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Abstract
A polar coordinate transformation is considered, which transforms the complex geometries
into a unit disc. Some basic properties of the polar coordinate transformation are given. As
applications, we consider the elliptic equation in two-dimensional complex geometries. The
existence and uniqueness of the weak solution are proved, the Fourier–Legendre spectral-
Galerkin scheme is constructed and the optimal convergence of numerical solutions under
H1-norm is analyzed. The proposed method is very effective and easy to implement for
problems in 2D complex geometries. Numerical results are presented to demonstrate the
high accuracy of our spectral-Galerkin method.
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Fourier–Legendre spectral-Galerkin methods · Convergence · Numerical results
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1 Introduction

Spectral methods employ global basis functions to approximate PDEs and have become
increasingly popular in scientific computing and engineering applications, see, e.g., [2, 4,
5, 7, 10, 16, 19, 21, 23]. As long as the solutions are analytic, spectral methods possess
exponential convergence.
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However, the spectral methods are only applicable to regular domains, such as rectangles
or discs in the 2D case, which greatly limits their applications. In order to expand the applica-
tions of spectral methods to more complex geometries, some domain decomposition spectral
methods and spectral element methods have been developed, see, e.g., [12, 13, 17, 20, 22].
The basic idea is to partition the irregular region into smaller regular subdomains, and to
achieve global spectral approximations by constructing local basis functions on subdomains,
interfaces and nodes. Although these methods can effectively deal with some problems of
irregular regions and can obtain high order accuracy, they greatly increase the complexity of
programming and the computational costs.

It is still a great challenge to construct direct spectral methods for solving problems in
complex geometries. So far, there are basically two direct spectral methods: (i) embed the
complex geometry into a larger regular domain,which belongs to the class of fictitious domain
methods [3]; and (ii) map the complex geometry into a regular domain through an explicit
and smooth mapping [15] or through the Gordon–Hall mapping [6].

There have been some attempts in using the fictitious domain approach to solve PDEs in
complex geometries. Lui [14] proposed the spectral method with domain embedding to solve
PDEs in complex geometry. The main idea is to embed the irregular domain into a regular
one so that classical spectral methods can be applied. Gu and Shen [8, 9] developed efficient
and well-posed spectral methods for elliptic PDEs in complex geometries using the fictitious
domain approach, and provided a rigorous error analysis for the Poisson equation.

As for the mapping methods, Orszag [15] proposed a Fourier–Chebyshev spectral
approach for solving the heat equation in the annular region by using an explicit map-
ping. Heinrichs [11] tested the diameter Fourier–Chebyshev spectral collocation approach
for problems in complex geometries and focused on the clustering of collocation nodes and
the improvement of the condition number. It should be pointed out that the authors in [11,
15] did not describe the algorithms in detail, nor did they prove the existence and uniqueness
of the weak solutions and the convergence of the numerical solutions.

The aim of this paper is to develop a Fourier–Legendre spectralmethod for elliptic PDEs in
two-dimentional complex geometries using themappingmethod. To do this, we first consider
a polar coordinate transformation to transform the complex geometries into a unit disc. Then
we present some basic properties of the polar coordinate transformation. As applications, we
focus on the elliptic equation in two-dimensional complex geometries and construct a proper
variational formulation. The existence and uniqueness of the weak solution are proved. We
also propose a Fourier–Legendre spectral-Galerkin method with proper test and trial spaces
and analyze the optimal convergence of numerical solutions under H1-norm. The proposed
method is very effective and easy to implement for problems in complex geometries whether
the boundary curves can be represented directly or not. Ample numerical results demonstrate
the high accuracy of our spectral-Galerkin method.

The remainder of this paper is organized as follows. In Sect. 2, we recall some basic
results on the shifted Legendre polynomials. In Sect. 3, we first introduce the polar coordi-
nate transformation and present its basic properties. Then we consider the elliptic equation in
two-dimensional complex geometries and construct a proper variational formulation. The
existence and uniqueness of the weak solution are proved. We also propose a Fourier–
Legendre spectral-Galerkin method and describe its numerical implementation. In Sect. 4,
we analyze the optimal convergence of numerical solutions under H1-norm. Section5 is
for some numerical results of the elliptic equations defined in squircle-bounded domains,
butterfly-bounded domains, cardioid-bounded domains, star-shaped domains and general
domains, respectively. The finial section is for some concluding remarks.
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2 Preliminaries

For integer r ≥ 0, we define the weighted Sobolev space Hr
χ (I ) as usual, with the inner

product (u, v)r ,χ,I , the semi-norm |v|r ,χ,I and the norm ‖v‖r ,χ,I , respectively, where I is
a certain interval. In cases where no confusion would arise, χ (if χ ≡ 1), r (if r = 0) and I

may be dropped from the notations. For simplicity, we denote v(k) = ∂kx v = dkv
dxk

. Moreover,
let N be any positive integer and PN (I ) stands for the set of all algebraic polynomials of
degree at most N .

We next introduce the shifted Legendre polynomials. For ξ ∈ (−1, 1), let Pn(ξ) be the
Legendre polynomial of degree n,which satisfies the three-term recurrence relation (cf. [19]):

(n + 1)Pn+1(ξ) = (2n + 1)ξ Pn(ξ) − nPn−1(ξ), n ≥ 1, (2.1)

with P0(ξ) = 1 and P1(ξ) = ξ.

By the coordinate transformation ξ = 2r−1,weconsider the shiftedLegendre polynomial
Ln(r) := Pn(2r − 1) of degree n, which satisfies the three-term recurrence relation:

(n + 1)Ln+1(r) = (2n + 1)(2r − 1)Ln(r) − nLn−1(r),

n ≥ 1, r ∈ I := (0, 1), (2.2)

with L0(r) = 1 and L1(r) = 2r − 1. Moreover, the shifted Legendre polynomials Ln(r)
also satisfy the following relations:

2(2n + 1)Ln(r) = L ′
n+1(r) − L ′

n−1(r), n ≥ 1,

Ln(0) = (−1)n, Ln(1) = 1,

L ′
n(r) =

n−1∑

k=0
k+n odd

2(2k + 1)Lk(r).
(2.3)

The shifted Legendre polynomials Ln(r) possess the following orthogonality:
∫ 1

0
Ln(r)Lm(r)dr = 1

2n + 1
δmn, m, n ≥ 0, (2.4)

where δmn is the Kronecker symbol.

3 Fourier–Legendre Spectral-Galerkin Method in Complex Geometries

In this section, we shall propose a Fourier–Legendre spectral-Galerkin method for problems
in two-dimensional complex geometries.

3.1 A Polar Coordinate Transformation

In this subsection, we consider a polar coordinate transformation, which will be used to deal
with PDEs in two-dimensional complex geometries.

For a simply-connected domain� of complex geometry bounded by a simple closed curve
�, we define the polar coordinate transformation in the following form:

{
x = r R(θ) cos θ, (r , θ) ∈ 	 := (0, 1) × (0, 2π),

y = r R(θ) sin θ, (r , θ) ∈ 	,
(3.1)
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Fig. 1 The geometric meaning of
the function R(θ)

where R(θ) > 0 is only related to the angle θ, and represents the distance from the origin
to the curve � (see Fig. 1). The coordinate transformation (3.1) converts the domain � of
complex geometry into the unit disc 	. Particularly, the case R(θ) ≡ 1 is simplified to the
classical polar transformation. Clearly, by the definition of R(θ), we have

R(0) = R(2π) and R(θ) ∈ C0[0, 2π]. (3.2)

Moreover, we always assume

∂θ R(0) = ∂θ R(2π) and ∂kθ R(θ) ∈ C0[0, 2π], k = 1, 2. (3.3)

Next, differentiating (3.1) with respect to x and y, respectively, we obtain

∂xθ = − y

r2R2(θ)
, ∂xr = x

r R2(θ)
+ y

r R3(θ)
∂θ R(θ),

∂yθ = x

r2R2(θ)
, ∂yr = y

r R2(θ)
− x

r R3(θ)
∂θ R(θ).

(3.4)

Accordingly, we have

∂xU (x, y) =
(

x

r R2(θ)
+ y

r R3(θ)
∂θ R(θ)

)
∂r u(r , θ) − y

r2R2(θ)
∂θu(r , θ)

=
(
cos θ

R(θ)
+ sin θ

R2(θ)
∂θ R(θ)

)
∂r u(r , θ) − sin θ

r R(θ)
∂θu(r , θ),

∂yU (x, y) =
(

y

r R2(θ)
− x

r R3(θ)
∂θ R(θ)

)
∂r u(r , θ) + x

r2R2(θ)
∂θu(r , θ)

=
(
sin θ

R(θ)
− cos θ

R2(θ)
∂θ R(θ)

)
∂r u(r , θ) + cos θ

r R(θ)
∂θu(r , θ),

(3.5)

where u(r , θ) := U (r R(θ) cos θ, r R(θ) sin θ).
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We are now ready to change to polar coordinates in the Laplacian. Differentiating (3.4)
again with respect to x and y, respectively, we get

∂2x θ = 2xy

r4R4(θ)
, ∂2x r = 1

r R2(θ)
− x2

r3R4(θ)
− y2

r3R5(θ)
∂2θ R(θ) + 2y2

r3R6(θ)

(
∂θ R(θ)

)2
,

∂2yθ = − 2xy

r4R4(θ)
, ∂2y r = 1

r R2(θ)
− y2

r3R4(θ)
− x2

r3R5(θ)
∂2θ R(θ) + 2x2

r3R6(θ)

(
∂θ R(θ)

)2
.

(3.6)
Applying the product rule for differentiation and the chain rule in two dimensions, we have

∂2xU (x, y) + ∂2yU (x, y) = ∂2r u(r , θ)
(
(∂xr)

2 + (∂yr)
2) + ∂2θ u(r , θ)

(
(∂xθ)2 + (∂yθ)2

)

+ 2∂2rθu(r , θ)
(
∂xθ∂xr + ∂yθ∂yr

) + ∂r u(r , θ)
(
∂2x r + ∂2y r

)

+ ∂θu(r , θ)
(
∂2x θ + ∂2yθ

)
.

(3.7)
By (3.4), (3.6) and (3.7), a direct computation leads to the following results,

∂2xU (x, y) + ∂2yU (x, y) = 1

r R2(θ)

{(
1 + (∂θ R(θ))2

R2(θ)

) ∂

∂r

(
r∂r u(r , θ)

)

− ∂

∂r

(∂θ R(θ)

R(θ)
∂θu(r , θ)

) − ∂

∂θ

(∂θ R(θ)

R(θ)
∂r u(r , θ)

)

+1

r
∂2θ u(r , θ)

}
=: �pu(r , θ).

(3.8)

Furthermore, differentiating (3.1) with respect to r and θ , respectively, we know the Jacobian
determinant of the polar transformation is

|J (r , θ)| = r R2(θ). (3.9)

Therefore ∫∫

�

U (x, y)dxdy =
∫∫

	

u(r , θ)r R2(θ)drdθ. (3.10)

3.2 Fourier–Legendre Spectral-Galerkin Method

In order to more easily illustrate the Fourier–Legendre spectral-Galerkin method based on
the polar coordinate transformation for problems in two-dimensional complex geometries,
we consider the following elliptic equation with homogeneous boundary condition on �:

{
− �U (x, y) + μU (x, y) = F(x, y), μ ≥ 0, (x, y) ∈ �,

U (x, y) = 0, (x, y) ∈ �.
(3.11)

Applying the polar coordinate transformation (3.1)–(3.11), and denoting

u(r , θ) = U (r R(θ) cos θ, r R(θ) sin θ), f (r , θ) = F(r R(θ) cos θ, r R(θ) sin θ),

we obtain ⎧
⎪⎨

⎪⎩

− �pu(r , θ) + μu(r , θ) = f (r , θ), (r , θ) ∈ 	,

u(1, θ) = 0, θ ∈ [0, 2π),

u(r , θ + 2π) = u(r , θ), θ ∈ [0, 2π), r ∈ [0, 1),
(3.12)

where u(r , θ) satisfies the essential pole condition ∂θu(0, θ) = 0.
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By multiplying the first equation of (3.12) by r R2(θ)v and then integrating the result
over 	, we derive a weak formulation of (3.12). It is to find u ∈ 0H1

p(	) such that for any
v ∈ 0H1

p(	),

a(u, v) :=
∫∫

	

r

(
1 + (∂θ R(θ))2

R2(θ)

)
∂r u(r , θ)∂rv(r , θ)drdθ +

∫∫

	

1

r
∂θu(r , θ)∂θ v(r , θ)drdθ

−
∫∫

	

∂θ R(θ)

R(θ)
∂r u(r , θ)∂θ v(r , θ)drdθ −

∫∫

	

∂θ R(θ)

R(θ)
∂θu(r , θ)∂rv(r , θ)drdθ

+ μ

∫∫

	

r R2(θ)u(r , θ)v(r , θ)drdθ =
∫∫

	

r R2(θ) f (r , θ)v(r , θ)drdθ,

(3.13)
and

0H
1
p(	) = {v | v is measurable, v(r , θ + 2π) = v(r , θ), v(1, θ) = 0,

∂θ v(0, θ) = 0 and ‖v‖1,p,	 < ∞}
equipped with the semi-norm | · |1,p,	 and norm ‖ · ‖1,p,	 as follows:

|v|1,p,	 = |V |H1(�) =
( ∫∫

	

r
(
1 + (∂θ R(θ))2

R2(θ)

)(
∂rv(r , θ)

)2drdθ +
∫∫

	

1

r

(
∂θv(r , θ)

)2drdθ

− 2
∫∫

	

∂θ R(θ)

R(θ)
∂rv(r , θ)∂θ v(r , θ)drdθ

) 1
2

,

‖v‖1,p,	 = ‖V ‖H1(�) =
(

|v|21,p,	 +
∫∫

	

r R2(θ)(v(r , θ))2drdθ

) 1
2

.

Hereafter, v(r , θ) = V (r R(θ) cos θ, r R(θ) sin θ).

Next, let

b(U , V ) :=
∫∫

�

∇U (x, y) · ∇V (x, y)dxdy + μ

∫∫

�

U (x, y)V (x, y)dxdy. (3.14)

Clearly, we have a(u, v) = b(U , V ). Since

b(U , V ) =
∫∫

�

∇U · ∇V dxdy +μ

∫∫

�

UV dxdy ≤ (1+μ)‖U‖H1(�)‖V ‖H1(�), (3.15)

and by the Poincaré inequality,

b(U ,U ) =
∫∫

�

|∇U |2dxdy + μ

∫∫

�

U 2dxdy ≥ C‖U‖2H1(�)
, (3.16)

where C > 0 depends only on �, we deduce

a(u, v) ≤ (1 + μ)‖u‖1,p,	‖v‖1,p,	, a(u, u) ≥ C‖u‖21,p,	. (3.17)

This implies that a(·, ·) is continuous and coercive in 0H1
p(	). Hence, by the Lax-Milgram

lemma, (3.13) admits a unique solution as long as f ∈ (0H1
p(	))′.

Remark 3.1 For problem (3.12) with nonhomogeneous boundary condition u(1, θ) = h(θ),

we may easily make the variable transformation w(r , θ) = u(r , θ) − rh(θ) to transform the
original problem to a problem with homogeneous boundary condition.
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We next propose a Fourier–Legendre spectral-Galerkin method for (3.13). To do this, let

P0
N (I ) = {v ∈ PN : v(0) = v(1) = 0} , 0PN (I ) = {v ∈ PN : v(1) = 0} . (3.18)

Obviously, by choosing ϕk(r) = Lk(r) − Lk+2(r) and ψk(r) = Lk(r) − Lk+1(r), we have
from (2.3) that

P0
N (I ) = span{ϕk(r), 0 ≤ k ≤ N − 2}, 0PN (I ) = span{ψk(r), 0 ≤ k ≤ N − 1}.

(3.19)
Denote

0XM,N (	) = span
{{

ψk(r)
}
0≤k≤N−1,

{
cos(mθ)ϕk(r), sin(mθ)ϕk(r)

}
1≤m≤M, 0≤k≤N−2

}
.

(3.20)
Then, for any u(r , θ) ∈ 0XM,N (	), u(1, θ) = 0 and the pole condition ∂θu(0, θ) = 0 is
satisfied. We expand the numerical solution uMN (r , θ) as

uMN (r , θ) =
N−2∑

k=0

M∑

m=1

(
u1m,k sin(mθ)ϕk(r) + u2m,k cos(mθ)ϕk(r)

)
+

N−1∑

k=0

u3kψk(r). (3.21)

The Fourier–Legendre spectral-Galerkin approximation for (3.13) is to find uMN (r , θ)

∈ 0XM,N (	) such that for any v ∈ 0XM,N (	),

a(uMN , v) =
∫∫

	

r
(
1 + (∂θ R(θ))2

R2(θ)

)
∂r uMN (r , θ)∂rv(r , θ)drdθ

+
∫∫

	

1

r
∂θuMN (r , θ)∂θ v(r , θ)drdθ

−
∫∫

	

∂θ R(θ)

R(θ)
∂r uMN (r , θ)∂θv(r , θ)drdθ

−
∫∫

	

∂θ R(θ)

R(θ)
∂θuMN (r , θ)∂rv(r , θ)drdθ

+ μ

∫∫

	

r R2(θ)uMN (r , θ)v(r , θ)drdθ =
∫∫

	

r R2(θ) f (r , θ)v(r , θ)drdθ.

(3.22)

3.3 Numerical Implementation

We describe in this subsection how our method can be efficiently implemented. To this end,
we first consider the r -direction. Let

aq,m,n
k, j =

∫ 1

0
rqϕ(m)

j (r)ϕ(n)
k (r)dr , bq,m,n

k, j =
∫ 1

0
rqψ(m)

j (r)ϕ(n)
k (r)dr ,

cq,m,n
k, j =

∫ 1

0
rqψ(m)

j (r)ψ(n)
k (r)dr , q = −1, 0, 1, m, n = 0, 1,

and

Aq,m,n = (
aq,m,n
k, j

)
0≤k, j≤N−2, Bq,m,n = (

bq,m,n
k, j

)
0≤k≤N−2,0≤ j≤N−1,

Cq,m,n = (
cq,m,n
k, j

)
0≤k, j≤N−1.

Clearly, the matrices Aq,m,n, Bq,m,n and Cq,m,n can be computed precisely according to the
recurrence relations (2.2)–(2.4).
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We next describe the implementation of the θ -direction. Let 1 ≤ k, j ≤ M and denote
the matrices D1 = (

d1k, j
)
, D2 = (

d2k, j
)
, D3 = (

d3k, j
)
, D4 = (

d4j
)
and D5 = (

d5j
)
with the

elements

d1k, j =
∫ 2π

0

(
1 + (∂θ R(θ))2

R2(θ)

)
sin( jθ) sin(kθ)dθ, d2k, j =

∫ 2π

0

(
1 + (∂θ R(θ))2

R2(θ)

)
cos( jθ) sin(kθ)dθ,

d3k, j =
∫ 2π

0

(
1 + (∂θ R(θ))2

R2(θ)

)
cos( jθ) cos(kθ)dθ, d4j =

∫ 2π

0

(
1 + (∂θ R(θ))2

R2(θ)

)
sin( jθ)dθ,

d5j =
∫ 2π

0

(
1 + (∂θ R(θ))2

R2(θ)

)
cos( jθ)dθ, d =

∫ 2π

0

(
1 + (∂θ R(θ))2

R2(θ)

)
dθ.

Moreover, set the matrix E = (
ek, j

)
with the elements ek, j = k2πδk j . Similarly, denote the

following matrices and their corresponding elements

G1 = (
g1k, j

)
, G2 = (

g2k, j
)
, G3 = (

g3k, j
)
, G4 = (

g4k, j
)
, G5 = (

g5j
)
, G6 = (

g6j
)
,

S1 = (
s1k, j

)
, S2 = (

s2k, j
)
, S3 = (

s3k, j
)
, S4 = (

s4j
)
, S5 = (

s5j
)
,

and

g1k, j =
∫ 2π

0

∂θ R(θ)

R(θ)
sin( jθ) cos(kθ)kdθ, g2k, j =

∫ 2π

0

∂θ R(θ)

R(θ)
cos( jθ) cos(kθ)kdθ,

g3k, j = −
∫ 2π

0

∂θ R(θ)

R(θ)
sin( jθ) sin(kθ)kdθ, g4k, j = −

∫ 2π

0

∂θ R(θ)

R(θ)
cos( jθ) sin(kθ)kdθ,

g5j =
∫ 2π

0

∂θ R(θ)

R(θ)
j cos( jθ)dθ, g6j = −

∫ 2π

0

∂θ R(θ)

R(θ)
j sin( jθ)dθ,

s1k, j =
∫ 2π

0
R2(θ) sin( jθ) sin(kθ)dθ, s2k, j =

∫ 2π

0
R2(θ) cos( jθ) sin(kθ)dθ,

s3k, j =
∫ 2π

0
R2(θ) cos( jθ) cos(kθ)dθ, s4j =

∫ 2π

0
R2(θ) sin( jθ)dθ,

s5j =
∫ 2π

0
R2(θ) cos( jθ)dθ, s =

∫ 2π

0
R2(θ)dθ.

The matrices mentioned above can be efficiently approximated by some suitable quadrature
formulas. For deriving a compact matrix form of (3.22), we introduce the matrices

W1 = A1,1,1 ⊗ D1 + A−1,0,0 ⊗ E − A0,1,0 ⊗ G1 − (
A0,1,0 ⊗ G1)T + μA1,0,0 ⊗ S1,

W3 = A1,1,1 ⊗ D3 + A−1,0,0 ⊗ E − A0,1,0 ⊗ G4 − (
A0,1,0 ⊗ G4)T + μA1,0,0 ⊗ S3,

W2 = A1,1,1 ⊗ D2 − A0,1,0 ⊗ G2 − (
A0,1,0 ⊗ G3)T + μA1,0,0 ⊗ S2,

W4 = B1,1,1 ⊗ D4 − B0,1,0 ⊗ G5 + μB1,0,0 ⊗ S4,

W5 = B1,1,1 ⊗ D5 − B0,1,0 ⊗ G6 + μB1,0,0 ⊗ S5,

W6 = dC1,1,1 + μsC1,0,0,

W = [
W1 W2 W4; WT

2 W3 W5; WT
4 WT

5 W6
]
,
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where ⊗ represents the Kronecker product, i.e., A ⊗ B = (ai j B). We also denote

f 1m,k =
∫∫

	

r R2(θ) f (r , θ) sin(mθ)ϕk(r)drdθ,

f1 = (
f 11,0, · · · , f 1M,0, · · · , f 11,N−2, · · · , f 1M,N−2

)T
,

f 2m,k =
∫∫

	

r R2(θ) f (r , θ) cos(mθ)ϕk(r)drdθ,

f2 = (
f 21,0, · · · , f 2M,0, · · · , f 21,N−2, · · · , f 2M,N−2

)T
,

f 3k =
∫∫

	

r R2(θ) f (r , θ)ψk(r)drdθ, f3 = (
f 30 , · · · , f 3N−1

)T
,

u1 = (
u11,0, · · · , u1M,0, · · · , u11,N−2, · · · , u1M,N−2

)T
,

u2 = (
u20,0, · · · , u2M,0, · · · , u20,N−2, · · · , u2M,N−2

)T
,

u3 = (
u30, · · · , u3N−1

)T
, f = (

f1; f2; f3
)
, u = (

u1;u2;u3
)
.

Then, the compact matrix form of (3.22) is as follows,

Wu = f . (3.23)

It should be pointed out that the matrix C1,1,1 is diagonal, the matrices A1,1,1, A−1,0,0,
A0,1,0, B1,1,1 and B0,1,0 are tridiagonal, the matrix C1,0,0 is pentadiagonal, and the matrices
A1,0,0 and B1,0,0 are heptadiagonal. Moreover, the matrix W in (3.23) is symmetrical. The
system (3.23) can be solved in the sameway as the usual spectral-Galerkin methods for PDEs
with variable coefficients in regular geometries (cf. [18]).

4 Convergence Analysis

In this section, we shall analyze the numerical error of scheme (3.22).
We first consider the Legendre orthogonal approximation. Denote by ωα,β := ωα,β(r) =

(1 − r)αrβ the Jacobi weight function of index (α, β), which is not necessarily in L1(I ).
Define the L2-orthogonal projection π

0,0
N : L2(I ) → PN (I ) such that

(π
0,0
N u − u, v)I = 0, v ∈ PN (I ).

Further, for k ≥ 1, we define recursively the Hk-orthogonal projections π
−k,−k
N : Hk(I ) →

PN (I ) such that

π
−k,−k
N u(r) =

∫ r

0
π
1−k,1−k
N−1 u′(t)dt + u(0).

Next, for any nonnegative integers s ≥ k ≥ 0, define the Sobolev space as follows:

Hs,k(I ) = {u | u ∈ Hk(I ) and
s∑

l=0

‖∂ lr u‖ωmax(l−k,0),max(l−k,0),I < ∞}.

We have the following error estimate on π
−k,−k
N u.
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Lemma 4.1 (cf. [1]) π
−k,−k
N u is a Legendre tau approximation of u such that

∂ lrπ
−k,−k
N u(0) = ∂ lr u(0), ∂ lrπ

−k,−k
N u(1) = ∂ lr u(1), 0 ≤ l ≤ k − 1,

(π
−k,−k
N u − u, v) = 0, v ∈ PN−2k(I ).

Further suppose u ∈ Hs,k(I ) with s ≥ k. Then for N ≥ k,

‖∂ lr (π−k,−k
N u − u)‖ωl−k,l−k ,I ≤ cNl−s‖∂sr u‖ωs−k,s−k ,I , 0 ≤ l ≤ k ≤ s.

We next consider the Fourier orthogonal approximation. Let � = (0, 2π) and Hm(�) be
the Sobolev space with norm ‖ · ‖m,� and semi-norm | · |m,�. For any non-negative integer
m, Hm

p (�) denotes the subspace of Hm(�), consisting of all functions whose derivatives of
order up to m − 1 have the period 2π. In particular, L2(�) = H0

p(�).

Let M be any positive integer, and ṼM (�) = span{ eilθ | |l| ≤ M}. We denote by VM (�)

the subset of ṼM (�) consisting of all real-valued functions. The orthogonal projection PM :
L2(�) → VM (�) is defined by

∫

�

(PMv(θ) − v(θ))φ(θ)dθ = 0, ∀φ ∈ VM (�).

It was shown in [4] that for any v ∈ Hm
p (�), integer m ≥ 0 and μ ≤ m,

‖PMv − v‖μ,� ≤ cMμ−m |v|m,�. (4.1)

We now turn to the mixed Fourier–Legendre orthogonal approximation. We introduce the
space

0 H̃
1
p(	) = { v | v(r , θ + 2π) = v(r , θ), v(1, θ) = 0, ∂θ v(0, θ) = 0 and ‖v‖H̃1(	) < ∞},

equipped with the following semi-norm and norm,

|v|H̃1(	) =
(∫∫

	

(∂rv)2drdθ +
∫∫

	

1

r
(∂θ v)2drdθ

) 1
2

, ‖v‖H̃1(	) =
(∫∫

	

v2drdθ + |v|2
H̃1(	)

) 1
2

.

Since | ∂θ R(θ)
R(θ)

| is bounded above, we deduce readily that 0 H̃1
p(	) is the subspace of 0H1

p(	).

Next, we define the orthogonal projection 0P1
M,N : 0 H̃

1
p(	) → 0XM,N (	) by

∫∫

	

∂r (0P
1
M,Nu(r , θ) − u(r , θ))∂rφ(r , θ)drdθ

+
∫∫

	

1

r
∂θ (0P

1
M,Nu(r , θ) − u(r , θ))∂θφ(r , θ)drdθ

+
∫∫

	

(0P
1
M,Nu(r , θ) − u(r , θ))φ(r , θ)drdθ = 0, ∀φ ∈ 0XM,N (	). (4.2)

Theorem 4.1 For any v ∈ 0 H̃1
p(	) ∩ Hm,1(I , L2(�)) ∩ L2(I , Hs

p(�)), integers m ≥ 1 and
s ≥ 1,

‖v − 0P1
M,Nv‖2

H̃1(	)
≤ cM2−2s

∫∫

	

(
(∂r∂

s−1
θ v(r , θ))2 + 1

r
(∂sθ v(r , θ))2

)
drdθ

+cN 2−2m
(

|v|2
Hm

ωm−1,m−1 (I ,L2(�))
+ |∂θv|2

Hm−1
ωm−2,m−2 (I ,L2(�))

)
,

(4.3)
provided that the norms mentioned above are bounded.

123



Journal of Scientific Computing (2023) 95 :89 Page 11 of 26 89

Proof By the projection theorem,

‖v − 0P
1
M,Nv‖H̃1(	) ≤ c‖v − φ‖H̃1(	), ∀φ ∈ 0XM,N (	).

Take φ = π
−1,−1
N PMv. Clearly, by Lemma 4.1 we know φ ∈ 0XM,N (	). With the aid of

(4.1) and Lemma 4.1, we deduce that
∫∫

	

(
∂r (v − π

−1,−1
N PMv)

)2drdθ

≤ 2
∫∫

	

(∂rv − PM∂rv)2drdθ + 2
∫∫

	

(
∂r (PMv − π

−1,−1
N PMv)

)2drdθ

≤ cM2−2s
∫∫

	

(
∂r∂

s−1
θ v

)2drdθ + cN 2−2m |PMv|2Hm
ωm−1,m−1 (I ,L2(�))

≤ cM2−2s
∫∫

	

(
∂r∂

s−1
θ v

)2drdθ + cN 2−2m |v|2Hm
ωm−1,m−1 (I ,L2(�))

.

(4.4)

Next, due to ∂θ PMv = PM∂θv, we use (4.1) and Lemma 4.1 again to obtain that
∫∫

	

1

r

(
∂θ (v − π

−1,−1
N PMv)

)2drdθ

≤ 2
∫∫

	

1

r

(
PM∂θv − ∂θv

)2drdθ + 2
∫∫

	

1

r

(
∂θ (π

−1,−1
N PMv − PMv)

)2drdθ

≤ cM2−2s
∫∫

	

1

r

(
∂sθ v

)2drdθ + cN 2−2m |PM∂θv|2
Hm−1

ωm−2,m−2 (I ,L2(�))

≤ cM2−2s
∫∫

	

1

r

(
∂sθ v

)2drdθ + cN 2−2m |∂θv|2
Hm−1

ωm−2,m−2 (I ,L2(�))
.

(4.5)

In the same manner, we verify that
∫∫

	

(v − π
−1,−1
N PMv)2drdθ

≤ 2
∫∫

	

(v − PMv)2drdθ + 2
∫∫

	

(PMv − π
−1,−1
N PMv)2drdθ

≤ cM−2s
∫∫

	

(
∂sθ v

)2drdθ + cN−2m |PMv|2Hm
ωm−1,m−1 (I ,L2(�))

≤ cM−2s
∫∫

	

(
∂sθ v

)2drdθ + cN−2m |v|2Hm
ωm−1,m−1 (I ,L2(�))

.

(4.6)

Finally, the desired result comes immediately from a combination of (4.4)–(4.6). ��
Let u and uMN be the solutions of the problem (3.13) and the scheme (3.22), U and

UMN be the corresponding solutions of u and uMN in the xy-plane. We have the following
convergence results.

Theorem 4.2 If R(θ) satisfies the conditions (3.2) and (3.3), then for any u ∈ 0 H̃1
p(	) ∩

Hm,1(I , L2(�)) ∩ L2(I , Hs
p(�)) with integers m ≥ 1 and s ≥ 1, we have

‖U −UMN‖2H1(�)
= ‖u − uMN‖21,p,	
≤ cM2−2s

∫∫

	

(
(∂r∂

s−1
θ u(r , θ))2 + 1

r
(∂sθu(r , θ))2

)
drdθ

+ cN 2−2m(|u|2Hm
ωm−1,m−1 (I ,L2(�))

+ |∂θu|2
Hm−1

ωm−2,m−2 (I ,L2(�))

)
,

(4.7)

provided that the norms mentioned above are bounded.
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Proof By (3.13) and (3.22), we have

a(u, v) =
∫∫

	

r R2(θ) f (r , θ)v(r , θ)drdθ, ∀v ∈ 0H
1
p(	),

a(uMN , v) =
∫∫

	

r R2(θ) f (r , θ)v(r , θ)drdθ, ∀v ∈ 0XM,N (	).

(4.8)

Hence
a(u − uMN , v) = 0, ∀v ∈ 0XM,N (	). (4.9)

Next, according to (3.17),

C‖u − uMN‖21,p,	 ≤ a(u − uMN , u − uMN ) = a(u − uMN , u − 0P
1
M,Nu)

≤ (1 + μ)‖u − uMN‖1,p,	‖u − 0P
1
M,Nu‖1,p,	.

(4.10)

This means ‖u − uMN‖1,p,	 ≤ c‖u − 0P1
M,Nu‖1,p,	. Moreover, since | ∂θ R(θ)

R(θ)
| is bounded

above, we use the Cauchy–Schwarz inequality to get

∫∫

	

(
1 + (∂θ R(θ))2

R2(θ)

) (
∂rv(r , θ)

)2
rdrdθ ≤ c

∫∫

	

(
∂rv(r , θ)

)2drdθ,

and

∣∣∣
∫∫

	

∂θ R(θ)

R(θ)
∂θu(r , θ)∂rv(r , θ)drdθ

∣∣∣ ≤ c
∫∫

	

1

r

(
∂θu(r , θ)

)2drdθ + c
∫∫

	

(
∂rv(r , θ)

)2drdθ.

The above two inequalities imply ‖v‖21,p,	 ≤ c‖v‖2
H̃1(	)

, where c is a positive constant

depending on | ∂θ R(θ)
R(θ)

|. Therefore, by Theorem 4.1 we obtain

‖U −UMN‖2H1(�)
= ‖u − uMN‖21,p,	 ≤ c‖u − 0P

1
M,Nu‖21,p,	 ≤ c‖u − 0P

1
M,Nu‖2

H̃1(	)

≤ cM2−2s
∫∫

	

(
(∂r∂

s−1
θ u(r , θ))2 + 1

r
(∂sθu(r , θ))2

)
drdθ

+ cN 2−2m
(

|u|2Hm
ωm−1,m−1 (I ,L2(�))

+ |∂θu|2
Hm−1

ωm−2,m−2 (I ,L2(�))

)
.

(4.11)

This ends the proof. ��

5 Numerical Results

In this section, we present some numerical results for problem (3.11) defined in a convex
or concave domain. We first consider some special domains where the functions R(θ) have
exact expressions, and then consider general domains where the functions R(θ) do not have
specific expressions. We define the L2- and L∞- errors by

‖U −UMN‖L2(�) =
(∫∫

�

(U (x, y) −UMN (x, y))2dxdy

) 1
2

,

‖U −UMN‖L∞(�) = max
(x,y)∈�

|U (x, y) −UMN (x, y)|.
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Fig. 2 Squircles for p = 2,
p = 4 and p = 30
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5.1 Squircle-Bounded Domains

We consider the simply connected domain bounded by a squircle

� : |x |p + |y|p = 1, p ≥ 2. (5.1)

A squircle, also known as a Lamé curve or Lamé oval, is amathematical shapewith properties
between those of a square and those of a circle. It is a special case of the superellipse. As
p increases, the curve becomes more and more like a square with slightly rounded corners,
and the limit as p → ∞ is a square, which can be seen from Fig. 2.

5.1.1 p is Even

When p is even, the squircle (5.1) becomes

� : x p + y p = 1, p ≥ 2 and p even, (5.2)

from which we can easily know

R(θ) = (
cosp θ + sinp θ

)−1/p
. (5.3)

We first take p = 4, μ = 2.5 and test the smooth exact solution of the elliptic equation
(3.11),

U (x, y) = 1 − (
x p + y p

) 1
p

1 + (
x p + y p

) 6
p

exp

((
x2 − y2

)
sin

(
3 p
√
x p + y p

)

x2 + y2
+ y sin

(
6 p
√
x p + y p

)
√
x2 + y2

)
.

(5.4)
Clearly

u(r , θ) = 1 − r

1 + r6
exp

(
sin 3r cos 2θ + sin 6r sin θ

)
. (5.5)

In Fig. 3, we show the domain � and the exact solution in the xy-plane. In Fig. 4, we
plot the L2- and L∞- errors versus N with different M . They indicate the errors decay
exponentially as N increases. We see that for fixed N , the scheme with larger M produces
better numerical results.
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Fig. 3 The domain and the exact solution (5.4)
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Fig. 4 L2- and L∞- errors of (5.4) versus N with different M
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Fig. 5 L2- and L∞- errors of (5.6) versus N with different M

We next take p = 4, μ = 2.5 and test the exact solution with low regularity,

U (x, y) =
(
1 − (x p + y p)

1
p

) (
1 + (x p + y p)

h
p

)

exp

(
(x2 − y2) sin

(
3 p
√
x p + y p

)

x2 + y2
+ y sin

(
6 p
√
x p + y p

)
√
x2 + y2

)
. (5.6)
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Fig. 6 The exact solution with h = 9
2 and L∞- errors of (5.6) with M = 24
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Fig. 7 The exact solution and L∞- errors of (5.7)

Obviously

u(r , θ) = (1 − r)
(
1 + rh

)
exp

(
sin 3r cos 2θ + sin 6r sin θ

)
.

We first take h = 9
2 . In Fig. 5, we plot the L2- and L∞- errors versus N with different M .

They indicate the errors decay exponentially as N increases. We also see that for fixed N ,

the scheme with larger M produces better numerical results. In Fig. 6 (left), we plot the exact
solution with h = 9

2 in the xy-plane. In Fig. 6 (right), we plot the L∞-errors versus N with
different h. They indicate the errors decay exponentially as N increases. We also observe
that the errors decrease rapidly as h increases.

To further illustrate the efficiency of the suggested approach, we also test the following
exact solution,

U (x, y) =
(
1 − p

√
x p + y p

)
exp

(
x + y

) = (1−r)exp
(
r(cos θ + sin θ)(cosp θ + sinp θ)

− 1
p

)
.

(5.7)
Taking p = 4 and μ = 2.5, we show the exact solution (5.7) in Fig. 7 (left) and the L∞-
errors in Fig. 7 (right). We find that the numerical results achieve good expectations again.
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Fig. 8 The domain and the exact solution
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Fig. 9 L2- and L∞- errors of (5.5) versus N with different M

5.1.2 p is Odd

When p is odd, the squircle (5.1) becomes

� : |x |x p−1 + |y|y p−1 = 1, p ≥ 3 and p odd. (5.8)

Accordingly,

R(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
cosp θ + sinp θ

)−1/p
, θ ∈ [0, π

2 ],(
sinp θ − cosp θ

)−1/p
, θ ∈ [π

2 , π],( − cosp θ − sinp θ
)−1/p

, θ ∈ [π, 3π
2 ],(

cosp θ − sinp θ
)−1/p

, θ ∈ [ 3π2 , 2π].
(5.9)

We take p = 7, μ = 2.5 and test the exact solution (5.5). In Fig. 8, we show the domain
� and the exact solution (5.5) in the xy-plane. In Fig. 9, we plot the L2- and L∞- errors
versus N with different M . They indicate the errors decay exponentially as N increases. We
see that for fixed N , the scheme with larger M produces better numerical results.

5.2 Butterfly-Bounded Domains

We mainly consider butterflies that have no body, tail and middle wings, but only upper and
lower wings. Lui [14] used the spectral domain embeddingmethod to solve the elliptic partial
differential equation defined in the simplest butterfly-bounded domain.
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Fig. 10 The domain and the exact solution
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Fig. 11 L2- and L∞- errors of (5.5) versus N with different M

Let

R(θ) = ecos θ − cos(aθ) + b sin5
(

θ

2

)
, θ ∈ [0, 2π]. (5.10)

In Fig. 10, we show the domain � and the exact solution (5.5) in the xy-plane, by taking
the parameters a = 4 and b = 3. In Fig. 11, we plot the L2- and L∞- errors versus N with
μ = 2.5 and different M . They indicate the errors decay exponentially as N increases. We
also see that for fixed N , the scheme with larger M produces better numerical results.

We next consider variants of the butterfly curves. In Figs. 12 and 14, we show the domains
and the exact solutions (5.5) in the xy-plane.

In Figs. 13 and 15, we plot the L2- and L∞- errors versus N with μ = 2.5 and different
M for two cases. It can be seen that for those cases, the exponential spectral accuracy can be
reached.

Compared with the butterfly domain considered in [14], the three domains we consider are
more complex. Particularly, we can easily carry out their numerical simulations and obtain
high-order accuracy.

5.3 Cardioid-Bounded Domains

We consider the cardioid-bounded domain. Let

R(θ) = a − b sin(θ), a > b > 0. (5.11)
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Fig. 12 The domain (the parameters a = b = 4) and the exact solution
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Fig. 13 L2- and L∞- errors of (5.5) versus N with different M
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Fig. 14 The domain (the parameters a = 12 and b = 1.5) and the exact solution

In Fig. 16, we show the domain � and the exact solution (5.5) in the xy-plane, by taking
the parameters a = 10 and b = 9. In Fig. 17, we plot the L2- and L∞- errors versus N with
μ = 2.5 and different M . Clearly, they indicate the errors decay exponentially as N . We see
that for fixed N , the scheme with lager M produces better numerical results.
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Fig. 15 L2- and L∞- errors of (5.5) versus N with different M
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Fig. 16 The domain and the exact solution
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Fig. 17 L2- and L∞- errors of (5.5) versus N with different M

5.4 Star-Shaped Domains

We consider the star-shaped domains. Let

R(θ) = a + b sin(pθ). (5.12)

In Figs. 18 and 20, we show the domains� and the exact solutions (5.5) in the xy-plane, by
taking R(θ) = 0.7+ 0.2 sin(3θ) and R(θ) = 0.8+ 0.1 sin(5θ), which were also considered
in [9, 14]. In Figs. 19 and 21, we plot the L2- and L∞- errors versus N with μ = 2.5 and
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Fig. 18 The domain and the exact solution
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Fig. 19 L2- and L∞- errors of (5.5) versus N with different M
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Fig. 20 The domain and the exact solution

different M . Clearly, they indicate the errors decay exponentially as N . We see that for fixed
N , the scheme with larger M produces better numerical results.
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Fig. 21 L2- and L∞- errors of (5.5) versus N with different M

5.5 General Domains

In fact, in many cases, we do not know the specific expressions or parametric equations of
the boundary curves. For those general domains, our method is still available. To this end,
we need to derive the approximation function of R(θ) described below.

We first calculate the discrete values
{
R(θk)

}2K
k=0 by R(θk) =

√
x2k + y2k , where θk =

2kπ
2K+1 represent the 2K+1Fourier collocation points, and (xk , yk) is theCartesian coordinates
on boundary curve� corresponding to θk .Thenwe approximate R(θ) using the trigonometric
functions as basis functions, i.e.,

R(θ) � b0
2

+
K∑

k=1

(
ak sin(kθ) + bk cos(kθ)

)
, (5.13)

where

ak � 2

2K + 1

2K∑

j=0

R
(
θ j

)
sin

(
kθ j

)
, bk � 2

2K + 1

2K∑

j=0

R
(
θ j

)
cos

(
kθ j

)
.

Accordingly, we obtain the approximation function of ∂θ R(θ).

As examples, we provide four representative domains. Throughout this subsection, we
always take the exact solution

U (x, y) = ex+y, (5.14)

and use the suggested approach combined with the homogenization technique in Remark 3.1
to simulate numerically the Eq. (3.11).

We first consider the smooth quasi-pentagonal domain. To apply our method to solve this
kind of problem, we start by calculating the values of the function R(θ) at θk marked by
six-pointed stars, and then use (5.13) to approximate the function R(θ).

In Fig. 22, we show the domain� and the exact solution (5.14) in the xy-plane. In Fig. 23,
we plot the L2- and L∞- errors versus M with μ = 2.5 and different N . They indicate the
errors decay exponentially as M increases. We also see that for fixed M, the scheme with
larger N produces better numerical results.

We next consider the smooth quasi-hexagonal domain. Similarly, we use (5.13) to approx-
imate the function R(θ).
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Fig. 22 The domain and the exact solution
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Fig. 23 L2- and L∞- errors of (5.14) versus M with different N
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Fig. 24 The domain and the exact solution

In Fig. 24, we show the domain� and the exact solution (5.14) in the xy-plane. In Fig. 25,
we plot the L2- and L∞- errors versus M with μ = 2.5 and different N . They indicate the
errors decay exponentially as M increases. We also see that for fixed M, the scheme with
larger N produces better numerical results.

We then consider the teardrop domain, whose boundary curve satisfies the following
cartesian equation:

(
x2 + y2

)2 − 5

6
(x + 1)

(
(x + 1)2 + y2

) + 8y2 = 0. (5.15)
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Fig. 25 L2- and L∞- errors of (5.14) versus M with different N .
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Fig. 26 The domain and the exact solution
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Fig. 27 L2- and L∞- errors of (5.14) versus M with different N

In Fig. 26, we show the domain � and the exact solution (5.14) in the xy-plane. By
calculating the values of the function R(θ) at θk marked by six-pointed stars, we can use the
suggested approach to simulate numerically theEq. (3.11). In Fig. 27,we plot the L2- and L∞-
errors versus M with μ = 2.5 and different N . They indicate the errors decay exponentially
as M increases. We also see that for fixed M, the scheme with larger N produces better
numerical results.
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Fig. 28 The domain and the exact solution
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Fig. 29 L2- and L∞- errors of (5.14) versus M with different N

Wefinally consider amore general smooth domain, whose boundary curve has an irregular
smooth shape, as shown in Fig. 28 (left). This boundary curve has several irregular protrusions
and depressions. Generally speaking, we can not get the explicit cartesian equation for this
irregular curve.

As before, we can approximate the function R(θ). In Fig. 28 (right), we plot the exact
solution (5.14) in the xy-plane. In Fig. 29, we plot the L2- and L∞- errors versus M with
μ = 2.5 and different N . Clearly, the numerical errors decay exponentially as M increases.
We also see that for fixed M, the scheme with larger N produces better numerical results.
From the above, it can be seen that for irregular convex and concave regions, our Fourier–
Legendre spectral-Galerkin method is still feasible with higher accuracy.

6 Concluding Remarks

We developed in this paper the Fourier–Legendre spectral-Galerkin method for solving two-
dimensional elliptic PDEs in complex geometries using a polar coordinate transformation.
This method is very effective and easy to implement, and is proved to be well-posed with
spectral accuracy in the sense that the convergence rate increases with the smoothness of the
solution. Althoughwe only consider linear elliptic PDEs, the proposedmethod is effective for
the nonlinear and/or time-dependent problems in two-dimensional complex geometries. Par-
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ticularly, the main ideas and methods of this paper can also be extended to three-dimensional
situations, and we will report on this work in the near future.
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