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Abstract
We develop flux globalization based well-balanced central-upwind schemes for hydrody-
namic equations with general free energy. The proposed schemes are well-balanced in the
sense that they are capable of exactly preserving quite complicated steady-state solutions
and also exactly capturing traveling waves, even when vacuum regions are present. In order
to accurately track interfaces of the vacuum regions and near vacuum parts of the solution,
we use the technique introduced in Chertock et al. (J Sci Comput 90:Paper No. 9, 2022) and
design a hybrid approach: inside the no vacuum regions, we use the flux globalization based
well-balanced central-upwind scheme, while elsewhere we implement the central-upwind
scheme similar to the one proposed in Bollermann et al. (J Sci Comput 56:267–290, 2013) in
the context of wet/dry fronts in the shallow water equations. The advantages of the proposed
schemes are demonstrated on a number of challenging numerical examples.
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1 Introduction

The goal of this paper is to develop a highly accurate, robust and well-balanced (WB) finite-
volume method for the one-dimensional (1-D) hydrodynamic equations with general free
energy. The studied system reads as
⎧
⎪⎪⎨

⎪⎪⎩

ρt + mx = 0,

mt + (ρu2 + P(ρ)
)

x = −ρHx − γm − ρ

∫

R

ψ(x − y) [u(x) − u(y)] ρ(y) dy,

(1.1)

where x is the spatial variable, t is the time, ρ = ρ(x, t) is the density, u = u(x, t) is
the velocity, m(x, t) = ρ(x, t)u(x, t) is the momentum, P(ρ) is the pressure satisfying
P(0) = 0 and P ′(ρ) ≥ 0 for ρ ≥ 0 (typically, P(ρ) = σρν with positive parameters σ and
ν, which will be specified in numerical examples), and γ ≥ 0 is the damping coefficient. The
potential term H(x, t) on the right-hands side (RHS) of (1.1) may contain the external field
V as well as the interaction potential W (both V and W are assumed to be continuous), and
in general it takes the following form:

H(x, t) = V (x) + W (x) ∗ ρ. (1.2)

Finally,ψ(x) is a nonnegative symmetric smooth function called the communication function
in theCucker–Smalemodel [2, 22] describing collective behavior of systems due to alignment
[9]. Other applications of the system (1.1) and (1.2) include the Keller–Segel model of
chemotaxis [5] and generalized Euler–Poisson systems [10]; it also arises in modeling of a
wide variety of physical problems such as colloidal suspensions and polymers [24, 27, 28],
relaxation dynamics of microscopic films [47] and capillary prewetting [48].

The system (1.1) and (1.2) is a hyperbolic system of balance laws. It is well-known that
such systemsmay admit nonsmooth solutions even the initial data are smooth. This makes the
development of numerical methods for (1.1) and (1.2) a challenging task. In addition, a good
numerical method should be able to accurately respect a delicate balance between the flux and
source terms in the second equation of (1.1). In particular, one is interested in developingWB
numerical schemes, which are capable of preserving (some of) steady states of the studied
system. The WB property is important as many of the physically relevant solutions of (1.1)
and (1.2) are, in fact, small perturbations of the corresponding steady states.

In general, smooth steady-state solutions of (1.1) and (1.2) satisfy the following time-
independent equations:

⎧
⎪⎪⎨

⎪⎪⎩

m(x) ≡ m̂ = Const,

ρ

(
u2

2
+ �′(ρ) + H

)

x
= −γm − ρ

∫

R

ψ(x − y) [u(x) − u(y)] ρ(y) dy, (1.3)

where the function �(ρ) is such that

ρ�′′(ρ) = P ′(ρ). (1.4)

When m �= 0 and thus ρ �= 0, the steady states (1.3) can be rewritten in terms of the
equilibrium variables m and E :

m(x) ≡ m̂ = Const, E(x) ≡ Ê = Const, (1.5)

123



Journal of Scientific Computing (2023) 95 :95 Page 3 of 38 95

where

E := u2

2
+ �′(ρ) + H + Q, Q :=

x∫

x̂

[
γ u(ξ) + 	(ξ)

]
dξ, (1.6)

	(ξ) :=
∫

R

ψ(ξ − y) [u(ξ) − u(y)] ρ(y) dy. (1.7)

We note that there is a free-energy functional

F[ρ] =
∫

R

[�(ρ) + V (x)ρ(x)] dx + 1

2

∫∫

R2

W (x − y)ρ(x)ρ(y) dx dy,

associated with the system (1.1) and (1.2), and its variation with respect to the density ρ is

ζ := ∂F
∂ρ

= �′(ρ) + H(x, t). (1.8)

In the case when u ≡ 0, the steady-state (1.3) can be written as

u ≡ 0, ζ = ∂F
∂ρ

= �′(ρ) + H(x, t) = Const on each connected component of supp(ρ), (1.9)

where the constant can vary on different connected components of supp(ρ).
When the damping coefficient γ = 0 and V (x) ≡ 0 in (1.2), then another particular

solution a good numerical scheme should be able to capture exactly is a traveling wave
satisfying

u(x, t) ≡ Const, ρ(x, t) = ρ0(x − ut), �′ (ρ0(x)) + H(x, t) = Const, (1.10)

where ρ0(x) = ρ(x, 0) is the initial datum.
It should be observed that if �(ρ) = g

2ρ2 with ρ being a water depth and g being the
acceleration due to gravity, H(x) = V (x) with V (x) representing the bottom topography,
γ = 0, and ψ ≡ 0, then the system (1.1) and (1.2) becomes the Saint–Venant system of
shallowwater equations. In the past decades, manyWB schemes for the Saint–Venant system
have been developed. Some of them are capable of preserving still-water (“lake-at-rest”)
steady-states only (see, e.g., [1, 3, 4, 25, 31, 37, 43]) and others can preserve moving-water
equilibria as well (see, e.g., [15, 17, 18, 21, 39, 42, 46]). We also refer the reader to recent
review papers on WB schemes for shallow water models [14, 33, 45].

First- and second-order WB schemes for the system (1.1) and (1.2) have been recently
developed in [12]. These schemes are capable of exactly preserving motionless steady states
(1.9) only and their WB property hinges on a special approximation of the discrete free
energy functional and a special treatment of the source terms. High-order extensions of the
schemes from [12] have been introduced in [7].

In this paper, we develop a WB scheme which is capable of exactly preserving general
steady states (1.3) (including motionless steady states (1.9)) as well as accurately capturing
traveling waves (1.10) at the discrete level. Our scheme is based on the flux globalization
approach, which was introduced in [13, 20, 23, 26, 40] and has recently been applied to
a variety of hyperbolic systems of balance laws in [6, 17, 19, 21, 34, 35]. We incorporate
the source terms of the momentum equation into its flux and rewrite (1.1) in the following
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equivalent form:
{

ρt + mx = 0,

mt + Kx = 0,
(1.11)

where

K := ρu2 + P(ρ) − R (1.12)

is a global flux with

R(x, t) := −
x∫

x̂

⎧
⎨

⎩
ρ(ξ, t)Hx (ξ) + γm(ξ, t) + ρ(ξ, t)

∫

R

ψ(ξ − y) [u(ξ, t) − u(y, t)] ρ(y, t) dy

⎫
⎬

⎭
dξ,

(1.13)

where x̂ is an arbitrary number. Notice that both steady states (1.5) and (1.9) can be written
as

m ≡ m̂ = Const, K ≡ K̂ = Const.

The system (1.11)–(1.13) is quasi-conservative and thus it can be solved in a rather
straightforward way using a Riemann-problem-solver-free numerical method designed for
hyperbolic systems of conservation laws. We follow [6, 17, 19–21, 34, 35] and use the semi-
discrete finite-volume central-upwind (CU) scheme. More precisely, we use the technique
recently introduced in [34] and design a new quadrature rule to approximate the global
term given by (1.13). This allows us to develop a WB scheme capable of preserving both
K ≡ Const and E ≡ Const (or (1.9) if the vacuum areas where ρ = 0 are present, which,
according to [12], may occur when the parameter ν > 1), which are equivalent in the contin-
uous case, but not equivalent in the discrete case. As demonstrated in [6, 34], preserving both
discrete version of the steady states helps to preserve a wider variety of physically relevant
steady states and thus to improve the stability property of the resulting scheme.

In addition, our new flux globalization based WB CU is able to accurately capture inter-
faces of the vacuum regions and near vacuum (ρ ≈ 0) parts of the solution. This is achieved
by following a hybrid approach recently introduced in [21]: inside the no vacuum regions, we
use the flux globalization based CU scheme, while elsewhere we implement the CU scheme
similar to the one proposed in [3] in the context of wet/dry fronts in the shallow water equa-
tions. The latter scheme is based on a special subcell finite-volume reconstruction of the
equilibrium variable ζ and a proper approximation of the source terms appearing on the RHS
of (1.1).We prove that the resulting hybrid scheme is capable of exactly preserving the steady
states (1.9) even in the presence of vacuum regions. We emphasize that the flux globalization
based WB CU scheme from [6, 34] used inside the no vacuum regions is different from the
one used in [21] and this makes it easier to treat the vacuum region interface and thus to
design a reliable and robust hybrid scheme.

In order to stress the major differences between the proposed flux globalization basedWB
CU schemes and the existingWBCU schemes, wewould like to emphasize the following two
points. First, unlike the WB CU scheme from [21], our new scheme is capable of preserving
both K ≡ Const and E ≡ Const discrete steady states. Second, unlike the WB CU schemes
from [6, 34], our new scheme relies on a hybrid approach,which helps to capture the interfaces
of the vacuum regions and near vacuum regions and thus to accurately capture solutions that
contain such regions.
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We finally turn our attention to traveling wave solutions (1.10). We proceed as in [32] and
develop a moving framework approach. To this end, we modify the studied system (1.1) by
adding a linear advection terms −u∗ρx and −u∗mx to the left-hand side (LHS) of the ρ- and
m- equations, respectively:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + mx − u∗ρx = 0,

mt +
(
ρu2 + P(ρ)

)

x
− u∗mx = −ρHx − ρ

∫

R

ψ(x − y) [u(x) − u(y)] ρ(y) dy. (1.14)

Here, u∗ is a constant, which will be varied at every time step of the numerical discretization.
Obviously, solutions of (1.14) are obtained from the corresponding solutions of (1.1) by the
change of variables x → x − u∗t . The constant u∗, however, provides us with an additional
degree of freedom, which we choose in such a way that the traveling wave (1.10) reduces to
motionless steady states in the introduced moving framework. We then apply the new flux
globalization based WB CU scheme to the system (1.14).

The rest of the paper is organized as follows. In Sect. 2, we introduce a hybrid flux glob-
alization based WB CU schemes. In Sect. 3, we test the proposed schemes on a variety of
numerical examples and demonstrate their ability to compute numerical solutions of several
models described by the hydrodynamic equations (1.1) and (1.2) in an accurate and robust
manner.

2 Hybrid Flux Globalization BasedWB CU Schemes

In this section, we introduce a hybrid flux globalization based WB CU scheme. To this end,
we will discretize the system (1.11)–(1.13) in the no vacuum regions only, while elsewhere
we will numerically solve the original system (1.1) and (1.2).

The computational domain is split into the finite-volume cells C j = [x j− 1
2
, x j+ 1

2
] of size

�x centered at x j = (x j− 1
2
+ x j+ 1

2

)
/2 with j = 1, . . . , N . We assume that at a certain time

level t , the cell averages,

U j ≈ 1

�x

∫

C j

U(x, t) dx, U := (ρ,m)	,

are available. Note that U j like most of the index quantities below depends on t , but we
omit this dependence for the sake of brevity. Following the approach proposed in [37] in the
context of the Saint–Venant system with nonflat bottom topography, we replace the potential
function H(x) defined in (1.2) with its continuous piecewise linear approximation

H̃(x) = Hj− 1
2

+
Hj+ 1

2
− Hj− 1

2

�x

(
x − x j− 1

2

)
, x ∈ C j , (2.1)

where Hj+ 1
2

:= H(x j+ 1
2
), and the convolution integral in the computation of H(x j+ 1

2
) is

computed using the midpoint rule:

Hj+ 1
2

= V
(
x j+ 1

2

)
+ W

(
x j+ 1

2

)
∗ ρ ≈ Vj+ 1

2
+ �x

N∑

i=1

Wi, j+ 1
2
ρi . (2.2)

Here, Vj+ 1
2

:= V (x j+ 1
2
) and Wi, j+ 1

2
:= W (xi − x j+ 1

2
) in the case the interaction potential

W is smooth, or Wi, j+ 1
2
is an average value of W over the interval of length �x centered
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Fig. 1 Sketch of the combined “vacuum–no vacuum” steady state. The cells C j−1 and C jr+1 are semi-
vacuum; the cells C j , . . . ,C jr are no vacuum; other cells are fully vacuum

at xi − x j+ 1
2
in the case of general locally integrable potentials W . We then introduce the

following notations:

Hj := H̃(x j ) =
Hj+ 1

2
+ Hj− 1

2

2
, (Hx ) j := H̃x (x j ) =

Hj+ 1
2

− Hj− 1
2

�x
. (2.3)

As indicated in [7, 12], when ν = 1, that is, in the isothermal case with P(ρ) = σρ, the
density does not develop vacuum regions during the temporal evolution, while when ν > 1,
vacuum regions can be generated. Therefore, in the case when ν > 1, we identify the vacuum
and no vacuum regions using the following definition.

Definition 2.1 We say that the cell C j at time t is:
(i) vacuum if

ρ j ≤ ε, (2.4)

where ε is a small positive number chosen in such a way that the magnitude of density present
in the cell C j can be considered as negligibly small according to the scales of the studied
problem (in the numerical examples reported in Sect. 3, we have chosen ε = 10−12);

(ii) semi-vacuum if

ρ j > ε and ζ j := �′(ρ j ) + Hj < max
(
Hj− 1

2
, Hj+ 1

2

)
, (2.5)

(iii) no vacuum if neither (2.4) nor (2.5) is satisfied.

Based on this definition, the computational domain may contain vacuum and/or near
vacuum regions. In Fig. 1 , we present a typical case of the steady state (1.9), which con-
tains vacuum and no vacuum regions. This steady state will be referred to as a combined
“vacuum–no vacuum” steady states. We assume that the cells are numbered as follows: cells
C j , . . . ,C jr are no vacuum, while cells C j with j < j and j > jr are either semi-vacuum
or fully vacuum. Inside the no vacuum regions, ζ j ≡ Const, while this is not, in general, true
in the semi-vacuum and vacuum cells; see Fig. 1 and Sect. 2.2, where we design a special
piecewise linear reconstruction of ζ , which preserves the steady states (1.9).

2.1 Flux Globalization BasedWB CU Scheme in NoVacuum Regions

In this section, we introduce the flux globalization basedWBCU scheme, which is amodified
version of the scheme first developed in [34] and then extended in [6] to several shallowwater
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models. We emphasize that this scheme is only implemented inside the no vacuum regions,
which correspond to the cells C j+1, . . . ,C jr−1 in the setting shown in Fig. 1.

In the flux globalization basedWB CU scheme the cell averages are evolved in time using
the following semi-discretzation:

d

dt
U j = −

K j+ 1
2

− K j− 1
2

�x
, j = j + 1, . . . , jr − 1, (2.6)

where K j+ 1
2

=
(

K(1)
j+ 1

2
,K(2)

j+ 1
2

)	
are the CU numerical fluxes from [36]:

K(1)
j+ 1

2
=

a+
j+ 1

2
m−

j+ 1
2

− a−
j+ 1

2
m+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(

ρ+
j+ 1

2
− ρ−

j+ 1
2

)

,

K(2)
j+ 1

2
=

a+
j+ 1

2
K−

j+ 1
2

− a−
j+ 1

2
K+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(

m+
j+ 1

2
− m−

j+ 1
2

)

.

(2.7)

Here, K±
j+ 1

2
are the one-sided point values of the global flux function (1.12), which are given

by

K±
j+ 1

2
=

(

m±
j+ 1

2

)2

ρ±
j+ 1

2

+ P

(

ρ±
j+ 1

2

)

− R j+ 1
2
, (2.8)

where U±
j+ 1

2
= (

ρ±
j+ 1

2
,m±

j+ 1
2

)	 are the left/right-sided point values at the cell interface

x = x j+ 1
2
, which will be computed later. In (2.7), a±

j+ 1
2
are the one-sided local propagation

speeds, which can be estimated using the eigenvalues of the Jacobian of the original system
(1.1). The simplest estimate is

a+
j+ 1

2
= max

{

u+
j+ 1

2
+
√

P ′
(

ρ+
j+ 1

2

)

, u−
j+ 1

2
+
√

P ′
(

ρ−
j+ 1

2

)

, 0

}

,

a−
j+ 1

2
= min

{

u+
j+ 1

2
−
√

P ′
(

ρ+
j+ 1

2

)

, u−
j+ 1

2
−
√

P ′
(

ρ−
j+ 1

2

)

, 0

}

,

where u = m/ρ should be computed using a proper desingularization procedure. In the
numerical experiments presented in Sect. 3, we have used

u±
j+ 1

2
=

√
2ρ±

j+ 1
2
m±

j+ 1
2√(

ρ±
j+ 1

2

)4

+
(

max

{

ρ±
j+ 1

2
, τ

})4
, (2.9)

with the desingularization parameter τ = 10−6. For alternative desingularizations introduced
in the context of shallow water models, we refer the reader, for instance, to [33, 37].

In order to apply the flux globalization basedWB CU scheme from [6, 34], we begin with
computing the point values of the equilibrium variable E at x = x j out of the available cell
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averages {ρ j } and {mj }. We use formulae (1.6) and (1.7), and obtain

E j = u2j
2

+ �′(ρ j ) + Hj + Q j , u j = mj

ρ j
, j = j, . . . , jr . (2.10)

As it was done in [6], we first rewrite the expression of Q in (1.6) in a recursive way and
then apply the trapezoidal rule to evaluate the global integral term Q j . Namely, we set

Q j = Q j−1 +
x j∫

x j−1

(γ u + 	) dx ≈ Q j−1 + �x

2

[
γ (u j−1 + u j ) + 	 j−1 + 	 j

]
, j = j + 1, . . . , jr ,

(2.11)

where

	 j := 	(x j ) ≈ �x
N∑

i=1

ψ(x j − xi )(u j − ui )ρi . (2.12)

In order to use formula (2.11), we provide the starting value Q j , which is computed by
taking x̂ = x j− 1

2
and applying the trapezoidal rule so that

Q j =
x j∫

x
j− 1

2

(γ u + 	) dx≈�x

4

[
γ (u j + u j− 1

2
) + 	 j + 	 j− 1

2

]
, (2.13)

where u j− 1
2
and thus	 j− 1

2
:= 	(x j− 1

2
) are determined based on the prescribed boundary

conditions.
Equipped with {mj } and {E j }, we obtain second-order piecewise linear reconstructions

m̃(x) = mj + (mx ) j (x − x j ), Ẽ(x) = E j + (Ex ) j (x − x j ), x ∈ C j , (2.14)

which are used to compute the one-sided point values m±
j+ 1

2
and E±

j+ 1
2
at the cell interfaces

x = x j+ 1
2
:

m−
j+ 1

2
:= m̃

(

x
j+ 1

2
−
)

= mj + �x

2
(mx ) j , m+

j+ 1
2

:= m̃

(

x
j+ 1

2
+
)

= mj+1 − �x

2
(mx ) j+1,

E−
j+ 1

2
:= Ẽ

(

x
j+ 1

2
−
)

= E j + �x

2
(Ex ) j , E+

j+ 1
2

:= Ẽ

(

x
j+ 1

2
+
)

= E j+1 − �x

2
(Ex ) j+1.

(2.15)

In (2.14) and (2.15), (mx ) j and (Ex ) j are the slopes which should be computed using a
nonlinear limiter to ensure a non-oscillatory nature of the piecewise linear reconstruction. In
the numerical experiments reported in Sect. 3, we have used the generalized minmod limiter
[38, 41, 44]

(mx ) j = minmod

(

θ
mj+1 − mj

�x
,
mj+1 − mj−1

2�x
, θ

mj − mj−1

�x

)

,

(Ex ) j = minmod

(

θ
E j+1 − E j

�x
,
E j+1 − E j−1

2�x
, θ

E j − E j−1

�x

)

,

θ ∈ [1, 2], (2.16)
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with θ = 1.3, and the minmod function given by

minmod(z1, z2, · · · ) :=

⎧
⎪⎨

⎪⎩

min(z1, z2, · · · ), if zi > 0 ∀i,
max(z1, z2, · · · ), if zi < 0 ∀i,
0, otherwise.

After obtaining the left- and right-sided values m±
j+ 1

2
and E±

j+ 1
2
, we compute the

corresponding values of ρ by numerically solving the following nonlinear equations:

E+
j+ 1

2
=

(

m+
j+ 1

2

)2

2

(

ρ+
j+ 1

2

)2 + �′
(

ρ+
j+ 1

2

)

+ Hj+ 1
2

+ Q j+ 1
2
, j = j, . . . , jr − 2,

E−
j+ 1

2
=

(

m−
j+ 1

2

)2

2

(

ρ−
j+ 1

2

)2 + �′
(

ρ−
j+ 1

2

)

+ Hj+ 1
2

+ Q j+ 1
2
, j = j + 1, . . . , jr − 1,

(2.17)

for ρ+
j+ 1

2
and ρ−

j+ 1
2
, respectively. Here, Q j+ 1

2
is computed using the definition (1.6) and the

midpoint quadrature, which result in

Q
j− 1

2
= 0, Q

j+ 1
2

= Q
j− 1

2
+

x
j+ 1

2∫

x
j− 1

2

(γ u + 	) dx = Q
j− 1

2
+ (γ u j + 	 j )�x, j = j, . . . , jr .

Details on solving the nonlinear equations in (2.17) are provided in Appendix 1.
Equipped with the reconstructed one-sided point values ρ±

j+ 1
2
and m±

j+ 1
2
, we then follow

the method in [6, 34] to compute R j+ 1
2
:

R
j+ 1

2
= 0, R

j+ 1
2

= R
j− 1

2
+ B j , B j := −

∫

C j

(ρHx + γm + ρ	) dx, j = j + 1, . . . , jr − 1.

(2.18)

However, there is a major difference between the computation in (2.18) and similar compu-
tations in [6, 34], where R was not assumed to be continuous at x = x j+ 1

2
and two values

R±
j+ 1

2
were considered there. The difference between R+

j+ 1
2
and R−

j+ 1
2
was attributed to a

jump in H at x = x j+ 1
2
, which is not the case in this paper as H is assumed to be continuous,

which justifies the use of the continuous piecewise linear interpolant in (2.1). In order to
make the scheme WB, one needs to design a WB quadrature for Bj in (2.18). To this end,
we first notice that the steady states of (1.11)–(1.13) satisfy

mx = 0, Kx = 2umx − u2ρx + P ′(ρ)ρx + ρHx + γm + ρ	 = umx + ρEx ,

(2.19)
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which is derived using (1.4), (1.6), and (1.7). We then follow the method introduced in [6,
34] and rewrite (2.19) in the following matrix form:

F(U)x − Rx =
(

m
mu + P(ρ)

)

x
+
(

0
ρHx + γm + ρ�

)

= M(U)Ex , (2.20)

where

R :=
(
0
R

)

, M(U) :=
(
1 0
u ρ

)

, E :=
(
m
E

)

. (2.21)

Next, we integrate (2.20) over the cell C j to obtain
∫

C j

Rx dx =
∫

C j

F(U)x dx −
∫

C j

M(U)Ex dx = F
(

U−
j+ 1

2

)

− F
(

U+
j− 1

2

)

−
∫

C j

M(U)Ex dx,

and then applying the trapezoidal rule to the last integral on the right results in
∫

C j

Rx dx ≈ F
(

U−
j+ 1

2

)

− F
(

U+
j− 1

2

)

− 1

2

[

M

(

U+
j+ 1

2

)

+ M

(

U−
j+ 1

2

)](

E+
j+ 1

2
− E−

j+ 1
2

)

.

(2.22)

Finally, we substitute (2.20) and (2.21) into (2.22) and end up with

Bj =
∫

C j

Rx dx ≈ m−
j+ 1

2
u−
j+ 1

2
− m+

j− 1
2
u+
j− 1

2
+ P−

j+ 1
2

− P+
j− 1

2

−
u−
j+ 1

2
+ u+

j− 1
2

2

(

m−
j+ 1

2
− m+

j− 1
2

)

−
ρ−
j+ 1

2
+ ρ+

j− 1
2

2

(

E−
j+ 1

2
− E+

j− 1
2

)

,

(2.23)

where P−
j+ 1

2
= P

(
ρ−
j+ 1

2

)
and P+

j− 1
2

= P
(
ρ+
j− 1

2

)
.

At the end, we compute K±
j+ 1

2
using (2.8) and write down the semi-discrete flux

globalization based WB CU scheme (2.6) and (2.7) inside the no vacuum regions:

dρ j

dt
= −

K(1)
j+ 1

2
− K(1)

j− 1
2

�x
,

dmj

dt
= −

K(2)
j+ 1

2
− K(2)

j− 1
2

�x
,

(2.24)

where K(1)
j+ 1

2
and K(2)

j+ 1
2
are given by (2.7).

We now prove that in the no vacuum case, the flux globalization based WB CU scheme
(2.24), (2.7) is WB in the sense that it is capable of exactly preserving the steady states (1.9)
and (1.5).

Theorem 2.2 If there are no vacuum regions, that is, ifρ j > 0 for all j and the discrete data
are at a steady state, namely, if either

mj = u j ≡ 0, ζ j ≡ Const, ∀j, (2.25)

or

mj ≡ m̂ = Const �= 0, Ej ≡ Ê = Const, ∀j, (2.26)

where E j and u j are given by (2.10), then the RHS of (2.24) will vanish. This implies that
the designed flux globalization based scheme is WB.
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Proof If (2.25) is satisfied, thenmj ≡ 0 and E j given by (2.10) reduces to ζ j given by (1.8).
We therefore only prove that the scheme is WB provided (2.26) is satisfied. As we perform
the piecewise linear reconstruction (2.14), (2.16), we immediately conclude that in this case

m+
j+ 1

2
= m−

j+ 1
2

≡ m̂, E+
j+ 1

2
= E−

j+ 1
2

≡ Ê, ∀ j . (2.27)

Thus the nonlinear equations in (2.17) for ρ+
j+ 1

2
and ρ−

j+ 1
2
are identical and hence

ρ+
j+ 1

2
= ρ−

j+ 1
2

=: ρ j+ 1
2
, P+

j+ 1
2

= P−
j+ 1

2
=: Pj+ 1

2
. (2.28)

Next, from (2.23), (2.27), and (2.28) we conclude that

Bj = m̂2

ρ j+ 1
2

− m̂2

ρ j− 1
2

+ Pj+ 1
2

− Pj− 1
2
. (2.29)

We then use (2.8), (2.27), and (2.28) to compute

K−
j+ 1

2
= m̂2

ρ j+ 1
2

+ Pj+ 1
2

− R j+ 1
2

= K+
j+ 1

2
,

so that K+
j+ 1

2
− K−

j+ 1
2

= 0, and also, taking into account that u j± 1
2

= m̂/ρ j± 1
2
, we obtain

K−
j+ 1

2
− K+

j− 1
2

(2.18)= m̂2

ρ j+ 1
2

+ Pj+ 1
2

− R j+ 1
2

− m̂2

ρ j− 1
2

− Pj− 1
2

+ R j− 1
2

= m̂2

ρ j+ 1
2

− m̂2

ρ j− 1
2

+ Pj+ 1
2

− Pj− 1
2

− Bj
(2.39)= 0.

(2.30)

Finally, we substitute (2.27), (2.28), and (2.30) into (2.7) and (2.24) to obtain
dρ j
dt ≡ 0 and

dmj
dt ≡ 0 for all j . This completes the proof of the theorem. ��

Remark 2.3 In order to use (2.20)–(2.22) to derive a WB quadrature for Bj in (2.18), one
needs to guarantee M(U) is an invertible matrix, which is true for ρ > 0. However, in the
presence of semi-vacuum and vacuum regions, where ρ ≈ 0, one cannot use (2.20)–(2.22)
to compute Bj , as the equilibrium variable E is not necessarily constant on the entire domain
at the steady state. We therefore design a hybrid approach in Sect. 2.2.

Remark 2.4 As in [7, 12], we assume that H is continuous and only consider smooth steady
states of several models, which can be described by the hydrodynamic equations with free
energy. We note that if P(ρ) = g

2ρ2 with ρ being a water depth and g being the acceleration
due to gravity, H(x) = V (x) with V (x) representing the bottom topography, γ = 0, and
ψ ≡ 0, the studied system reduces to the Saint–Venant system of shallow water equations,
which admits interesting discontinuous steady states. A possible way to design a scheme
capable of exactly preserving some of the discontinuous steady states is by incorporating the
path-conservative technique into the flux globalization approach (this has been done in [6,
34]).
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2.2 WB CU Scheme in the Semi-Vacuum andVacuum Regions

Unfortunately, the flux globalization based WB CU scheme described in Sect. 2.1 does not
apply in the case when vacuum regions are present. This is attributed to the fact that E defined
in (1.6) is constant at steady states in the no vacuum regions only. We therefore develop a
special WB CU scheme for vacuum and/or semi-vacuum regions. First, we note that when
ν = 1, there are no vacuum regions, and therefore we only consider the case of ν > 1, in
which

�′(ρ) = σν

ν − 1
ρν−1. (2.31)

Our goal is to design aWB scheme capable of preserving the steady states (1.9) with vacuum
regions, similar to those sketched in Fig. 1. The scheme will be designed for the original
studied system (1.1) and (1.2), which we rewrite in a vector form as

U t + F(U)x = S(U), (2.32)

with

U =
(

ρ

m

)

, F(U) =
⎛

⎝
m

m2

ρ
+ P(ρ)

⎞

⎠ , S(U) =
(

0
−ρHx − γm − ρ	(x)

)

,

(2.33)

where 	 is defined by (1.7). The semi-discretization of (2.32) and (2.33) results in the
following system of time-dependent ODEs:

d

dt
U j = −

F j+ 1
2

− F j− 1
2

�x
+ Sj , j /∈ { j + 1, . . . , jr − 1}, (2.34)

where F j+ 1
2
are the numerical fluxes to be specified, S

(1)
j ≡ 0, and

S
(2)
j :≈ − 1

�x

∫

C j

(ρHx + γm + ρ	) dx, (2.35)

which needs to be computed using a special WB quadrature.
We follow the approach introduced in [3, 21] and proceed as follows. For simplicity of

presentation, we will consider a special “vacuum–no vacuum” setting sketched in Fig. 1. A
generalization for a general combination of vacuum and no vacuum regions will be quite
obvious. First of all, in the semi-vacuum cells, we define the following continuous piecewise
linear function:

ζ j (x) =
{
H̃(x), if x ≤ x∗

j ,

ζ̂ j , otherwise,

where x∗
j is the location of the vacuum/no vacuum interface in the cell C j . Here, we assume

that H̃ ′(x) < 0 in C j as in Fig. 2(left). The case H̃ ′(x) > 0, which corresponds to Fig. 2
(right), is treated in a similar symmetric way. As a result, using the definitions (1.8) and
(2.31), the density function ρ j (x) in the cell C j has the following form:

ρ j (x) =

⎧
⎪⎨

⎪⎩

0, if x ≤ x∗
j ,

[
ν − 1

σν

(
ζ̂ j − H̃(x)

)
] 1

ν−1

, otherwise.
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Fig. 2 Sketch of the semi-vacuum cells

The values x∗
j and ζ̂ j can be determined using the mass conservation requirement, which

gives

ρ j�x =
x
j+ 1

2∫

x
j− 1

2

ρ j (x) dx =
x
j+ 1

2∫

x∗
j

[
ν − 1

σν

(
ζ̂ j − H̃(x)

)
] 1

ν−1

dx

=
(−(Hx ) j

σ

) 1
ν−1 ·

(
ν − 1

ν
�x∗

j

) ν
ν−1

,

(2.36)

where �x∗
j := x j+ 1

2
− x∗

j . It then follows from (2.36) that

x∗
j = x j+ 1

2
− σ

1
ν

ν

ν − 1
�x (ρ j )

1− 1
ν

(
Hj− 1

2
− Hj+ 1

2

)− 1
ν
,

ζ̂ j = H̃(x∗
j ) = Hj+ 1

2
+ σ

1
ν

ν

ν − 1

[
ρ j

(
Hj− 1

2
− Hj+ 1

2

)] ν−1
ν ;

(2.37)

see Fig. 2 (left). From Fig. 1, it is clear that (2.37) is valid for j = j − 1. However, for
j = jr + 1, (Hx ) jr+1 > 0 and thus we have

x∗
j = x j− 1

2
+ σ

1
ν

ν

ν − 1
�x (ρ j )

1− 1
ν

(
Hj+ 1

2
− Hj− 1

2

)− 1
ν
,

ζ̂ j = Hj− 1
2

+ σ
1
ν

ν

ν − 1

[
ρ j

(
Hj+ 1

2
− Hj− 1

2

)] ν−1
ν

there; see Fig. 2 (right).
Equipped with the values ζ̂ j−1 and ζ̂ jr+1, we proceed as in [21] and use the following

piecewise linear reconstruction in the semi-vacuum and vacuum cells C j with j ≤ j − 1
or j ≥ jr + 1 as well as in the no vacuum cells and C j and C jr , which have semi-vacuum
or vacuum neighbors. Given ρ j and mj in those cells, we first compute the values ζ j =
�′(ρ j ) + Hj and u j := mj/ρ j (the latter computation needs to be desingularized using
a formula similar to (2.9)) and then perform the piecewise linear reconstruction (2.14)–
(2.16) but applied to ζ and u rather than E and m. This results in the one-sided point
values, which we denote by ζ̃ ±

j+ 1
2
and u±

j+ 1
2
. Then, from formulae (1.8) and (2.31) we obtain

ρ̃ ±
j+ 1

2
= [ ν−1

σν
(̃ζ ±

j+ 1
2
− Hj+ 1

2
)
] 1

ν−1 . These point values of ρ, however, may be unreliable and
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thus they should be modified before being used in the numerical flux evaluation. We proceed
according to following algorithm.

Algorithm 1 (Modified Reconstruction of ρ±
j+ 1

2
)

Case 1 (ζ j ≥ Hj− 1
2
and ζ j ≥ Hj+ 1

2
): Vacuum does not occur.

Case 1A ( ζ̃ +
j− 1

2
≥ Hj− 1

2
and ζ̃ −

j+ 1
2

≥ Hj+ 1
2
) : No correction is needed and we set

ρ±
j+ 1

2
= ρ̃ ±

j+ 1
2
.

Case 1B ( ζ̃ +
j− 1

2
< Hj− 1

2
or ζ̃ −

j+ 1
2

< Hj+ 1
2
) : We make the following corrections:

if ζ̃ −
j+ 1

2
< Hj+ 1

2
, then we set

ρ−
j+ 1

2
= 0, ζ+

j− 1
2

= 2ζ j − Hj+ 1
2

and ρ+
j− 1

2
=
[

ν − 1

σν

(

ζ+
j− 1

2
− Hj− 1

2

)] 1
ν−1

,

if ζ̃ +
j− 1

2
< Hj− 1

2
, then we set

ρ+
j− 1

2
= 0, ζ−

j+ 1
2

= 2ζ j − Hj− 1
2

and ρ−
j+ 1

2
=
[

ν − 1

σν

(

ζ−
j+ 1

2
− Hj+ 1

2

)] 1
ν−1

.

Case 2 (Hj− 1
2

> ζ j > Hj+ 1
2
): Semi-vacuum as in Fig.2 (left).

Case 2A (the neighboring cell C j+1 satisfies Case 1A): We set

ζ−
j+ 1

2
= ζ+

j+ 1
2

and ρ−
j+ 1

2
=
[

ν − 1

σν

(

ζ−
j+ 1

2
− Hj+ 1

2

)] 1
ν−1

.

Case 2A1 (2ρ j − ρ−
j+ 1

2
≥ 0):We set ρ+

j− 1
2

= 2ρ j − ρ−
j+ 1

2
.

Case 2A2 (2ρ j − ρ−
j+ 1

2
< 0): We set ρ+

j− 1
2

= 0.

Case 2B (the neighboring cell C j+1 does not satisfy Case 1A): In this case, the
semi-vacuum cell C j+1 does not have a reliable reconstructed linear piece of ζ ;
see Fig.3 . We therefore perform the piecewise linear reconstructions (2.14)–(2.16)
applied to the variable ρ to obtain

ρ+
j+ 1

2
= ρ j+1 − �x

2
(ρx ) j+1, ρ−

j+ 1
2

= ρ j + �x

2
(ρx ) j .

We note that this part is a modification of the algorithm in [21, §3.1]. The robustness
of the new approach is demosntrated in the numerical examples reported in Sect. 3.

Case 3 (Hj− 1
2

< ζ j < Hj+ 1
2
): Semi-vacuum cell as in Fig.2 (right).

This case is analogous to Case 2.

Equipped with the one-sided point values ρ±
j+ 1

2
and u±

j+ 1
2
, we obtainm±

j+ 1
2

= ρ±
j+ 1

2
u±
j+ 1

2
,

and then following the approach in [3, §4], we write down the CU numerical fluxes in (2.34):

F (1)
j+ 1

2
=

a+
j+ 1

2
m−

j+ 1
2

− a−
j+ 1

2
m+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(

ρ+
j+ 1

2
− ρ−

j+ 1
2

)

,

F (2)
j+ 1

2
= F (2), a

j+ 1
2

+ F (2), p
j+ 1

2
,

(2.38)
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Fig. 3 Sketch of Case 2B in Algorithm 1

where

F (2), a
j+ 1

2
=

a+
j+ 1

2
m−

j+ 1
2
u−
j+ 1

2
− a−

j+ 1
2
m+

j+ 1
2
u+
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

,

F (2), p
j+ 1

2
=

a+
j+ 1

2
P

(

ρ−
j+ 1

2

)

− a−
j+ 1

2
P

(

ρ+
j+ 1

2

)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(

m+
j+ 1

2
− m−

j+ 1
2

)

.

(2.39)

In order to make the resulting schemeWB, we approximate the cell average of the source
term (2.35) using the following WB (see the proof of Theorem 2.6 below) quadrature:

S
(2)
j = −ρ∗

j (Hx ) j − γ mj − ρ j	 j , (2.40)

where

ρ∗
j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P

(

ρ−
j+ 1

2

)

− P

(

ρ+
j− 1

2

)

�′
(

ρ−
j+ 1

2

)

− �′
(

ρ+
j− 1

2

) , if j = j or j = jr ,

ρ j , if j ≤ j−1 or j ≥ jr+1.

(2.41)

In order to preserve the aforementioned combined “vacuum–no vacuum” steady states,
we develop a hybrid approach: inside the no vacuum regions, namely, in the cells
C j+1, . . . ,C jr−1 as plotted in Fig. 1, we use the flux globalization based WB CU scheme
(Sect. 2.1) for the equivalent system (1.11)–(1.13). Outside of these regions, we utilize the
CU scheme (Sect. 2.2) for the original system (1.1) and (1.2). The resulting hybrid scheme
is WB provided the one-sided reconstructed point values coincide at the interfaces between
these areas (these interfaces are marked by the red dashed line in Fig. 1). If the discrete data
satisfy (1.9), we immediately have m−

j+ 1
2

= m+
j+ 1

2
= 0 and m−

jr− 1
2

= m+
jr− 1

2
= 0, which

imply E±
j+ 1

2
= ζ±

j+ 1
2
and E±

jr− 1
2

= ζ±
jr− 1

2
, and hence ρ−

j+ 1
2

= ρ+
j+ 1

2
and ρ−

jr− 1
2

= ρ+
jr− 1

2
.
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Remark 2.5 Due to the presence of vacuum regions, one needs to ensure that the proposed
hybrid scheme has the positivity-preserving property. We achieve this goal with the help of
the “draining time step” technique, which was introduced in [4].

We now prove that the use of the numerical fluxes (2.38) and (2.39) and the source terms
approximation (2.40)–(2.41) leads to aWB scheme in the vacuum and semi-vacuum regions.

Theorem 2.6 Assume that the discrete data are at a combined “vacuum–no vacuum” steady
state, namely, the discrete data satisfy the following relations:

ρ j ≡ 0 for j < j − 1 or j > jr + 1, ζ̂ j−1 = ζ j = · · · = ζ jr = ζ̂ jr+1 ≡ ζ∗, mj = u j ≡ 0,

(2.42)

for all j (see Fig.1), where ζ ∗ is a constant. Then, the proposed CU scheme (2.34), (2.38)–
(2.41) is WB.

Proof In order to prove this theorem, we need to show that the RHS of (2.34) vanishes for
j ≤ j and j ≥ jr as long as the data satisfy (2.42).

First, we note that in the vacuum cells C j ( j < j − 1 or j > jr + 1) the RHS of (2.34)
vanishes since in those cells ρ j ≡ 0 andmj ≡ 0.

We then note that in all of the considered cells, m±
j+ 1

2
= u±

j+ 1
2

= 0 and 	 j = 0, and

hence (2.38) and (2.39) reduce to

F (1)
j+ 1

2
=

a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(

ρ+
j+ 1

2
− ρ−

j+ 1
2

)

, F (2)
j+ 1

2
= F (2), p

j+ 1
2

=
a+
j+ 1

2
P(ρ−

j+ 1
2
) − a−

j+ 1
2
P(ρ+

j+ 1
2
)

a+
j+ 1

2
− a−

j+ 1
2

.

(2.43)

Next, we consider the first no vacuum cell C j (the last no vacuum cell C jr is treated
similarly), in which ζ±

j− 1
2

= ζ±
j+ 1

2
= ζ ∗, and hence using Algorithm 1 we obtain that

ρ±
j− 1

2
= ρ j− 1

2
and ρ±

j+ 1
2

= ρ j+ 1
2
. This implies

F (1)
j− 1

2
= F (1)

j+ 1
2

= 0, F (2)
j± 1

2
= P(ρ j± 1

2
). (2.44)

At the same time, the source term approximation (2.40)–(2.41) becomes

S
(2)
j = −

P
(
ρ j+ 1

2

)
− P

(
ρ j− 1

2

)

�′
(
ρ j+ 1

2

)
− �′

(
ρ j− 1

2

) (Hx ) j , (2.45)

where

(Hx ) j
=

H
j+ 1

2
− H

j− 1
2

�x
(1.8)=

ζ∗ − �′
(

ρ
j+ 1

2

)

−
[

ζ∗ − �′
(

ρ
j− 1

2

)]

�x
= −

�′
(

ρ
j+ 1

2

)

− �′
(

ρ
j− 1

2

)

�x
,

which can be substituted into (2.45) to obtain

S
(2)
j =

P
(
ρ j+ 1

2

)
− P

(
ρ j− 1

2

)

�x
. (2.46)

We then use (2.44) and (2.46) to verify that the RHS of (2.34) vanishes.
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Finallywe consider the semi-vacuum cellC j−1 (the cellC jr+1 is treated similarly), where
ρ±
j− 3

2
= 0 and ρ±

j− 1
2

= ρ j− 1
2
, which is substituted into (2.43) to obtain

F (1)
j− 3

2
= F (1)

j− 1
2

= 0, F (2)
j− 3

2
= 0, F (2)

j− 1
2

= P
(
ρ j− 1

2

)
. (2.47)

At the same time, the source term approximation (2.40)–(2.41) becomes

S
(2)
j−1 = −ρ j−1(Hx ) j−1. (2.48)

Therefore, according to (2.34), (2.38)–(2.41), in order to complete the proof of the theorem,
we need to show that

−
F (2)

j− 1
2

�x
+ S

(2)
j−1

(2.47)= −
P
(
ρ j− 1

2

)

�x
+ S

(2)
j−1 = 0. (2.49)

Indeed, since ζ̂ j−1 = ζ−
j− 1

2
= ζ ∗, and since

ζ̂ j−1
(2.37)= Hj− 1

2
+ σ

1
ν

ν

ν − 1

[
ρ j−1

(
Hj− 3

2
− Hj− 1

2

)] ν−1
ν

(2.50)

ζ−
j− 1

2

(1.8),(2.31)= Hj− 1
2

+ σν

ν − 1
(ρ̃ j− 1

2
)ν−1, (2.51)

we obtain by equating the RHS of (2.50) and (2.51) and then using (2.52) that

− ρ j−1(Hx ) j−1 =
σ
(
ρ j− 1

2

)ν

�x
=

P
(
ρ j− 1

2

)

�x
. (2.52)

Finally, we substitute (2.52) into (2.48) and obtain (2.49). This completes the proof of the
theorem. ��
Remark 2.7 As shown in Theorems 2.2 and 2.6, the proposed CU scheme is designed to
exactly preserve particular discrete versions of the steady states (2.25), (2.26), and (2.42). This
is due to the fact that in (2.2), (2.11), (2.12), and (2.13), we have used particular quadratures
to approximate the point values used in the evaluation of the discrete steady states to be
preserved. Therefore, when theWBproperty is experimentally verified, the initial data should
be prepared so that they will satisfy the corresponding discrete steady states. This will be
further explained in Examples 4 and 10.

2.3 Capturing TravelingWaves

In this section, we consider the system (1.1) and (1.2) with γ = 0 and V (x) ≡ 0 and we are
concerned with improving the quality of the resolution of computed traveling wave solutions
(1.10). To this end, we modify the hybrid flux globalization basedWB CU scheme presented
in Sects. 2.1 and 2.2 by applying the moving framework approach from [32]. To this end, we
numerically solve the modified system (1.14), which can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

ρt + mx = 0,

mt + (ρu2 + P(ρ)
)

x = −ρHx − ρ

∫

R

ψ(x − y) [u(x) − u(y)] ρ(y) dy. (2.53)
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Here,

m := m − u∗ρ, u := m

ρ
= u − u∗, (2.54)

where u∗ is a constant being computed at every time step in the following way:

u∗ = 1

N

N∑

j=1

u j . (2.55)

In order to apply the flux globalization approach to the system (2.53), we first incorporate
the source terms into the flux and end up with the following quasi-conservative system:

{
ρt + mx = 0,

mt + Kx = 0,
(2.56)

where

K := m2

ρ
+ P(ρ) − R (2.57)

is a global flux with the global variable

R(x, t) := −
x∫

x̂

⎧
⎨

⎩
ρ(ξ, t)Hx (ξ) + ρ(ξ, t)

∫

R

ψ(ξ − y) [u(ξ, t) − u(y, t)] ρ(y, t) dy

⎫
⎬

⎭
dξ. (2.58)

We then use the flux globalization basedWBCU scheme presented in Sect. 2.1 to numerically
solve the system (2.56)–(2.58) from a certain time level t to the next time level t +�t , where
�t is an adaptive time step being computed by (3.2) below. Once the numerical solutions
{ρ j (t + �t)} and {mj (t + �t)} are obtained, we shift all spatial grid mesh cells C j centered
at x j to the new locations centered at x j + u∗�t , and prescribe the obtained solutions on the
shifted cells. Finally, we compute the velocities u j = u j + u∗ by (2.54), and this completes
one time step of the resulting method.

We note that the travelingwave solutions (1.10) corresponds to themotionless steady-state
solution of (2.56)–(2.58):

m ≡ 0, K ≡ Const.

As the flux globalization basedWBCU scheme proposed in Sect. 2.1 is capable of preserving
these steady states, it is also capable of exactly capturing the traveling waves (1.10). This
makes our scheme superior to its counterparts in [7, 12], where the magnitude of traveling
waves was affected by numerical diffusion.

Remark 2.8 In this section, no vacuum or semi-vacuum cells are taken into account. When
vacuum or semi-vacuum regions emerge, we will use the WB CU schemes introduced in
Sect. 2.2 to numerically solve the system (2.53) in those areas. In addition, we will compute
u∗ using a modified version of (2.55), which takes into account no vacuum velocity values
only. For instance, in the situation that corresponds to the “vacuum–no vacuum” setting
sketched in Fig. 1, we will take

u∗ = 1

jr − j + 1

jr∑

j= j

u j .
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Notice that since the proposed hybrid flux globalization based WB CU schemes are able to
preserve the combined “vacuum–no vacuum” steady states, the traveling wave solutions with
vacuum or semi-vacuum regions can also be captured exactly.

3 Numerical Examples

In this section, we demonstrate the performance of the proposed hybrid flux globalization
based WB CU scheme on a number of numerical examples. In all of them, unless specified
differently, we set σ = 1 and use the homogeneous Neumann boundary conditions for ρ and
homogeneous Dirichlet boundary conditions for m, namely, we use the following ghost cell
values:

ρ0 = ρ1, ρN+1 = ρN , m0 = 0, mN+1 = 0.

Furthermore, the damping coefficient γ = 0 in Examples 4, 5, 8, and 9, while the linear
damping term is present in the rest of the numerical examples: γ = 0.001 in Example 1,
γ = 1 in Examples 2, 3, and 7 (Test 1–4), γ = 0.05 in Example 7 (Test 5), and γ = 0.01
in Examples 6 and 10. The communication function ψ(x) ≡ 0 in Examples 2, 3, 7, and 9,
while the Cucker–Smale damping term with

ψ(x) = 1
(
1 + |x |2) 14

. (3.1)

is used in Examples 1, 4–6, 8, and 10.
We have integrated the ODE systems (2.6) and (2.34) using the three-stage third-order

strong stability preserving (SSP) Runge-Kutta method (see, e.g., [29, 30]) with a time step
computed at every time level using the CFL number 1/2, namely, by taking

�t = �x

2amax
, amax := max

j

{

max

(

a+
j+ 1

2
,−a−

j+ 1
2

)}

. (3.2)

Example 1: Accuracy Test

In the first example, which is a modification of an accuracy test used in [6, 18], we verify
the experimental rate of convergence. To this end, we take P(ρ) = ρ2, V (x) = sin2(πx),
W (x) ≡ 0, and the following initial data:

ρ(x, 0) = 5 + ecos(2πx), m(x, 0) = sin(cos(2πx)),

prescribed in the computational domain [0, 1] subject to the 1-periodic boundary conditions.
We compute the solutions at the final time t = 0.1 by the proposed hybrid WB CU scheme
on a sequence of uniform meshes with �x = 1/100, 1/200, 1/400, 1/800, and 1/1600 and
obtain the reference solution using the same scheme but on a much finer uniform mesh with
�x = 1/12800. We then calculate the L1-errors and the experimental rates of convergence
for both ρ and m. The obtained results are summarized in Table 1. As one can clearly see,
the proposed scheme achieves the expected second order of accuracy.
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Table 1 Example 1: L1-errors
and experimental convergence
rates

�x L1-error in ρ Rate L1-error in m Rate

1/100 1.01e−3 – 1.48e−3 –

1/200 2.36e−4 2.09 2.94e−4 2.33

1/400 5.73e−5 2.04 6.81e−5 2.11

1/800 1.51e−5 1.92 2.07e−5 1.72

1/1600 3.83e−6 1.98 5.67e−6 1.86

Table 2 Example 2: L1- and L∞-errors in m and ζ computed by the hybrid flux globalization based WB CU
scheme and the CKPS scheme

L1-error in m L∞-error in m L1-error in ζ L∞-error in ζ

WB CU scheme 9.09e−17 2.96e−16 1.73e−15 5.33e−15

CKPS scheme 1.27e−16 1.03e−16 6.95e−15 3.55e−15

3.1 Well-Balanced Property Validation: Motionless Steady States

In this section, we study three numerical examples. We first consider two examples taken
from [12], in which the initial data correspond to the motionless steady states (1.9), the
external field V (x) = 1

2 x
2 and the interaction potential W (x) ≡ 0. We then consider an

example with the initial condition satisfying (1.9) at the continuous level only and with the
external field V (x) ≡ 0 and the interaction potential W (x) = 1

2 x
2.

Example 2: Motionless Steady State Without Vacuum Regions

In the second example, we take P(ρ) = ρ and the following initial conditions:

ρ(x, 0) = e−x2/2

∫

�
e−x2/2 dx

, m(x, 0) ≡ 0. (3.3)

It is easy to verify that this initial setting satisfies the steady-state condition (1.9) and its
discrete version (2.25).

We use N = 100 uniform cells in the computational domain � = [−5, 5] and run the
simulations until the final time t = 20. The discrete L1- and L∞-errors are reported in Table
2. As one can see, both the proposed hybrid flux globalization based WB CU scheme and
the scheme developed in [12], which will be referred to as the CKPS scheme from here on,
can preserve the steady-state solution within the machine error.

Example 3: Motionless Steady State with Vacuum Regions and Its Small Perturbation

In the third example, we take P(ρ) = ρ2, which supports the vacuum regions. We consider
the following initial conditions:

ρ(x, 0) = ρeq(x) =
⎧
⎨

⎩

− 1

4
(x + 3

√
3)(x − 3

√
3) if x ∈ [− 3

√
3, 3

√
3],

0 otherwise,
m(x, 0) ≡ 0,

(3.4)
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Table 3 Example 3: L1- and L∞-errors in m and ζ computed by the hybrid flux globalization based WB CU
scheme and the CKPS scheme

L1-error in m L∞-error in m L1-error in ζ L∞-error in ζ

WB CU scheme 7.31e−17 3.08e−16 1.04e−16 2.22e−16

CKPS scheme 1.78e−16 1.69e−16 4.44e−16 4.44e−16

Fig. 4 Example 3: The difference ρ −ρeq computed at times t = 0.5 (left column), t = 2.5 (middle column),
and t = 4.0 (right column) using the hybrid flux globalization based WB CU, NWB CU, and CKPS schemes
with N = 100 (top row) and 1000 (bottom row) uniform cells

prescribed in the computational domain [−5, 5]. We first run the simulations with N = 100
uniform cells until the final time t = 20 and compute the discrete L1- and L∞-errors, reported
in Table 3 . As one can see, both the hybrid flux globalization based WB CU scheme and
the CKPS scheme are capable of preserving the steady state even in the presence of vacuum
regions.

We then test the ability of the proposed scheme to capture small perturbations of steady
states. To this end,wemodifyρ(x, 0) in the initial data in (3.4) by adding a small perturbation.
The modified initial condition is

ρ(x, 0) = ρeq(x) +
{
0.01 if x ∈ [−0.75,−0.25],
0 otherwise.

We compute the numerical solutions at three different times t = 0.5, 2.5 and 4 using both
coarse and fine uniform meshes with N = 100 and N = 1000. The differences ρ(x, t) −
ρeq(x) are plotted in Fig. 4, where the results computed by the hybrid flux globalization based
WB CU scheme and the CKPS scheme from [12] are compared with those computed using
the CU scheme from [36], which is non-well-balanced (NWB) when directly applied to the
studied system (1.1) and (1.2). As one can see in the top row of Fig. 4, when the coarse mesh
is used, the solutions computed by the WB CU and CKPS schemes are very similar, whereas
the solution computed by the NWB CU scheme is very different. When the mesh is refined
(see the bottom row of Fig. 4), they seem to converge to the same solution and we can see
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Table 4 Example 4: L1- and L∞-errors inρ andm computed at the time t = 10 by the hybrid flux globalization
based WB CU scheme and the CKPS scheme with unprepared discrete initial data

L1-error in ρ L∞-error in ρ L1-error in m L∞-error in m

WB CU scheme 7.31e−10 3.01e−10 3.08e−11 9.38e−12

CKPS scheme 7.35e−10 3.03e−10 1.83e−11 5.56e−12

Table 5 Example 4: L1- and L∞-errors inρ andm computed at the time t = 60 by the hybrid flux globalization
based WB CU scheme and the CKPS scheme with unprepared discrete initial data

L1-error in ρ L∞-error in ρ L1-error in m L∞-error in m

WB CU scheme 7.48e−10 3.08e−10 1.72e−16 1.29e−16

CKPS scheme 7.48e−10 3.08e−10 8.40e−16 4.66e−16

that the initial perturbation first splits into two waves propagating in the opposite directions,
which later merge into one wave due to the influence of the potential term. This suggests
that the use of a NWB scheme leads to the appearance of nonphysical waves (which are
large when the mesh is coarse and are still visible in the fine NWB solution at the early time
t = 0.5) and emphasizes the importance of the WB property possessed by the proposed flux
globalization based WB CU scheme. In addition, both the WB CU and CKPS schemes are
capable of exactly preserving the motionless steady states (1.9) and hence their results are
very close on both the coarse and fine meshes.

Example 4: Convergence to Motionless Steady State

In the fourth example, we consider the same pressure function, the same initial conditions
(3.3) as in Example 2, but different V (x) ≡ 0 andW (x) = 1

2 x
2. Our goal is to show that it is

essential to prepare discrete steady-state data in order to verify the WB property of studied
schemes. We first take the initial cell averages

ρ j (0) = ρ(x j , 0) = e−x2j /2

∫

�
e−x2/2 dx

, mj (0) ≡ 0, (3.5)

which are not at a discrete steady state as they do not satisfy (2.25). We then use the proposed
hybrid WB CU and CKPS schemes to compute the numerical solutions until the final time
t = 10 on N = 200 uniform cells. The obtained discrete L1- and L∞-errors, that is, the
norms of the differences {ρ j (10)−ρ j (0)}Nj=1 and {mj (10)−mj (0)}Nj=1 are reported in Table
4. As one can clearly see, neither of the two studied schemes can preserve the steady state
within the machine error since the initial data are not prepared and the values ζ j are not
initially constant.

It should be pointed out that it is a nontrivial task to construct prepared initial conditions
mentioned in Remark 2.7. We therefore run the simulations again with the same initial data
(3.5) but until a longer time t = 60 and report the differences {ρ j (60) − ρ j (0)}Nj=1 and

{mj (60) −mj (0)}Nj=1 in Table 5. As one can see, the errors in ρ are about the same as at the
time t = 10, while the errors in m decay to the machine error.

In addition, at every time step we compute the L1-norm of the differences in ρ and m
between the current solution and the solution at the previous time step. From the obtained
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Fig. 5 Example 4: The L1-norm of the differences in ρ (left) and m (middle) between the current solution
and the solution at the previous time step, and the obtained discrete steady-state densities (right)

Table 6 Example 4: L1- and L∞-errors in ρ and m computed by the hybrid flux globalization based WB CU
scheme and the CKPS scheme with the prepared discrete initial data

L1-error in ρ L∞-error in ρ L1-error in m L∞-error in m

WB CU scheme 5.65e−16 3.89e−16 2.31e−16 2.22e−16

CKPS scheme 4.48e−16 4.21e−16 2.94e−14 1.55e−14

results shown in Fig. 5(left and middle), one can clearly see that by the final time the discrete
steady states have been already reached by both of the two studied schemes. In Fig. 5 (right),
we plot the obtained discrete steady-state densities, which are almost the same. Finally, we
use these discrete densities, which can be considered as “prepared” steady-state densities,
and mj (0) ≡ 0 as initial data and repeat the simulation until the final time t = 10 to test
the WB property of the studied schemes. As expected, both of them can exactly preserve
the discrete steady state (2.25) within the machine error; see Table 6 , where we compute
the differences between the numerical solutions at the final time t = 10 and the “prepared”
initial data, and compare them with the results reported in Tables 4 and 5.

3.2 Applications to Various Free EnergyModels

In this section, we apply the proposed hybrid flux globalization based WB CU scheme to a
variety ofmodelswith different choices of the free energy. Formost of thesemodels analytical
results are limited. The examples considered in this section are taken from [7, 12].

Example 5: Model with the Cucker–Smale Damping Term and Attractive Potential

In the fifth example, we consider the model with the Cucker–Smale damping term, no linear
damping and attractive potential (H(x) = V (x) = 1

2 x
2). We take P(ρ) = ρ and consider

the following initial data:

ρ(x, 0) = 0.2 + 5 cos
(

πx
10

)

∫

�

(
0.2 + 5 cos

(
πx
10

))
dx

, m(x, 0) = −0.05 sin
(πx

10

)
,

prescribed in the computational domain � = [−5, 5]. We compute the numerical solutions
at two intermediate times t = 0.7 and 2, and a large final time t = 15 using N = 50, 200,
and 1000 uniform cells and plot the obtained results (ρ, m, and ζ ) in Fig. 6. Our coarse mesh
(N = 50) results seem to be in a good agreement with those reported in [12, Example 3.2],
where a finer mesh with N = 200 was used. When we refine the mesh the solution becomes
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Fig. 6 Example 5: Time snapshots of ρ (left column), m (middle column), and ζ (right column) computed
by the hybrid flux globalization based WB CU scheme using N = 50 (top row), 200 (middle row), and 1000
(bottom row) uniform cells

much shaper as it develops kinks in ρ and ζ , and a jump discontinuity in m at x = 0 at an
intermediate time t = 2. One can also observe some kinks at a smaller time t = 0.7. This
type of the solution behavior may be attributed to the lack of linear damping term. Finally,
by the very large final time t = 15, the solution has almost converged to the steady state with
m ≡ 0, ζ ≡ Const.

Example 6: Model with the Cucker–Smale Damping Term and Attractive Kernel

In the sixth example,we consider the same pressure function and the same initial conditions as
in Example 5, but we now take H(x) = W (x)∗ρ with the interaction potentialW (x) = 1

2 x
2.

We compute the numerical solutions at two intermediate times t = 2.5 and 5, and a large
final time t = 75 using N = 200 uniform cells and plot the obtained results in Fig. 7(top
row). Since the presence of linear damping term (although with a small coefficient), the
results, especially the density and momentum fields, have quite smaller oscillations than
those observed in Example 5.

Compared with the results reported in [12, Example 3.3], our numerical solution seems
to faster converge to the steady state; compare the solutions at t = 5 in Fig. 7 and [12, Figure
3]. In order to numerically investigate whether the faster convergence results are correct, we
refine the mesh and repeat the computation using N = 1000 uniform cells. The results are
reported in Fig. 7 (bottom row), where one can see that our fine mesh solution is very close
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Fig. 7 Example 6: Time snapshots of ρ (left column), m (middle column), and ζ (right column) computed by
the hybrid flux globalization based WB CU scheme using N = 200 (top row) and 1000 (bottom row) uniform
cells

to our coarse mesh solution. This suggests that the convergence dynamics computed by the
proposed hybrid flux globalization based WB CU scheme is quite accurate.

Example 7: Hydrodynamic Generalization of the Keller–Segel System

In the seventh example, we consider the hydrodynamic extension of the Keller–Segel model
proposed in [16] and takes into account the inertia of the biological entities. In this model,
the potential H(x) = W (x) ∗ ρ and we consider different kernels W and different pressure
functions P(ρ) = σρν . In Tests 1–4, we use the homogeneous kernels W (x) = |x |α/α,
where α > −1 as introduced in [8], where by convention we set W (x) = ln |x | for α = 0.
In Test 5, we use the Morse-type potential as in [11] with W (x) = −e−|x |2/2/2π . For the
studied generalized Keller–Segel model there are three possible regimes depending on α and
ν (see [8]): diffusion dominated (ν > 1 − α), balanced (ν = 1 − α) in which a critical
mass separates self-similar and blow-up behavior, and aggregation-dominated (ν < 1 − α)

regimes.

Test 1 We first take W (x) = 2
√|x | and P(ρ) = ρ

3
2 , which correspond to the diffusion-

dominated regime. We consider the following initial conditions:

ρ(x, 0) = e−4(x+2)2/10 + e−4(x−2)2/10

∫

�
(e−4(x+2)2/10 + e−4(x−2)2/10) dx

, m(x, 0) ≡ 0,

prescribed in the computational domain � = [−8, 8]. We compute the numerical solution
at two intermediate times t = 3.7 and 11, and a large final time t = 70 using N = 200
uniform cells and plot the obtained results (ρ, m, and ζ ) in Fig. 8 . As one can see, the
solution approaches to a compactly supported steady state. As expected, at the steady state
the variation of the free energy with respect to the density ρ has a constant value only within
the support of the density. We note that our results are in good agreement with those reported
in [12, Example 3.8] though as in Example 6 our solution seems to converge to the steady
state somewhat faster; see the solution at time t = 11 in Fig. 8 and [12, Figure 8].
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Fig. 8 Example 7, Test 1: Time snapshots of ρ (left), m (middle), and ζ (right) computed by the hybrid flux
globalization based WB CU scheme using N = 200 uniform cells

Fig. 9 Example 7, Test 2: Time snapshots of ρ (left), m (middle), and ζ (right) computed by the hybrid flux
globalization based WB CU scheme using N = 200 uniform cells

Test 2 We then take a singular interaction potential W (x) = ln |x | and P(ρ) = 3ρ
5
2 (this

setting also corresponds to the diffusion-dominated regime). The initial data,

ρ(x, 0) = e−x2/16

∫

�
(e−x2/16) dx

, m(x, 0) ≡ 0,

are prescribed in the computational domain� = [−8, 8].We compute the numerical solution
at times t = 10, 20, and a large final time t = 250 using N = 200 uniform cells and plot
the obtained results (ρ, m, and ζ ) in Fig. 9. We observe that the final compactly-supported
density profiles have slightly different shapes due to the balances between the attraction
from the local kernel W (x) and the repulsion caused by the diffusion of the pressure P(ρ).
Comparing the obtained results with their counterparts reported in [7, Figure 3.9], we observe
that the solution computed by our scheme converges to the steady state much faster. As one
can see, at t = 10 the density component of our solution is closer to the steady-state density
profile while the momentum is larger than the one reported in [7, Figure 3.9], which indicates
faster convergence. At a later time t = 20, our solution is already almost at the steady state,
which once again indicates much faster convergence. These results are confirmed by the
mesh refinement study not reported here for the sake of brevity.
Test 3 Next, we take the same singular interaction potential W (x) = ln |x |, but the linear
pressure P(ρ) = ρ. This scenario corresponds to the balanced regime, and there is a critical
mass separating the global-in-time from the finite-time blowup solutions. We consider the
following initial data:

ρ(x, 0) = M0 e−x2/16

∫

�
(e−x2/16) dx

, m(x, 0) ≡ 0,

where M0 is the total mass of the system. We take M0 = 0.1, which is relatively small and
is expected to lead to the global-in-time solution.
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Fig. 10 Example 7, Test 3: Time snapshots of ρ (left), m (middle), and ζ (right) at times t = 5, 15, and 60
computed by the hybrid flux globalization based WB CU scheme using N = 200 uniform cells

Fig. 11 Example 7, Test 3: The profiles of ρ (left), m (middle), and ζ (right) at a very large time t = 200
computed by the hybrid flux globalization based WB CU scheme using N = 200 and 1000 uniform cells

We set the computational domain� = [−8, 8] and use N = 200 uniform cells to compute
the numerical solutions at times t = 5, 15, and60.Theobtained results (ρ,m, and ζ ) are shown
in Fig. 10, where the numerical solution is clearly global-in-time and diffusion-dominated.
By the time t = 60, the solution is already almost at discrete steady state, which is unlike
the steady density reported in [7, Figure 3.7(a)] is not uniform. This can be clearly seen in
Fig. 11, where we plot the numerical solution at even larger time t = 200 using N = 200 and
1000 uniform cells—these solutions are already at the discrete steady state and the density
is clearly nonuniform.
Test 4 For the next simulation, we select a larger total mass M0 = 3 while keeping the same
other settings as in Test 3. In this case, the total mass is above the critical one and the solution
(ρ) is expected to blow upwithin a finite time as supported by our numerical results presented
in Figs. 12–14. First, in Fig. 12, we show that the solutions computed using three different
meshes with N = 51, 201, and 801 uniform cells at times t = 3, 6, and 7.5. One can observe
the aggregation phenomenon as the mass concentrates near x = 0. One can also see that the
obtained solutions have not reached the discrete steady state as both m and ζ are far from
being uniform at t = 7.5. We note that though qualitatively ρ in Fig. 12 behaves similarly
to the density reported in [7, Figure 3.8], the aggregation in our simulations seems to occur
faster and by the time t = 7.5 our solution is already close to the blowup as the maximum of
ρ grows roughly by a factor of 4 at every mesh refinement (notice that when δ-functions are
represented using the finite-volume uniform cell approximation their magnitude are expected
to be proportional to 1/�x).

We then perform a careful numerical blowup investigation. We begin with computing the
behavior of the maximum of ρ as a function of time using four consecutive meshes with
N = 51, 201, 801, and 3201. The obtained results are reported in Fig. 13(left), where one can
clearly see that the maxima of all of the four discrete solutions keep to increase. In order to
more accurately predict the blowup time, we also plot the ratio ||ρ4N−3||∞/||ρN ||∞ as well
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Fig. 12 Example 7, Test 4: Time snapshots of ρ (left column), m (middle column), and ζ (right column)
computed by the hybrid flux globalization based WB CU scheme using N = 51 (top row), 201 (middle row),
and 801 (bottom row) uniform cells

Fig. 13 Example 7, Test 4: The maximum value of ρ (left), the ratio ||ρ4N−3||∞/||ρN ||∞ (middle), and the
maximum and minimum of m (right) as functions of time

Fig. 14 Example 7, Test 4: The profiles of ρ at time t = 10 computed by the hybrid flux globalization based
WB CU scheme using N = 51 (left), 201 (middle), and 801 (right) uniform cells
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Fig. 15 Example 7, Test 5: Time evolution of ρ (left) and time snapshots ofm (middle) and ζ (right) computed
by the hybrid flux globalization based WB CU scheme

as the maximum and minimum of m as functions of time for different N in the middle and
right panels of Fig. 13. The ||ρ4N−3||∞/||ρN ||∞ curves clearly approach 4 but the blowup
time cannot be predicted with a high accuracy just from this graph. We note that at post-
blowup times the computed solution may lose its symmetry and may exhibit a nonregular
behavior. Indeed, we can see this in Fig. 13 (left) as the maximum of ρ computed on the finest
mesh with N = 3201 starts oscillating after about t = 14, which means that the blowup has
already occurred by then. As an additional blowup indicator, we consider the behavior of the
maximum and minimum of m for different N as function of time; see Fig. 13 (right). In fact,
the maximum and minimum curves are supposed to be symmetric with respect to the line
m = 0. One can see that this is the case at pre-blowup times, but after the blowup occurs the
symmetry is lost and the magnitude of m starts increasing. This gives us an indication that
the blowup time is about t = 10. Finally, in Fig. 14, we show ρ computed at the time t = 10
using N = 51, 201, and 801 uniform cells, and the blowup can be clearly seen in this figure.
Test 5 In the final test, we consider a Morse-type potential W (x) = −e−|x |2/2/

√
2π , for

which the attraction between two bumps of density separated at a considerable distance is
quite weak. However, when enough time has passed and the bumps get closer, they merge
in an exponentially fast pace due to the convexity of the Gaussian potential, and a new
equilibrium is reached with just one bump. The interesting fact about this system is therefore
the existence of two timescales: the time to get the bumps of density close enough, which
could be very slow, and the time to merge the bumps, which is exponentially fast in time.

In order to verify that the proposed hybrid flux globalization based WB CU scheme can
capture this type of solution behavior, we use the setting from [12, Example 3.8 with Morse-
type potential] and consider the initial density containing three bumps. In particular, the initial
data,

ρ(x, 0) =
1.2
(
e−(x+3)2/2 + e−(x−3)2/2 + 0.55e−(x−8.5)2/2

)

∫

�

(
e−(x+3)2/2 + e−(x−3)2/2 + 0.55e−(x−8.5)2/2

)
dx

, m(x, 0) ≡ 0,

are prescribed in the computational domain � = [−8, 12]. We take the pressure function
P(ρ) = ρ3 and compute the numerical solutions using N = 200 uniform cells at times
t = 100 and 270, and a large final time t = 3000. The obtained results are depicted in Fig. 15
. As one can see, first the two central bumps of density merge after some time, and then the
third bump, with less mass, starts getting closer until it also blends. Notice that compared
with the results reported in [12, Figure 10] the evolution process is substantially faster in
our computations. This can also be seen in the evolution of ζ , whose initial profile is very
complicated, but eventually it converges to a simple steady state with constant value on the
compact support of ρ. One can observe that unlike the solution reported in [12, Figure 10(c)],
ζ is already near its steady state at the time t = 270.
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Fig. 16 Example 8: Time snapshots of ρ (left), m (middle), and ζ (right) computed by the hybrid flux
globalization based WB CU scheme

Fig. 17 Example 8: The difference between the computed and the background densities computed at times
t = 0.5 (left column), t = 1.5 (middle column), and t = 3.0 (right column) using the hybrid flux globalization
based WB CU and NWB CU schemes with N = 100 (top row) and 1000 (bottom row) uniform cells

3.3 TravelingWave

In this section, we demonstrate the ability of the hybrid flux globalization based WB CU
scheme to accurately capture a traveling wave and its small perturbation.

Example 8: Traveling Wave and Its Small Perturbation

In the eighth example, we first demonstrate that the proposed hybrid flux globalization based
WBCU scheme can capture the traveling wave solution (1.10) exactly. We takeW (x) = 1

2 x
2

and P(ρ) = ρ. Our goal is to capture the traveling wave solution given by

ρ(x, t) = ρTW(x − u∗t) = e−(x−ut)2/2

∫

R
e−x2/2 dx

, u(x, t) ≡ u∗ = 0.2.

We prescribe the initial data ρ j (0) = ρTW(x j ) and u j (0) ≡ 0.2 on the interval [−5, 5]. We
run the simulation using N = 200 uniform cells until the final time t = 30. The obtained
results are plotted in Fig. 16. As one can see, the exact density profile is simply advected to
the right with the constant velocity u, and ζ is also kept constant. This is confirmed by the
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Table 7 Example 8: L1- and L∞-errors in u and ζ computed by the hybrid flux globalization based WB CU
scheme at three different times

L1-error in u L∞-error in u L1-error in ζ L∞-error in ζ

t = 10 7.31e−15 6.91e−15 8.75e−15 8.88e−15

t = 20 5.17e−15 3.48e−15 9.52e−15 8.88e−15

t = 30 5.28e−15 7.28e−15 1.04e−14 8.88e−15

Fig. 18 Example 9: The difference ρ − ρeq computed at times t = 0.05 (left), 0.1 (middle), and 0.2 (right)
using the hybrid flux globalization based WB CU scheme with N = 400 and 4000 uniform cells

L1- and L∞-errors reported in Table 7, where one can clearly see that the proposed hybrid
WB CU scheme is capable of accurately capturing the traveling wave within the machine
error. Notice that the computational domain translates in time as explained in Sect. 2.3, and
at the final time t = 30 the domain is [1, 11]. We also point out that the CKPS scheme fails
to maintain constant u and ζ ; see [12, Example 3.5].

We then use the same initial velocity while add a small perturbation of size 10−3 in the
interval [−2.25,−2] to the initial discrete density profile as it was done in Example 4, and
compute the numerical solutions by the hybrid flux globalization based WB CU scheme
and the NWB CU scheme at three different times t = 0.5, 1.5, and 3 using both N = 100
and 1000 uniform cells. The differences between the computed and background densities
are plotted in Fig. 17. As one can clearly see, the hybrid flux globalization based WB CU
scheme is capable of capturing the small perturbation without generating unphysical waves
both on the coarse and fine meshes. At the same time, the NWB CU scheme produces large
unphysical waves when the coarse mesh is used. Even though the magnitude of these waves
significantly reduces when the mesh is refined, the advantage of the proposed hybrid flux
globalization based WB CU scheme over its simpler counterpart seems to be obvious.

3.4 Well-Balanced Property Validation: Moving Steady States

In this section, our goal is to demonstrate that the proposed hybrid flux globalization based
WB CU scheme is capable of exactly preserving the moving steady states (1.5) with m̂ �= 0
and accurately capturing their small perturbation. We would like to point out that in the two
examples considered in this section (Examples 9 and 10), we only test by the proposed hybrid
WBCU scheme and do not compare it with the CKPS scheme, since the latter scheme cannot
preserve moving steady states.
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Table 8 Example 9: L1- and L∞-errors in m and E computed by the hybrid flux globalization based WB CU
scheme at three different times

L1-error in m L∞-error in m L1-error in E L∞-error in E

t = 10 1.55e−13 1.28e−13 6.04e−14 3.20e−14

t = 30 4.30e−13 1.68e−13 6.80e−14 3.20e−14

t = 50 2.60e−13 1.13e−13 8.40e−14 3.91e−14

Fig. 19 Example 10: The profiles of the moving steady state (ρ (left), m (middle), and E (right)) computed
by the hybrid flux globalization based WB CU scheme

Example 9: Simple Moving Steady State

In the ninth example, we take P(ρ) = 2ρ
3
2 , W (x) ≡ 0, and

V (x) =
{

cos2(0.5πx), x ∈ [−1, 1],
0, otherwise.

The initial data are given in terms of m and E :

m(x, 0) ≡ 4, E(x, 0) ≡ 20,

which are prescribed in the computational domain [−2, 2] and satisfy (1.5). Clearly, the
corresponding discrete initial data, mj (0) ≡ 4 and E j (0) ≡ 20, satisfy (2.26). The initial
values ρ j (0) can then be obtained by numerically solving equations (2.10), which, since in
this example γ = 0 and W (x) = ψ(x) ≡ 0, reduce to the following algebraic equations:

20 = 8

(ρ j (0))2
+ 6
√

ρ j (0) + V (x j ), j = j, . . . , jr .

We first set the free boundary conditions and apply the proposed WB CU scheme to
compute the solution at t = 10, 30, and 50 using N = 400 uniform cells and observe that
the errors in both m and E , that is, the norms of the differences {mj (t) −mj (0)}Nj=1 and

{E j (t) − E j (0)}Nj=1 remain very small in this long-time simulations; see Table 8.

We then modify the initial data by adding a small perturbation of size 10−3 to the cell
averages of the steady-state density in the interval [−0.1, 0.1] and compute the numerical
solutions on two uniform meshes with N = 400 and 4000 cells at three times t = 0.05, 0.1,
and 0.2. The differencesρ(x, t)−ρeq(x), whereρeq(x) is the background steady-state density,
are plotted in Fig. 18, where one can clearly see that the proposed hybrid flux globalization
based WB CU scheme accurately captures small perturbations of the studied steady state.
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Fig. 20 Example 10: The difference ρ − ρeq computed at times t = 0.01 (left), 0.05 (middle), and 0.1 (right)
using the hybrid flux globalization based WB CU scheme with N = 100 and 500 uniform cells

Table 9 Example 10: L1- and L∞-errors in m and E computed by the hybrid flux globalization based WB
CU scheme

L1-error in m L∞-error in m L1-error in E L∞-error in E

2.46e−13 2.27e−13 9.06e−13 7.96e−13

Example 10: Convergence to Moving Steady State

First, we would like to point out that when ψ(x) �= 0 and either γ �= 0 or W (x) �= 0, it
is hard to analytically obtain the steady-state solutions as it was done in a simpler case in
Example 9. Therefore, in the final example, we proceed as in Example 4, namely, we first
study the convergence towards a moving steady state.

We take γ = 0.01, P(ρ) = ρ
5
2 , W (x) = xe−10x2 , and

V (x) =
{

cos2(πx), x ∈ [−0.5, 0.5],
0, otherwise.

We consider the following initial data:

ρ(x, 0) = 4 + e−60x2 , m(x, 0) ≡ 0,

which are prescribed in the computational domain [−2, 2], and set the following Dirichlet
boundary conditions:

ρ(0, t) = 4, m(0, t) = 60.

We compute the numerical solution by the hybrid flux globalization based WB CU scheme
using N = 100 uniform cells until the final time t = 150. By this time, the solution converges
to a moving steady state as can be clearly seen in Fig. 19.

We then use the obtained discrete steady-state solutions plotted in Fig. 19 as initial data
and run the simulations until the final time t = 5.We compute the discrete L1- and L∞-errors
in m and E , and report the results in Table 9. As one can see, the errors are very small.

Finally, we add a small perturbation to the density of the obtained discrete steady-state
solution, which we denote by ρeq(x), and consider the following initial data:

ρ(x, 0) = ρeq(x) +
{
10−3, x ∈ [−1.1,−0.9],
0, otherwise,

m(x, 0) ≡ 60,
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subject to the homogeneous Neumann boundary conditions. We compute the numerical
solutions by the hybrid flux globalization based WB CU scheme at times t = 0.01, 0.05, and
0.1 using N = 100 and 500 uniform cells and plot the obtained results in Fig. 20. As one can
observe, both the low- and high-resolution results are oscillation-free and the propagating
perturbation is well captured by the proposed scheme.
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A Solving the Nonlinear Algebraic Equations in (2.17)

In this appendix, we describe how to solve the nonlinear equations in (2.17) using Newton’s
method.

We first rewrite (2.17) as

�(ρ+
j+ 1

2
) :=

(

m+
j+ 1

2

)2

2

(

ρ+
j+ 1

2

)2 + �′
(

ρ+
j+ 1

2

)

+ Hj+ 1
2

+ Q j+ 1
2

− E+
j+ 1

2
= 0, (A.1)

(

m−
j+ 1

2

)2

2

(

ρ−
j+ 1

2

)2 + �′
(

ρ−
j+ 1

2

)

+ Hj+ 1
2

+ Q j+ 1
2

− E−
j+ 1

2
= 0. (A.2)

Given the point values Hj+ 1
2
, Q j+ 1

2
and the one-sided point valuesm±

j+ 1
2
, E±

j+ 1
2
, we numer-

ically solve equations (A.1) and (A.2) for ρ+
j+ 1

2
and ρ−

j+ 1
2
, respectively, following the lines

of [34]. Here, we describe how to solve (A.1) only and the solution of (A.2) can be obtained
in a similar way.
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If m+
j+ 1

2
= 0, then (A.1) admits a unique positive solution

ρ+
j+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

exp

⎛

⎝
E+

j+ 1
2

− Hj+ 1
2

− Q j+ 1
2

σ

⎞

⎠ if ν = 1,

⎛

⎝
(ν − 1)(E+

j+ 1
2

− Hj+ 1
2

− Q j+ 1
2
)

σν

⎞

⎠

1
ν−1

if ν > 1.

Otherwise, the solution of (A.1) may not be unique. A physically relevant solution will then
be chosen using the Mach number, which is defined as

M+
j+ 1

2
:= |q j+1|
√

σνρν+1
j+1

(when we solve (A.2), the Mach number will be given byM−
j+ 1

2
:= |qj |/

√
σνρν+1

j ). It is easy

to check that if M+
j+ 1

2
= 1, which corresponds to the sonic case, then the function �(ρ)

vanishes precisely at the point of its local minimum ρ+
0 , namely, at

ρ+
j+ 1

2
= ρ+

0 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∣
∣
∣
∣m

+
j+ 1

2

∣
∣
∣
∣

√
σ

if ν = 1,

⎛

⎝
m+

j+ 1
2√

σν

⎞

⎠

2
ν+1

if ν > 1.

If M+
j+ 1

2
> 1 (M+

j+ 1
2

< 1), that is, in the supersonic (subsonic) case, we use Newton’s

method to obtain the numerical solutions of (A.1). To this end, one needs to have a proper
initial guess ρ∗. We look for ρ∗ in the domain where �(ρ) is convex, that is, in

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ ρ < ρ+
1 :=

∣
∣
∣
∣m

+
j+ 1

2

∣
∣
∣
∣

√
3σ

if ν = 1,

0 ≤ ρ < ρ+
2 :=

⎛

⎝
m+

j+ 1
2√

3σν(2 − ν)

⎞

⎠

2
ν+1

if 1 < ν < 2,

ρ ≥ 0 if ν ≥ 2.

Moreover, if M+
j+ 1

2
> 1, then we need to take ρ∗ < ρ+

0 . Thus, one can take

ρ∗ =
{

ρ+
1 if ν = 1,

ρ+
2 if 1 < ν < 2,

and if ν ≥ 2, we must ensure that �(ρ∗) > 0. IfM+
j+ 1

2
< 1, then we need to take ρ∗ > ρ+

0

and to ensure that �(ρ∗) > 0.
Finally, we provide the reader with the detailed algorithm for finding a proper initial guess

ρ∗.
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Algorithm A.1 (Selecting ρ∗)
Choose δ > 0, λ1 ∈ (0, 1) and λ2 > 1.

• If M+
j+ 1

2
> 1 (supersonic case), then:

1. If ν = 1, take ρ∗ = ρ+
1 ;

2. If 1 < ν < 2, take ρ∗ = ρ+
2 ;

3. If ν ≥ 2, then:
Step I. Set ρ∗ := min(ρ+

0 , ρ j+1);
Step II. Compute �(ρ∗);
Step III. If �(ρ∗) < δ, then set ρ∗ = λ1ρ

∗ and go back to Step II.

• If M+
j+ 1

2
< 1 (subsonic case), then:

Step I. Set ρ∗ := max(ρ+
0 , ρ j+1);

Step II. Compute �(ρ∗);
Step III. If �(ρ∗) < δ, set ρ∗ = λ2ρ

∗ and go back to Step II.

Remark A.1 In all of our numerical experiments, we have used δ = 10−4, λ1 = 0.9 and
λ2 = 1.1.

Remark A.2 When Eq. (A.2) is solved,ρ j+1 in Step I of Algorithm 1 should be replaced with
ρ j .
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