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Abstract
The inverse eigenvalue problem for a weighted Helmholtz equation is investigated. Based on
the finite spectral data, the density function is estimated. The inverse problem is formulated as
a least squared functional with respect to the density function, with a L2 regularity term. The
continuity of the eigenpairs with respect to the density is proved. Mathematical properties of
the continuous and the discrete optimization problems are established. A conjugate gradient
algorithm is proposed. Numerical results for 1D and 2D inverse eigenvalue problem of the
weighted Helmholtz equation are presented to illustrate the effectiveness and efficiency of
the proposed algorithm.

Keywords Inverse eigenvalue problem · Weighted Helmholtz equation · Conjugate gradient
algorithm · Finite element method

1 Introduction

An inverse eigenvalue problem concerns the reconstruction or identification of the parameters
in the governing differential equation from the prescribed spectral data. It arises in various
applications, such as control design, system identification, seismic tomography, principal
component analysis, exploration and remote sensing, antenna array processing, geophysics,
molecular spectroscopy, particle physics, structure analysis, circuit theory,mechanical system
simulation, and so on [1].

The inverse eigenvalue problem for a weighted Helmholtz equation is a kind of the clas-
sical inverse Sturm-Liouville problem [2–5]. Given the first finite smallest eigenvalues, the
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density function in the weighted Helmholtz equation is recovered. McCarthy uses projection
of the boundary value problem and its coefficients onto appropriate vector spaces, which
leads to a matrix inverse problem [6, 7]. Andrew proposes a new algorithm for solving the
inverse Sturm-Liouville problem of reconstructing a symmetric potential from eigenvalues
[8]. Drignei deals with the recovery of the potential coefficient of a Sturm-Liouville opera-
tor from three known sequences of eigenvalues corresponding respectively to three sets of
Dirichlet boundary conditions [9]. Jiang et al. investigate the inverse second-order Sturm-
Liouville problem and the inverse fourth-order Sturm-Liouville problem, and derive trace
formulas showing relations between the unknown coefficients and eigenvalues explicitly for
both problems [10]. Gao et al. propose a new iterative method to recover the impedance of
Sturm-Liouville problem from the finite eigenvalues [11]. Based on natural eigenfrequencies,
Zhang et al. investigate the damage identification of elastic vibration structure, where level
set method is introduced to represent two different material regions [12]. For the same objec-
tive functional, Zhang et al. propose the piecewise constant level set method to represent the
shape and topology of the damaged region [13]. Lee and Shin introduce a frequency response
function-based structural damage identification method for beam structures [14].

The finite element method is used to solve the eigenvalue problem. There are many excel-
lent works on it, andwe refer to [15, 16] and references cited therein. The refined estimates for
Galerkin approximations of the eigenvalues and eigenvectors of selfadjoint eigenvalue prob-
lem is investigated in [17, 18]. The error estimates for the generalised Dirichlet eigenvalue
problem with stochastic coefficients is presented in [19].

This paper is organized as follows. In Sect. 2, the mathematical formulations of the inverse
eigenvalue problem of the weighted Helmholtz equation is described. In Sect. 3, the prop-
erties of existence, stability and Fréchet derivative of the continuous optimization problems
are established. In Sect. 4, the properties of existence and the convergence of the discrete
optimization problems are given. A conjugate gradient method is proposed in Sect. 5. 1D
and 2D numerical results of inverse eigenvalue problem of the weighted Helmholtz equation
are presented In Sect. 6.

2 Problem Statement

Consider the weighted Helmholtz equation

−�u = λρu, in �, (1)

u = 0, on ∂�, (2)

where � ⊂ R
d (d = 1, 2) is a bounded and connected domain and ∂� is the boundary of

the domain. ρ(x) is the density function and is assumed to satisfy the condition

0 <ρ0 ≤ ρ(x) ≤ ρ1 in �, (3)

where ρ0 and ρ1 are two constants. (λ, u) is the eigenpair of the minus Laplace operator −�

with density function ρ(x). The weak formulation of (1) and (2) is given by∫
�

∇u · ∇vdx = λ

∫
�

ρuvdx, ∀v ∈ H1
0 (�). (4)

By rearranging, (4) admits a countable sequence of real eigenvalues [see 18]

0 < λ1(ρ) ≤ λ2(ρ) ≤ λ3(ρ) ≤ · · · (5)
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and the corresponding eigenfunctions

u1(ρ), u2(ρ), u3(ρ) . . . . (6)

The i-th eigenpair (λi (ρ), ui (ρ)) is obtained by the min-max principle [18]

λi (ρ) = min
Vi⊂H1

0 (�), dim(Vi )=i
max
u∈Vi

∫
�

|∇u|2dx∫
�

ρu2dx

= max
u∈span{u1,u2,...,ui }

∫
�

|∇u|2dx∫
�

ρu2dx

=
∫
�

|∇ui (ρ)|2dx∫
�

ρu2i (ρ)dx
, (7)

where H1
0 (�) is the subspace of H1(�) consisting of functions which vanish at the boundary

of � in the sense of trace. Notice that the eigenfunction ui (ρ) in (7) is not unique, since for a
nonzero constant C , Cui (ρ) is also the eigenfunction corresponding to λi (ρ). When λi (ρ) is
multiple, ui (ρ) is assigned one of the eigenfunctions corresponding to λi (ρ). For any λi (ρ)

we let

M(λi (ρ)) = {u : u is an eigenfunction of(4) corresponding to λi (ρ)}. (8)

The eigenfunction ui (ρ) in (7) is deemed to be one of the eigenfunctions corresponding to
λi (ρ), that is, ui (ρ) ∈ M(λi (ρ)). The eigenfunctions in (6) are normalized and orthogonal-
ized to satisfy∫

�

∇ui (ρ) · ∇u j (ρ)dx = λi (ρ)

∫
�

ρui (ρ)u j (ρ)dx = δi j , i, j = 1, 2, . . . . (9)

It is known that an inverse eigenvalue problem, especially for the real-valued case, may
not necessarily have an exact solution [1]. It is also known that the spectral information, in
practice, is often obtained by experimental devices and thus inevitably contaminated with
measurement errors. That is, there are situations where an approximate solution best in the
sense of least squares would be satisfactory. In order to deal with the instability of the inverse
problem, a L2 regularity term is added. The inverse eigenvalue problem is reformulated as
the following constrained optimization problem:

min
ρ∈A F(ρ) = 1

2

N∑
i=1

(λi (ρ) − λ̂i )
2 + ε

2

∫
�

ρ2dx (10)

where λ̂i , (i = 1, 2, . . . , N ) are the measured data of the first N eigenvalues, ε is the
regularity parameter and A is the admissible set of the density function, that is,

A = {ρ(x) ∈ L∞(�) : ρ0 ≤ ρ(x) ≤ ρ1 a.e.x ∈ �}. (11)

3 Existence and Stability of the Optimization Problem

In this section, we present the properties of existence, stability and Fréchet derivative of the
continuous optimization problem (10) and (4).

Lemma 3.1 For any ρ ∈ A, we have

λi (ρ1) ≤ λi (ρ) ≤ λi (ρ0), i = 1, 2, . . . , N . (12)
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Proof For i = 1, 2, . . . , N , by (7), we set u0i , u
1
i ∈ Vi ⊂ H1

0 (�) and dim(Vi ) = i such that

λi (ρ0) = min
Vi⊂H1

0 (�), dim(Vi )=i
max
u∈Vi

∫
�

|∇u|2dx∫
�

ρ0u2dx
=

∫
�

|∇u0i |2dx∫
�

ρ0u0i
2
dx

, (13)

and

λi (ρ1) = min
Vi⊂H1

0 (�), dim(Vi )=i
max
u∈Vi

∫
�

|∇u|2dx∫
�

ρ1u2dx
=

∫
�

|∇u1i |2dx∫
�

ρ1u1i
2
dx

. (14)

Consequently, by (3), (7), (13) and (14), we have

λi (ρ1) =
∫
�

|∇u1i |2dx∫
�

ρ1u1i
2
dx

≤
∫
�

|∇ui |2dx∫
�

ρ1u2i dx
≤ λi (ρ) =

∫
�

|∇ui |2dx∫
�

ρui 2dx

≤
∫
�

|∇u0i |2dx∫
�

ρu0i
2
dx

≤
∫
�

|∇u0i |2dx∫
�

ρ0u0i
2
dx

= λi (ρ0). (15)

�	

Lemma 3.2 For i = 1, 2, . . . , N, assume that (λi (ρ), ui (ρ)) is the i-th eigenpair of (4), and
(λ̃i , ũi ) is the eigenpair of (4) replacing ρ by ρ̃, then

∫
�

|∇(ui (ρ) − ũi )|2 dx − λ̃i

∫
�

ρ̃(ui (ρ) − ũi )
2dx

= (λi (ρ) − λ̃i )

∫
�

ρu2i (ρ)dx + λ̃i

∫
�

(ρ − ρ̃)u2i (ρ)dx . (16)

Proof For i = 1, 2, . . . , N , since (λi (ρ), ui (ρ)) satisfies (4) and (λ̃i , ũi ) satisfies (4) by
replacing ρ by ρ̃, we obtain

∫
�

|∇(ui (ρ) − ũi )|2 dx − λ̃i

∫
�

ρ̃(ui (ρ) − ũi )
2dx

=
∫

�

|∇ui (ρ)|2dx − 2
∫

�

∇ui (ρ) · ∇ũi dx +
∫

�

|∇ũi |2dx − λ̃i

∫
�

ρ̃u2i (ρ)dx

+ 2λ̃i

∫
�

ρ̃ui (ρ)ũi dx − λ̃i

∫
�

ρ̃ũ2i dx

= λi (ρ)

∫
�

ρu2i (ρ)dx − λ̃i

∫
�

ρ̃u2i (ρ)dx

= (λi (ρ) − λ̃i )

∫
�

ρu2i (ρ)dx + λ̃i

∫
�

(ρ − ρ̃)u2i (ρ)dx .

�	

Replacing ρ ∈ A in (4)–(9) by ρn , ρ∗ ∈ A, the eigenpairs (ui (ρn), λi (ρ
n)) and

(ui (ρ∗), λi (ρ∗)), i = 1, 2, . . . , are obtained, respectively.

Lemma 3.3 For i = 1, 2, . . . , N , let ρn, ρ∗ ∈ A and ρn ∗
⇀ ρ∗ in L∞(�) as n → ∞, then

λi (ρ
n) → λi (ρ

∗). Moreover, there exists a subsequence ui (ρn) ∈ M(λi (ρ
n)), and some

ui (ρ∗) ∈ M(λi (ρ
∗)), satisfying ui (ρn) → ui (ρ∗) in H1(�).
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Proof For i = 1, 2, . . . , N , by Lemma 3.1, the boundedness of λi (ρ
n) implies that there

exists a subsequence, also denoted by λi (ρ
n), such that

lim
n→∞ λi (ρ

n) = λ∗
i . (17)

Notice that by (9) (replacing ρ by ρn) the eigenfunction ui (ρn) ∈ M(λi (ρ
n)) satisfies

∫
�

|∇ui (ρ
n)|2dx = 1. (18)

By Poincaré inequality, we have

‖ui (ρn)‖H1(�) < C, (19)

where C is a constant independent of ρn . Thus, there exists a subsequence, also denoted by
ui (ρn), such that

ui (ρ
n)⇀u∗

i in H1(�) and ui (ρ
n) → u∗

i in L2(�). (20)

We need to prove that (λ∗
i , u

∗
i ) is the eigenpair of (4) corresponding to ρ∗ for i =

1, 2, . . . , N . Notice that the eigenpair (λi (ρ
n), ui (ρn)) corresponding to ρn satisfies (4)

(replacing ρ by ρn), that is,

∫
�

∇ui (ρ
n) · ∇vdx = λi (ρ

n)

∫
�

ρnui (ρ
n)vdx, ∀ v ∈ H1

0 (�), i = 1, 2, . . . , N . (21)

The RHS item of equation of (21) could be rewritten by

λi (ρ
n)

∫
�

ρnui (ρ
n)vdx =(λi (ρ

n) − λ∗
i )

∫
�

ρnui (ρ
n)vdx + λ∗

i

∫
�

ρn(ui (ρ
n) − u∗

i )vdx

+ λ∗
i

∫
�

(ρn − ρ∗)u∗
i vdx + λ∗

i

∫
�

ρ∗u∗
i vdx . (22)

By (11), (17), (19), (20) and ρn ∗
⇀ ρ∗ in L∞(�), we have

lim
n→∞ λi (ρ

n)

∫
�

ρnui (ρ
n)vdx = λ∗

i

∫
�

ρ∗u∗
i vdx . (23)

By (20), we have

lim
n→∞

∫
�

∇ui (ρ
n) · ∇vdx =

∫
�

∇u∗
i · ∇vdx (24)

Combining (23) and (24), and taking the limitation of equation (21), we have

∫
�

∇u∗
i · ∇vdx = λ∗

i

∫
�

ρ∗u∗
i vdx, ∀ v ∈ H1

0 (�), i = 1, 2, . . . , N . (25)

Therefore, it concludes that (λ∗
i , u

∗
i ) (i = 1, 2, . . . , N ) are eigenpairs of (4) corresponding

to ρ∗.
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Furthermore, replacing ρ, ui (ρ), λi (ρ) by ρn, ui (ρn), λi (ρ
n), and replacing ρ̃, ũi , λ̃i

by ρ∗, u∗
i , λ∗

i in Lemma 3.2, respectively, we have

∫
�

|∇(ui (ρ
n) − u∗

i )|2dx

= λ∗
i

∫
�

ρ∗(ui (ρn) − u∗
i )

2dx + (λi (ρ
n) − λ∗

i )

∫
�

ρnu2i (ρ
n)dx

+ λ∗
i

∫
�

(ρn − ρ∗)u2i (ρn)dx

→ 0 as n → ∞, (26)

with (11), (20), (17), (19) and ρn ∗
⇀ ρ∗ in L∞(�). Combining (20) and (26), we have

ui (ρ
n) → u∗

i in H1(�). (27)

By the orthogonality (9) (replacing ρ by ρn), (27), (17) and ρn ∗
⇀ ρ∗ in L∞(�), the

orthogonality of u∗
i is obtained by∫

�

∇u∗
i · ∇u∗

j dx = λ∗
i

∫
�

ρ∗u∗
i u

∗
j dx = δi j , i, j = 1, 2, . . . N . (28)

Finally, we prove (λ∗
i , u

∗
i ) (i = 1, 2, . . . , N ) are the i-th eigenpairs for ρ∗ by induction.

For i = 1, by (7) (replacing ρ by ρ∗) we have

λ1(ρ
∗) =

∫
�

|∇u1(ρ∗)|2 dx∫
�

ρ∗|u1(ρ∗)|2 dx

≤
∫
�

|∇u∗
1|2 dx∫

�
ρ∗|u∗

1|2 dx
= λ∗

1 (29)

On the other hand, by (17), (7) ( replacing ρ by ρn) and ρn ∗
⇀ ρ∗ in L∞(�), we have

λ∗
1 = lim

n→∞λ1(ρ
n)

= lim
n→∞

∫
�

|∇u1(ρn)|2 dx∫
�

ρnu21(ρ
n) dx

≤ lim
n→∞

∫
�

|∇u1(ρ∗)|2 dx∫
�

ρnu21(ρ
∗) dx

=
∫
�

|∇u1(ρ∗)|2 dx∫
�

ρ∗u21(ρ∗) dx
= λ1(ρ

∗). (30)

Combining (29) and (30), we obtain λ∗
1 = λ1(ρ

∗). The eigenfunction u∗
1 corresponding to

λ∗
1 is also the eigenfunction corresponding to λ1(ρ

∗). That is, u∗
1 ∈ M(λ1(ρ

∗)). Thus, we set
u1(ρ∗) ∈ M(λ1(ρ

∗)) to satisfy u∗
1 = u1(ρ∗).

For i = 1, 2, . . . , k, assuming that

λ∗
i = λi (ρ

∗), (31)

u∗
i = ui (ρ

∗), (32)
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we need to prove that λ∗
k+1 = λk+1(ρ

∗) and u∗
k+1 = uk+1(ρ

∗). By (7) and (9) (replacing ρ

by ρ∗), (28) and (32), we have

λk+1(ρ
∗) =

∫
�

|∇uk+1(ρ
∗)|2 dx∫

�
ρ∗u2k+1(ρ

∗) dx

= min
Vk+1⊂H1

0 (�),dim(Vk+1)=k+1
max
u∈Vk+1

∫
�

|∇u|2 dx∫
�

ρ∗u2 dx

≤ max
u∈span{

u∗
1,u

∗
2,...,u

∗
k ,u

∗
k+1

}
∫
�

|∇u|2 dx∫
�

ρ∗u2 dx
=

∫
�

|∇u∗|2 dx∫
�

ρ∗u∗2 dx
. (33)

Let u∗ = α1u∗
1 + α2u∗

2 + ... + αku∗
k + αk+1u∗

k+1. By the orthogonality (28), we have

∫
�

|∇u∗|2 dx =
k+1∑
j=1

∫
�

α2
j |∇u∗

j |2 dx =
k+1∑
j=1

α2
jλ

∗
j

∫
�

ρ∗u∗
j
2 dx, (34)

∫
�

ρ∗u∗2 dx =
k+1∑
j=1

α2
j

∫
�

ρ∗u∗
j
2 dx . (35)

By (5) (replacing ρ by ρ∗) and (31), we have

λ∗
1 ≤ λ∗

2 ≤ ... ≤ λ∗
k . (36)

Then, we use reduction to absurdity to prove λ∗
k+1 ≥ λ∗

k . If the claim is negated to assume
that

λ∗
k+1 < λ∗

k , (37)

combining with (34), (35) and (36), we have

∫
�

|∇u∗|2 dx =
k+1∑
j=1

α2
jλ

∗
j

∫
�

ρ∗u∗
j
2 dx

< λ∗
k

k+1∑
j=1

α2
j

∫
�

ρ∗u∗
j
2 dx

= λ∗
k

∫
�

ρ∗u∗2 dx . (38)

By (33) and (38), we can get λk+1(ρ
∗) < λ∗

k = λk(ρ
∗), which incurs the contradiction.

Therefore, we conclude that

λ∗
k+1 ≥ λ∗

k . (39)

Combining with (34), (35), (36) and (39), we obtain

∫
�

|∇u∗|2 dx =
k+1∑
j=1

α2
jλ

∗
j

∫
�

ρ∗u∗
j
2 dx

≤ λ∗
k+1

k+1∑
j=1

α2
j

∫
�

ρ∗u∗
j
2 dx = λ∗

k+1

∫
�

ρ∗u∗2 dx . (40)
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Substituting (40) into (33), we obtain

λk+1(ρ
∗) ≤ λ∗

k+1. (41)

On the other hand, we need to prove that λk+1(ρ
∗) ≥ λ∗

k+1. First, we can conclude that

dim span
{
u1(ρ

n), u2(ρ
n), ..., uk(ρ

n), uk+1(ρ
∗)

} = k + 1. (42)

If the claim is negated to assume that

dim span
{
u1(ρ

n), u2(ρ
n), ..., uk(ρ

n), uk+1(ρ
∗)

} = k,

since u1(ρn), u2(ρn), ..., uk(ρn) are orthogonal by (9) (replacing ρ by ρn), then

uk+1(ρ
∗) = γ1u1(ρ

n) + γ2u2(ρ
n) + ... + γkuk(ρ

n). (43)

Thus,

∫
�

∇uk+1(ρ
∗)∇ui (ρ

∗)dx =
k∑
j=1

γ j

∫
�

∇u j (ρ
n)∇ui (ρ

∗)dx, i = 1, 2, . . . , k. (44)

Taking the limitation of (44) as n → ∞, with (27), (32) and (9) (replacing ρ by ρ∗), we
obtain

0 =
∫

�

∇uk+1(ρ
∗)∇ui (ρ

∗)dx

=
k∑
j=1

γ j

∫
�

∇u j (ρ
∗)∇ui (ρ

∗)dx

= γi , i = 1, 2, . . . , k. (45)

Therefore, uk+1(ρ
∗) ≡ 0, which contradicts the definition of a nontrivial eigenfunction.

By (7) (replacing ρ by ρn) and (42), we have

λk+1(ρ
n) =

∫
�

|∇uk+1(ρ
n)|2 dx∫

�
ρnu2k+1(ρ

n) dx

= min
Vk+1⊂H1

0 (�),dim Vk+1=k+1
max
u∈Vk+1

∫
�

|∇u|2 dx∫
�

ρnu2 dx

≤ max
u∈span{u1(ρn),u2(ρn),...,uk (ρn),uk+1(ρ

∗)}

∫
�

|∇u|2 dx∫
�

ρnu2 dx

=
∫
�

|∇un |2 dx∫
�

ρnun2 dx
. (46)

Let un = β1u1(ρn) + β2u2(ρn)+, ..., βkuk(ρn) + βk+1uk+1(ρ
∗). By (9) and (4) (replacing

ρ by ρn and ρ∗, respectively), (11), (17), (27), (31), (32) and ρn ∗
⇀ ρ∗ in L∞(�), we have

∫
�

|∇un |2 dx =
k∑
j=1

β2
j

∫
�

|∇u j (ρ
n)|2 dx + β2

k+1

∫
�

|∇uk+1(ρ
∗)|2 dx

+ 2
k∑
j=1

β jβk+1

∫
�

∇u j (ρ
n)∇uk+1(ρ

∗) dx
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=
k∑
j=1

β2
j λ j (ρ

n)

∫
�

ρnu2j (ρ
n) dx + β2

k+1λk+1(ρ
∗)

∫
�

ρ∗u2k+1(ρ
∗) dx

+ 2
k∑
j=1

β jβk+1λ j (ρ
n)

∫
�

ρnu j (ρ
n)uk+1(ρ

∗) dx

→
k∑
j=1

β2
j λ j (ρ

∗)
∫

�

ρ∗u2j (ρ∗) dx + β2
k+1λk+1(ρ

∗)
∫

�

ρ∗u2k+1(ρ
∗) dx

+ 2
k∑
j=1

β jβk+1λ j (ρ
∗)

∫
�

ρ∗u j (ρ
∗)uk+1(ρ

∗) dx, as n → ∞ (47)

and
∫

�

ρnun2 dx =
k∑
j=1

β2
j

∫
�

ρnu2j (ρ
n)dx + β2

k+1

∫
�

ρnu2k+1(ρ
∗)dx

+ 2
k∑
j=1

β jβk+1

∫
�

ρnu j (ρ
n)uk+1(ρ

∗)dx

→
k∑
j=1

β2
j

∫
�

ρ∗u2j (ρ∗)dx + β2
k+1

∫
�

ρ∗u2k+1(ρ
∗)dx

+ 2
k∑
j=1

β jβk+1

∫
�

ρ∗u j (ρ
∗)uk+1(ρ

∗)dx, as n → ∞. (48)

By (5) (replacing ρ by ρ∗) and (47), we have
k∑
j=1

β2
j λ j (ρ

∗)
∫

�

ρ∗u2j (ρ∗) dx + β2
k+1λk+1(ρ

∗)
∫

�

ρ∗u2k+1(ρ
∗) dx

+ 2
k∑
j=1

β jβk+1λ j (ρ
∗)

∫
�

ρ∗u j (ρ
∗)uk+1(ρ

∗) dx

≤ λk+1(ρ
∗)

[ k∑
j=1

β2
j

∫
�

ρ∗u2j (ρ∗) dx + β2
k+1

∫
�

ρ∗u2k+1(ρ
∗) dx

+ 2
k∑
j=1

β jβk+1

∫
�

ρ∗u j (ρ
∗)uk+1(ρ

∗) dx
]
. (49)

Combining (17), (46), (47), (48) and (49), it implies that

λ∗
k+1 = lim

n→∞ λk+1(ρ
n) ≤ λk+1(ρ

∗). (50)

With (41) and (50), we conclude that λ∗
k+1 = λk+1(ρ

∗). Moreover, the eigenfunction u∗
k+1

corresponding to λ∗
k+1 is also the eigenfunction corresponding to λk+1(ρ

∗). That is, u∗
k+1 ∈

M(λk+1(ρ
∗)). We set uk+1(ρ

∗) ∈ M(λk+1(ρ
∗)) to satisfy u∗

k+1 = uk+1(ρ
∗). By induction,

we conclude that λ∗
i = λi (ρ

∗) and u∗
i = ui (ρ∗), for i = 1, 2, . . . , N . Combined with (17)

and (27), the proof is complete. �	
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Theorem 3.1 There exists at least one minimizer to the optimization problem (10) and (4).

Proof ByLemma 3.1, we conclude that theminimization of F(ρ) is finite over the admissible
set A. Therefore, there exists a sequence ρn ∈ A such that

lim
n→∞ F(ρn) = inf

ρ∈A F(ρ). (51)

The uniform boundedness of the sequence ρn in L∞(�) implies that there exists a subse-
quence, also denoted by ρn , and some ρ∗ ∈ A such that

ρn ∗
⇀ ρ∗ in L∞(�). (52)

By Lemma 3.3, we have

λi (ρ
n) → λi (ρ

∗), for i = 1, 2, . . . , N . (53)

Now the convergence of λi (ρ
n) and the lower semicontinuity of a norm imply that

F(ρ∗) = 1

2

N∑
i=1

(λi (ρ
∗) − λ̂i )

2 + ε

2

∫
�

(ρ∗)2dx

≤ lim
n→∞

1

2

N∑
i=1

(λi (ρ
n) − λ̂i )

2 + lim inf
n→∞

ε

2

∫
�

(ρn)2dx

≤ lim inf
n→∞

(1
2

N∑
i=1

(λi (ρ
n) − λ̂i )

2 + ε

2

∫
�

(ρn)2dx
)

= lim inf
n→∞ F(ρn) ≤ inf

ρ∈A F(ρ). (54)

Therefore ρ∗ is a minimizer of F(ρ). �	
Next theorem shows the stability of the optimization problem with respect to the data

perturbation.

Theorem 3.2 For i = 1, 2, . . . , N, let λ̂ni be a sequence such that

λ̂ni → λ̂i

and ρn be the minimizer of the optimization problem (10) and (4) with λ̂i replaced by λ̂ni .
Then there exists a subsequence of ρn weak−∗ converging in L∞(�) to a minimizer of the
optimization problem (10) and (4).

Proof Since ρn is the minimizer of the optimization problem (10) and (4) with λ̂i replaced
by λ̂ni , for all ρ ∈ A, we have that

1

2

N∑
i=1

(λi (ρ
n) − λ̂ni )

2 + ε

2

∫
�

(ρn)2dx ≤ 1

2

N∑
i=1

(λi (ρ) − λ̂ni )
2 + ε

2

∫
�

ρ2dx (55)

The uniform boundedness of the sequence ρn in L∞(�) implies that there exists a subse-
quence, also denoted by ρn , and some ρ∗ ∈ A such that

ρn ∗
⇀ ρ∗ in L∞(�). (56)
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By Lemma 3.3, there exists a subsequence of λi (ρ
n), also denoted by λi (ρ

n), such that

lim
n→∞ λi (ρ

n) = λi (ρ
∗), i = 1, 2, . . . , N . (57)

Thus, by the convergence of λ̂ni → λ̂i , we have

lim
n→∞

N∑
i=1

(λi (ρ
n) − λ̂ni )

2 =
N∑
i=1

(λi (ρ
∗) − λ̂i )

2.

Now, for all ρ ∈ A, we have that

F(ρ∗) = 1

2

N∑
i=1

(λi (ρ
∗) − λ̂i )

2 + ε

2

∫
�

(ρ∗)2dx

≤ lim
n→∞

1

2

N∑
i=1

(λi (ρ
n) − λ̂ni )

2 + lim inf
n→∞

ε

2

∫
�

(ρn)2dx

≤ lim inf
n→∞

(1
2

N∑
i=1

(λi (ρ
n) − λ̂ni )

2 + ε

2

∫
�

(ρn)2dx
)

≤ lim inf
n→∞

(1
2

N∑
i=1

(λi (ρ) − λ̂ni )
2 + ε

2

∫
�

ρ2dx
)

= 1

2

N∑
i=1

(λi (ρ) − λ̂i )
2 + ε

2

∫
�

ρ2dx = F(ρ). (58)

Therefore ρ∗ is a minimizer of (10) and (4). �	
Theorem 3.3 For ρ ∈ A and i = 1, 2, . . . , N , if eigenvalues λi (ρ) of (4) are simple, then the
functional F : A ⊂ L∞(�) → R is Fréchet differentiable and its Fréchet derivative F ′(ρ)

at ρ ∈ A is given by

F ′(ρ)[γ ] = −
N∑
i=1

(λi (ρ) − λ̂i )
λi (ρ)

∫
�

γ u2i (ρ)dx∫
�

ρu2i (ρ)dx
+ ε

∫
�

ργ dx . (59)

Proof Replacing ρ by (ρ + γ ) in (7), we define the i-th eigenpair (λi (ρ + γ ), ui (ρ + γ ))

for (ρ + γ ) by

λi (ρ + γ ) =
∫
�

|∇ui (ρ + γ )|2dx∫
�
(ρ + γ )u2i (ρ + γ )dx

, i = 1, 2, . . . , N . (60)

Similar to the proof of Lemma 3.3, we can show that as γ → 0 in L∞(�),

λi (ρ + γ ) → λi (ρ), (61)

ui (ρ + γ ) → ui (ρ) in H1(�), i = 1, 2, . . . , N , (62)

where ui (ρ) ∈ M(λi (ρ)). Combined with (7) and (60), we have

λi (ρ + γ ) − λi (ρ) =
∫
�

|∇ui (ρ + γ )|2dx∫
�
(ρ + γ )u2i (ρ + γ )dx

−
∫
�

|∇ui (ρ)|2dx∫
�

ρu2i (ρ)dx

=
∫
�

|∇ui (ρ + γ )|2dx ∫
�

ρu2i (ρ)dx − ∫
�
(ρ + γ )u2i (ρ + γ )dx

∫
�

|∇ui (ρ)|2dx∫
�
(ρ + γ )u2i (ρ + γ )dx

∫
�

ρu2i (ρ)dx
(63)

123



16 Page 12 of 31 Journal of Scientific Computing (2023) 96 :16

With (4), (7) and (60), the numerator of (63) could be evaluated by

∫
�

|∇ui (ρ + γ )|2dx
∫

�

ρu2i (ρ)dx −
∫

�

(ρ + γ )u2i (ρ + γ )dx
∫

�

|∇ui (ρ)|2dx

=
∫

�

(|∇ui (ρ + γ )|2 − |∇ui (ρ)|2)dx
∫

�

ρu2i (ρ)dx

−
∫

�

((ρ + γ )u2i (ρ + γ ) − ρu2i (ρ))dx
∫

�

|∇ui (ρ)|2dx

=
∫

�

∇(ui (ρ + γ ) − ui (ρ)) · ∇(ui (ρ + γ ) + ui (ρ))dx
∫

�

ρu2i (ρ)dx

−
∫

�

(γ u2i (ρ + γ ) + ρ(ui (ρ + γ ) − ui (ρ))(ui (ρ + γ ) + ui (ρ)))dx
∫

�

|∇ui (ρ)|2dx

= λi (ρ + γ )

∫
�

(ρ + γ )(ui (ρ + γ ) − ui (ρ))ui (ρ + γ )dx
∫

�

ρu2i (ρ)dx

+ λi (ρ)

∫
�

ρ(ui (ρ + γ ) − ui (ρ))ui (ρ)dx
∫

�

ρu2i (ρ)dx

−
∫

�

γ u2i (ρ + γ )dxλi (ρ)

∫
�

ρu2i (ρ)dx

−
∫

�

ρ(ui (ρ + γ ) − ui (ρ))(ui (ρ + γ ) + ui (ρ))dxλi (ρ)

∫
�

ρu2i (ρ)dx

=
[
(λi (ρ + γ ) − λi (ρ))

∫
�

(ρ + γ )(ui (ρ + γ ) − ui (ρ))ui (ρ + γ )dx

− λi (ρ)

∫
�

γ ui (ρ)(ui (ρ + γ ) − ui (ρ))dx − λi (ρ)

∫
�

γ u2i (ρ)dx
] ∫

�

ρu2i (ρ)dx

(64)

and the denominator of (63) could be evaluated by

∫
�

(ρ + γ )u2i (ρ + γ )dx
∫

�

ρu2i (ρ)dx

=
[ ∫

�

γ u2i (ρ + γ )dx +
∫

�

ρ(ui (ρ + γ ) − ui (ρ))(ui (ρ + γ ) + ui (ρ))dx

+
∫

�

ρu2i (ρ)dx
] ∫

�

ρu2i (ρ)dx . (65)

Combining (64) and (65), (63) could be simplified by

λi (ρ + γ ) − λi (ρ)

= −λi (ρ)
∫
�

γ ui (ρ)(ui (ρ + γ ) − ui (ρ))dx − λi (ρ)
∫
�

γ u2i (ρ)dx∫
�

ρu2i (ρ)dx + ∫
�

ρ(ui (ρ + γ ) − ui (ρ))ui (ρ)dx + ∫
�

γ ui (ρ)ui (ρ + γ )dx
. (66)
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Thus,

λi (ρ + γ ) − λi (ρ) + λi (ρ)
∫
�

γ u2i (ρ)dx∫
�

ρu2i (ρ)dx

=
[

− λi (ρ)

∫
�

γ ui (ρ)(ui (ρ + γ ) − ui (ρ))dx)
∫

�

ρu2i (ρ)dx

+ λi (ρ)

∫
�

γ u2i (ρ)dx
( ∫

�

ρ(ui (ρ + γ ) − ui (ρ))ui (ρ)dx +
∫

�

γ ui (ρ)ui (ρ + γ )dx
)]

/[( ∫
�

ρu2i (ρ)dx +
∫

�

ρ(ui (ρ + γ ) − ui (ρ))ui (ρ)dx

+
∫

�

γ ui (ρ)ui (ρ + γ )dx
) ∫

�

ρu2i (ρ)dx
]
. (67)

By (9) and (62), we have ‖ui (ρ)‖H1(�) < C and ‖ui (ρ + γ )‖H1(�) < C when ‖γ ‖L∞(�) is
small enough. Therefore, the denominator of (67) could be bounded. Combined with Lemma
3.1, (67) is evaluated by

|λi (ρ + γ ) − λi (ρ) + λi (ρ)
∫
�

γ u2i (ρ)dx∫
�

ρu2i (ρ)dx
|

≤ C |λi (ρ)

∫
�

γ ui (ρ)(ui (ρ + γ ) − ui (ρ))dx)
∫

�

ρu2i (ρ)dx |

+ |λi (ρ)

∫
�

γ u2i (ρ)dx
( ∫

�

ρ(ui (ρ + γ ) − ui (ρ))ui (ρ)dx +
∫

�

γ ui (ρ)ui (ρ + γ )dx
)|

≤ C‖γ ‖L∞(�)

(‖ui (ρ + γ ) − ui (ρ)‖H1(�) + ‖γ ‖L∞(�)

)
.

Thus, by (62), we have

|λi (ρ + γ ) − λi (ρ) + λi (ρ)
∫
� γ u2i (ρ)dx∫

� ρu2i (ρ)dx
|

‖γ ‖L∞(�)

→ 0 as γ → 0 in L∞(�).

The Fréchet derivative λ′
i (ρ) at ρ ∈ A, i = 1, 2, . . . , N , is given by

λ′
i (ρ)[γ ] = −λi (ρ)

∫
�

γ u2i (ρ)dx∫
�

ρu2i (ρ)dx
. (68)

Consequently,

F ′(ρ)[γ ] = −
N∑
i=1

(λi (ρ) − λ̂i )
λi (ρ)

∫
�

γ u2i (ρ)dx∫
�

ρu2i (ρ)dx
+ ε

∫
�

ργ dx . (69)

�	

4 Finite-Element Approximation and Its Convergence

The finite-element method is applied to discretize the optimization problem (10) and (4).
The domain � is partitioned into regular elements Th . The linear finite-element space Vh is
defined by

Vh = {φh ∈ C0(�) : φh |Ti ∈ P1(Ti ), ∀Ti ∈ Th} (70)
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where P1(Ti ) denotes the space of linear (bilinear) polynomials on the element Ti . The
discrete admissible set of the ρh is defined by

Ah = {ρh ∈ Vh : ρ0 ≤ ρh(x) ≤ ρ1,∀x ∈ �} (71)

and Ah ⊂ A. Then the optimization problem (10) and (4) is approximated by the discrete
minimization optimization

min
ρh∈Ah

Fh(ρh) = 1

2

N∑
i=1

(λi,h(ρh) − λ̂i )
2 + ε

2

∫
�

ρ2
hdx, (72)

where the eigenpairs (λi,h(ρh), ui,h(ρh)), i = 1, 2, . . . ,m = dim Vh , satisfy the following
weak formulations∫

�

∇ui,h(ρh) · ∇vhdx = λi,h(ρh)

∫
�

ρhui,h(ρh)vhdx, ∀vh ∈ Vh, i = 1, 2, . . . ,m.

(73)

The i-th eigenpair (λi,h(ρh), ui,h(ρh)) is obtained by the min-max principle [see 18]

λi,h(ρh) = min
Vi⊂Vh , dim(Vi )=i

max
uh∈Vi

∫
�

|∇uh |2dx∫
�

ρhu2hdx

= max
uh∈span{u1,h(ρh),u2,h(ρh),...,ui,h(ρh)}

∫
�

|∇uh |2dx∫
�

ρhu2hdx

=
∫
�

|∇ui,h(ρh)|2dx∫
�

ρhu2i,h(ρh)dx
, ∀ui,h ∈ Mh(λi,h(ρh)), (74)

where

Mh(λi,h(ρh)) = {u : u is an eigenfunction of(73) corresponding to λi,h(ρh)}. (75)

By rearranging, (73) admits a sequence of real eigenvalues

0 < λ1,h(ρh) ≤ λ2,h(ρh) ≤ · · · ≤ · · · ≤ λm,h(ρh), (76)

and the corresponding eigenfunctions

u1,h(ρh), u2,h(ρh) . . . , um,h(ρh) (77)

which can be chosen to satisfy∫
�

∇ui,h(ρh) · ∇u j,h(ρh)dx = λi,h(ρh)

∫
�

ρhui,h(ρh)u j,h(ρh)dx

= δi j , i, j = 1, 2, . . . , m. (78)

Analogous to Lemma 3.1, the boundedness of λi,h(ρh) could be obtained as follows:

Lemma 4.1 For any ρh ∈ Ah, we have

λi,h(ρ1) ≤ λi,h(ρh) ≤ λi,h(ρ0), i = 1, 2, . . . ,m. (79)

Lemma 4.2 For i = 1, 2, . . . ,m, let ρn
h , ρ∗

h ∈ Ah and ρn
h → ρ∗

h in any norm as n → ∞,
then λi,h(ρ

n
h ) → λi,h(ρ

∗
h ). Moreover, there exists a subsequence ui,h(ρn

h ) ∈ Mh(λi,h(ρ
n
h )),

and some ui,h(ρ∗
h ) ∈ Mh(λi,h(ρ

∗
h )), satisfying ui,h(ρn

h ) → ui,h(ρ∗
h ) in H1(�), as n → ∞.
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Proof The proof is analogue to Lemma 3.3, replacing ρn, ρ∗, λi (ρ
n), ui (ρn) by

ρn
h , ρ∗

h , λi,h(ρ
n
h ), ui,h(ρn

h ), respectively. �	
Theorem 4.1 There exists at least one minimizer to the optimization problem (72) and (73).

Proof By Lemma 4.1, we conclude that the minimization of Fh(ρh) is finite over the admis-
sible set Ah . Therefore, there exists a sequence ρn

h ∈ Ah such that

lim
n→∞ Fh(ρ

n
h ) = inf

ρh∈Ah
Fh(ρh). (80)

The uniform boundedness of the sequence ρn
h in L∞(�) implies that there exists a subse-

quence, also denoted by ρn
h , and some ρ∗

h such that

ρn
h → ρ∗

h , in any norm as n → ∞. (81)

By Lemma 4.2, and the lower semicontinuity of a norm, we obtain

Fh(ρ
∗
h ) = 1

2

N∑
i=1

(λi,h(ρ
∗
h ) − λ̂i,h)

2 + ε

2

∫
�

(ρ∗
h )

2dx

≤ lim
n→∞

1

2

N∑
i=1

(λi,h(ρ
n
h ) − λ̂i,h)

2 + lim inf
n→∞

ε

2

∫
�

(ρn
h )2dx

≤ lim inf
n→∞

(1
2

N∑
i=1

(λi,h(ρ
n
h ) − λ̂i,h)

2 + ε

2

∫
�

(ρn
h )2dx

)

= lim inf
n→∞ Fh(ρ

n
h ) ≤ inf

ρh∈Ah
Fh(ρh).

Therefore, ρ∗
h is a minimizer of Fh(ρh). �	

Lemma 4.3 Assume that (λi,h(ρh), ui,h(ρh)) (i = 1, 2, . . . , M) are the eigenpairs of (73),
and (λ̃i , ũi ) are the eigenpairs of (4) replacing ρ by ρ̃, then∫

�

|∇(ui,h(ρh) − ũi )|2 dx − λ̃i

∫
�

ρ̃(ui,h(ρh) − ũi )
2dx

= (λi,h(ρh) − λ̃i )

∫
�

ρhu
2
i,h(ρh)dx + λ̃i

∫
�

(ρh − ρ̃)u2i,h(ρh)dx . (82)

Proof The proof is analogue to Lemma 3.2, replacing ρ, λi (ρ), ui (ρ) by ρh , λi,h(ρh),

ui,h(ρh), respectively. �	
We introduce the standard interpolation operator Ih : W 1,∞(�) → Vh and the projection

operator Rh : H1(�) → Vh defined by∫
�

∇Rhw · ∇φhdx =
∫

�

∇w · ∇φhdx, ∀ w ∈ H1(�), φh ∈ Vh .

It is well known [see 20, 21] that, for any p > d = dim(�), we have

lim
h→0

‖Ihw − w‖W 1,p(�) = 0, ∀ w ∈ W 1,p(�) (83)

and

lim
h→0

‖Rhw − w‖H1(�) = 0, ∀ w ∈ H1(�). (84)
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Lemma 4.4 Let ρh ∈ Ah, ρ∗ ∈ A in L∞(�), if ρh
∗
⇀ ρ∗ in L∞(�) as h → 0, then

λi,h(ρh) → λi (ρ
∗). Moreover, there exists a subsequence ui,h(ρh) ∈ Mh(λi,h(ρh)), and

some ui (ρ∗) ∈ M(λi (ρ
∗)), satisfying ui,h(ρh) → ui (ρ∗) in H1(�), as h → 0.

Proof By Lemma 4.1, for i = 1, 2, . . . , N , we have

λi,h(ρ1) ≤ λi,h(ρh) ≤ λi,h(ρ0).

The finite-element solutions λi,h(ρ0) and λi,h(ρ1) have the following convergence [see 18]

λi,h(ρ0) → λi (ρ0),

λi,h(ρ1) → λi (ρ1).

Therefore,

|λi,h(ρh)| < C, i = 1, 2, . . . , N .

It implies that there exists a subsequence, also denoted by λi,h(ρh), such that

lim
h→0

λi,h(ρh) = λ∗
i , i = 1, 2, . . . , N . (85)

By (78), the eigenfunction ui,h(ρh) ∈ Mh(λi,h(ρh)) satisfies∫
�

|∇ui,h(ρh)|2dx = 1, (86)

and by Poincaré inequality, we have

‖ui,h(ρh)‖H1(�) < C, (87)

where C is a constant independent of h. Thus, there exists a subsequence, also denoted by
ui,h(ρh), such that

ui,h(ρh)⇀u∗
i in H1(�) and ui,h(ρh) → u∗

i in L2(�), i = 1, 2, . . . , N , (88)

as h → 0.
We need to prove that (λ∗

i , u
∗
i ) is the eigenpair of (4) corresponding to ρ∗ for i =

1, 2, . . . , N . Notice that the eigenpair (λi,h(ρh), ui,h(ρh)) corresponding to ρh satisfies
the weak formula (73). Substituting vh in (73) by Rhv, ∀v ∈ H1

0 (�), we obtain
∫

�

∇ui,h(ρh) · ∇Rhvdx = λi,h(ρh)

∫
�

ρhui,h(ρh)Rhvdx, i = 1, 2, . . . ,m. (89)

The RHS item of equation of (89) could be rewritten by

λi,h(ρh)

∫
�

ρhui,h(ρh)Rhvdx = (λi,h(ρh) − λ∗
i )

∫
�

ρhui,h(ρh)Rhvdx

+ λ∗
i

∫
�

ρh(ui,h(ρh) − u∗
i )Rhvdx + λ∗

i

∫
�

(ρh − ρ∗)u∗
i Rhvdx

+ λ∗
i

∫
�

ρ∗u∗
i (Rhv − v)dx + λ∗

i

∫
�

ρ∗u∗
i vdx . (90)

By (11), (71), (87), (85), (88), (84) and ρh
∗
⇀ ρ∗ in L∞(�) as h → 0, we have

lim
h→0

λi,h(ρh)

∫
�

ρhui,h(ρh)Rhvdx = λ∗
i

∫
�

ρ∗u∗
i vdx . (91)
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By (88) and (84), we have

lim
h→0

∫
�

∇ui,h(ρh) · ∇Rhvdx =
∫

�

∇u∗
i · ∇vdx (92)

Taking the limitation of equation (89) as h → 0, combined with (91) and (92), we have
∫

�

∇u∗
i · ∇vdx = λ∗

i

∫
�

ρ∗u∗
i vdx . (93)

Therefore, it could conclude that (λ∗
i , u

∗
i ) (i = 1, 2, . . . , N ) are eigenpairs of (4) correspond-

ing to ρ∗. Replacing ρ̃, ũi , λ̃i by ρ∗, u∗
i , λ∗

i in Lemma 4.3, we have
∫

�

|∇(ui,h(ρh) − u∗
i )|2dx

= λ∗
i

∫
�

ρ∗(ui,h(ρh) − u∗
i )

2dx + (λi,h(ρh) − λ∗
i )

∫
�

ρhu
2
i,h(ρh)dx

+ λ∗
i

∫
�

(ρh − ρ∗)u2i,h(ρh)dx

→ 0, as h → 0 (94)

with (11), (71), (88), (87), (85) and ρh
∗
⇀ ρ∗ in L∞(�). Combining (88) and (94), we have

ui,h(ρh) → u∗
i in H1(�), i = 1, 2, . . . , N , (95)

as h → 0.
Taking the limitation of (78) as h → 0, by (71), (87), (95), (85) and ρh

∗
⇀ ρ∗ in L∞(�)

as h → 0, the orthogonality of u∗
i is obtained by

∫
�

∇u∗
i · ∇u∗

j dx = λ∗
i

∫
�

ρ∗u∗
i u

∗
j dx = δi j , i, j = 1, 2, . . . , m. (96)

Finally, we prove (λ∗
i , u

∗
i ) (i = 1, 2, . . . , N ) is the i-th eigenpair of (4) corresponding to

ρ∗ by induction. For i = 1, by (7) (replacing ρ by ρ∗), we have

λ1(ρ
∗) =

∫
�

|∇u1(ρ∗)|2 dx∫
�

ρ∗u21(ρ∗) dx

≤
∫
�

|∇u∗
1|2 dx∫

�
ρ∗u∗

1
2 dx

= λ∗
1. (97)

On the other hand, by (85), (74), (71), (84) and ρh
∗
⇀ ρ∗ in L∞(�) as h → 0, we have

λ∗
1 = lim

h→0
λ1,h(ρh)

= lim
h→0

∫
�

|∇u1,h(ρh)|2 dx∫
�

ρhu21,h(ρh) dx

≤ lim
h→0

∫
�

|∇Rhu1(ρ∗)|2 dx∫
�

ρh(Rhu1(ρ∗))2 dx

=
∫
�

|∇u1(ρ∗)|2 dx∫
�

ρ∗u21(ρ∗) dx
= λ1(ρ

∗). (98)
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Combining (97) and (98), we obtain λ∗
1 = λ1(ρ

∗) and u∗
1 ∈ M(λ1(ρ

∗)). We set u1(ρ∗) ∈
M(λ1(ρ

∗)) to satisfy u∗
1 = u1(ρ∗).

For i = 1, 2, . . . , k, assuming that

λ∗
i = λi (ρ

∗), (99)

u∗
i = ui (ρ

∗), (100)

we need to prove that λ∗
k+1 = λk+1(ρ

∗) and u∗
k+1 = uk+1(ρ

∗). On one hand, similar to the
proof of (41), we have

λk+1(ρ
∗) ≤ λ∗

k+1. (101)

On the other hand, we can conclude that

dim span
{
u1,h(ρh), u2,h(ρh), ..., uk,h(ρh),Rhuk+1(ρ

∗)
} = k + 1. (102)

If the claim is negated to assume that

dim span
{
u1,h(ρh), u2,h(ρh), ..., uk,h(ρh),Rhuk+1(ρ

∗)
} = k,

since u1,h(ρh), u2,h(ρh), ..., uk,h(ρh) are orthogonal by (78), then

Rhuk+1(ρ
∗) = γ1u1,h(ρh) + γ2u2,h(ρh) + ... + γkuk,h(ρh). (103)

By the orthogonality (78), we obtain

∫
�

∇Rhuk+1(ρ
∗)∇ui,h(ρh)dx =

k∑
j=1

γ j

∫
�

∇u j,h(ρh)∇ui,h(ρh)dx

= γi , i = 1, 2, . . . , k. (104)

Taking the limitation of (104) as h → 0, with (84), (95), (100) and (9) (replacing ρ by ρ∗),
we obtain

0 =
∫

�

∇uk+1(ρ
∗)∇ui (ρ

∗)dx = γi , i = 1, 2, . . . , k. (105)

Therefore, Rhuk+1(ρ
∗) ≡ 0. By (84), it implies that uk+1(ρ

∗) ≡ 0, which contradicts the
definition of a nontrivial eigenfunction.

By (74) and (102), we have

λk+1,h(ρh) =
∫
�

|∇uk+1,h(ρh)|2 dx∫
�

ρhu2k+1,h(ρh) dx

= min
Vk+1⊂Vh , dim(Vk+1)=k+1

max
uh∈Vk+1

∫
�

|∇uh |2dx∫
�

ρhu2hdx

≤ max
uh∈span{u1,h(ρh),u2,h(ρh),...,uk,h(ρh),Rhuk+1(ρ

∗)}

∫
�

|∇uh |2dx∫
�

ρhu2hdx

=
∫
�

|∇ũh |2dx∫
�

ρhũ2hdx
. (106)
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Let ũh = β1u1,h(ρh) + β2u2,h(ρh)+, ..., βkuk,h(ρh) + βk+1Rhuk+1(ρ
∗). By (78), (95),

(100), (84), ρh
∗
⇀ ρ∗ in L∞(�) as h → 0 and (9) (replacing ρ by ρ∗), we have

∫
�

|∇ũh |2 dx =
k∑
j=1

β2
j

∫
�

|∇u j,h(ρh)|2 dx + β2
k+1

∫
�

|∇Rhuk+1(ρ
∗)|2 dx

+ 2
k∑
j=1

β jβk+1

∫
�

∇u j,h(ρh)∇Rhuk+1(ρ
∗) dx

→
k∑
j=1

β2
j

∫
�

|∇u j (ρ
∗)|2 dx + β2

k+1

∫
�

|∇uk+1(ρ
∗)|2 dx as h → 0 (107)

and
∫

�

ρhũ
2
h dx =

k∑
j=1

β2
j

∫
�

ρhu
2
j,h(ρh)dx + β2

k+1

∫
�

ρh(Rhuk+1(ρ
∗))2dx

+ 2
k∑
j=1

β jβk+1

∫
�

ρhu j,h(ρh)Rhuk+1(ρ
∗)dx

→
k∑
j=1

β2
j

∫
�

ρ∗u2j (ρ∗)dx + β2
k+1

∫
�

ρ∗u2k+1(ρ
∗)dx as h → 0. (108)

By (5) and (9) (replacing ρ by ρ∗), (107) could be further evaluated by

k∑
j=1

β2
j

∫
�

|∇u j (ρ
∗)|2 dx + β2

k+1

∫
�

|∇uk+1(ρ
∗)|2 dx

=
k∑
j=1

β2
j λ j (ρ

∗)
∫

�

ρ∗u2j (ρ∗) dx + β2
k+1λk+1(ρ

∗)
∫

�

ρ∗u2k+1(ρ
∗) dx

≤ λk+1(ρ
∗)

[ k∑
j=1

β2
j

∫
�

ρ∗u2j (ρ∗) dx + β2
k+1

∫
�

ρ∗u2k+1(ρ
∗) dx

]
. (109)

Combining (85), (106), (107), (108) and (109), it implies that

λ∗
k+1 = lim

h→0
λk+1,h(ρh) ≤ λk+1(ρ

∗). (110)

With (101) and (110), we obtain λ∗
k+1 = λk+1(ρ

∗). The eigenfunction u∗
k+1 corresponding

to λ∗
k+1 is also the eigenfunction corresponding to λk+1(ρ

∗). That is, u∗
k+1 ∈ M(λk+1(ρ

∗)).
We set uk+1(ρ

∗) ∈ M(λk+1(ρ
∗)) to satisfy u∗

k+1 = uk+1(ρ
∗). By induction, we conclude

that λ∗
i = λi (ρ

∗), u∗
i = ui (ρ∗), i = 1, 2, . . . , N . Combined with (85) and (95), the proof

is complete. �	
Lemma 4.5 (See [21, LEMMA 4.3]) C∞(�) is weak-* dense in L∞(�).

Theorem 4.2 Let {ρ∗
h }h>0 be a sequence of minimizers to the discrete minimization prob-

lem (72) and (73). Then each subsequence of {ρ∗
h }h>0 has a subsequence converging to a

minimizer of the continuous optimization problem (10) and (4).
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Proof The uniform boundedness of the sequence ρ∗
h in L∞(�) implies that there exists a

subsequence, also denoted by ρ∗
h , and some ρ∗ such that

ρ∗
h

∗
⇀ ρ∗ in L∞(�) as h → 0. (111)

Lemma 4.4 implies that

λi,h(ρ
∗
h ) → λi (ρ

∗) as h → 0. (112)

By Lemma 4.5, for any ρ ∈ A and fixed δ > 0, there exists a ρδ ∈ C∞(�) such that

ρδ ∗
⇀ ρ in L∞(�) as δ → 0. (113)

By its construction, ρδ ∈ A. Let ρδ
h = Ihρδ ∈ Ah . By (83) and Lemma 4.4, we have

λi,h(ρ
δ
h) → λi (ρ

δ) as h → 0. (114)

Noting that ρ∗
h is the minimizer of Fh(·) over Ah , we have

Fh(ρ
∗
h ) = 1

2

N∑
i=1

(λi,h(ρ
∗
h ) − λ̂i )

2 + ε

2

∫
�

(ρ∗
h )

2dx

≤ Fh(ρ
δ
h) = Fh(Ihρδ). (115)

Thus, by (112), (115), (114) and the lower semicontinuity of a norm, we have

F(ρ∗) = 1

2

N∑
i=1

(λi (ρ
∗) − λ̂i )

2 + ε

2

∫
�

(ρ∗)2dx

≤ lim
h→0

1

2

N∑
i=1

(λi,h(ρ
∗
h ) − λ̂i )

2 + lim inf
h→0

ε

2

∫
�

(ρ∗
h )

2dx

≤ lim inf
h→0

Fh(ρ
∗
h ) ≤ lim inf

h→0
Fh(Ihρδ)

= lim inf
h→0

[1
2

N∑
i=1

(λi,h(ρ
δ
h) − λ̂i )

2 + ε

2

∫
�

(ρδ
h)

2dx
]

≤ 1

2

N∑
i=1

(λi (ρ
δ) − λ̂i )

2 + ε

2

∫
�

(ρδ)2dx

Letting δ tend to zero, we obtain that

F(ρ∗) ≤ 1

2

N∑
i=1

(λi (ρ) − λ̂i )
2 + ε

2

∫
�

ρ2dx .

Therefore, ρ∗ is a minimizer of F(ρ). �	

5 Algorithm

For ρ ∈ A and i = 1, 2, . . . , N , if eigenvalues λi (ρ) of (4) are simple, we solve the
optimization problem (10) and (4) by the Fletcher–Reeves conjugate gradient algorithm
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[22]. That is, with the Fréchet derivative (59), the decent direction is set by

dk = −F ′(ρ(k)) + βk−1dk−1. (116)

With the Fletcher–Reeves scheme [22], the conjugate coefficient βk−1 is given by

βk−1 =
‖F ′(ρ(k))‖2

L2(�)

‖F ′(ρ(k−1))‖2
L2(�)

(117)

and β−1 = 0. The step length αk in the conjugate direction dk is determined by

αk = argmin
α

F(ρ(k) + αdk).

In our numerical algorithm, by taking the derivative of F(ρ(k) + αdk) with respect to α and
setting it to be zero, the step length αk is approximated by

αk = − F ′(ρ(k))[dk]∑N
i=1(λ

′(ρ(k))[dk])2 + ε‖dk‖2L2(�)

. (118)

Now, we summarize the Fletcher–Reeves conjugate gradient algorithm as follows:

Algorithm 5.1 STEP 1. Initialize the density function ρ(0), and set the regularity coefficient
ε and the input data λ̂i , i = 1, 2, . . . , N .

STEP 2. Solve the eigenpairs (λi (ρ
(k)), ui (ρk)), i = 1, 2, . . . , N of (4).

STEP 3. Determine the gradient F ′(ρ(k)) by (59) and calculate the descent direction dk
by (116) and (117).

STEP 4. Calculate the step length αk by (118).
STEP 5. Update the density function ρ(k) by

ρ(k+1) = ρ(k) + αkdk .

STEP 6. Set k = k + 1 and go to STEP 2. Repeat the procedure until a stopping criterion
is satisfied.

Remark 5.1 In the numerical experiments, the stopping criterion is set that the norm of the
decent direction is small enough. That is, if ||dk ||L2(�) < δ, where δ is a given number, the
iteration of the Fletcher–Reeves conjugate gradient algorithm is stopped.

6 Numerical Results

In this section, we present numerical results of the optimization problem (10) and (4) in 1D
and 2D cases. The domain is partitioned into uniformmeshes. The piecewise linear (bilinear)
basis functions are used. The noisy data is generated by using the following formula:

λ̂i (x) = λi (x)(1 + σζ ) in �, i = 1, 2, . . . , N

where ζ is a uniformly distributed random variable in [−1, 1] and σ dictates the level of
noise. The eigenpairs of (4) are solved by eigs found in MATLAB. The Algorithm 5.1 is
conducted in MATLAB codes.
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Table 1 The first 5 least eigenvalues for 1D case (σ = 0.001)

Eigenvalues i = 1 i = 2 i = 3 i = 4 i = 5

λ̂i 0.91535490 3.93915202 8.46917234 15.34538138 23.96039121

Initial λi 1.00000021 4.00000329 9.00001665 16.00005264 25.00012851

Final λi 0.91535602 3.93915164 8.46917274 15.34538126 23.96039094

Table 2 The first 10 least eigenvalues for 1D case with continuous density (σ = 0.001)

Eigenvalues i = 1 i = 2 i = 3 i = 4 i = 5

λ̂i 0.91426066 3.93801755 8.47125715 15.34100987 23.98835641

Initial λi 1.00000021 4.00000329 9.00001665 16.00005264 25.00012851

Final λi 0.91426135 3.93801751 8.47125730 15.34100986 23.98835641

Eigenvalues i = 6 i = 7 i = 8 i = 9 i = 10

λ̂i 34.24481084 46.87913637 61.16809688 77.22502908 95.68667178

Initial λi 36.00026648 49.00049369 64.00084221 81.00134906 100.00205618

Final λi 34.24481083 46.87913638 61.16809687 77.22502906 95.68667179

6.1 1D Case

Set the domain � = (0, π), which is uniformly partitioned into 2000 elements. The exact
density function is set by

ρ(x) =
{
1 + e

− 128
9π2−256(x− π

2 )2 , 5π
16 <x< 11π

16 ,

1, otherwise.
(119)

The first 5 least eigenvalues with noise level σ = 0.001 are listed in the first row of Table 1
and used as the input data. Set ε = 10−6 and δ = 10−4. With the initialization of density
function ρ(0) = 1 in the whole domain (see the dash line in Fig. 1a), the evolutions of density
function are illustrated in Fig. 1, after k = 10, 20, 30, 50, 156 iterations. The solid curve
represents the exact density function, while the dash curve represents the recovered density
function. After 156 iterations, the curve of the recovered density function fits well with the
one of the exact density function, but it has some oscillations. The initial and the finial first
5 least eigenvalues are listed in the second row and the third row of Table 1, respectively.

With more input data, the recovery of the density function is improved. Using the first
10 least eigenvalues as the input data (see Table 2), with the same setting parameters, the
evolutions of density function are illustrated in Fig. 2, after k = 10, 30, 50, 100, 483 itera-
tions. The solid curve represents the exact density function, while the dash curve represents
the recovered density function. After 483 iterations, the recovered density function fits the
exact one much better, compared to the numerical results shown in Fig. 1 using first 5 least
eigenvalues as the input data. The initial and the finial first 10 least eigenvalues are listed in
Table 2.

Various levels of noise are considered. Set σ = 0.001, 0.005, 0.01, 0.02, respectively.
Set ε = 10−6 and δ = 10−4. With the first 5 small least eigenvalues as the input data, we
initialize the density function ρ(0) = 1 in the whole domain. The final recovered density
function are illustrated in Fig. 3, with σ = 0.001, 0.005, 0.01, 0.02, respectively. The solid
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Fig. 1 The evolutions of the density function with the first 5 eigenvalues as the input data. The noise level is
σ = 0.001

curve represents the exact density function, while the dash curve represents the recovered
density function. Note that the higher level of noise incurs the inaccuracy of the recovery of
density function. It may be caused by the sensitivity of the eigenvalue to the variation of the
density function.

The measured spectral data with gaps are considered. As listed in the first row of Table 2,
the eigenvalues λ̂1, λ̂2, λ̂3, λ̂6, λ̂9 with noise level σ = 0.001 are chosen as the input data.
Setting ε = 10−6, δ = 10−4 and ρ(0) = 1 in the whole domain, the evolutions of density
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Fig. 2 The evolutions of the density function with the first 10 eigenvalues as the input data. The noise level is
σ = 0.001

function are illustrated in Fig. 4, after k = 10, 20, 30, 50, 94 iterations. The solid curve
represents the exact density function, while the dash curve represents the recovered density
function. Compared to the numerical results shown in Fig. 1, it is observed that the first 5
least eigenvalues as the measured spectral data could recover the density function better than
the 5 eigenvalues with gaps. After 94 iterations, the finial eigenvalues are λ1 = 0.91426600,
λ2 = 3.93801788, λ3 = 8.47125761, λ6 = 34.24481075, λ9 = 77.22502904, respectively.
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Fig. 3 The recovered density functions with different noise levels of input data

The discontinuous density case is also considered, which is defined by

ρ(x) =
{
1 + e

− 128
9π2−128(x− π

2 )2 , 5π
16 < x < 11π

16 ,

1, otherwise.
(120)

The first 10 least eigenvalues with noise level σ = 0.001 are listed in the first row of Table 3
and used as the input data. Set ε = 10−6 and δ = 10−4. With the initialization of density
function ρ(0) = 1 in the whole domain (see the dash line in Fig. 5 (a)), the evolutions of
density function are illustrated in Fig. 5, after k = 10, 30, 50, 80, 368 iterations. The solid
curve represents the exact density function with discontinuity at x = 5π

16 and 11π
16 , while the

dash curve represents the recovered density function. After 368 iterations, the curve of the
recovered density function fits well with the one of the exact density function at most part of
the region � = (0, π). It has some deviations in the vicinity of x = 5π

16 and 11π
16 . The initial

and the finial first 10 least eigenvalues are listed in Table 3.
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Fig. 4 The evolutions of the density function with 5 eigenvalues with gaps as the input data. The noise level
is σ = 0.001
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Table 3 The first 10 least eigenvalues for 1D case with discontinuous density (σ = 0.001)

Eigenvalues i = 1 i = 2 i = 3 i = 4 i = 5

λ̂i 0.89001245 3.86192032 8.43324097 14.93928067 23.60787650

Initial λi 1.00000021 4.00000329 9.00001665 16.00005264 25.00012851

Final λi 0.89001292 3.86192088 8.43324117 14.93928077 23.60787651

Eigenvalues i = 6 i = 7 i = 8 i = 9 i = 10

λ̂i 33.87947366 45.88524670 60.12939069 76.22760711 93.92399887

Initial λi 36.00026648 49.00049369 64.00084221 81.00134906 100.00205618

Final λi 33.87947364 45.88524677 60.12939067 76.22760714 93.92399888

Table 4 The first 10 least eigenvalues for 2D case (σ = 0.001)

Eigenvalues i = 1 i = 2 i = 3 i = 4 i = 5

λ̂i 1.79963276 4.49335781 4.85849079 7.57561646 8.76898607

Initial λi 1.90015627 4.60126675 4.90139014 7.60250063 9.10607981

Final λi 1.79963354 4.49335767 4.85848986 7.57561686 8.76898595

Eigenvalues i = 6 i = 7 i = 8 i = 9 i = 10

λ̂i 9.59767168 12.04452035 12.34272158 14.92739013 16.52536169

Initial λi 9.90673798 12.10731368 12.60784846 15.41904185 16.92114025

Final λi 9.59767184 12.04452034 12.34272144 14.92739008 16.52536182

6.2 2D Case

Set the domain � = (0, π/a) × (0, π) with a = √
0.9. It is uniformly partitioned into

100 × 100 rectangular elements. The exact density function is set by

ρ(x) =
{
1 + e

− 128
9π2−64(x1− π

2a )2−256(x2− π
2 )2 , (x1 − π

2a )2 + 4(x2 − π
2 )2< 9π2

64 ,

1, otherwise.
(121)

The first 10 least eigenvalues with noise level σ = 0.001 are listed in the Table 4 and used as
the input data. Set ε = 10−8 and δ = 10−4. The exact density function is illustrated in Fig. 6a.
With the initialization of density function ρ(0) = 1 in the whole domain (see Fig. 6b), the
evolutions of density function are illustrated in Fig. 6, after k = 10, 30, 50, 165 iterations.
After 156 iterations, the recovered density function fits the exact one well. The initial and
the finial first 10 least eigenvalues are listed in the Table 4.

Various levels of noise are considered. Set σ = 0.001, 0.005, 0.01, 0.02, respectively. Set
ε = 10−8 and δ = 10−4. With the first 10 small least eigenvalues as the input data and with
the initialization of the density function ρ(0) = 1 in the whole domain, the final recovered
density functions are illustrated in Fig. 7.

123



16 Page 28 of 31 Journal of Scientific Computing (2023) 96 :16

0 /4 /2 3 /4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Exact
Recovered

0 /4 /2 3 /4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Exact
Recovered

(k = 0) (k = 10)

0 /4 /2 3 /4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Exact
Recovered

0 /4 /2 3 /4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Exact
Recovered

(k = 30) (k = 50)

0 /4 /2 3 /4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Exact
Recovered

0 /4 /2 3 /4
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Exact
Recovered

(e) k = 80 (f) k = 368

Fig. 5 The evolutions of the density function with the first 10 eigenvalues as the input data. The noise level is
σ = 0.001. The original density function is discontinuous

7 Conclusions

The inverse eigenvalue problem for a weighted Helmholtz equation is investigated. The
continuity of the eigenvalue and the eigenfunction with respect to the density function is
proved by induction. Then the properties of existence, stability and Fréchet derivative of the
continuous optimization problems are established. The finite element method is applied to
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Fig. 6 The exact and the recovered density function after k = 0, 10, 30, 50, 165 iterations with the first 10
eigenvalues as the input data. The noise level is σ = 0.001

solve the weighted Helmholtz equation. The convergence of the discrete i-th eigenpair to
the continuous i-th eigenpair is proved. The properties of existence and the convergence of
the discrete optimization problems are derived. A conjugate gradient algorithm is proposed.
In the numerical experiments, reconstructions of continuous density function from different
input eigenvalue data are discussed, including the first 5 least eigenvalues, the first 10 least
eigenvalues and 5 eigenvalues with gaps. Also, the reconstruction of a discontinuous density
function from the first 10 least eigenvalues as the input data is investigated. The proposed
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Fig. 7 The recovered density functions with different noise levels of input data

algorithm has the capacity to reconstruct the density function efficiently, especially for the
cases that the density function is continuous and the input eigenvalue data are the first few
least ones without gaps.
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