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Abstract

The inverse eigenvalue problem for a weighted Helmholtz equation is investigated. Based on
the finite spectral data, the density function is estimated. The inverse problem is formulated as
a least squared functional with respect to the density function, with a L? regularity term. The
continuity of the eigenpairs with respect to the density is proved. Mathematical properties of
the continuous and the discrete optimization problems are established. A conjugate gradient
algorithm is proposed. Numerical results for 1 D and 2D inverse eigenvalue problem of the
weighted Helmholtz equation are presented to illustrate the effectiveness and efficiency of
the proposed algorithm.

Keywords Inverse eigenvalue problem - Weighted Helmholtz equation - Conjugate gradient
algorithm - Finite element method

1 Introduction

Aninverse eigenvalue problem concerns the reconstruction or identification of the parameters
in the governing differential equation from the prescribed spectral data. It arises in various
applications, such as control design, system identification, seismic tomography, principal
component analysis, exploration and remote sensing, antenna array processing, geophysics,
molecular spectroscopy, particle physics, structure analysis, circuit theory, mechanical system
simulation, and so on [1].

The inverse eigenvalue problem for a weighted Helmholtz equation is a kind of the clas-
sical inverse Sturm-Liouville problem [2-5]. Given the first finite smallest eigenvalues, the

B Zhengfang Zhang
zhengfangzhang @hdu.edu.cn

Xiangjing Gao
2033236345@qq.com

Xiaoliang Cheng
xiaoliangcheng @zju.edu.cn

College of Science, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
Department of Mathematics, Zhejiang University, Hangzhou 310027, People’s Republic of China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02242-1&domain=pdf
http://orcid.org/0000-0001-8973-0250

16 Page2of31 Journal of Scientific Computing (2023) 96:16

density function in the weighted Helmholtz equation is recovered. McCarthy uses projection
of the boundary value problem and its coefficients onto appropriate vector spaces, which
leads to a matrix inverse problem [6, 7]. Andrew proposes a new algorithm for solving the
inverse Sturm-Liouville problem of reconstructing a symmetric potential from eigenvalues
[8]. Drignei deals with the recovery of the potential coefficient of a Sturm-Liouville opera-
tor from three known sequences of eigenvalues corresponding respectively to three sets of
Dirichlet boundary conditions [9]. Jiang et al. investigate the inverse second-order Sturm-
Liouville problem and the inverse fourth-order Sturm-Liouville problem, and derive trace
formulas showing relations between the unknown coefficients and eigenvalues explicitly for
both problems [10]. Gao et al. propose a new iterative method to recover the impedance of
Sturm-Liouville problem from the finite eigenvalues [11]. Based on natural eigenfrequencies,
Zhang et al. investigate the damage identification of elastic vibration structure, where level
set method is introduced to represent two different material regions [12]. For the same objec-
tive functional, Zhang et al. propose the piecewise constant level set method to represent the
shape and topology of the damaged region [13]. Lee and Shin introduce a frequency response
function-based structural damage identification method for beam structures [14].

The finite element method is used to solve the eigenvalue problem. There are many excel-
lent works on it, and we refer to [15, 16] and references cited therein. The refined estimates for
Galerkin approximations of the eigenvalues and eigenvectors of selfadjoint eigenvalue prob-
lem is investigated in [17, 18]. The error estimates for the generalised Dirichlet eigenvalue
problem with stochastic coefficients is presented in [19].

This paper is organized as follows. In Sect. 2, the mathematical formulations of the inverse
eigenvalue problem of the weighted Helmholtz equation is described. In Sect. 3, the prop-
erties of existence, stability and Fréchet derivative of the continuous optimization problems
are established. In Sect. 4, the properties of existence and the convergence of the discrete
optimization problems are given. A conjugate gradient method is proposed in Sect. 5. 1D
and 2D numerical results of inverse eigenvalue problem of the weighted Helmholtz equation
are presented In Sect. 6.

2 Problem Statement

Consider the weighted Helmholtz equation
—Au = Apu, in £, (D
u=0, ond<, 2)

where Q@ ¢ R? (d = 1, 2) is a bounded and connected domain and 3S2 is the boundary of
the domain. p(x) is the density function and is assumed to satisfy the condition

0<po =p(x)<pr in€, 3)

where pg and p; are two constants. (A, u) is the eigenpair of the minus Laplace operator —A
with density function p(x). The weak formulation of (1) and (2) is given by

/ Vu - Vvdx = A/ puvdx, Yv e HOI(Q). 4)
Q Q

By rearranging, (4) admits a countable sequence of real eigenvalues [see 18]

0<A1(p) < A(p) <A3(p) <--- )
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and the corresponding eigenfunctions

ui(p), uz(p), uz(p).... (6)
The i-th eigenpair (A; (p), u; (p)) is obtained by the min-max principle [18]
Vul2dx
ri(p) = min max f9|72|
VicHL(Q). dim(V)=i ueVi  [q puldx
Vul*dx
| JalVuldx

uespan{uy,uz,....u;} fQ puzdx
Jo pui (p)dx

where HO1 (R2) is the subspace of H L) consisting of functions which vanish at the boundary
of Q in the sense of trace. Notice that the eigenfunction «; (o) in (7) is not unique, since for a
nonzero constant C, Cu; (p) is also the eigenfunction corresponding to A; (p). When 1; (p) is
multiple, u; (p) is assigned one of the eigenfunctions corresponding to ; (o). For any A; (p)
we let

)

M(Xi(p)) = {u : uis an eigenfunction of(4) corresponding to A;(p)}. (8)

The eigenfunction u;(p) in (7) is deemed to be one of the eigenfunctions corresponding to
Ai(p), thatis, u;(p) € M(A;(p)). The eigenfunctions in (6) are normalized and orthogonal-
ized to satisfy

/QVui(p)-Vuj(p)dx Z)»i(p)/gpui(p)uj(p)dx =68, L,j=12.... (9

It is known that an inverse eigenvalue problem, especially for the real-valued case, may
not necessarily have an exact solution [1]. It is also known that the spectral information, in
practice, is often obtained by experimental devices and thus inevitably contaminated with
measurement errors. That is, there are situations where an approximate solution best in the
sense of least squares would be satisfactory. In order to deal with the instability of the inverse
problem, a L? regularity term is added. The inverse eigenvalue problem is reformulated as
the following constrained optimization problem:

N
1 ~ £
inF(p) ==Y (Ai(p) —ri)>+ = 2d 10
min F(p) 2;(’(”) ,>+2/Qp x (10)
where '):,', (i = 1,2,..., N) are the measured data of the first N eigenvalues, ¢ is the
regularity parameter and A is the admissible set of the density function, that is,
A={p(x) e L¥(Q): po < p(x) < p1 a.e.x € Q}. (1)

3 Existence and Stability of the Optimization Problem

In this section, we present the properties of existence, stability and Fréchet derivative of the
continuous optimization problem (10) and (4).

Lemma 3.1 Forany p € A, we have

Ai(p1) = Xi(p) < Ai(po), i =1,2,..., N. (12)
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Proof Fori = 1,2, ..., N,by (7), wesetu?, u! € V; C H}(Q) anddim(V;) = i such that

fo|Vu|2dx  J |V Pdx

i (po) = min ma = ; (13)
l ViCHY (), dim(Vy)=i u€Vi fQ poudx fg pou?2dx
and
Vul|?dx Vul|2dx
ri(p1) = min max Jo| |2 = Ja| "2 . (14)
ViCHL(Q), dim(V;)=i 4€Vi Jo p1udx Jo plul.l dx
Consequently, by (3), (7), (13) and (14), we have
7lon) JoIVuiPdx _ [o|VuilPdx < 24(0) Jo IVu;|?dx
i(p1) = = =Aip) = —F———
fQ pluilzdx fQ Plu%dx fgz pu;i>dx
IVu?2dx |Vu?|2dx
< o 7 < Jo o = kipo)- (15)
Jo ouidx Jo pou;”dx
O

Lgmma 3.2 Fori =1,2,..., N, assume that (A (p), u;(p)) is the i-th eigenpair of (4), and
(Ai, u;) is the eigenpair of (4) replacing p by p, then

J Vo)~ P dx =i [ pp) - aplas
Q Q
= (i(p) — %) /Q pui (p)dx + A; fg (p — Puj (p)dx. (16)

Proof Fori = 1,2,..., N, since (,;(p), u;(p)) satisfies (4) and (A;, ii;) satisfies (4) by
replacing p by p, we obtain

/ |V(ui(p>—ﬁ,-)|2dx—iif pui(p) — i) dx
Q Q
:/ |w,-(p)|2dx—2/ Vu,'(p)-Vllidx—i-/ |va,~|2dx—i,-/ pui(p)dx
Q Q Q Q
+ 24 / pui(p)itidx — A / pidx
Q Q
=i (p) f pui(p)dx — ki fg pui(p)dx
Q

= (i(p) — ) fQ pu(p)dx + 4; /Q (p — P)u; (p)dx.
O

Replacing p € A in (4)—(9) by p", p* € A, the eigenpairs (u;(p"), 1;(p")) and
(ui(p*), 2i(p*)), i =1, 2, ..., are obtained, respectively.

Lemma3.3 Fori=1,2,...,N,let p", p* € Aand p" A p*in L°°(R) as n — 00, then

Ai (™) = Ai(p*¥). Moreover, there exists a subsequence u;(p") € M(A;(p")), and some
ui (p*) € M(hi(p*)), satisfying u; (p") — ui(p*) in H ().
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Proof Fori = 1,2,..., N, by Lemma 3.1, the boundedness of A;(p") implies that there
exists a subsequence, also denoted by A;(p™), such that

lim 2;(p") = A}. (17)
n—o0
Notice that by (9) (replacing p by p") the eigenfunction u; (0") € M (X;(p™")) satisfies
/|Vu,~<p")|2dx =1 (18)
Q

By Poincaré inequality, we have

i (0" 411 (@) < € (19)

where C is a constant independent of p”. Thus, there exists a subsequence, also denoted by
u; (p™), such that

wi(p")—uf in H'(Q) and u; (p") — u} in L*(S). (20)
We need to prove that (A}, u}) is the eigenpair of (4) corresponding to p* for i =

1,2,..., N. Notice that the eigenpair (A; (p"), u;(p™)) corresponding to p" satisfies (4)
(replacing p by p"), that is,

/QVu,-(p”) -Vvdx = A,-(p”)/gp"ui(p")vdx, Vve H(RQ), i=1,2,...,N. (2I)
The RHS item of equation of (21) could be rewritten by
li(p”)/gp”ui(p”)vdx =(A; (p") —k?)/ﬂp”ui(p”)vdx+k?/9p”(ui(p”) — uj)vdx
+ A7 /;2(,0” — pMuivdx + A} /Q p*ulvdx. (22)

By (11), (17), (19), (20) and p" A p*in L°°(2), we have

lim ki(p”)/ o"ui (pMvdx :Af/ p*uivdx. (23)
n—>o0 Q Q
By (20), we have
lim / Vu;(p") - Vvdx = / Vu? - Vvdx (24)
n—oo Q Q

Combining (23) and (24), and taking the limitation of equation (21), we have
/ Vu} - Vvdx = Af/ p*ufvdx, Yve H (), i=1,2,...,N. (25)
Q Q

Therefore, it concludes that (A}, u*) (i = 1,2, ..., N) are eigenpairs of (4) corresponding
to p*.
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Furthermore, replacing p, u;(p), Xi(p) by p", u;(p"), 1i(p"), and replacing p, i;, hi
by p*, u}, A} in Lemma 3.2, respectively, we have

[ vuon — upPax
Q

=2 / Pp*(ui(p") — uf)dx + hi(p") — 1)) / p"ui (p")dx

Q Q
+ A / (0" = p)ui (p")dx
Q

— 0 asn — 00, (26)

with (11), (20), (17), (19) and p" A p*in L°°(L2). Combining (20) and (26), we have
ui(p") — ulin HY(Q). (27

By the orthogonality (9) (replacing p by p"), (27), (17) and p”" A p*in L*°(2), the
orthogonality of u} is obtained by

/Vuf—Vu’]‘»dx =A;"/ p*ufujdx =38, i,j=1,2,... N. (28)
Q Q

Finally, we prove (A7, u}) (i = 1,2, ..., N) are the i-th eigenpairs for p* by induction.
Fori = 1, by (7) (replacing p by p*) we have

_ JoIVui(pH)?dx

Jo p¥lu1(p*)|? dx
_ Jo IVut)? dx
= Jo p*luil?dx

r(p")

=2 (29)

On the other hand, by (17), (7) (replacing p by p") and p" X p*in L®°(R2), we have
A7 = lim A1(p™)
n—0o0

o Ja ViR dx
=00 fo phui(p") dx
lim Jo IVui(p*)* dx
=00 fo phui(p*)dx
o IVui(p)? dx

Jq P*ui(p*)dx

IA

=11 (p%). (30)

Combining (29) and (30), we obtain A7 = A1(p*). The eigenfunction u7 corresponding to
A} is also the eigenfunction corresponding to A1 (p*). That is, u} € M (X1(p*)). Thus, we set
ui(p*) € M(h1(p*)) to satisfy uj = ui(p*).

Fori =1,2, ..., k, assuming that

= 2i(0"), (31)
= ui(p"), (32)
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we need to prove that ;| = Ax41(0") and up | = ug41(p*). By (7) and (9) (replacing p

by p*), (28) and (32), we have

Jo IVt (0" dx

Mey1(p*) =
Ja p*”i-ﬂ(/’*)dx
Jo |Vul?dx
= mln 72
Ve CHY Q). dim(Visy)=k+1 €Vir1 [ p*u? dx
Vul|*dx Vu* |2 dx
- max Jo IVul gl

uespan{uT,uﬁ ..... ”Z*”zﬂ} fQ ,0*142 dx fQ )O*M*z dx '
Let u® = ajuf + aous + ... + oy + ak+1u,’(‘+1. By the orthogonality (28), we have
k+1 k+1

IVu*)? dx = /oz |Vu dx = 012)3?/- * *zdx
i > Y [

k+1

/ **de_za/ **de

By (5) (replacing p by p*) and (31), we have

* * *
AM<A <. <AL

(33)

(34)

(35)

(36)

Then, we use reduction to absurdity to prove A7 > A;. If the claim is negated to assume

that
Mgt < A
combining with (34), (35) and (36), we have

k+1
2
/qu | dx—Zazk*/Qp*uj dx

k+1

<kk2 / *jzdx

=)\;{k/ **de
Q

(37

(3%)

By (33) and (38), we can get Ar11(p*) < Af = Ax(p*), which incurs the contradiction.

Therefore, we conclude that
Mgt Z A
Combining with (34), (35), (36) and (39), we obtain

k+1
/qu | dx—Z(xz)L*/ * *zdx

k+1

S)»Z_HZa?/ *u *zdx_)\k+1/;2p*u*2dx.
j=1

(39)

(40)

@ Springer



16 Page8of31 Journal of Scientific Computing (2023) 96:16

Substituting (40) into (33), we obtain
1 (p%) < My (41)
On the other hand, we need to prove that A;41(p*) > A; 1 First, we can conclude that
dim span {u1(p"), uz(p"), ..., uk ("), g1 (p*)} =k + 1. (42)
If the claim is negated to assume that
dim span {uy(p"), u2(p"), ..., uk (p"), uk41(0*)} = k,

since u1(p"), uz(p"), ..., ux(p") are orthogonal by (9) (replacing p by p"), then

uis1(p*) = yiur(p") + yauz (p") + ... + yrur(p"). (43)
Thus,
k
/ Vi1 (p")Vu;i (p*)dx = Zyj/ Vui(p")Vui(pHdx, i =1,2,.... k. (44)
Q . Q
j=1

Taking the limitation of (44) as n — oo, with (27), (32) and (9) (replacing p by p*), we
obtain

0= f Vitks1(p) Vi (0%)dx
Q

k
=> v / Vuj (p*) Vi (p*)dx
=1 ¢
=y,i=12 ...k (45)

Therefore, ur+1(p*) = 0, which contradicts the definition of a nontrivial eigenfunction.
By (7) (replacing p by p") and (42), we have

Jo Vi1 (0" dx

e1(p™) =

Jo p"”l%-ﬂ (p")dx
] Jo |Vu|?dx
= min X S
Vir1 CHJ (2).dim Vi =k+1 #€Vit1 fQ p"udx
Jo IVul*dx
< max s
uespan{uy (p"),uz(p"),....ur(p"),ui+1(p*)} fQ o'usdx
Jo IVu"|? dx
S L (46)
Jo P u* dx

Let u = B1ur(p") + Bouz (p")+, -y Bettr (") + Brs1tir1(p%). By (9) and (4) (replacing
p by p™ and p*, respectively), (11), (17), (27), (31), (32) and p" A p*in L*°(R2), we have

k
[rverar =Y [ 1unEac+ g [ Duen?ax
Q ; Q Q

Jj=1

k
F2Y et [ Vi Vukii ") d

=1 @
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k
=Z 2" )f p"uz(p )dx + B M1 (0F )/ p*ui, (0*) dx
+2Zl‘3;ﬂk+1?~ (p" )/ P u (" ugy1(p*) dx
j=1
- Zﬂ jp )/ P53 (p*) dx + Biy i hey1 (pF )/ p*uiyy (p*) dx
Jj=1
k
+2 3 Byt (0) [ 000 dx, asn oo @)
j=1
and
IRERE Zﬁ [ oo+t [ oo
23 B | #y 0" i
j=1 ¢
k
= 08 [ orudnds gy [ oo
j=1
k
423 i [ P (Pdx, asns oo G8)
j=1 ¢
By (5) (replacing p by p*) and (47), we have
k
S 60) [ PN dx t B 0h) [ pud (o) dx
o Q Q
+2218 ﬂk+1)‘«1(p )/ P MJ(p )Mk+1(p )dx
j=1
k
<@ 8 [ oo dx+ B [ ot o0
j=1 7% @
k
423 i [ P s (6 ], (49)
j=1 ¢
Combining (17), (46), (47), (48) and (49), it implies that
Mgl = Jim A1 (0") < M1 (0"). (50)

With (41) and (50), we conclude that A} £1 = A+l (p*). Moreover, the eigenfunction u} 1
corresponding to A} is also the eigenfunction corresponding to Ax+1(p*). Thatis, uy, €
M (A1 (™). We set ugy1(p*) € M (Ar41(p™)) to satisfy u,";+1 = ur+1(p™). By induction,
we conclude that 1* = A; (p*) and u} = u;(p*), fori = 1,2, ..., N. Combined with (17)

and (27), the proof is complete.

[m}
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Theorem 3.1 There exists at least one minimizer to the optimization problem (10) and (4).

Proof By Lemma 3.1, we conclude that the minimization of F (p) is finite over the admissible
set A. Therefore, there exists a sequence p" € A such that

lim F(p") = inf F(p). (51)
n— 00 peA

The uniform boundedness of the sequence p” in L°°(£2) implies that there exists a subse-
quence, also denoted by p”, and some p* € A such that

" X 0% in L®(Q). (52)
By Lemma 3.3, we have
Ai(p™) = Ai(p"), fori =1,2,...,N. (53)

Now the convergence of A;(p") and the lower semicontinuity of a norm imply that

- 3

F(p*) ==Y (i(p") =2 + 3 / (p*)’dx
25 2Ja

1 €
< lim =Y "(i(p") = A)* + liminf ~ / (o™)2dx
n—o0 2 4 . n—oo 2 Jq
1=

N
CR— 1 n T2 € ny2
< liminf (5 le(m,o RS /Q(p Y2dx)
=
= liminf F(p") < inf F(p). (54)
n— 00 peA
Therefore p* is a minimizer of F(p). ]

Next theorem shows the stability of the optimization problem with respect to the data
perturbation.

Theorem3.2 Fori =1,2,..., N, let/):;' be a sequence such that
/}L\? —> /):,'

and p" be the minimizer of the optimization problem (10) and (4) with Xi replaced by ’):f'
Then there exists a subsequence of p" weak—x converging in L°°(2) to a minimizer of the
optimization problem (10) and (4).

Proof Since p" is the minimizer of the optimization problem (10) and (4) with ’A\i replaced
by A7, for all p € A, we have that

N N

~ 1 ~
> (o™ =T+ 3 /Q (p")dx = 3 Y (ilp) =T+ 5 /Q prdx (55
i=1

i=1

| =

The uniform boundedness of the sequence p” in L°°($2) implies that there exists a subse-
quence, also denoted by p”, and some p* € A such that

" X 0% in L®(Q). (56)
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By Lemma 3.3, there exists a subsequence of A; (p"), also denoted by A; (p"), such that
lim A;(p") =X (p*), i=1,2,...,N. (57)
n—00
Thus, by the convergence of 3::? — 7, we have
N N
Tim D (") =) =Y (i () =3
i=l i=1

Now, for all p € A, we have that
N

1 ~
F =5 Y 0i =R+ 5 [ (o

i=1
< lim 1i(xi(p")—iﬂ)unminfs/(p")de
=002 4 l e 2 Ja
L < ny 52, € n\2
flhnlé%f(ii;(“(” ) =) +5/Q(p 2dx)

N
- 2 € 2
Shnrggéf(i El(kz(p)—?\,‘) +§/Qp dx)
i—

N
1 ~ e
=3 Z()\i (p) —2)* + > /Q pdx = F(p). (58)
i=1
Therefore p* is a minimizer of (10) and (4). ]

Theorem3.3 Forp € Aandi = 1,2,..., N, ifeigenvalues L; (p) of (4) are simple, then the
functional F: A C L®(Q2) — R is Fréchet differentiable and its Fréchet derivative F'(p)
at p € Ais given by

1i(p) [o yu?(p)dx
Jq put(p)dx

Proof Replacing p by (p + y) in (7), we define the i-th eigenpair (A; (0 + y), u;(p + ¥))
for (p +y) by

N
F'(o)lyl == 0u(p) = ) e /g pyds. (59)
i=1

Jo |Vui(p +v)|%dx
Jolo +v)ui(p +y)dx’
Similar to the proof of Lemma 3.3, we can show that as y — 0 in L*°(£2),

Lip +v) = 2i(p), (61)
ui(p+vy) > ui(p)in H(Q), i =1,2,..., N, (62)
where u;(p) € M(X;(p)). Combined with (7) and (60), we have

Jo|Vui(p +y)Pdx [ [Vui(p)l*dx
Jolp + 1) (p+y)dx  [o pui(p)dx
_ JoIVui(o +y)IPdx [o pui(p)dx — [o(p + y)ui(p + v)dx [q |Vui(p)Pdx
B Jolo +v)ui(p+ y)dx [g pui(p)dx

rilp+y) = =1,2,...,N. (60)

ri(p+y) —2i(p) =

(63)
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With (4), (7) and (60), the numerator of (63) could be evaluated by

/ Vui(p + )P / pul(p)dx — / (p + 2 (p + p)dx / Vui (p) Pdx
Q Q Q Q
= fg (IVui(p + y)I* — Vu; (p)|*)dx /Q pu?(p)dx
- /Q (o + Yo + ) — pu(p))dx /Q Vi (p) Pdx
= /Q Vui(p+vy) —ui(p)) - Vu(p+y)+ui(p)dx /Q puiz(p)dx
- /Qw%(p + )+ pwi(p+y) —ui(p)(ui(p +y) + ui(p)))dX/Q |Vu; (p)|*dx
=Ari(p+vy) fg(p +y)wi(p+vy) —ui(p))ui(p+y)dx /Q pui(p)dx
+2i(p) fQ plui(p + ) — ui(p)us (p)dx /Q pi(p)dx
~ [ v+ yiaaio) [ oo
Q Q
- /Q pui(p+y)—ui(p))(u(p+y)+u(p)dxr;(p) /Q pu,-z(p)dx
= [(M(p +v) —Ai(p)) /Q(p +Y)wi(p+vy) —ui(p)u;(p + y)dx
~1400) [y to+ ) = wondx =it [ yidordn] [ puiordx

(64)

and the denominator of (63) could be evaluated by

[0+ e+ i [ oo
Q Q
= [fQ yul(p +y)dx + /Q pi(p + ) —ui(0)(wi(p + y) + ui (p))dx

+ [ ] [ pderan. (65)
Q Q
Combining (64) and (65), (63) could be simplified by

Ai(p+y) —Ai(p)
_ =2 (p) [ vui(p)wi(p + y) — ui(p))dx — ri(p) [o yu?(p)dx
Jq put(p)dx + [o p(ui(p + ) — ui(p)ui(p)dx + [o yui(p)ui(p + y)dx’

(66)
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Thus,

Ai(p) [ yu?(p)dx
Jo pui (p)dx

= [— Ai(p) /Q yui(p)ui(p+y)— ui(p))dx)/szpu?(p)dx

ri(p +y) —Ai(p) +

+ Xi(p) /Q Vu,-z(p)dx(/gp(ui(p +y) —ui(p)ui(p)dx + /Q yui(p)ui(p + y)dx)]
| s+ [ pwito+ ) —wionuoris

+ / yui(pyui(p + y)dx) / pul(p)dx]. 67)
Q Q

By (9) and (62), we have ||u; (0) || g1 () < C and |[u;(p + )| g1(@) < C when |y ||Le(g) is
small enough. Therefore, the denominator of (67) could be bounded. Combined with Lemma
3.1, (67) is evaluated by

Ai(p) o vui(p)dx
Jo pui (p)dx

= Clri(p) /Q yui(p)ui(p +y) — ui(p))dx) /Q pu;(p)dx|

[2i (o +7y) —Xi(p) +

+ |2 (p) /Q yu,-z(p)dx(fgp(ui(p + ) —ui(p))ui(p)dx + /Q yui(p)ui(p + y)dx)|

< Cly e (luito +v) — ui(@) i) + 17 IliLe@)-
Thus, by (62), we have

%i(p) Jq vug (p)dx |

|)"l(p+y)_)"l(p)+ jlgzp”iz(p)dx

— 0asy — 0in L2(Q).
Iy Lo (@)

The Fréchet derivative A; (p)atpe A, i=1,2,..., N, is given by

ilp) Jo vui (p)dx

Aoyl = (68)
P Jq pui(p)dx
Consequently,
al ~ Ai(p) fo yul(p)dx
F’ == (i(p) —n) =t + / dx. 69
(PIy] g( (p) = i) N e | prdzx (69)
O

4 Finite-Element Approximation and Its Convergence

The finite-element method is applied to discretize the optimization problem (10) and (4).
The domain 2 is partitioned into regular elements 7j,. The linear finite-element space Vj, is
defined by

Vi ={¢n € CO°(Q) : ¢ulr, € PI(T}), VT; € T} (70)
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where P;(7;) denotes the space of linear (bilinear) polynomials on the element 7;. The
discrete admissible set of the p is defined by

A ={pn € Vi : po < pn(x) < p1,Vx € Q} (71)
and A;, C A. Then the optimization problem (10) and (4) is approximated by the discrete
minimization optimization

1 N €
min (o) = 5 > CGanton) =27 + 5 [ phdx, 72)
n Q

pheA ¢ 2
i=1

where the eigenpairs (A; 5 (0p), i n(pn)), i =1,2,...,m = dim V}, satisfy the following
weak formulations

/ Vui n(pn) - Vopdx = ki,h(ph)f penti p(pp)vpdx, Nvp € Vy, i =1,2,...,m.
Q Q

(73)
The i-th eigenpair (A; (o), u; n(pr)) is obtained by the min-max principle [see 18]
. |Vup|?dx
hin(pn) = min  max fﬁiz
VicVi, dim(Vi)=i uneVi - [, ppujdx
Jo IVup|*dx
= max =
upespan{uy p(on)su2,n(On)s--i n(on)} fQ pruydx
|Vuin(on)|*dx
_ JaVu Vuin € MyOuin(pn)), (74)

where
My (X n(pn)) = {u : uis an eigenfunction of(73) corresponding to A; j,(on)}- (75)
By rearranging, (73) admits a sequence of real eigenvalues
0 <2Ainlpn) < Aon(pn) < -+ < -+ < Am,n(pn), (76)

and the corresponding eigenfunctions

ur,n(on)s u2,n(on) - wmn(on) 77

which can be chosen to satisfy

/QVMi.h(ph) -Vujp(pp)dx = ?\i,h(ph)/Qphui,h(ph)uj,h(ph)dx
=0, i,j=1,2, ..., m. (78)
Analogous to Lemma 3.1, the boundedness of A; j,(p;,) could be obtained as follows:
Lemma 4.1 For any py € Ap, we have
Lin(p1) < Ainon) < Ain(po), i =1,2,...,m. (79

Lemma4.2 Fori =1,2,...,m,let p,, p; € Ay and p; — p;, in any norm as n — oo,
then X; n(p;) — Ain(pj). Moreover, there exists a subsequence u; (o) € Mu(Xi n(p})),
and some u; j(p}) € My (i (0))), satisfying u; (o) — ui n(p}) in H'(Q), as n — oo.
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Proof The proof is analogue to Lemma 3.3, replacing po", p*, A;(p"), u;(p") by
oy ons in(oy), uin(pp), respectively. O

Theorem 4.1 There exists at least one minimizer to the optimization problem (72) and (73).

Proof By Lemma 4.1, we conclude that the minimization of Fj,(py,) is finite over the admis-
sible set .4;,. Therefore, there exists a sequence p,’: € Ay, such that

lim F(p,) = inf Fy(pop). (80)
n—00 PrEA

The uniform boundedness of the sequence p; in L°°(£2) implies that there exists a subse-
quence, also denoted by p;, and some p;; such that

Py — pj,, inany norm asn — oo. (81)

By Lemma 4.2, and the lower semicontinuity of a norm, we obtain

N
1 —~ &
Fi(o) = 5 > " Ginop) = ki) + 3 / (pj)dx
i=1 Q2

n—oo

N
. 1 n > 2 .o o€ ny2
< lim 5 3 aatol) T + imint RCARE
i=

N
.. 1 ~ 2 & 2
< liminf (3 le(xi,h(p;:) —hin?+ 3 /Q (pi)dx)
1=
= liminf F,(p;) < inf Fy(pn).
n—00 PREAR

Therefore, ,0;‘; is a minimizer of Fj,(op). O

Lemn]a 4.3 Assume that (A; p(pn), uin(pn)) (i = 1,2,..., M) are the eigenpairs of (73),
and (Ai, u;) are the eigenpairs of (4) replacing p by p, then

/Q IV @i p (o) — i dx — fQ Pui 1 (on) — i dx
= (hi.n(on) — A) /Q pntt} ,(on)dx + Xi /Q (on — P)u (pn)dx. (82)

Proof The proof is analogue to Lemma 3.2, replacing p, X;(p), u;i(p) by pn, Ain(pn),
u; n(pn), respectively. O

We introduce the standard interpolation operator Zj, : W1*°(€2) — V}, and the projection
operator Ry, : H'(S) — V, defined by

/ VRyw - Vpdx =/ Vw - Vopdx, YVw e H(Q), ¢p € Vi.
Q Q
It is well known [see 20, 21] that, for any p > d = dim(2), we have
Tim [ Zyw — wlyroig) =0, ¥ w & WH(R) (83)
and

lim [|[Ryw — wll i g =0, Vw e H'(Q). (84)
h—0
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Lemma 4.4 Let pp, € Ay, p* € Ain L¥(Q), if pp — p* in L®(Q) as h — 0, then
Ain(on) = Ai(p*). Moreover, there exists a subsequence u; j(pp) € Mp(Ai n(pn)), and
some u;(p*) € M(x;i(p™)), satisfying u; n(pp) — u;(p*) in HY(Q), ash — 0.

Proof By Lemma 4.1, fori =1,2,..., N, we have

Ain(p1) < Ain(on) < Ain(po)-

The finite-element solutions A; (po) and A; ,(p1) have the following convergence [see 18]

Ain(po) = Ai(po),
Ain(p1) = Ai(p1).

Therefore,
[Ain(on) <C,i=1,2,...,N.
It implies that there exists a subsequence, also denoted by A; 5 (pp), such that

}Eirr}))h,-,h(ph):)\;‘, i=1,2,...,N. (85)
By (78), the eigenfunction u; ,(on) € Mp(A; n(pn)) satisfies
[ 1vustoiax =1, (36)
Q

and by Poincaré inequality, we have

luin (o)l g1y < C, (87)

where C is a constant independent of /. Thus, there exists a subsequence, also denoted by
ui n(pn), such that

wi n(pp)—u} in H'(R) and u; 4 (pp) — uf in L*(Q), i =1,2,..., N, (88)

ash — 0.

We need to prove that (A}, u) is the eigenpair of (4) corresponding to p* for i =
1,2,..., N. Notice that the eigenpair (A; r(pon), ;i n(pn)) corresponding to pj satisfies
the weak formula (73). Substituting vy, in (73) by Rjv, Vv € HO1 (2), we obtain

/ Vu; n(on) - VRpvdx = ki,h(ph)f pnti h(pn)Rpvdx, i =1,2,...,m. (89)
Q Q

The RHS item of equation of (89) could be rewritten by
)Li,h(ph)/gph”i,h(ph)thdx = (Ai,n(on) —K?)/Q,Ohui,h(,Oh)thdx
+ A7 /Q pn(uip(pn) — u)Rpvdx + A} /Q(,Oh — POui Ryvdx
+ A7 /Q p*uf (Ryv — v)dx + A} /;2 P ulvdx. (90)
By (11), (71), (87), (85), (88), (84) and py, X p*in L () as h — 0, we have

lim ?»i,h(ph)/ pnti n(Pn)Rypvdx :A?‘/ p*uivdx. ©On
h—0 Q Q
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By (88) and (84), we have

lim / Vu; n(pn) - VRpvdx = / Vuf - Vudx (92)
h—0 Jo Q

Taking the limitation of equation (89) as # — 0, combined with (91) and (92), we have
/ Vu} - Vudx = )\l*/ pruvdx. (93)
Q Q

Therefore, it could conclude that (Af, u¥) (i = 1,2, ..., N) are eigenpairs of (4) correspond-
ing to p*. Replacing j, ii;, A; by p*, u?, A} in Lemma 4.3, we have

f IV (ui n(on) — ul)|Pdx

Q

=] f 0% i n(on) — u)dx + i (pn) — AF) / pnit? , (on)dx
Q Q

37 [ 0= 02y

—0,ash—0 (94)

with (11), (71), (88), (87), (85) and pp A p*in L°°(2). Combining (88) and (94), we have
win(pp) — ufin HY(Q), i =1,2,...,N, (95)

ash — 0.
Taking the limitation of (78) as 4 — 0, by (71), (87), (95), (85) and p, A p*in L°(Q)
as h — 0, the orthogonality of ] is obtained by

/ Vu - Vujdx = X:“/ p*u}kujdx =&, i,j=1,2, ..., m. (96)
Q Q

Finally, we prove (A}, uf) (i = 1,2, ..., N) is the i-th eigenpair of (4) corresponding to
p* by induction. For i = 1, by (7) (replacing p by p*), we have

Jo IVur(p*)? dx
Jq P*ui(p*)dx

Vui|*d
< M{Lx =27 97)
Jo prut”dx

(e =

On the other hand, by (85), (74), (71), (84) and pj, A p*in L°°(Q) as h — 0, we have
AF = limA
1 = lim 1,1 (on)
— lim Jo IVuin(on)|* dx
h—0 fQ ,Ohu%,h(ph)dx
\V4 *\12
< lim Jo IVRuu1(p )Izdx
h=0 [ pr(Rpu1(p*))? dx
 JoIVui (oM dx
Jo prui(p®)dx

= 11(p"). ©8)
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Combining (97) and (98), we obtain A} = A(p*) and u] € M(A1(p*)). We set u1(p*) €
M (x1(p*)) to satisfy u} = ui(p*).
Fori =1,2,...,k, assuming that

A= ni(p"), (99)
= ui(p"), (100)

we need to prove that )L,’;H = Ak+1(p™) and uZH = ug+1(p*). On one hand, similar to the
proof of (41), we have

Me1(P*) < Ay (101)
On the other hand, we can conclude that
dim span {uyn(pn), u2,8(Pn), -os ik n (o), Ruttxs1(p™)} =k + 1. (102)
If the claim is negated to assume that
dim span {u1,1(on), w24 (), .. e n (Pn), Rittr1 (™)} =k,
since u1 ,(on), u2.1(Pn), ..., uk.n(pn) are orthogonal by (78), then
Ruttg+1(p™) = yiurn(on) + vauz,n(on) + ... + visti,n (on)- (103)

By the orthogonality (78), we obtain

k

/VRWHNﬁWMMMMx:z)U/VWMMWWM%MX
Q . Q
Jj=1

=y,i=12,... k. (104)

Taking the limitation of (104) as h — 0, with (84), (95), (100) and (9) (replacing p by p™*),
we obtain

0=/VMH@ﬂWMfMX=Wi=LlHWK (105)
Q

Therefore, Ryur+1(p*) = 0. By (84), it implies that ugy1(p*) = 0, which contradicts the
definition of a nontrivial eigenfunction.
By (74) and (102), we have

Jo Vg1 (on)|? dx

Akt+1.0(pn) =
Jo Pruic iy Con) dx
Jo |Vup|2dx
= min s
Vi1 CVi, dim(Vig1)=k+1 up € Vit fQ ,ohuhdx
Vuy,|2dx
< fg | h2|
upespan{uy j(pp),u2,h (Ph)s - tih (PR), Ruttic1 (p*)} fQ Phuhdx
Viip|2dx
- Miﬂl (106)
Jo pritidx
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Let ity = Brur,n(on) + Bauzn(on)+, ... Bruk,n(on) + Brr1Ruuxr1(0*). By (78), (95),
(100), (84), px A p*in L*(Q) as h — 0and (9) (replacing p by p*), we have

k
/Qw»m"‘dx:Zﬂf/ﬂ|W,-,h(ph)|2dx+ﬁ,§+lfQWRhukH(p*)de
j=1

k
+2Zﬂjﬂk+1/ Vuj n(on) VRuutk4+1(p") dx

j=1 ¢

k
N Zﬂjz-/QWuj(,o*)lzdx—i-,B,?H/QIVukH(p*)Izdx ash — 0 (107)
j=1
and

k
f puitydx =y B3 / pnus  (pn)dx + By f pn(Ritti1(p*)) dx
Q ; Q Q

j=1

k

+2§ ﬂjﬂk+1f onttj n (o) Rutrs1(p*)dx
- Q
j=1

k
N Z B /Q p*us(p*)dx + B /Q p*ui, (p¥)dx ash — 0.  (108)
j=1
By (5) and (9) (replacing p by p*), (107) could be further evaluated by

k

S8 [ Vot gy [ 1V (o9F dx

o e Q
k

=3 820" /Q PR (0" dx + By M () /Q pHudo (") dx
=1

k
<[ 28 [ et gty [ ondaenad. o)
j=1

Combining (85), (106), (107), (108) and (109), it implies that
Mepr = lim Akpin(on) < Ak (09). (110)

With (101) and (110), we obtain A} ; = Ax+1(0*). The eigenfunction “7:+1 corresponding
to A7, is also the eigenfunction corresponding to A+1(0*). Thatis, uf ;| € M(Ag+1(0%)).
We set up41(0*) € M(Ars1(p*)) to satisfy uZ+1 = ur+1(p™). By induction, we conclude
that A7 = 4;(0*), u} = u;(p*), i =1,2,..., N. Combined with (85) and (95), the proof
is complete. O

Lemma4.5 (See [21, LEMMA 4.3]) C*°() is weak-* dense in L°°(R2).

Theorem 4.2 Let {p}}n~0 be a sequence of minimizers to the discrete minimization prob-
lem (72) and (73). Then each subsequence of {pj}n>0 has a subsequence converging to a
minimizer of the continuous optimization problem (10) and (4).

@ Springer



16 Page 20 of 31 Journal of Scientific Computing (2023) 96:16

Proof The uniform boundedness of the sequence p; in L°°(£2) implies that there exists a
subsequence, also denoted by o, and some p* such that

pi = p* in L(Q) as h — 0. (111)
Lemma 4.4 implies that
Lin(py) —> Xi(p*) ash — 0. (112)
By Lemma 4.5, for any p € A and fixed § > 0, there exists a p% € C®() such that
0° A p in L®(Q)ass — 0. (113)
By its construction, p® € A. Let pg =T;,p° € Aj,. By (83) and Lemma 4.4, we have
rin(pp) = xi(p®) as h — 0. (114)
Noting that ,OZ is the minimizer of Fj (-) over Ay, we have
1 ~ g
Fa(pp) = 5 ;(kf,h(p;:) —h)P 5 fQ (07)*dx
i=

< Fh(0)) = Fu(Znp®). (115)

Thus, by (112), (115), (114) and the lower semicontinuity of a norm, we have
1Y ~ )
F(p") =5 ;w (P =3 + 5 fg (0*)*dx
. al Ky N2 e € #\2
< lim ;m,h(ph) 72 + liminf & /Q (o) dx
<liminf Fy(p}) < liminf Fj(Z;0°)
NS Sy_7Ty2 4 8 542
= tinigil 3 ato) 70+ 3 | whras]
I v SN _Ty2 . ¢ 842
Ezk(p)—ki) +5/Q<p)dx
Letting § tend to zero, we obtain that
| ~ )
P <3 ) <R+ s [ e
Therefore, p* is a minimizer of F(p). ]

5 Algorithm

For p € Aandi = 1,2,..., N, if eigenvalues A;(p) of (4) are simple, we solve the
optimization problem (10) and (4) by the Fletcher—Reeves conjugate gradient algorithm
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[22]. That is, with the Frechet derivative (59), the decent direction is set by
di = —F'(p®) + Br1di—1. (116)
With the Fletcher—Reeves scheme [22], the conjugate coefficient S;_ is given by

IF (0" )17 50
= PO, )
and B_; = 0. The step length «; in the conjugate direction dj is determined by

o = arg min F(p(k) + ady).
o

In our numerical algorithm, by taking the derivative of F’ (p® + ady) with respect to o and
setting it to be zero, the step length o is approximated by

N F'(p™)di]
o = — (118)
L V(0D + elldi]2 )

Now, we summarize the Fletcher—Reeves conjugate gradient algorithm as follows:

Algorithm 5.1 STEP 1. Initialize the density function p©, and set the regularity coefficient
& and the input data k,, i=1,2,...,N.

STEP 2. Solve the eigenpairs ()\. (,o(k)) ui(p*),i=1,2,....,N of (4).

STEP 3. Determine the gradient F’ (p(k)) by (59) and calculate the descent direction dy,
by (116) and (117).

STEP 4. Calculate the step length oy, by (118).

STEP 5. Update the density function p® by

p* = p® 4 way.

STEP 6. Setk = k + 1 and go to STEP 2. Repeat the procedure until a stopping criterion
is satisfied.

Remark 5.1 In the numerical experiments, the stopping criterion is set that the norm of the
decent direction is small enough. That is, if ||dk||;2(q) < J, where § is a given number, the
iteration of the Fletcher—Reeves conjugate gradient algorithm is stopped.

6 Numerical Results

In this section, we present numerical results of the optimization problem (10) and (4) in 1D
and 2D cases. The domain is partitioned into uniform meshes. The piecewise linear (bilinear)
basis functions are used. The noisy data is generated by using the following formula:

@) =241 4+00) nQ,i=1,2,....,N

where ¢ is a uniformly distributed random variable in [—1, 1] and o dictates the level of
noise. The eigenpairs of (4) are solved by eigs found in MATLAB. The Algorithm 5.1 is
conducted in MATLAB codes.
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Table 1 The first 5 least eigenvalues for 1D case (o = 0.001)

Eigenvalues i=1 i=2 i=3 i=4 i=5

Y 0.91535490 3.93915202 8.46917234 15.34538138 23.96039121
Initial X; 1.00000021 4.00000329 9.00001665 16.00005264 25.00012851
Final A; 0.91535602 3.93915164 8.46917274 15.34538126 23.96039094

Table 2 The first 10 least eigenvalues for 1 D case with continuous density (o = 0.001)

Eigenvalues i=1 i=2 i=3 i=4 i=5

N 0.91426066 3.93801755 8.47125715 15.34100987 23.98835641
Initial A; 1.00000021 4.00000329 9.00001665 16.00005264 25.00012851
Final A; 0.91426135 3.93801751 8.47125730 15.34100986 23.98835641
Eigenvalues i=6 i=17 i=8 i=9 i=10

N 34.24481084 46.87913637 61.16809688 77.22502908 95.68667178
Initial A; 36.00026648 49.00049369 64.00084221 81.00134906 100.00205618
Final A; 34.24481083 46.87913638 61.16809687 77.22502906 95.68667179
6.1 1D Case

Set the domain = (0, ), which is uniformly partitioned into 2000 elements. The exact
density function is set by

128

T on2256(—-%)2 5w 117
p(x) = LH+e TR, qe<x<Tg (119)
1, otherwise.

The first 5 least eigenvalues with noise level o = 0.001 are listed in the first row of Table 1
and used as the input data. Set ¢ = 107 and § = 10~*. With the initialization of density
function p© = 1 in the whole domain (see the dash line in Fig. 1a), the evolutions of density
function are illustrated in Fig. 1, after k = 10, 20, 30, 50, 156 iterations. The solid curve
represents the exact density function, while the dash curve represents the recovered density
function. After 156 iterations, the curve of the recovered density function fits well with the
one of the exact density function, but it has some oscillations. The initial and the finial first
5 least eigenvalues are listed in the second row and the third row of Table 1, respectively.

With more input data, the recovery of the density function is improved. Using the first
10 least eigenvalues as the input data (see Table 2), with the same setting parameters, the
evolutions of density function are illustrated in Fig. 2, after k = 10, 30, 50, 100, 483 itera-
tions. The solid curve represents the exact density function, while the dash curve represents
the recovered density function. After 483 iterations, the recovered density function fits the
exact one much better, compared to the numerical results shown in Fig. 1 using first 5 least
eigenvalues as the input data. The initial and the finial first 10 least eigenvalues are listed in
Table 2.

Various levels of noise are considered. Set o = 0.001, 0.005, 0.01, 0.02, respectively.
Set & = 107% and § = 10~*. With the first 5 small least eigenvalues as the input data, we
initialize the density function p(®> = 1 in the whole domain. The final recovered density
function are illustrated in Fig. 3, with o = 0.001, 0.005, 0.01, 0.02, respectively. The solid
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13 1 131 1

125} 1

0 wl4 w2 34 ™ 0 w4 w2 34 4
R z

(e) k=50 (f) k = 156

Fig. 1 The evolutions of the density function with the first 5 eigenvalues as the input data. The noise level is
o =0.001

curve represents the exact density function, while the dash curve represents the recovered
density function. Note that the higher level of noise incurs the inaccuracy of the recovery of
density function. It may be caused by the sensitivity of the eigenvalue to the variation of the
density function.

The measured spectral data with gaps are considered. As listed in the first row of Table 2,
the eigenvalues il, 3:2, 3:3, /):6, x9 with noise level & = 0.001 are chosen as the input data.
Setting ¢ = 107,86 = 10~* and ,0(0) = 1 in the whole domain, the evolutions of density
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%‘ 1.15
11
1.05
1
0.95 0.95
0.9 - - . 0.9 - . .
0 w4 /2 3r/4 w 0 4 w2 /4 ™
P b
14 T 14 .
Exact
1.35 = Recovered | | 1.35
131 13

xact Exact
135 Recovered | | 135 Recovered | |

0 wl4 w2 34 ™ 0 w4 w2 34 4
R z

(e) k =100 (f) k = 483

Fig.2 The evolutions of the density function with the first 10 eigenvalues as the input data. The noise level is
o =0.001

function are illustrated in Fig.4, after k = 10, 20, 30, 50, 94 iterations. The solid curve
represents the exact density function, while the dash curve represents the recovered density
function. Compared to the numerical results shown in Fig. 1, it is observed that the first 5
least eigenvalues as the measured spectral data could recover the density function better than
the 5 eigenvalues with gaps. After 94 iterations, the finial eigenvalues are A1 = 0.91426600,
A2 = 3.93801788, A3 = 8.47125761, r¢ = 34.24481075, A9 = 77.22502904, respectively.
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Exact
Recovered | |

Exact
----- Recovered |

0.95 0.95
0.9 . . . 0.9 . . .
0 4 w2 3n/4 ™ 0 4 /2 3n/4 L
z z
(o = 0.001) (o = 0.005)
1.4 T 14
Exact

L Recovered | 135 ~

0 4 w2 3n/4 ™ 0 4 2 3n/4 .

(o = 0.101) (o = 01.02)

Fig.3 The recovered density functions with different noise levels of input data

The discontinuous density case is also considered, which is defined by

128
T ox?o18(-2)2  Sm 1w
px)=11+e 216 <X < T (120)

, otherwise.

The first 10 least eigenvalues with noise level o = 0.001 are listed in the first row of Table 3
and used as the input data. Set ¢ = 107 and § = 10~*. With the initialization of density
function p©® = 1 in the whole domain (see the dash line in Fig. 5 (a)), the evolutions of
density function are illustrated in Fig. 5, after k = 10, 30, 50, 80, 368 iterations. The solid
curve represents the exact density function with discontinuity at x = 51—76’ and lll—g, while the
dash curve represents the recovered density function. After 368 iterations, the curve of the
recovered density function fits well with the one of the exact density function at most part of
the region 2 = (0, ). It has some deviations in the vicinity of x = 51% and lll—g. The initial
and the finial first 10 least eigenvalues are listed in Table 3.
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(e) k=50 (f) k=94

Fig.4 The evolutions of the density function with 5 eigenvalues with gaps as the input data. The noise level
iso = 0.001
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Table 3 The first 10 least eigenvalues for 1D case with discontinuous density (o = 0.001)

Eigenvalues i=1 i=2 i=3 i=4 i=5

y 0.89001245 3.86192032 8.43324097 14.93928067 23.60787650
Initial X; 1.00000021 4.00000329 9.00001665 16.00005264 25.00012851
Final A; 0.89001292 3.86192088 8.43324117 14.93928077 23.60787651
Eigenvalues i=6 i=17 i=8 i=9 i=10
gy 33.87947366 45.88524670 60.12939069 76.22760711 93.92399887
Initial X; 36.00026648 49.00049369 64.00084221 81.00134906 100.00205618
Final ; 33.87947364 45.88524677 60.12939067 76.22760714 93.92399888

Table 4 The first 10 least eigenvalues for 2D case (o = 0.001)

Eigenvalues i=1 i=2 i=3 i=4 i=5

N 1.79963276 4.49335781 4.85849079 7.57561646 8.76898607
Initial A; 1.90015627 4.60126675 4.90139014 7.60250063 9.10607981
Final A; 1.79963354 4.49335767 4.85848986 7.57561686 8.76898595
Eigenvalues i=6 i=17 i=38 i=9 i=10

N 9.59767168 12.04452035 12.34272158 14.92739013 16.52536169
Initial X; 9.90673798 12.10731368 12.60784846 15.41904185 16.92114025
Final A; 9.59767184 12.04452034 12.34272144 14.92739008 16.52536182
6.2 2D Case

Set the domain Q = (0,7 /a) x (0, ) with a = +/0.9. It is uniformly partitioned into
100 x 100 rectangular elements. The exact density function is set by
128
- fid il 2
p(x) = l1+e 9n2_64(x1—2;)2_256(12—7)2, (x) — 2%)2 +4(xy — %)2<96L4’ (121)
1, otherwise.

The first 10 least eigenvalues with noise level o = 0.001 are listed in the Table 4 and used as
the input data. Sete = 103 and § = 10~*. The exact density function is illustrated in Fig. 6a.
With the initialization of density function p® = 1 in the whole domain (see Fig. 6b), the
evolutions of density function are illustrated in Fig. 6, after k = 10, 30, 50, 165 iterations.
After 156 iterations, the recovered density function fits the exact one well. The initial and
the finial first 10 least eigenvalues are listed in the Table 4.

Various levels of noise are considered. Set o = 0.001, 0.005, 0.01, 0.02, respectively. Set
e = 1078 and § = 10~*. With the first 10 small least eigenvalues as the input data and with
the initialization of the density function ,0(0) = 1 in the whole domain, the final recovered
density functions are illustrated in Fig.7.
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131 1 131 1

1.25 1

(e) k=80 (f) k = 368

Fig.5 The evolutions of the density function with the first 10 eigenvalues as the input data. The noise level is
o = 0.001. The original density function is discontinuous

7 Conclusions

The inverse eigenvalue problem for a weighted Helmholtz equation is investigated. The
continuity of the eigenvalue and the eigenfunction with respect to the density function is
proved by induction. Then the properties of existence, stability and Fréchet derivative of the
continuous optimization problems are established. The finite element method is applied to
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(a) Exact

0

(e) k=50 (f) k = 165

Fig.6 The exact and the recovered density function after k = 0, 10, 30, 50, 165 iterations with the first 10
eigenvalues as the input data. The noise level is ¢ = 0.001

solve the weighted Helmholtz equation. The convergence of the discrete i-th eigenpair to
the continuous i-th eigenpair is proved. The properties of existence and the convergence of
the discrete optimization problems are derived. A conjugate gradient algorithm is proposed.
In the numerical experiments, reconstructions of continuous density function from different
input eigenvalue data are discussed, including the first 5 least eigenvalues, the first 10 least
eigenvalues and 5 eigenvalues with gaps. Also, the reconstruction of a discontinuous density
function from the first 10 least eigenvalues as the input data is investigated. The proposed
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Fig.7 The recovered density functions with different noise levels of input data

algorithm has the capacity to reconstruct the density function efficiently, especially for the
cases that the density function is continuous and the input eigenvalue data are the first few
least ones without gaps.
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