgn(k)ρk(x), (2.3)

123



Journal of Scientific Computing (2023) 96 :35 Page 5 of 27 35

with sgn(k) = 1 when k = 0. Meanwhile, the derivatives of u(x, t) can be computed by

using the relation ρk + ρk−1 = 2α(α+i x)n−1

(α−i x)n+1 , and consequently,

ux (x, t) =
∞∑

k=−∞

i

2α
[kûk−1 + (2k + 1)ûk + (k + 1)ûk+1]ρk(x), . (2.4)

Similar to find the higher order derivatives for Chebyshev or Legendre basis approximation in
[64, Chapter 3], the second (or higher) order derivative of u(x, t) can be computed iteratively
as follows:

uxx (x, t) =
∞∑

k=−∞
− 1

4α2 [k(k − 1)ûk−2 + 4k2ûk−1

+ (6k2 + 6k + 2)ûk + 4(k + 1)2ûk+1 + (k + 2)(k + 1)ûk+2]ρk(x). (2.5)

In numerical computations, a truncation of N -term interpolation function IN u are used
to approximate the function u(x) using the basis {ρk(x)}N/2−1

−N/2 to interpolate from the node
values at u(x−N/2), · · · u(xN/2−1), i.e.,

u(x, t) ≈ IN u := ûT �ρ :=
N/2−1∑

k=−N/2

ûk(t)ρk(x),

where û = (û−N/2, û−N/2+1, · · · , ûN/2−1)
T is the vector of the truncated coefficients, and

�ρ = (ρ−N/2(x), · · · , ρN/2−1(x))T is the vector function of ρk(x). This leads to the sparse
matrix forms

ux ≈ [S1û]T �ρ, uxx ≈ [S2û]T �ρ, Hu ≈ [Hû]T �ρ, (2.6)

where S1 and S2 are given in (2.4) and (2.5) via the coefficients of {ûk}, and
H = −idiag(sgn(−N/2 + 0.5), · · · , sgn(N/2 − 0.5))

is the diagonal matrix representing the approximation of the Hilbert transform in (2.3).
From (2.4) to (2.6), it is easy to see that the matrices S1 andH are anti-Hermitian, and the

matrix S2 is real and symmetric. The anti-Hermitian and Hermitian properties for S1 and S2
are crucial in constructing the conservative schemes.

Now, consider the change of variable

x = α tan
θ

2
, or equivalently, eiθ = α + i x

α − i x
, −π ≤ θ ≤ π,

and a spatial discretization x j = α tan
θ j
2 , θ j = jh, h = 2π/N , j = −N/2, · · · , N/2 − 1,

where the α is the mapping parameter indicating that N/2 collocation points are located in
the interval [−α, α]. Notice that

u(x j ) =
N/2−1∑

k=−N/2

ûkρk(x j ) ⇒ u(x j )(α − i x j ) =
N/2−1∑

k=−N/2

ûkeikθ j , (2.7)

hence, the Fast Fourier transform (FFT) can be applied to obtain the coefficients ûk . We note
that the above discretization in space is not uniform in x , but uniform in θ , and the singularity
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at x−N/2 = −∞ can be removed by imposing the boundary condition u(−∞) = 0, i.e.,
setting u−N/2 = 0.

We denote the matrix F to be the standard Fast Fourier transform (FFT) matrix with {kθ j },
i.e.,

Fk j = 1

N
e−ikθ j , F−1

jk = eikθ j , −N/2 ≤ j, k ≤ N/2 − 1.

Note that instead of writing explicitly, the matrices F and F−1 can be computed by FFT,
(see, e.g., [64, Chapter 2] and [69, Chapter 3]). Denote the diagonal matrix P = diag(α −
i x−N/2, · · · , α− i xN/2−1) to be the weight matrix, which comes from (2.7). The coefficients
ûk in the vector form can be represented by

û = FPu, (2.8)

where u = (u−N/2, · · · , uN/2−1)
T and u j = u(x j ).

Now, we define the discrete inner product with respect to the rational basis function.
Denote the inner product between the two functions u(x) and v(x) on R by

〈u(x), v(x)〉 :=
∫
R

u(x)v̄(x)dx .

Recall that the interpolation function IN u is the approximation of u(x) ≈ IN u =∑N/2−1
k=−N/2 ûkρk(x), then, the approximation of the inner product for functions u and v will

be

〈u, v〉 ≈
∫
R

IN u IN v dx = π

α

N/2−1∑
k=−N/2

ûk v̂k

= π

α
(FPv)

T
(FPu) = π

α
v̄TP̄F̄TFPu = π

αN
v̄TP̄Pu, (2.9)

from the orthogonal property (2.2), the relation (2.8), and F̄T = 1
N F−1 (e.g., see [64, Chapter

2]). Denote the diagonal matrix W = PP̄ = diag(α2 + x2−N/2, · · · , α2 + x2N/2−1) to be the

product of the two diagonal matrices P and P̄. According to (2.9), we can define the discrete
inner product with respect to the collocation points {x j } from the rational basis function:

〈u, v〉h := π

Nα
v̄TWu = π

Nα

N/2−1∑
j=−N/2

w j u j v̄ j , (2.10)

where w j = α2 + x2j can be considered as the weights for the quadrature rule in (2.10).
Now, for simplicity, we define the first order and second order differential matricesD1,2 =

P−1F−1S1,2FP. Then, ux (x j ) ≈ D1u( j), the j th element of the vector D1u, and similarly
for its second order derivative uxx (x j ) ≈ D1u( j).

We notice that for u, v ∈ VN , where VN is the space spanned by {ρk(x)}N/2−1
−N/2 , the

operator D1 satisfies the summation by part property, i.e.,∫
uxvdx = 〈D1u,v̄〉h = −〈u,D1v̄〉h = −

∫
uvx dx . (2.11)

Indeed, from (2.9), we have∫
uxvdx = 〈D1u,v̄〉h = π

αN
vTWD1u = π

αN
(FTST1 (F−1)TP̄v)TPu
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= π

αN

(
P−1F̄TS̄T1 (F̄−1)TPv̄

)T
P̄Pu = − π

αN
(FPD1v̄)TFPu

= −〈u,D1v̄〉h = −
∫

uvx dx .

Unfortunately, the operator D1 does not satisfy the chain rule or the integration property.
Indeed, for example, let u ∈ VN , we consider the power nonlinearity u3. For any test function
v ∈ VN , we want

∫
(u3)x v̄dx = ∫

3u2ux v̄dx . However,∫
(u3)x v̄dx ≈

∫
IN ((u3)x )v̄dx = 〈D1u3,v̄〉h �= 〈diag(3u2)D1u,v̄〉h =

∫
IN (3u2ux )v̄dx .

Similarly, 〈D1u, 1〉h �= 0 (which implies
∫

ux dx), since 1 is not in the function space VN

unless N → ∞. This implies unlike the Fourier spectral method, the rational basis function
spectral method here does not preserve the first integral.

2.2 Conservative Spatial Discretization

To discuss the conservative spatial discretizations, we first define the spatial semi-discretized
L1-type integral, mass and energy from (1.4)–(1.6). Let 1 = (1, 1, · · · , 1)T be the N × 1
vector. For simplicity, we also denote by um = (um

−N/2, · · · um
N/2−1)

T to be the pointwise

power of the vector u. Then, the spatial semi-discretized L1-type integral, mass and energy
are defined as follows

Ih = 〈u, 1〉h; (2.12)

Mh = 〈u,u〉h; (2.13)

Eh = 1

2
〈P−1F−1HS1FPu,u〉h − 1

m(m + 1)
〈um,u〉h . (2.14)

It is easy to see that if u ∈ R
N , then d

dt Ih = 〈ut , 1〉h , and d
dt Mh = 2〈ut ,u〉h from (2.10).

We also note that

d

dt
Eh = 1

2

(
〈P−1F−1HS1FPut ,u〉h + 〈P−1F−1HS1FPu,ut 〉h

)
− 1

m(m + 1)

(〈(um)t ,u〉h + 〈um,ut 〉h
)

= Re
(
〈P−1F−1HS1FPu,ut 〉h

)
− 1

m
〈um,ut 〉h . (2.15)

The last equality is obtained from the following argument. We first noticed that the matrix
HS1 is real and symmetric, and P is diagonal. Consequently, using (2.10) and F̄T = 1

N F−1,
we obtain

〈P−1F−1HS1FPu,ut 〉h = π

Nα
ūT

tPP̄P−1F−1HS1FPu

= π

Nα
uTPTFTHS1(F−1)

T
P̄ūt = π

Nα
uTPP̄P̄−1F̄−1HS1 F̄ P̄ūt

= π

Nα
uTPP̄P−1F−1HS1FPut = 〈P−1F−1HS1FPut,u〉h .

Similarly, we have

〈(um)t ,u〉h = m〈um−1ut ,u〉h = m〈um,ut 〉h .
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Recall that the energy conservation (1.6) is obtained by taking the inner product of(−Hux + 1
m um

)
on both sides in the gBO equation (1.1). On the other hand, the mass

conservation (1.5) of the gBO equation (1.1) is obtained by first rewriting it in the form

ut = Hux − 1

m + 1

(
(um)x + um−1ux

)
,

and then, taking the inner product with u on both sides. When the equation is discretized with
our rational basis functions, we noticed that ux ≈ P−1F−1S1FPu. Thus, we can consider
the matrix P−1F−1S1FP to be the approximation of the first order derivative operator ∂x .
Similarly, we have the approximation of H∂x , ∂xx from P−1F−1HS1FP and P−1F−1S2FP,
respectively.Using this idea,we propose the following proposition for the spatial conservative
discretizations.

Proposition 2.1 The following spatial semi-discretized equation to the gBO equation (1.1)

ut = −P−1F−1S1FP
(

−P−1F−1HS1FPu + 1

m
um

)
(2.16)

conserves the spatial semi-discretized energy, i.e.,

d

dt
Eh = 0. (2.17)

On the other hand, the following spatial semi-discretized equation to the gBO equation (1.1)

ut = P−1F−1HS2FPu − 1

m + 1

(
diag(um−1)P−1F−1S1FPu + P−1F−1S1FPu

m
)

(2.18)

conserves the spatial semi-discretized mass, i.e.,

d

dt
Mh = 0. (2.19)

Proof Putting the Eq. (2.16) in (2.15) yields

d

dt
Eh = Re

(
〈P−1F−1HS1FPu − 1

m
um,P−1F−1S1FP(P−1F−1HS1FPu − 1

m
um)〉h

)

= π

αN
Re

⎡
⎣(

P−1F−1S1FP(P−1F−1HS1FPu − 1

m
um)

)T

W
(
P−1F−1HS1FPu − 1

m
um

)⎤
⎦

= π

αN
Re

⎡
⎣(

P−1F−1HS1FPu − 1

m
um)

)T

(P−1F−1HS1FP)
T
W

(
P−1F−1HS1FPu − 1

m
um

)⎤
⎦

= π

αN
Re

⎡
⎣(

P−1F−1HS1FPu − 1

m
um

)T (
P̄F−1S1FP

)T (
P−1F−1HS1FPu − 1

m
um

)⎤
⎦ = 0,

(2.20)

sinceW = P̄P, and notice that the matrix 1
N P̄F−1S1FP is anti-Hermitian, which possesses

the property regarding to the quadratic form f̄TDf = 0 if D is an anti-Hermitian matrix.
Similarly, we first note that Wdiag(um−1) = diag(um−1)W, since both of them are

diagonal matrices. Then,

d

dt
Mh = 2〈ut,u〉 = 2〈P−1F−1HS2FPu,u〉h
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− 2

m + 1
〈
(
diag(um−1)P−1F−1S1FPu + P−1F−1S1FPum

)
,u〉h

= 0 − 2π

(m + 1)αN

(
(um)TP̄F−1S1FPu + uTP̄F−1S1FPum

)
= 0. (2.21)

The identity holds because the first part 2〈P−1F−1HS2FPu,u〉h = 0 in (2.21) results
from the quadratic form 2π

αN ūTP̄F−1S1FPu according to the definition (2.10), and the
matrices 1

N P̄F−1HS2FP is anti-Hermitian. For the second part (um)TP̄F−1S1FPu +
uTP̄F−1S1FPum = 0 in (2.21), we first notice that the identity

fTP̄F−1S1FPg = N (F̄P̄f)TS1FPg

when f and g are real vectors. Then, taking f = um and g = u yields (um)TP̄F−1S1FPu +
uTP̄F−1S1FPum = 0, since S1 is anti-Hermitian.

��

3 Temporal and Full Discretization

In this section, we first discuss the temporal discretization, and then, the space-time full
discretization of the gBO equation (1.1). We start with the most commonly used Crank–
Nicolson-type scheme. After that, we consider the high order conservative schemes. This
is achieved by the symplectic Runge–Kutta method, such as the Gauss–Legendre Runge–
Kutta method.When considering the energy conservation, the scalar auxiliary variable (SAV)
approach from [21, 65] will be incorporated. With this kind of approach, one can easily
construct the conservative numerical scheme with arbitrarily high order accuracy in time.

3.1 Crank–Nicolson-Type Scheme

We first introduce the notations. Assume that our simulation is on the finite time interval
t ∈ [0, T ]. Define τ to be the time step and tn = nτ to be the time at the nth time step.
Denote un ≈ u(x, tn) to be the semi-discretization in time. Denote I n = I [un], Mn = M[un]
and En = E[un] to be the momentum, mass and energy from (1.4)–(1.6) at time t = tn .

For convenience, the half-time step is denoted as un+ 1
2 = 1

2 (u
n + un+1) from the linear

interpolation. We also denote the full discretization by un
j ≈ u(x j , tn), and the column

vector un ≈ u(x, tn). Now, we define the discrete first integral, mass and energy as follows:

I n
h = 〈un, 1〉h; (3.1)

Mn
h = 〈un,un〉h; (3.2)

En
h = 1

2
〈P−1F−1HS1FPun,un〉h − 1

m(m + 1)
〈(un)m,un〉h . (3.3)

We propose the following Crank–Nicolson-type mass-conservative scheme as follows:

Theorem 3.1 The scheme

un+1 − un

τ
= P−1F−1HS2FPu

n+ 1
2

− 1

m + 1

(
diag

(
(un+ 1

2 )m−1
)
P−1F−1S1FPu

n+ 1
2 + P−1F−1S1FP(un+ 1

2 )m
)

(3.4)
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conserves the discrete mass (3.2) exactly in time, i.e.,

Mn+1
h = Mn

h .

Proof The proof is straightforward. Equipping the Eq. (3.4) with the discrete inner product

(2.10) with the vector un+ 1
2 , and using the identity (2.21) in Proposition 2.1 yields the result.

��
For the Crank–Nicolson-type energy-conservative scheme, by modifying of the nonlinear

term, we have the following theorem.

Theorem 3.2 The scheme

un+1 − un

τ
= P−1F−1S1FP

[
P−1F−1HS1FPu

n+ 1
2

− 1

m(m + 1)
diag

(
(un+1)m+1 − (un)m+1

(un+1)2 − (un)2

)
un+ 1

2

]
(3.5)

conserves the discrete energy (3.3) exactly in time, i.e.,

En+1
h = En

h .

Proof Following the same idea as in Theorem 3.1, we equip the Eq. (3.5) with the discrete
inner product (2.10) with the vector

P−1F−1HS1FPu
n+ 1

2 − 1

m(m + 1)
diag

(
(un+1)m+1 − (un)m+1

(un+1)2 − (un)2

)
un+ 1

2 .

Then, using the identity (2.20) in Proposition 2.1 yields the result. ��
The construction for the conservative schemes in Theorems 3.1 and 3.2 are standard. If

we only consider the semi-discretization in time, the scheme (3.4) is the midpoint rule, or
the implicit 2nd order Runge–Kutta method (IRK2), which is also known as the symplectic
(quadratic preserving) Runge–Kutta method, e.g., see [63], and thus, the quadratic quantity
(mass), is conserved. We split the potential into the form

1

m
(um)x = 1

m + 1
[um−1ux + (um)x ]

for the purpose of creating the symmetry for the mass conservations in the spatial discretiza-
tion, which we discussed in the previous section. For the energy conservation, we need to
reformulate the potential part, which is widely used in literature, see e.g., [23, 43, 48] for the
NLS case.

We next discuss the numerical schemes with higher order temporal accuracy. For simplic-
ity and conciseness, we only consider the semi-discretization in time. The space-time full
discretization results can be easily generalized together with the results from Sect. 2.

3.2 High Order Conservative Schemes

The high order temporal conservative schemes can be achieved by the symplectic Runge–
Kutta (SRK) method. We first briefly review the RK method before showing our results.
Consider the problem

ut = f (u). (3.6)
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Table 1 Butcher’s the s-stage
Gaussian–Legendre collocation
Runge–Kutta methods with
s = 1, 2

(A) IRK2

1
2

1
2
1

(B) IRK4

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 + 1

6

√
3 1

4 + 1
6

√
3 1

4
1
2

1
2

From the time t = tn to t = tn+1, let bi , ai j (i, j = 1, · · · s) be real numbers, and ci =∑s
j=1 ai j be the collocation points. Denote the intermediate values Ui to be the solution

satisfying (3.6) at the intermediate time t i = tn + τci . Then, the intermediate values Ui ’s are
calculated by

Ui = un + τ

s∑
j=1

ai j f j , (3.7)

where fi = f (Ui ). The solution un+1 is updated by

un+1 = un + τ

s∑
j=i

bi fi . (3.8)

We usually write the coefficients A = (ai j ), b = (b1, b2, · · · , bs) and c =
(c1, c2, · · · , cs)

T in the Butcher’s Tableaus ( [18]):

c A
b

.

For example, we list two commonly used Runge–Kutta methods in the Butcher’s Tableaus
in Table 1. They are the s-stage Runge–Kutta methods with s = 1, 2, respectively. These
methods are coming from the Gaussian-Legendre quadrature, known as the IRK2 and IRK4
methods, since the temporal accuracy is on the order of 2 and 4, respectively. We use these
methods in our numerical simulations in the next section. There are many other types of
Runge–Kutta methods as well, we refer the interested reader to [6, 20, 28, 60, 61].

We prove the following theorem for the mass-conservative scheme.

Theorem 3.3 The s-stage symplectic (quadratic preserving) Runge–Kutta method, which
satisfies

bi ai j + b j a ji = bi b j , for i, j = 1, · · · , s, (3.9)

conserves the discrete mass exactly in time for the spatial discretized gBO equation (2.18),
i.e.,

Mn+1
h = Mn

h .

Proof The proof is standard. From the standard RK theory (e.g., [20, 60]), we can show that
the temporal semi-discretized scheme conserves the mass exactly in the discrete time flow.
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Indeed, the RK theory shows that

Mn+1 − Mn = 2τ
s∑

i=1

bi 〈Ui , f (Ui )〉 + τ 2
s∑

i, j=1

(bi ai j + b j a ji − bi b j )〈 f (Ui ), f (U j )〉 = 0,

since 〈Ui , f (Ui )〉 = 0 by putting f (U ) in the form of (1.1).
When considering the space-time full discratization, we have

Mn+1
h − Mn

h = 2τ
s∑

i=1

bi 〈Ui , f (Ui )〉h + τ 2
s∑

i, j=1

(bi ai j + b j a ji − bi b j )〈 f (Ui ), f (U j )〉h = 0,

where the vector Ui is the discretized version of the intermediate value Ui for i = 1, · · · , s,
and 〈Ui , f (Ui )〉h = 0 by using the relation (2.21). ��

The symplectic Runge–Kutta method cannot preserve the discrete energy. In order to
construct the energy-preserving scheme, we need to reformulate the potential term in the
same idea as in (3.5). This is achieved by using the scalar auxillary approach from [21, 65].
We reformulate the Eq. (1.1) into an equivalent system as follows:⎧⎪⎨

⎪⎩
ut = −

(
−Hux + 1

m
umv√

(um ,u)+C0

)
x
,

vt = m+1
2
√〈um ,u〉+C0

〈um, ut 〉,
(3.10)

with the initial condition

u(x, 0) = u0, v0 =
√

〈um
0 , u0〉 + C0.

Then, the energy to the system (1.1) is modified into the equivalent form

E[u(t), v(t)] := 1

2
〈Hux , u〉 − 1

m(m + 1)
(v2 − C0) ≡ E[u0, v0]. (3.11)

Here, we slightly abuse the notation E[u, v] to represent themodified energy for convenience,
since it is equivalent to the energy E[u] in (1.6) in the continuous sense. The C0 is a constant
to make sure that the term 〈um, u〉 + C0 is positive for all time t ∈ [0, T ]. In the actual
computation, theC0 is adjustable during the time evolution, and thus, we only need to choose
the constant C0 such that the term 〈um, u〉 + C0 > 0 in the time interval t ∈ [tn, tn+1]. This
is easily fulfilled, since we only consider the solution smooth in time. We will discuss the C0

adjustment process at the end of this subsection.
Denote vn ≈ v(tn) to be the semi-discretization of v in time, and also vh ≈ v(u) to

be the semi-discretization of v in space. We write the space-time full discretization of v as
vn

h ≈ v(un, tn). The reformulated equation system (3.11) can be discretized by the rational
basis functions into the following form⎧⎪⎨

⎪⎩
ut = −P−1F−1S1FP

(
−P−1F−1HS1FPu + 1

m
umvh√〈um,u〉h+C0

)
:= f (u, vh),

(vh)t = m+1
2
√〈um,u〉h+C0

〈um,ut 〉h := g(u, vh),

(3.12)

with the initial conditions

u0 = u(x, 0), v0h =
√

〈(u0)m,u0〉h + C0.
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The fully discrete modified energy is defined as follows

En
h = 1

2
〈P−1F−1HS1FPun,un〉h − 1

m(m + 1)

(
(vn

h )2 − C0
)
. (3.13)

Next, we prove the following theorem for the high order energy-conservative schemes.

Theorem 3.4 The s-stage symplectic Runge–Kutta method, which satisfies (3.9), conserves
the L1-type integral (1.4), mass (1.5) and modified energy (3.11) in the discrete time flow for
the reformulated gBO equation system (3.10), i.e.,

I n+1 = I n, Mn+1 = Mn, and En+1 = En . (3.14)

Furthermore, the symplectic Runge–Kutta method preserves the discrete energy (3.13) for
the spatial semi-discretized system (3.12), i.e.,

En
h = En−1

h = · · · = E0
h . (3.15)

Proof The proof for the conservation of the temporal semi-discretized first integral, mass
and energy (3.14) is standard, e.g., see [20, 47, 60, 72].

For the proof of the discrete energy conservation (3.15), substituting the inner product
into the discrete sense, straightforward calculations yield

En+1
h = 1

2
〈P−1F−1HS1FPun+1,un+1〉h − 1

m(m + 1)

(
(vn+1

h )2 − C0

)

= 1

2
〈P−1F−1HS1FP(un + τ

s∑
i=1

bi f (Ui , Vi )),un + τ

s∑
i=1

bi f (Ui , Vi )〉h

− 1

m(m + 1)

(
(vn

h + τ

s∑
i=1

bi g(Ui , Vi ))
2 − C0

)

= En
h + τ

s∑
i=1

bi

(
〈P−1F−1HS1FP f (Ui , Vi ),Ui 〉h − 2

m(m + 1)
Vi g(Ui , Vi )

)

+ τ 2
s∑

i, j=1

(bi ai j + b j a ji − bi b j )
(〈 f (Ui , Vi ), f (U j , Vj )〉h + g(Ui , Vi )g(U j , Vj )

)
= En

h

by using the relation (2.20), (3.12) and (3.9), where Vi is defined as the intermediate value
of vn

h for (3.12) similar to (3.7) and (3.8). ��
Remark 3.1 Comparing with the proof in [72, Theorem 3.1], the symplectic Runge–Kutta
method can preserve all the three quantities in the discrete time flow for the reformulated
system (3.10). However, due to the limitation of the spatial discretization, only the discrete
energy will be preserved in the fully discrete sense. The conservation of the discrete momen-
tum (1.4) for the gKdV equations in [72] is obtained by using the circulant and anti-symmetric
property of the first order differential matrix from the Fourier pseudo-spectral discretization
which we note that the rational basis functions here do not possess such property.

The adjustment process for the constant C0 from [72] can be adapted here. Suppose at
t = tn , as the time evolves, the solution un leads to the term

∫
(un)m+1dx + C0 < T ol,

where T ol is a given positive number (e.g., T ol = 5). Then, we need to choose C̃0 to ensure
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∫
(un+1)m+1dx+C̃0 > 0. The constant C̃0 can be chosen such that

∫
(un)m+1dx+C̃0 > T ol.

For example, we can take C̃0 = 10 − ∫
(un)m+1dx , which leads to our new ṽn ≈ √

10
(and generally ensure the positivity for

∫
(un+1)m+1dx + C̃0). Then, by using E[un, vn] =

E[un, ṽn] from (3.11), we have our new ṽn

ṽn =
√

(vn)2 + C̃0 − C0. (3.16)

Finally, we substitute the vn and C0 in (3.10) with ṽn and C̃0, and then, continue with the
time evolution for t = tn+1, tn+2, · · · .
Remark 3.2 Note that v2 = ∫

un+1dx + C0 holds only at the collocation points t = tn + τci

for each i = 1, 2, · · · , s in t ∈ [tn, tn+1]. However, the constant ci may not necessarily be
equal to 0 or 1, e.g., see Table 1. This means v2 = ∫

un+1dx + C0 does not hold at tn in the
discrete time flow. Therefore, the new ṽn can only be evaluated by (3.16) to keep the discrete
energy (3.11) invariant.

4 Numerical Results

In this section, we list our numerical examples for the proposed schemes. Before discussing
the examples, we first describe a type of a fixed point iteration solver from [21, 72], which
can be easily adapted here for solving the resulting nonlinear system from the IRK methods
with the total computational cost on the order of O(N log(N )) from FFT. Since the solution
to (1.1) is continuous in time, un is supposed to be close enough to un+1 for sufficiently
small time step τ . Thus, un is a good initial guess for the fixed point iteration to start with.
While we don’t give an analytic proof on the convergence or conservation properties during
the fixed point iteration process, the solution always converges to the given accuracy level
in our numerical experiments (usually less than 10−12, which is our fixed point tolerance),
and thus, the mass or energy are preserved from un to un+1. We also refer to a recent paper
[7] for interesting readers, which studies the convergence speed and hyperbolic conservation
laws for different nonlinear algebraic system solvers resulting from the hyperbolic equations.
Now, we take the IRK4 (s = 2) case as an example to describe our fixed point iteration solver.
Recall D1 = P−1F−1S1FP, and denote DH1 = P−1F−1HS1FP. The IRK4 scheme to (3.12)
are rewriten into the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ui = un + τ
2∑

j=1
ai j f j ,

�i = (Ui)
m√

(〈(Ui)m,Ui〉h+C0
, gi = m+1

2 〈�i , fi 〉h,

Vi = vn
h + τ

2∑
j=1

ai j g j , i = 1, 2,

(4.1)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
f1 = −D1

(
DH1(un + τ

2∑
j=1

a1 j f j ) + 1
m �1V1)

)
,

f2 = −D1

(
DH1(un + τ

2∑
j=1

a2 j f j ) + 1
m �2V2)

)
.

(4.2)

Then, un+1 and vn+1
h can be updated by (3.8).
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The system (4.1) and (4.2) can be solved by the fixed point iteration. At the lth iteration,
we have {

(I + τa11DH2) f
l+1
1 + τa12DH2f

l+1
2 = −(DH2um − 1

mD1(�
l
1V l

1)),

τa21D3f
l+1
1 + (I + τa22DH2) f

l+1
2 = −(DH2um − 1

mD1(�
l
2V l

2)),
(4.3)

where I is the identity matrix, and DH2 = D1DH1 = P−1F−1HS2FP. The system (4.3) can
be first transformed into the sparse matrix by multiplying the diagonal matrix P, and then
implement the matrix operation F by FFT. Finally, the standard sparse matrix solvers can be
applied, since HS2 is a sparse matrix. After obtaining f l+1

i , we can use (4.1) to obtain the
values of other variables Ul+1

i ,�l+1
i , gl+1

i , and V l+1
i . The total computational cost remains

on the same order.
We set f01 = f02 = f (un, vn

h ) to start the iteration and the fixed point iteration (4.3)
converges in our numerical simulations, since the values from previous time step are usually
close enough to the actual solution. The iteration terminates when

max
i

‖f l+1
i − f l

i ‖∞ < ε,

where i = 1, 2, and ε is typically set to be ε = 10−12 in our simulations.
We denote by the IRK2-MC and IRK4-MC the mass conservative schemes for solving

(2.18) by using the 1st and 2nd stage RK methods with Gauss–Legendre collocation points
which are 2nd and 4th order accuracy in time, respectively from Table 1. We also denote by
the IRK2-EC and IRK4-EC the energy conservative schemes, which are still 2nd and 4th
order accuracy in time for solving the reformulated system (3.12). As a comparison, we use
the commonly used 2nd order non-conservative semi-implicit Leap-Frog scheme as follows

un+1 − un−1

2τ
= −P−1F−1S1FP

(
P−1F−1HS1FP

(
un+1 + un−1

2

)
+ 1

m
(un)m

)
, (4.4)

denoted as Leap-Frog. It is worth noting that the Leap-Frog scheme (4.4) may not be
unconditionally stable. Indeed, if we consider the linear simplified model

ut = ik2u − λiku,

where ik2 can be considered as the eigenvalues of the operator H∂xx ranging from k =
−N/2, · · · , N/2 − 1, and similarly, ik is the eigenvalue of the operator ∂x , and λ is the
constant for approximating the term 1

m um−1. The Leap-Frog scheme of this linear problem
yields

un+1 − un−1

2τ
− 1

2
ik2(un+1 + un−1) + λikun = 0.

By taking z = kτ , its characteristic polynomial yields

(1 − i zk)ξ2 + 2i zλξ − (1 + i zk) = 0,

which gives two roots with respect to ξ , i.e.,

ξ1,2 = 1

1 − i zk

(
i zλ ±

√
−z2λ2 + (1 + z2k2)

)
.

The stability condition is that |ξ | ≤ 1. One sufficient condition for |ξ | ≤ 1 is

−z2λ2 + (1 + z2k2) ≥ 0, (4.5)
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which yields |ξ |2 = 1 from direct calculation.
Thus, for each k = k0, when k20 ≥ λ2, (4.5) is automatically fulfilled. However, when

k20 ≤ λ2, we need z ≤ 1√
λ2−k20

, and this yields the restriction on the time step:

τ ≤ 1

|k0|
√

λ2 − k20

.

Or equivalently, note that k0
√

λ2 − k20 reaches the maximum when k0 = λ√
2
, and thus,

τ ≤ 2/λ2.

This indicates that when λ (or ‖um‖L∞ in the nonlinear case we consider) increases, we need
to shrink the time step τ by λ−2 to ensure the stability. In other words, the instability occurs
at the constant λ from the nonlinear part instead of the high frequency level (large values of
|k|) from the linear part.

We track the following quantities at t = tn to check the accuracy:

En = ‖un
exact − un‖∞; (4.6)

En
I = max

l<n
|I l

h − I 0h |; (4.7)

En
M = max

l<n
|Ml

h − M0
h |; (4.8)

En
E = max

l<n
|El

h − E0
h |. (4.9)

When the SAVapproach is not applied (IRK2-MC, IRK4-MCandLeap-Frog), the discrete
energy En

h is computed from (3.3); andwhen the SAV approach is applied, the discrete energy
En

h is computed from the modified version (3.13). We mention here that it is easy to see
the equivalence between the Crank–Nicolson scheme (3.4) and the IRK2-MC scheme. The
energy-conservative Crank–Nicolson (CNEC) scheme, which (3.5) considers reformulating
the potential, also shares the same idea as in the IRK2-EC scheme.

Now, we are ready to illustrate examples for our numerical simulations.
Example 1. Our first example considers the soliton solution for the BO (m = 2) equation,

u(x, t) = 4c
1+c2(x−x0−ct)2

. These type of solutions come from the smooth, positive, decaying
at infinity solitary wave solution to the profile equation

HQx + cQ − 1

m
Qm = 0, (4.10)

where c is a constant that indicates the speed of the travelingwaves as well as themagnititude.
The solutions are expected to travel to the right as the solitons, for example from the spectral
stability result in [4, 36] and the inverse scattering theory [27, 33].

In our numerical simulations, we take α = 25 with N = 1024. We take the traveling
speed c = 2 and starting point at x0 = −20. The time step τ is taken to be τ = 1

20 for all the
four IRK type methods as well as the Crank–Nicolson method, and τ = 1

40 for the Leap-Frog
scheme (4.4), since taking the τ = 1

20 will lead to the numerical instability in our numerical
computations for the Leap-Frog scheme. We stop our numerical simulation at T = 20.

Figure1 shows the solution profile obtained from the IRK4-EC scheme. The left subplot
is the initial condition u0, the right subplot is the time evolution. One can see that the solution
travels in the solitary wave manner, which is previously observed in [32, 59] and also as
expected.
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Fig. 1 The solution profile for Example 1 from the IRK4-EC. Left: u0. Right: u(x, t)

Fig. 2 The errors in Example 1 by different time integrators: IRK2-MC (solid blue); IRK2-EC(dash red);
IRK4-MC (dash dot orange); IRK4-EC (dot purple); Leap-Frog (circle green); CNEC (doc blue). Top left:
‖u − uexact ‖∞. Top right: discrete momentum error. Bottom left: discrete mass error. Bottom right: discrete
energy error (Color figure online)

Figure2 tracks the results obtained from the different time integrators. The top left subplot
in Fig. 2 shows ‖un − uexact‖∞ with respect to time, where uexact = u(x, tn) is the exact
solution. One can see that the Leap-Frog scheme (4.4) has the largest error (see the green
circle line). Moreover, the 4th order schemes (IRK4-MC and IRK4-EC) own the better
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Table 2 The convergence rates of Leap-Frog, IRK2-MC, IRK2-EC IRK4-MC and IRK4-EC in Example 1

Leap-Frog IRK2-MC IRK2-EC IRK4-MC IRK4-EC

τ Error Rate Error Rate Error Rate Error Rate Error Rate

1
10 NA NA 7.05 NA 3.45 NA 0.35 NA 0.61 NA
1
20 NA NA 3.60 1.96 0.72 4.80 1.6e−2 21.6 1.3e−2 46.8
1
40 6.88 NA 1.02 3.53 0.18 4.05 8.9e−4 18.6 5.6e−4 23.2
1
80 1.92 3.59 0.26 3.93 0.44 4.03 6.7e−5 13.2 5.1e−5 10.9

Table 3 The comparison between the IRK4-MC, RK4 and the RRK4-MC method

τmax E∞ EM EE T CPU time

IRK4-MC 0.05 0.016 7e−12 1e−3 20 30.28s

RK4 1.6e−3 3e−5 1e−7 9e−10 20 7.1s

RRK4-MC 1.6e−3 3e−5 8e−14 1e−7 20 − (4e − 8) 7.8s

accuracy than the second order schemes (IRK2-MC, IRK2-EC and Leap-Frog), which is as
expected, since they have higher order temporal accuracy.Moreover, we found that the IRK2-
EC scheme performs better than the CNEC scheme and the IRK2-MC scheme. Furthermore,
we observe that the energy-conservative schemes (dash red line for IRK2-EC and dot purple
line for IRK4-EC) perform better than the mass-conservative schemes (blue solid line for
IRK2-MC and orange dash-dot line for IRK4-EC).

The top right subplot in Fig. 2 tracks the error of the discrete first integral (4.7) at different
times. One can see that the more accurate the time integrators are, the better preservation of
this quantity will be, though they are not conserved exactly according to the Rational Basis
Function spatial discretization.

The bottom two subplots in Fig. 2 track the error of discrete mass (4.8) and energy (4.9),
respectively. The mass-conservative schemes (IRK2-MC and IRK4-MC) keep the error of
discrete mass below at the level of 10−12, which is the tolerance of the fixed iteration in
solving the resulting nonlinear system from the implicit Runge–Kutta method. On the other
hand, the discrete mass error for the other types of schemes is relatively large, especially the
Leap-Frog scheme (thus, refered to as least accurate).

The bottom right subplot tracks the error of the discrete energy. It shows that the energy-
conservative schemes (IRK2-ECand IRK4-EC)keep the error of discretemass below the level
of 10−12. This justifies the validity of our schemes. Similarly, for the other time integrators,
the Leap-Frog scheme performs the worst even with a smaller time step τ ,; the other two
mass-conservative schemes keep the error of discrete energy around the level of 10−4.

We also list the L∞ error En at t = T with different time step τ for these five time
integrators in Table 2. Denote the error at time t = T for the time step τ as E(τ ) = ‖u(x, T )−
u(T )‖∞, and the rate defined as rate = E(2τ)

E(τ )
. One can see that the Leap-Frog, IRK2-MC and

IRK2-EC decrease with the ratio around 4, which are as expected, since they are of the second
order schemes (since 4 = 22). On the other hand, the ratio of the 4th ordermethods IRK4-MC
and IRK4-EC is around 24, since they are 4th order methods. When the time step τ is small,
the decay rate is slightly below 16 (see the last row in Table 2). This is probably because
the temporal error becomes comparable to the spatial discretization error, and consequently,
affects the ratio.
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We also want to compare the numerical efficiency between these implicit methods with
explicit methods, such as the standard explicit RK4 and the recently proposed mass con-
servative relaxation Runge–Kutta methods from [38], e.g., the relaxation RK4 (RRK4-MC)
method. These explicit methods need to take the time step τ small enough to satisfy the CFL
condition (τ ∼ 1/N 2 ). Thus, usually, these explicit methods will have better accuracy com-
pared with the proposed implicit methods, since the small time step is the necessity. On the
other hand, smaller time step means more time evolution, resulting in more computational
time. In Table 3, we denote the τmax meaning that the time step τ we use, and if we take
the time step to be 2τ , the numerical simulation will fail. Table 3 shows the numerical tests
for the Example 1. It shows that we can take τ = 1.6e − 3, and obtain more accurate results
in shorter computational time compared with the implicit methods (e.g., IRK4-MC). This
shows that explicit time integrators are also an option for the simulation of the gBO type
equations, since the linear operatorH∂xx is not as stiff as the ∂xxx in the KdV case. The RRK
methods can also preserve the mass, or energy if we change a little about the scheme (see [57,
58] for details). It is more efficient than the implicit schemes such as the IRK4-MC scheme
in this BO case. However, besides changing the time step τ when changing the nodes N from
the CFL restriction, we also observe that the severe instability issue for the explicit methods
will occur when the nonlinear power gets higher (see the case for m = 5 in Example 3), and
thus, the implicit methods will become more efficient in those cases. Another concern about
the RRK4 scheme is taken the non-uniform time step γnτ ( γn is the constant to make the
mass or energy to be preserved) at each time step. This may loose one order of accuracy if
we want to interpret the solution as the given time tn = nτ , which is called the incremental
direction technique (IDT) method in this case. In summary, both of the RRK schemes and
the IRK schemes are good conservative schemes that may be useful in the future numerical
investigation of gBO type equations. The choice of the time integrator will depend on case
by case.
Example 2. We next consider the scattering solution for the BO equation (m = 2) with

the initial condition u0 = −2 sech2(x). Its KdV version has been studied for questions
on dispersion limit, see, e.g. [31, 40]. Here, we expect that a similar solution behavior may
happen, since the BO equation only changes the dispersion term uxxx from the KdV equation
to Huxx (less amount of dispersion if viewed on the Fourier frequency side). Note that
a negative value for

∫
u3dx may occur, and thus, the C0 adjustment process in (3.16) will

make v(t) stay positive, andwill keep the algorithm applicable for all time. The exact solution
is not explicitly given, since due to the negative sign in the initial condition and coefficients
chosen.

In this example, we still take the N = 1024 and α = 25 for the spatial discretization. The
time step τ = 1

400 (τ = 1
800 for the Leap-Frog) and the stopping time T = 2. We compute

the reference solution uref by both IRK4-MC and IRK4-EC methods independently with an
ultimately small time step (τ = 1/6400), denoted as uref−MC and uref−EC, respectively. Since
we intend to track the convergence rate with respect to time, to minimize the influence from
the spatial discretization error, we use the uref−MC to compute the L∞ error ‖un − uref‖∞
when the un is obtained by the mass-conservative schemes (IRK2-MC and IRK4-MC), and
use the uref−EC to compute the L∞ error ‖un − uref‖∞ when un is obtained by the energy-
conservative schemes (IRK2-EC and IRK4-EC) and the Leap-Frog scheme. The spatial
discretization error accumulates as the time evolves, see Fig. 5. From Fig. 5, the difference
increases to the level of 10−6 between these two solutions by the time we terminate the
simulation.
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Fig. 3 The solution profile in Example 2 from IRK4-SAV. Left: u(x, t). Right: u(x, t) at t = 2

Table 4 The convergence rates of Leap-Frog, IRK2-MC, IRK2-EC IRK4-MC and IRK4-EC in Example 2

Leap-Frog IRK2-MC IRK2-EC IRK4-MC IRK4-EC

τ Error Rate Error Rate Error Rate Error Rate Error Rate

1
200 0.104 NA 0.027 NA 0.027 NA 4.4e−5 NA 4.4e−5 NA
1

400 0.026 4.00 6.7e−3 3.99 6.7e−3 3.99 2.8e−6 15.8 2.8e−6 15.8
1

800 6.5e−3 3.99 1.7e−3 4.02 1.7e−3 4.02 1.7e−7 16.0 1.7e−7 16.0
1

1600 1.6e−3 4.00 4.2e−4 3.99 4.2e−4 3.99 1.1e−8 16.0 1.1e−8 16.0

Figure3 shows the solution profile obtained from the IRK4-EC method. The left subplot
shows the solution profile at different times t . The right plot shows the solution at the terminal
time t = 2. We can see that the solution radiates to the right with fast oscillations. On the
other hand, compared with the similar type of solutions to the KdV case (e.g., in [39, 72]),
the frequency is smaller. This indicates that the lower order dispersion (H∂xx compared with
∂xxx ) generates slower oscillations.

Figure4 tracks the first integral-error, error of discrete first integral, mass and energy with
respect to time. One can see that the results are similar to the previous example, and also
agree with our analysis in Sect. 2 and 3.

Table 4 shows the L∞ error at t = T with respect to the different time step τ . The decay
rate is on the 2nd order for the 2nd order schemes (Leap-Frog, IRK2-MC and IRK2-EC), and
on the 4th order for the 4th order schemes (IRK4-MC and IRK4-EC). Surprisingly, the IRK
types of schemes (IRK2-MC and IRK2-EC, IRK4-MC and IRK4-EC) generate almost the
same error (up to the decimals that we report) from the different reference solutions (uref−MC

and uref−EC). This implies that some possible cancellations may occur between the spatial
discretization errors.
Example 3. Our final example considers the mBO (m = 3) and the gBO (m = 4) cases.
We take the initial condition u0 = 0.99Q, where Q is the soliton solution from (4.10) with
c = 1. In these cases, while there is no explict form for Q, the profile of Q can be obtained
numerically, e.g., by the Petviashvili iteration from [55, 59], and its convergence analysis
in [42, 44, 53]. From [26], when u0 = 0.99Q, which indicates that the solution is below
the mass-energy threshold, the solution is proven to exist globally in time. Recent numerical
study in [59] shows that the solution blows up when u0 = 1.01Q. In this paper, we consider
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Fig. 4 The errors in Example 2 by different time integrators: IRK2-MC (solid blue); IRK2-EC(dash red);
IRK4-MC (dash dot orange); IRK4-EC (dot purple); Leap-Frog (circle green). Top left: ‖un − uref‖∞. Top
right: discrete momentum error. Bottom left: discrete mass error. Bottom right: discrete energy error

Fig. 5 The difference of the
reference solution obtained by
the IRK4-EC scheme and
IRK4-MC scheme. One can see
the difference (mainly caused by
the spatial discretization) keeps
increasing to the level 10−6

the globally existing solutions, and thus, we take u0 = 0.99Q in our example. We take
N = 1024, α = 25, τ = 0.02 (τ = 0.01 for the Leap-Frog scheme due to the stability issue)
in our simulation. We run until T = 10 for m = 3, and T = 5 for m = 4.

We also test the m = 5 case. In this case, we take N = 512, α = 10, T = 1 and τ = 0.001
for the IRK schemes and the Crank–Nicolson scheme. It is worth noting that these implicit
schemes still suffer the numerical instability. Indeed, when taking N = 1024, we cannot
obtain the solution even for τ = 1e − 4, and the solution starts behave normally from taking
τ = 1e − 5 in this case. This is an interesting question but unfortunately, to the authors’
best knowledge, no nonlinear stability analysis is considered for this type of questions so
far. On the other hand, for given N = 512 and α = 10, the RRK4 method still fails even
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Fig. 6 The solution profile in Example 3 from IRK4-EC with m = 3. Left: u(x, t). Right: u(x, t) at t = 10

Fig. 7 The solution profile in Example 3 from IRK4-EC with m = 4. Left: u(x, t). Right: u(x, t) at t = 5

when we take τ = 1e − 6. Therefore, in the high nonlinearity case, the implicit schemes are
recommended with extra care.

Figures 6, 7 and 8 show the solution profiles obtained from the scheme IRK4-EC for
m = 3, m = 4 and m = 5, respectively. The left subplots show the solution profiles u(x, t)
at different times. The right subplots show the solution at the final time T (blue solid line)
and their comparison with the initial condition u0 (red dash line). For m = 3, the solution
travels to the right with some radiation parts scattering to the left. However, for the m = 4, 5
cases, the solution completely radiates to the left. Indeed, m = 3 is the L2-critical case, while
m = 4, 5 are L2-supercritical cases. They fall into different category despite of the similar
nonlinearity form. These different scattering solution behavior are worth to be further studied
from both numerical and analytic point of view.

Figures 9, 10 and 11 track the error of discrete first integral (left subplot), mass (middle
subplot) and energy (right subplot) at different times for m = 3, 4, 5, respectively. Again,
the discrete mass or energy can be preserved by choosing the mass-conservative scheme or
energy-conservative scheme, respectively, which agrees with the analysis in Sects. 2 and 3.
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Fig. 8 The solution profile in Example 3 from IRK4-EC with m = 5. Left: u(x, t). Right: u(x, t) at t = 1

Fig. 9 The errors in Example 3 (m = 3) by different time integrators: IRK2-MC (solid blue); IRK2-EC(dash
red); IRK4-MC (dash dot orange); IRK4-EC (dot purple); Leap-Frog (circle green). Left: discrete momentum
error. Middle: discrete mass error. Right: discrete energy error (Color figure online)

Fig. 10 The errors in Example 3 (m = 4) by different time integrators: IRK2-MC (solid blue); IRK2-EC(dash
red); IRK4-MC (dash dot orange); IRK4-EC (dot purple); Leap-Frog (circle green). Left: discrete momentum
error. Middle: discrete mass error. Right: discrete energy error (Color figure online)

5 Conclusion and Other Discussion

The rational basis functions are powerful basis functions for spectral spatial discretization.
Besides being the eigenfunctions of the Hilbert transform, the accessibility of the fast Fourier
transform and the resulting sparse differential matrices, we find that the spatial conservative
schemes can be constructed from its (anti-)Hermitian properties. The quadrature rule of this
spectral method are also proposed.

Combined with the conservative time integrators, such as the classical symplectic Runge–
Kutta schemes, the SRK schemes with the scalar auxiliary variable reformulation, or
the Relaxation Runge–Kutta schemes, arbitrarily high order mass-conservative or energy-
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Fig. 11 The errors in Example 3 (m = 5) by different time integrators: IRK2-MC (solid blue); IRK2-EC(dash
red); IRK4-MC (dash dot orange); IRK4-EC (dot purple); CNEC (dot green). Left: discrete momentum error.
Middle: discrete mass error. Right: discrete energy error (Color figure online)

conservative numerical schemes can be constructed. In themeanwhile, the explicit Relaxation
Runge–Kutta schemes can be good conservative time integrators for the BO (m = 2) equa-
tions, but when the nonlinear power gets higher, the numerical observed nonlinear instability
problem suggests us to take the implicit schemes.

This pseudo-spectral approach can be extend to construct the the conservative schemes
for the gKdV equations, i.e.,

ut = −uxxx − 1

m
(um)x ;

and also themass-energy conservative (structure-preserving) schemes for the NLS equations,
i.e.,

ut = i
(
uxx + |u|m−1u

)
.

For example, the corresponding spatial semi-discretized form of the Eq. (3.12) for the gKdV
equation will be⎧⎪⎨

⎪⎩
ut = −P−1F−1S1FP

(
−P−1F−1S2FPu + 1

m
umvh√〈um,u〉h+C0

)
,

(vh)t = m+1
2
√〈um,u〉h+C0

〈um,ut 〉h .

Similarly, the semi-discretized form for the NLS equation will be⎧⎪⎨
⎪⎩
ut = i

(
−P−1F−1S2FPu + |u|m−1uvh√

〈|u|m−1u,u〉h+C0

)
,

(vh)t = m

2
√

〈|u|m−1u,u〉h+C0
Re

(〈|u|m−1u,ut 〉h
)
.

The straightforward adaption of proof in Theorem 3.4 will show the energy-conservative
result for the gKdV equations, and the mass and energy preserving result for the NLS
equations. These results can also be easily extended to higher dimensions (e.g., Zakharov-
Kuznetsov equation or the d-dimensional NLS equation) by applying the tensor product in
the spatial discretization. We omit the proofs and numerical examples here for conciseness.

In summary, by applying the rational basis functions, the above illustrated conservative
schemes will increase the computational efficiency significantly, especially, in tracking the
solution’s long time behavior, or the slow decaying solutions (e.g., u0 = 1

1+x2
), since far less

number of nodes are needed compared with the traditional domain truncation approaches.
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