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Abstract
In this paper we consider a steady phase change problem for non-isothermal incompress-
ible viscous flow in porous media with an enthalpy-porosity-viscosity coupling mechanism,
and introduce and analyze a Banach spaces-based variational formulation yielding a new
mixed-primal finite element method for its numerical solution. The momentum and mass
conservation equations are formulated in terms of velocity and the tensors of strain rate,
vorticity, and stress; and the incompressibility constraint is used to eliminate the pressure,
which is computed afterwards by a postprocessing formula depending on the stress and the
velocity. The resulting continuous formulation for the flow becomes a nonlinear perturbation
of a perturbed saddle point linear system. The energy conservation equation is written as
a nonlinear primal formulation that incorporates the additional unknown of boundary heat
flux. The whole mixed-primal formulation is regarded as a fixed-point operator equation,
so that its well-posedness hinges on Banach’s theorem, along with smallness assumptions
on the data. In turn, the solvability analysis of the uncoupled problem in the fluid employs
the Babuška–Brezzi theory, a recently obtained result for perturbed saddle-point problems,
and the Banach–Nečas–Babuška Theorem, all them in Banach spaces, whereas the one for
the uncoupled energy equation applies a nonlinear version of the Babuška–Brezzi theory in
Hilbert spaces. An analogue fixed-point strategy is employed for the analysis of the associated
Galerkin scheme, using in this case Brouwer’s theorem and assuming suitable conditions on
the respective discrete subspaces. The error analysis is conducted under appropriate assump-
tions, and selecting specific finite element families that fit the theory. We finally report on
the verification of theoretical convergence rates with the help of numerical examples.
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1 Introduction

1.1 Scope

Heat driven flow is a class of physical phenomena that has been extensively studied and it
has practical applications in many branches of science and engineering. Specific mechanisms
such as natural convection lay the foundation for other—more involved—processes including
heat and mass transfer, phase change such as melting and solidification [28, 45], the design
of energy storage devices [30], the description of ocean and atmosphere dynamics [29], and
crystallization in magma chambers [44].

Throughout the literature, phase change is incorporated into theBoussinesq approximation
by means of enthalpy-porosity methods [43] or enthalpy-viscosity models [28]. Numerical
methods proposed for the former include a class of stabilised discontinuousGalerkin [43] and
finite volume methods [45], whereas a primal finite element scheme [28] is employed for the
latter. Other techniques used for either case include primal formulations with Taylor–Hood
discretization, projection schemes, variational multiscale stabilization, and other variants [3,
31, 40, 41, 47]. Here we consider the general case where viscosity, enthalpy and porosity
all depend on temperature. In turn, in the recent work [46] the authors introduced a phase
change model for natural convection in porous media, where the problem is modeled as a
viscous Newtonian fluid and the change of phase is encoded in the viscosity itself, and using
a Brinkman–Boussinesq approximation where the solidification process influences the drag
directly. A fully-primal formulation for the non-stationary case was analyzed in [46, Section
4.2], while rigorous mathematical and numerical analyses for mixed-primal and fully-mixed
methods for the stationary case were provided in [7]. These numerical methods, as well as
the related weak formulations, have been analyzed in Hilbert spaces-based frameworks.

The numerical analysis of Banach spaces formulations for linear, nonlinear, and coupled
problems in continuummechanics has been carriedout in the very recent contributions [11, 15,
18, 21, 23, 25, 27, 34, 35] (see also the references therein),which considerPoisson,Brinkman–
Forchheimer, Darcy–Forchheimer, Navier–Stokes, chemotaxis/Navier–Stokes, Boussinesq,
coupled flow–transport, and fluidized beds, among others models. Using the more general
approach of working with Banach spaces framework permits us to avoid augmentation tech-
niques, maintaining a structure much closer to the initial physical model in mixed form. This
type of formalisms has other benefits such as enforcing strongly (momentum and mass and
energy) conservative schemes. Here we also illustrate numerically this advantage taking as
an example the momentum conservation and comparing with the results produced with the
methods from [7]. The purpose of the present manuscript is to extend and adapt the analysis
developed in [34] for the Navier–Stokes–Brinkman equations, to accommodate the analysis
of the coupling with phase change models such as that of [7]. We recall that in [7] it is
necessary to augment the formulation for sake of the analysis (since one cannot complete the
norms and conveniently control the terms that appear naturally in the formulation due to the
use of a functional structure based only on Hilbert spaces) and currently we are not aware
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of non-augmented formulations specifically aimed for such a system. We also stress that the
fixed-point strategy used herein differs substantially from that used in [7].

1.2 Outline

We have laid out the remainder of the paper in the following manner. Before the end of
this section we introduce some notations and recall some auxiliary results to be employed
throughout the paper. In Sect. 2 we introduce the model problem, define auxiliary variables
to be employed in the setting of the mixed-primal formulation, and eliminate the pressure
unknown. In Sect. 3 we derive the continuous formulation, and adopt a fixed-point strategy to
analyze the corresponding solvability. Recent results on perturbed saddle-point problems, as
well as the Babuška–Brezzi theory, both in Banach spaces, are employed to study the corre-
sponding uncoupled problems, and then the classical Banach theorem is applied to conclude
the existence of a unique solution. The associated Galerkin scheme is introduced in Sect. 4,
where, under suitable assumptions on finite element subspaces, the discrete analogue of the
methodology from Sect. 3, along with the Brouwer theorem instead of the Banach one, are
utilized to prove existence of solution. In addition, ad-hoc Strang-type lemmas in Banach
spaces are applied to derive a priori error estimates, specific finite element subspaces satisfy-
ing the aforementioned assumptions are introduced, and corresponding rates of convergence
are established. The performance of themethod is illustrated in Sect. 5 with several numerical
examples, and we close with a summary of our findings and some concluding remarks in
Sect. 6.

1.3 Background and Preliminary Notation

Throughout the paper, � is a given bounded Lipschitz-continuous domain of Rn , n ∈ {2, 3},
whose outward unit normal at its boundary� is denoted ν. Standard notations will be adopted
for Lebesgue spaces Lr (�), with r ∈ (1,∞), and Sobolev spaces Ws,r (�), with s ≥ 0,
endowed with the norms ‖ · ‖0,r;� and ‖ · ‖s,r;�, respectively, whose vector and tensor
versions are denoted in the same way. In particular, note that W0,r (�) = Lr (�), and that
when r = 2 we simply write Hs(�) in place of Ws,2(�), with the corresponding Lebesgue
and Sobolev norms denoted by ‖ · ‖0;� and ‖ · ‖s;�, respectively. We also set | · |s;� for the
seminorm of Hs(�). In turn, H1/2(�) is the space of traces of functions of H1(�), H−1/2(�)

is its dual, and 〈·, ·〉 denotes the duality pairing between them. On the other hand, by S and S
we mean the corresponding vector and tensor counterparts, respectively, of a generic scalar
functional space S. Furthermore, for any vector fields v = (vi )i=1,n and w = (wi )i=1,n , we
set the gradient, symmetric part of the gradient (also named strain rate tensor), divergence,
and tensor product operators, as

∇v :=
(

∂vi

∂x j

)
i, j=1,n

, e(v) := 1

2

(∇v + (∇v)t
)
,

div(v) :=
n∑

j=1

∂v j

∂x j
, v ⊗ w := (viw j )i, j=1,n,

where the superscript (·)t stands for thematrix transposition. In addition, for any tensor fields
τ = (τi j )i, j=1,n and ζ = (ζi j )i, j=1,n , we let div(τ ) be the divergence operator div acting
along the rows of τ , and define the trace, the tensor inner product, and the deviatoric tensor,
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respectively, as

tr(τ ) :=
n∑

i=1

τi i , τ : ζ :=
n∑

i, j=1

τi jζi j , τd := τ − 1

n
tr(τ )I ,

where I is the identity matrix in R := Rn×n . On the other hand, for each r ∈ [1,+∞] we
introduce the Banach space

H(divr ;�) :=
{
τ ∈ L

2(�) : div(τ ) ∈ Lr (�)
}

,

which is endowed with the natural norm

‖τ‖divr ;� := ‖τ‖0;� + ‖div(τ )‖0,r;� ∀ τ ∈ H(divr ;�) ,

and recall that, proceeding as in [33, eq. (1.43), Sect. 1.3.4] one can prove that for each
r ≥ 2n

n+2 there holds

〈τ ν, v〉 =
∫

�

{
τ : ∇v + v · div(τ )

}
∀ (τ , v) ∈ H(divr ;�) × H1(�) ,

where 〈·, ·〉 stands as well for the duality pairing between H−1/2(�) and H1/2(�). Finally,
bear in mind that when r = 2, the Hilbert space H(div2;�) and its norm ‖ · ‖div2;� are
simply denoted H(div;�) and ‖ · ‖div;�, respectively.

Finally, the symbol [ ·, · ]will denote a duality pairing induced by an appropriately defined
operator.

2 TheModel Problem

Let us consider the followingNavier–Stokes–Brinkman equations coupledwith a generalized
energy equation, describing phase changemechanisms involving viscous fluidswithin porous
media:

η(ϕ)u − λdiv
(
μ(ϕ) e(u)

) + (∇u
)
u + ∇ p = f (ϕ)k in �,

div(u) = 0 in �,

−ρ div (κ∇ϕ) + u · ∇ϕ + u · ∇s(ϕ) = 0 in �,

u = uD and ϕ = ϕD on � ,∫
�

p = 0 , (2.1)

with λ := Re−1, ρ := (C Pr)−1, where Re and Pr are the Reynolds and Prandtl num-
bers, respectively, κ and C are the non-dimensional heat conductivity tensor (here assumed
isotropic) and specific heat, respectively, k stands for the unit vector pointing oppositely
to gravity, and u : � → Rn, p : � → R and ϕ : � → R, correspond to the velocity,
pressure, and the temperature of the fluid flow, respectively. Finally, μ, η, s and f are the
nonlinear viscosity, porosity, enthalpy and buoyancy terms, respectively, which depend on
the temperature. Here s(ϕ) denotes an enthalpy function that accounts for the latent heat of
fusion, i.e., the energy needed to change the phase of a material (cf. [46]).
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Typical constitutive forms for the permeability-viscosity-enthalpy functions include, for
example, the well-known Carman–Kozeny, exponential, and polynomial laws

η(φ) = ε1
(1 − φ)2

φ3 + ε2
, μ(ϕ) = ε3 exp(−ϕε4), s(ϕ) =

{
s1ϕ if ϕ < ϕε,

s2 + s3(ϕ − ϕε) if ϕ ≥ ϕε,

respectively, whereφ(ϕ) = ε̂1+ε̂2(1+tanh[ϕ−ϕε]) is a sharp liquid fraction field (porosity).
For the subsequent analysis we assume a regular porosity-enthalpy hypothesis. In particular,
this implies that the functionsμ, η, s are uniformly bounded andLipschitz continuous,which
means that there exist positive constants μ0, μ1, η0, η1, s0, s1, Lμ, Lη and Ls , such that

μ0 ≤ μ(ψ) ≤ μ1, |μ(ψ) − μ(φ)| ≤ Lμ |ψ − φ| ∀ ψ, φ ∈ R ,

η0 ≤ η(ψ) ≤ η1, |η(ψ) − η(φ)| ≤ Lη |ψ − φ| ∀ ψ, φ ∈ R ,

s0 ≤ s(ψ) ≤ s1, |s(ψ) − s(φ)| ≤ Ls |ψ − φ| ∀ ψ, φ ∈ R .

(2.2)

Similar assumptions are placed on the buoyancy f : there exist positive constants C f and L f

such that

| f (ψ)| ≤ C f |ψ |, | f (ψ) − f (φ)| ≤ L f |ψ − φ| ∀ ψ, φ ∈ R . (2.3)

On the other hand, we will suppose that for every ψ ∈ H1(�), we have s(ψ) ∈ H1(�), and
that there exist positive constants s3 and Lŝ such that

|∇s(ψ)| ≤ s3 |∇ψ |, |∇s(ψ) − ∇s(φ)| ≤ Lŝ |ψ − φ| ∀ ψ, φ ∈ R . (2.4)

Finally, we suppose that κ and κ−1 are uniformly bounded and uniformly positive definite
tensors, meaning that there exist positive constants κ0, κ1, κ̃0 and κ̃1 such that

|κ| ≤ κ1, κv · v ≥ κ0 |v|2, |κ−1| ≤ κ̃1, κ−1v · v ≥ κ̃0 |v|2 ∀ v ∈ Rn . (2.5)

In turn, note that the incompressibility constraint imposes on uD the compatibility condition∫
�

uD · ν = 0 ,

and we also recall (see, e.g., [39]) that uniqueness of pressure is ensured in the space

L2
0(�) =

{
q ∈ L2(�) :

∫
�

q = 0
}

.

We now proceed as in [7] (see also [6, 17, 24, 34]), and transform (2.1) into an equivalent
first-order system without pressure. We introduce the strain rate t, vorticity γ , and stress σ

as auxiliary tensor unknowns

t := e(u) = ∇u − γ , γ := 1

2

(∇u− (∇u)t
)
, σ := λμ(ϕ) t − (u⊗ u) − p I ,

(2.6)
so that, thanks to the incompressibility of the fluid, the first equation of (2.1) is rewritten as

η(ϕ)u − div(σ ) = f (ϕ)k in � .

Moreover, the second equation of (2.1) (written in the form tr(t) = 0) together with (2.6),
are equivalent to the pair of equations given by

σd = λμ(ϕ) t − (u ⊗ u)d and p = −1

n
tr
(
σ + (u ⊗ u)

)
in � . (2.7)
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In summary, (2.1) can be equivalently reformulated as

t + γ = ∇u in �,

λμ(ϕ) t − (u ⊗ u)d = σd in �,

η(ϕ)u − div(σ ) = f (ϕ)k in �,

−ρ div(κ ∇ϕ) + u · ∇ϕ + u · ∇s(ϕ) = 0 in �,

u = uD and ϕ = ϕD on � ,∫
�

tr
(
σ + (u ⊗ u)

) = 0 . (2.8)

3 ContinuousWeak Formulation

In this section we use a Banach framework for the continuous weak formulation of (2.8) and
analyze its solvability by means of a fixed-point approach. More precisely, we follow [34]
and introduce a mixed method for the Navier–Stokes–Brinkman equations, whereas for the
energy equation we propose a primal method, which, differently from [7, 46], is formulated
in a nonlinear version.

3.1 Mixed-Primal Approach

Note that the uncoupled Navier–Stokes–Brinkman problem—described by the first three
equations of (2.8) and the respective boundary condition for the velocity—has been analyzed
in detail in [34] by using the abstract results for perturbed saddle-point problems derived in
[26], along with the Banach–Nečas–Babuška theorem. Following [34], we recall the defini-
tions

L
2
tr(�) :=

{
s ∈ L

2(�) : tr(s) = 0
}

and L
2
skew(�) :=

{
δ ∈ L

2(�) : δt = −δ
}

,

and the decomposition

H(div4/3;�) := H0(div4/3;�) ⊕ R I ,

where

H0(div4/3;�) := {
τ ∈ H(div4/3;�) :

∫
�

tr(τ ) = 0
}
.

In particular, the unknown σ can be uniquely decomposed as σ = σ 0 + c0 I, where
σ 0 ∈ H0(div4/3;�), and, from the last equation of (2.8), we have

c0 := 1

n |�|
∫

�

tr(σ ) = − 1

n |�|
∫

�

tr(u ⊗ u) .

Consequently, we can re-denote from now on σ 0 as simply σ ∈ H0(div4/3;�). This implies
in particular that the expression− (u⊗u)d−σd in the constitutive equation of (3.1) becomes
− (u⊗u)d−σ . In addition, the fact that the aforementioned equation is tested later on against
s ∈ L

2
tr(�) explains that the expression

∫
�
(u⊗u)d : s will then reduce to ∫

�
(u⊗u) : s (see

below definition of the bilinear form b(w; ·, ·)). Next we proceed to introduce the spaces

H := L
2
tr(�) × H0(div4/3;�) , Q := L4(�) × L

2
skew(�) ,
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and to set the notations

�t := (t, σ ) , �s := (s, τ ) , �r := (r, ζ ) ∈ H ,

�u := (u, γ ) , �v := (v, δ) , �w := (w, ξ) ∈ Q ,

equipping H and Q with the norms

‖�s‖H := ‖s‖0,� + ‖τ‖div4/3;� ∀�s := (s, τ ) ∈ H ,

‖�v‖Q := ‖v‖0,4;� + ‖δ‖0,� ∀ �v := (v, δ) ∈ Q .

We refer to [34, Section 3.1] for a detailed explanation of the need of seeking u in L4(�) and
σ in H(div4/3;�). Thus, following [34], and assuming that the temperature dependency of
μ, η, f does not affect the aforementioned analysis, we arrive at the following formulation:
Find (�t, �u) ∈ H × Q such that

aϕ(t, s) + b1(s, σ ) + b(u;u, s) = 0 ,

b2(t, τ ) + b(�s, �u) = 〈τ ν,uD〉 ,

b(�t, �v) − cϕ(�u, �v) = −
∫

�

f (ϕ)k · v,
(3.1)

for all (�s, �v) ∈ H × Q, where the bilinear forms aφ : L2
tr(�) × L

2
tr(�) → R, bi : L2

tr(�) ×
H0(div4/3;�) → R, i ∈ {

1, 2
}
, b : H × Q → R, and cφ : Q × Q → R, with φ ∈ H1(�),

are defined, respectively, as

aφ(r, s) := λ

∫
�

μ(φ) r : s ∀ r, s ∈ L
2
tr(�) ,

b1(s, τ ) := −
∫

�

s : τ , b2(s, τ ) :=
∫

�

s : τ , ∀ (s, τ ) ∈ L
2
tr(�) × H0(div4/3;�) ,

b(�s, �v) :=
∫

�

δ : τ +
∫

�

v · div(τ ) ∀ (�s, �v) ∈ H × Q ,

cφ( �w, �v) :=
∫

�

η(φ)w · v ∀ �w, �v ∈ Q ,

whereas for each w ∈ L4(�), b(w; ·, ·) : L4(�)×L
2
tr(�) → R is the bilinear form given by

b(w; v, s) := −
∫

�

(w ⊗ v) : s ∀ (v, s) ∈ L4(�) × L
2
tr(�) .

We stress here that the symmetry of the stress σ is imposed weakly through the equation∫
�

δ : σ = 0 ∀ δ ∈ L
2
skew(�), which explains the first term of the bilinear form b. See

further details in, e.g., [46] or [34].
Next, and letting, for each φ ∈ H1(�), aφ : H × H → R be the bilinear form that arises

from the block

(
aφ b1
b2

)
by adding the first two equations of (3.1), that is

aφ(�r, �s) := aφ(r, s) + b1(s, ζ ) + b2(r, τ ) ∀ �r, �s ∈ H ,

we find that (3.1) can be rewritten as: Find (�t, �u) ∈ H × Q such that

aϕ(�t, �s) + b(�s, �u) + b(u;u, s) = 〈τ ν,uD〉 ∀ �s ∈ H ,

b(�t, �v) − cϕ(�u, �v) = −
∫

�

f (ϕ)k · v ∀ �v ∈ Q .
(3.2)
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Moreover, letting now Aφ : (
H × Q

) × (
H × Q

) → R be the bilinear form that arises from

the block

(
aφ b
b −cφ

)
, for each φ ∈ H1(�), by adding both equations of (3.2), that is

Aφ

(
(�r, �w), (�s, �v)) := aφ(�r, �s) + b(�s, �w) + b(�r, �v) − cφ( �w, �v) ∀ (�r, �w), (�s, �v) ∈ H×Q ,

we deduce that (3.2) (and hence (3.1)) can be stated equivalently as: Find (�t, �u) ∈ H × Q
such that

Aϕ

(
(�t, �u), (�s, �v)) + b(u;u, s) = Fϕ(�s, �v) ∀ (�s, �v) ∈ H × Q , (3.3)

where, for each φ ∈ H1(�), the functional Fφ ∈ (
H × Q

)′ is defined by

Fφ(�s, �v) := 〈τ ν,uD〉 −
∫

�

f (φ)k · v ∀ (�s, �v) ∈ H × Q .

On the other hand, in order to derive a weak form for the energy equation, we recall that
the injection i4 : H1(�) → L4(�) is continuous (cf. [39, Theorem 1.3.4]), which is valid in
Rn , n ∈ {2, 3}:

‖ψ‖0,4;� ≤ ‖i4‖ ‖ψ‖1;� ∀ ψ ∈ H1(�) . (3.4)

Proceeding as in [7, Section 3.1], we test the fourth equation of (2.8) against ψ ∈ H1(�),
integrate by parts, introduce the normal heat flux χ := −ρκ∇ϕ · ν ∈ H−1/2(�) as a new
unknown, and impose the Dirichlet boundary condition for ϕ in a weak sense, so that we get

ρ

∫
�

κ∇ϕ · ∇ψ +
∫

�

ψu · ∇(
ϕ + s(ϕ)

) + 〈χ,ψ〉� = 0 ∀ ψ ∈ H1(�) ,

〈ξ, ϕ〉� = 〈ξ, ϕD〉� ∀ ξ ∈ H−1/2(�) .

(3.5)
Here we readily note that, in order for the second term in the first equation of (3.5) to be
well-defined, and thanks to the continuous injection i4 (cf. (3.4)) and the assumption on
s (cf. Section2), we require that (u, ϕ) lies in L4(�) × H1(�). Then, given u ∈ L4(�),
we now consider the following primal formulation for the energy equation: Find (ϕ, χ) ∈
H1(�) × H−1/2(�) such that

[Au(ϕ), ψ] + [B(ψ), χ] = 0 ∀ ψ ∈ H1(�) ,

[B(ϕ), ξ ] = G(ξ) ∀ ξ ∈ H−1/2(�) ,
(3.6)

where given z ∈ L4(�), the nonlinear operator Az : H1(�) → H1(�)′ and the linear
operator B : H1(�) → H−1/2(�)′ are defined by

[Az(φ), ψ] := ρ

∫
�

κ∇φ · ∇ψ +
∫

�

ψz · ∇(
φ + s(φ)

) ∀ φ,ψ ∈ H1(�) , (3.7)

and
[B(φ), ξ ] := 〈ξ, φ〉� ∀ φ ∈ H1(�), ∀ ξ ∈ H−1/2(�) ,

whereas G ∈ H−1/2(�)′ is the functional given by

G(ξ) = 〈ξ, ϕD〉� ∀ ξ ∈ H−1/2(�) .

Summarizing, the non-augmentedmixed-primal formulation for (2.8) reduces to (3.3) and
(3.6), that is: Find (�t, �u) ∈ H × Q and (ϕ, χ) ∈ H1(�) × H−1/2(�) such that

Aϕ

(
(�t, �u), (�s, �v)) + b(u;u, s) = Fϕ(�s, �v) ∀ (�s, �v) ∈ H × Q , (3.8a)

[Au(ϕ), ψ] + [B(ψ), χ] = 0 ∀ ψ ∈ H1(�) , (3.8b)
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[B(ϕ), ξ ] = G(ξ) ∀ ξ ∈ H−1/2(�) . (3.8c)

3.2 Fixed-Point Strategy

Let S : L4(�) × H1(�) → L4(�) be defined by

S(z, φ) = u ∀ (z, φ) ∈ L4(�) × H1(�) ,

where (�t, �u) = (
(t, σ ), (u, γ )

) ∈ H × Q is the unique solution (to be confirmed below) of

Aφ

(
(�t, �u), (�s, �v)) + b(z;u, s) = Fφ(�s, �v) ∀ (�s, �v) ∈ H × Q . (3.9)

In turn, we let S̃ : L4(�) → H1(�) be the operator given by

S̃(z) := ϕ ∀ z ∈ L4(�) ,

where (ϕ, χ) ∈ H1(�) × H−1/2(�) is the unique solution (to be confirmed below) of

[Az(ϕ), ψ] + [B(ψ), χ] = 0 ∀ ψ ∈ H1(�) ,

[B(ϕ), ξ ] = G(ξ) ∀ ξ ∈ H1/2(�) .
(3.10)

Then, we define the operator T : L4(�) → L4(�) by

T(z) := S
(
z, S̃(z)

) ∀ z ∈ L4(�) . (3.11)

Solving (3.8) is equivalent to seeking a fixed point of T, that is, finding z ∈ L4(�) such that

T(z) = z . (3.12)

3.3 Well-Posedness of the Uncoupled Problems

We now show that the uncoupled problems (3.3) and (3.6) are well-posed. We remark
again that the only difference between (3.3) and the formulation in [34] is that μ, η, f
are temperature-dependent, but in virtue of assumptions (2.2) and (2.3), we can simply state
the following result (with an almost verbatim proof).

Lemma 3.1 For any (z, φ) ∈ L4(�) × H1(�) such that ‖z‖0,4;� ≤ αA
2 , problem (3.9) has

a unique solution (�t, �u) := (
(t, σ ), (u, γ )

) ∈ H × Q, and hence S(z, φ) := u ∈ L4(�) is
well-defined. Moreover, there exists CS > 0, depending only on αA, C f (cf. (2.3)), |�| and
‖k‖∞, such that

‖S(z, φ)‖0,4;� = ‖u‖0,4;� ≤ ‖(�t, �u)‖H×Q ≤ CS

{
‖uD‖1/2;� + ‖φ‖1;�

}
. (3.13)

Proof It follows directly from [34, Lemma 3.5], with the exception that now there holds

‖Fφ‖ ≤ CF

{
‖uD‖1/2;� + ‖φ‖1;�

}
, (3.14)

where CF := max
{
1, C f |�|1/4‖k‖∞

}
. ��

The previous lemma suggests to consider the ball (which will be employed below in
Sect. 3.4)

WS :=
{
z ∈ L4(�) : ‖z‖0,4;� ≤ αA

2

}
.
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It remains to prove that S̃ is well-defined. To this end, and in order to proceed similarly
to [12], we state next an abstract result that will be utilized to establish the well-posedness
of problem (3.10), and which can be viewed as a nonlinear version of the Babuška–Brezzi
theory.We notice in advance that, while the above is valid within a Banach spaces framework,
its application below is just for a particular Hilbertian case.

Theorem 3.2 Let H and Q be separable and reflexive Banach spaces, with H uniformly
convex, and let a : H → H′ be a nonlinear operator and b ∈ L(H,Q′). Let V be the null
space of b, and assume that

(i) a is Lipschitz-continuous, that is there exists L > 0 such that

‖a(u) − a(v)‖H′ ≤ L‖u − v‖H ∀ u, v ∈ H .

(ii) The family of operators a(· + t) : V → V′, with t ∈ H, is uniformly strongly monotone,
that is there exists a positive constant α such that

[a(u + t) − a(v + t), u − v] ≥ α‖u − v‖2H ∀ t ∈ H, ∀ u, v ∈ V . (3.15)

(iii) There exists a positive constant β such that

sup
v∈H
v �=0

[b(v), τ ]
‖v‖H ≥ β‖τ‖Q ∀ τ ∈ Q .

Then, for each (F, G) ∈ H′ × Q′ there exists a unique (u, σ ) ∈ H × Q such that

[a(u), v] + [b(v), σ ] = [F, v] ∀ v ∈ H ,

[b(u), τ ] = [G, τ ] ∀ τ ∈ Q .

Furthermore, there hold

‖u‖H ≤ 1

α
‖F‖H′ + 1

β

(
1 + L

α

)
‖G‖Q′ + 1

α
‖a(0)‖H′ , and

‖σ‖Q ≤ 1

β

(
1 + L

α

)
‖F‖H′ + L

β2

(
1 + L

α

)
‖G‖Q′ + 1

β

(
1 + L

α

)
‖a(0)‖H′ .

(3.16)

Proof It follows from a slight adaptation of [42, Proposition 2.3] with p = 2 (see also [19,
Theorem 3.1] with p1 = p2 = 2). ��

Next, in order to apply Theorem 3.2 to problem (3.10), we first observe, thanks to the
duality between H−1/2(�) and H1/2(�), that the linear operator B and the functional G are
bounded, that is

|[B(φ), ξ ]| ≤ ‖φ‖1;�‖ξ‖−1/2;� ∀ φ ∈ H1(�), ∀ ξ ∈ H−1/2(�) , and (3.17a)

‖G‖ := sup
ξ∈H−1/2(�)

ξ �=0

|G(ξ)|
‖ξ‖−1/2;�

≤ ‖ϕD‖1/2;� . (3.17b)

We continue our analysis by proving that for each z ∈ L4(�),Az is Lipschitz continuous.

Lemma 3.3 There exists a positive constant LA, depending only on ρ, κ1, Lŝ and ‖i4‖, such
that

‖Az(φ1) − Az(φ2)‖H1(�)′ ≤ LA
(
1 + ‖z‖0,4;�

)‖φ1 − φ2‖1;�, (3.18)

for all z ∈ L4(�), and for all φ1, φ2 ∈ H1(�).
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Proof Given z ∈ L4(�) and φ1, φ2, ψ ∈ H1(�), using (3.7), the upper bounds (2.4) and
(2.5), the Cauchy–Schwarz and triangle inequalities, and the continuous injection i4 (cf.
(3.4)), we deduce that

|[Az(φ1) − Az(φ2), ψ]|
≤ ρ

∣∣∣∣
∫

�

κ∇(φ1 − φ2) · ∇ψ

∣∣∣∣ +
∣∣∣∣
∫

�

ψz · ∇(
(φ1 − φ2) + (s(φ1) − s(φ2))

)∣∣∣∣
≤ ρκ1|φ1 − φ2|1;�|ψ |1;� + (|φ1 − φ2|1;� + |s(φ1) − s(φ2)|1;�

)‖z‖0,4;�‖ψ‖0,4;�
≤ (

ρκ1 + (1 + Lŝ)‖i4‖‖z‖0,4;�
)‖φ1 − φ2‖1;�‖ψ‖1;� ,

which confirms the mentioned property on Az with LA := max
{
ρκ1, (1 + Lŝ)‖i4‖

}
. ��

Now, aiming to prove thatAz satisfies (3.15), we require the Friedrichs–Poincaré inequal-
ity, which establishes the existence of a positive constant cP , depending only on �, such
that

|φ|21;� ≥ cP‖φ‖21;� ∀ φ ∈ H1
0(�) . (3.19)

In addition, we note that the kernel Ṽ of the operator B is given by

Ṽ := {
φ ∈ H1(�) : 〈ξ, φ〉� = 0 ∀ ξ ∈ H−1/2(�)

} = H1
0(�) , (3.20)

and introduce the ball

WS̃ :=
{
z ∈ L4(�) : ‖z‖0,4;� ≤ ρκ0cP

2(1 + Lŝ)‖i4‖
}

.

Then, the following result states that Az satisfies hypothesis ii) of Theorem 3.2.

Lemma 3.4 There exists a positive constant αA, depending only on ρ, κ0 and cP , such that
for each z ∈ WS̃, the family of operators Az( · + φ) with φ ∈ H1(�), is uniformly strongly
monotone in Ṽ:

[Az(θ1 + φ) − Az(θ2 + φ), θ1 − θ2] ≥ αA‖θ1 − θ2‖21;� for all φ ∈ H1(�), for all θ1, θ2 ∈ Ṽ.

(3.21)

Proof Given z ∈ L4(�), φ ∈ H1(�) and θ1, θ2 ∈ Ṽ, using (3.7), (2.5), (2.4),
Friedrichs–Poincaré inequality (3.19), the continuous injection (3.4), and the Cauchy–
Schwarz inequality, it follows that

[Az(θ1 + φ) − Az(θ2 + φ), θ1 − θ2]
= ρ

∫
�

κ∇(θ1 − θ2) · ∇(θ1 − θ2) +
∫

�

(θ1 − θ2)z · ∇
(
(θ1 − θ2) + (

s(θ1 + φ) − s(θ2 + φ)
))

≥ ρκ0|θ1 − θ2|21;� − ‖θ1 − θ2‖0,4;�‖z‖0,4;�
(|θ1 − θ2|1;� + |s(θ1 + φ) − s(θ2 + φ)|1;�

)
≥ (

ρκ0cP − (1 + Lŝ)‖i4‖‖z‖0,4;�
)‖θ1 − θ2‖21;� .

In this way, defining αA := ρκ0cP

2
, we obtain

[Az(θ1 + φ) − Az(θ2 + φ), θ1 − θ2] ≥ (
2αA − (1 + Lŝ)‖i4‖‖z‖0,4;�

)‖θ1 − θ2‖21;� ,

from which, using that z ∈ WS̃, we readily conclude the proof. ��
We observe here that, instead of imposing ‖z‖0,4;� ≤ αA/

(
(1+ Lŝ)‖i4‖

)
, we could have

assumed that ‖z‖0,4;� ≤ 2δαA/
(
(1 + Lŝ)‖i4‖

)
, with δ ∈ (0, 1). Then choosing δ closer

to 1, the larger the resulting range of ‖z‖0,4;�, but then the strong monotonicity constant
approaches 0. Conversely, the closer δ to 0, the smaller the range for ‖z‖0,4;�, but then the
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strong monotonicity constant approaches 2αA. Hence the choice δ = 1
2 aims to balance both

aspects.
We complete the verification of the hypotheses of Theorem 3.2 with the inf-sup condition

for B, which can be found in [33, section 2.4.4].

Lemma 3.5 The following inf-sup condition holds with inf-sup constant equal to 1

sup
ψ∈H1(�)

ψ �=0

[B(ψ), ξ ]
‖ψ‖1;� ≥ ‖ξ‖−1/2;� ∀ ξ ∈ H−1/2(�) .

Now, we are in position to establish the unique solvability of the nonlinear problem (3.10).

Lemma 3.6 For each z ∈ WS̃, the problem (3.10) has a unique solution (ϕ, χ) ∈ H1(�) ×
H−1/2(�), and hence S̃(z) := ϕ ∈ H1(�) is well-defined. Moreover, there exist positive
constants CS̃ and C̃S̃, depending only on LA (cf. proof of Lemma (3.3)) and αA (cf. proof of
Lemma 3.4), such that

‖̃S(z)‖1;� := ‖ϕ‖1;� ≤ CS̃ ‖ϕD‖1/2;� and ‖χ‖−1/2;� ≤ C̃S̃ ‖ϕD‖1/2;� . (3.22)

Proof We first recall from (3.17a) to (3.17b) that B and G are linear and bounded. Thus,
using Lemmas 3.3, 3.4 and 3.5, and applying Theorem 3.2 to problem (3.9) implies the well-
definedness of the operator S̃ for each z ∈ WS̃. Moreover, noting that Az(0) ∈ H1(�)′ is
the null functional, recalling from Lemma 3.5 that the inf-sup constant is 1, and denoting
L̃A := LA(1 + αA), the a priori estimate (3.16) yields

‖̃S(z)‖1;� = ‖ϕ‖1;� ≤
(
1 + L̃A

αA

)
‖G‖ and ‖χ‖−1/2;� ≤ L̃A

(
1 + L̃A

αA

)
‖G‖ ,

which, along with the upper bound of ‖G‖ (cf. (3.17b)), implies (3.22). ��

3.4 Solvability Analysis

Consider now the ball

W := WS ∩ WS̃ =
{
z ∈ L4(�) : ‖z‖0,4;� ≤ �

}
,

with � := min

{
αA

2
,

αA
(1 + Lŝ)‖i4‖

}
. (3.23)

We proceed to prove that, under sufficiently small data, T mapsW into itself.

Lemma 3.7 Assume that the data satisfy

CT

{
‖uD‖1/2,� + ‖ϕD‖1/2;�

}
≤ � , (3.24)

where CT := CSmax
{
1, CS̃

}
, and CS and CS̃ are the constants specified in Lemmas 3.1

and 3.6. Then, there holds T(W) ⊆ W.

Proof Given z ∈ W, we have that z satisfies the well-defined conditions for S and S̃, and
hence for T. Moreover, the corresponding estimate (3.13) yields

‖T(z)‖0,4;� = ‖S(
z, S̃(z)

)‖0,4;� ≤ CS
{‖uD‖1/2,� + ‖̃S(z)‖1;�

}
.

Then, bounding ‖̃S(z)‖1;� in the foregoing inequality according to the estimate (3.22) and
using the assumption (3.24), we get ‖T(z)‖0,4;� ≤ �, which completes the proof. ��
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We now prove that T is Lipschitz continuous (it suffices to show that S and S̃ satisfy this
property). For S we assume the further regularity uD ∈ H1/2+ε(�) for some ε ∈ [1/2, 1)
(when n = 2) or ε ∈ [3/4, 1) (when n = 3), and that for each (z, φ) ∈ WS × H1(�)

there holds (�t, �u) = (
(t, σ ), (u, γ )

) ∈ ((
L
2
tr(�) ∩ H

ε(�)
) × (

H0(div4/3;�) ∩ H
ε(�)

)) ×((
L4(�) ∩ Wε,4(�)

) × (
L
2
skew(�) ∩ H

ε(�)
))

with S(z, φ) := u and

‖t‖ε;� + ‖σ‖ε;� + ‖u‖ε,4;� + ‖γ ‖ε ≤ cS
{
‖uD‖1/2+ε;� + ‖φ‖1;�

}
, (3.25)

with a positive constant cS independent of the given (z, φ). The chosen range for ε will be
clarified in the proof of the following lemma.

Lemma 3.8 There exists a positive constant LS, depending on |�|, ‖k‖∞, Lμ, Lη, ‖i4‖, αA
and ε, such that

‖S(z1, φ1) − S(z2, φ2)‖0,4;�
≤ LS

{
‖S(z2, φ2)‖0,4;�‖z1 − z2‖0,4;� + (‖t‖ε;� + ‖S(z2, φ2)‖0,4;� + L f

)‖φ1 − φ2‖1;�
}
,

(3.26)

for all (z1, φ1), (z2, φ2) ∈ WS × H1(�).

Proof Given (zi , φi ) ∈ WS × H1(�), for each i ∈ {
1, 2

}
, we let S(zi , φi ) := ui , where

(�ti , �ui ) := (
(ti , σ i ), (ui , γ i )

) ∈ H×Q is the unique solution of (3.9)with (z, φ) := (zi , φi ),
that is

Aφi

(
(�ti , �ui ), (�s, �v)) + b(zi ;ui , s) = Fφi (�s, �v) ∀ (�s, �v) ∈ H × Q . (3.27)

Now, applying the inf-sup condition for the bilinear form in the left hand side of the foregoing
equation (cf. [34, eq. (3.64)]) with (z, φ) = (z1, φ1) to (�r, �w) := (�t1, �u1) − (�t2, �u2), we
obtain

‖(�t1, �u1) − (�t2, �u2)‖H×Q ≤ 2

αA
sup

(�s,�v)∈H×Q
(�s,�v)�=0

Aφ1

(
(�t1, �u1) − (�t2, �u2), (�s, �v)) + b(z1;u1 − u2, s)

‖(�s, �v)‖H×Q
,

from which, adding and subtracting b(z2;u2, s), and then employing (3.27), we obtain

‖(�t1, �u1) − (�t2, �u2)‖H×Q

≤ 2

αA
sup

(�s,�v)∈H×Q
(�s,�v)�=0

(
Aφ2 − Aφ1

)(
(�t2, �u2), (�s, �v)) + b(z2 − z1;u2, s) + (

Fφ1 − Fφ2

)
(�s, �v)

‖(�s, �v)‖H×Q
.

(3.28)
We now estimate the right-hand side of (3.28) by separating its numerator into three suitable
terms. Indeed, we first observe that(

Aφ2 − Aφ1

)(
(�t2, �u2), (�s, �v))

= (
aφ2 − aφ1

)
(t2, s) + (

cφ1 − cφ2

)
(�u2, �v)

= λ

∫
�

(
μ(φ2) − μ(φ1)

)
t2 : s +

∫
�

(
η(φ1) − η(φ2)

)
u2 · v

≤ λ Lμ ‖φ2 − φ1‖2p;�‖t2‖2q;�‖s‖0;� + Lη‖φ1 − φ2‖0;�‖u2‖0,4;�‖v‖0,4;� ,

(3.29)

where p, q ∈ [1,∞) are such that 1
p + 1

q = 1. In this way, bearing in mind the further regu-
larity (3.25), we recall that the Sobolev embedding Theorem [1, Theorem 4.12] establishes
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the continuous injection iε : Hε(�) → L
ε∗

(�), where ε∗ =
{ 2

1−ε
if n = 2 ,

6
3−2ε if n = 3

. Thus,

choosing q such that 2q = ε∗, there holds t2 ∈ L
2q(�) and

‖t2‖0,2q;� ≤ ‖iε‖ ‖t2‖ε;� . (3.30)

In turn, with that choice of 2q , we obtain that 2p = n/ε and hence, using now that for the
specified ranges of ε the injection ĩε of L4(�) into Ln/ε(�) is continuous, and applying that
H1(�) is continuously embedded into L4(�) (cf. (3.4)), there holds

‖ϕ2 − ϕ1‖0,n/ε;� ≤ ‖̃iε‖ ‖ϕ2 − ϕ1‖0,4;� ≤ ‖̃iε‖ ‖i4‖ ‖ϕ2 − ϕ1‖1;� . (3.31)

Then, putting (3.30) and (3.31) back into (3.29), anddenoting LA := max
{
λ Lμ ‖̃iε‖ ‖i4‖ ‖iε‖,

Lη

}
, gives

(
Aφ2 − Aφ1

)(
(�t2, �u2), (�s, �v)) ≤ LA

{
‖t2‖ε;� + ‖u2‖0,4;�

}
‖φ2 − φ1‖1;�‖(�s, �v)‖H×Q .

(3.32)
Next, it is easy to see that

b(z2 − z1;u2, s) ≤ ‖u2‖0,4;�‖z2 − z1‖0,4;�‖(�s, �v)‖H×Q . (3.33)

Now, thanks to the properties of f (cf. (2.3)) together with the Cauchy–Schwarz inequality,
we have (

Fφ1 − Fφ2

)
(�s, �v) ≤ L f LF‖φ1 − φ2‖1;�‖(�s, �v)‖H×Q , (3.34)

with LF := |�|1/4‖k‖∞. Finally, replacing (3.32), (3.33) and (3.34) back into (3.28), and
then simplifying by ‖(�s, �v)‖H×Q, we obtain (3.26) with

LS := 2

αA
max

{
LA, 1, LF

}
.

��
We now focus on proving the Lipschitz-continuity of S̃.

Lemma 3.9 There exists a positive constant L S̃, depending only on s3, ‖i4‖ and αA (cf. proof
of Lemma 3.4), such that for all z1, z2 ∈ WS̃, there holds

‖̃S(z1) − S̃(z2)‖1;� ≤ L S̃ ‖̃S(z2)‖1;�‖z1 − z2‖0,4;� . (3.35)

Proof Given zi ∈ WS̃, i ∈ {
1, 2

}
, we let S̃(zi ) = ϕi , where (ϕi , χi ) ∈ H1(�) × H−1/2(�)

is the unique solution of (3.10) with z := zi , that is

[Azi (ϕi ), ψ] + [B(ψ), χi ] = 0 ∀ ψ ∈ H1(�) ,

[B(ϕi ), ξ ] = G(ξ) ∀ ξ ∈ H1/2(�) .

Then, subtracting the two problems, we obtain

[Az1(ϕ1) − Az2(ϕ2), ψ] + [B(ψ), χ1 − χ2] = 0 ∀ ψ ∈ H1(�) ,

[B(ϕ1 − ϕ2), ξ ] = 0 ∀ ξ ∈ H−1/2(�) .
(3.36)

It follows from the second equation of (3.36) that ϕ1 − ϕ2 ∈ Ṽ (cf. (3.20)), and hence,
using that Az1 is uniformly strongly monotone on Ṽ (cf. (3.21)), with ϕ2 ∈ H1(�) and
0, ϕ1 − ϕ2 ∈ Ṽ, we get

αA ‖ϕ1 − ϕ2‖21;� ≤ [Az1(ϕ1) − Az1(ϕ2), ϕ1 − ϕ2] . (3.37)
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Now, using (3.7), adding and subtracting Az2(ϕ2) in the first term on the right-hand side of
(3.37), using the first equation of (3.36) and Cauchy–Schwarz and Hölder inequalities, we
have

αA ‖ϕ1 − ϕ2‖21;� ≤ [Az1(ϕ1) − Az2(ϕ2), ϕ1 − ϕ2] − [Az1(ϕ2) − Az2(ϕ2), ϕ1 − ϕ2]
≤

∣∣∣∣
∫

�

(ϕ1 − ϕ2)(z1 − z2) · ∇(
ϕ2 + s(ϕ2)

)∣∣∣∣
≤ ‖ϕ1 − ϕ2‖0,4;�|ϕ2 + s(ϕ2)|1;�‖z1 − z2‖0,4;� .

Then, using the triangle inequality, the upper bound for the gradient of s (cf. (2.4)) and (3.4),
we get

‖ϕ1 − ϕ2‖1;� ≤ (1 + s3)‖i4‖
αA

‖̃S(z2)‖1;�‖z1 − z2‖0,4;� ,

which yields (3.35) and ends the proof. ��
As a consequence of the previous lemmas, we establish now the Lipschitz-continuity of

T.

Lemma 3.10 There exists a positive constant LT, depending only on CS̃, CT, cS, LS, and L S̃,
such that for all z1, z2 ∈ W, there holds

‖T(z1) − T(z2)‖0,4;� ≤ LT

{
‖uD‖1/2;� + ‖ϕD‖1/2;� + C(uD, ϕD) ‖ϕD‖1/2;�

}
‖z1 − z2‖0,4;� ,

(3.38)
where

C(uD, ϕD) := ‖uD‖1/2;� + ‖uD‖1/2+ε;� + ‖ϕD‖1/2;� + L f . (3.39)

Proof Given z1, z2 ∈ W, and according to (3.11) and (3.26), we first obtain

‖T(z1) − T(z2)‖0,4;� = ‖S(
z1, S̃(z1)

) − S
(
z2, S̃(z2)

)‖0,4;�
≤ LS

{
‖T(z2)‖0,4;�‖z1 − z2‖0,4;� +

(
‖t2‖ε;� + ‖T(z2)‖0,4;� + L f

)
‖̃S(z1) − S̃(z2)‖1;�

}
,

(3.40)

where for each i ∈ {1, 2}, (�ti , �ui ) := (
(ti , σ i ), (ui , γ i )

) ∈ H × Q is the unique solution of
(3.9) with

(
zi , S̃(zi )

)
instead of (z, φ). In turn, the a priori estimate for S̃ (cf. (3.22)) holds

‖̃S(z2)‖1;� ≤ CS̃‖ϕD‖1/2;� , (3.41)

whereas the Lipschitz-continuity of S̃ (cf. (3.35)) with (3.41), gives

‖̃S(z1) − S̃(z2)‖1;� ≤ L S̃CS̃‖ϕD‖1/2;�‖z1 − z2‖0,4;� , (3.42)

and the a priori estimates for T (cf. Lemma 3.7) yields

‖T(z2)‖0,4;� ≤ CT

{
‖uD‖1/2;� + ‖ϕD‖1/2;�

}
, (3.43)

and finally, replacing (3.41) on the regularity assumption (3.25) for t2, we find that

‖t2‖ε;� ≤ cS
{
‖uD‖1/2+ε;� + CS̃‖ϕD‖1/2;�

}
. (3.44)

In this way, replacing (3.42), (3.43) and (3.44) in (3.40), and performing several algebraic
manipulations aiming to simplify the whole writing, we are lead to (3.38) with

LT := 2LSmax
{

cS, cSCS̃, CT, 1
}
max

{
1, L S̃CS̃

}
.

��
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The main result of this section is given as follows.

Theorem 3.11 Assume the data satisfies (3.24), that is

CT
{‖uD‖1/2,� + ‖ϕD‖1/2;�

} ≤ �,

and
LT

{
‖uD‖1/2;� + ‖ϕD‖1/2;� + C(uD, ϕD)‖ϕD‖1/2;�

}
< 1 . (3.45)

Then T has a unique fixed point u ∈ W. Equivalently, the coupled problem (3.8) has a unique
solution (�t, �u) := (

(t, σ ), (u, γ )
) ∈ H × Q and (ϕ, χ) ∈ H1(�) × H−1/2(�), with u ∈ W.

Moreover, there holds

‖(�t, �u)‖H×Q ≤ CT

{
‖uD‖1/2;� + ‖ϕD‖1/2;�

}
, (3.46a)

‖ϕ‖1;� ≤ CS̃ ‖ϕD‖1/2;� and ‖χ‖−1/2;� ≤ C̃S̃ ‖ϕD‖1/2;�. (3.46b)

Proof It is clear, thanks to assumption (3.45) and Lemma 3.10, that T is a contraction, which
together with Lemma 3.7, proves that the fixed point operator T satisfies the hypotheses of
Banach’s fixed-point theorem, which implies the solvability of the problem (3.12), equiva-
lently, the solvability of (3.8). Consequently, the a priori estimates (3.46a) and (3.46b) follow
from (3.13) to (3.22), respectively. ��

4 The Galerkin Scheme

In this section, we introduce and analyze the Galerkin scheme associated with (3.8). The
solvability of this scheme is addressed following basically the same techniques employed
throughout Sect. 3. To this end, we letHt

h , H̃
σ
h ,H

u
h ,H

γ
h , H

ϕ
h and Hχ

h be arbitrary finite element
subspaces of L2

tr(�), H(div4/3;�), L4(�), L2
skew(�), H1(�) and H−1/2(�), respectively.

Hereafter, h := max
{
hK : K ∈ Th

}
stands for the size of a regular triangulation Th of �̄.

Specific finite element subspaces satisfying suitable hypotheses to be introduced along the
analysis will be provided later on in Sect. 4.5. Then, letting

H
σ
h := H̃

σ
h ∩ H0(div4/3;�) , (4.1)

defining the product spaces

Hh := H
t
h × H

σ
h , and Qh := Hu

h × H
γ
h , (4.2)

and setting the notations

�th := (th, σ h) , �sh := (sh, τ h) , �rh := (rh, ζ h) ∈ Hh ,

�uh := (uh, γ h) , �vh := (vh, δh) , �wh := (wh, ξ h) ∈ Qh ,

the Galerkin scheme associated with (3.8) reads as follows: Find (�th, �uh) := (
(th, σ h),

(uh, γ h)
) ∈ Hh × Qh and (ϕh, χh) ∈ Hϕ

h × Hχ
h such that

Aϕh

(
(�th, �uh), (�sh, �vh)

) + b(uh;uh, sh) = Fϕh (�sh, �vh) ∀ (�sh, �vh) ∈ Hh × Qh ,

(4.3a)

[Auh (ϕh), ψh] + [B(ψh), χh] = 0 ∀ ψh ∈ Hϕ
h , (4.3b)

[B(ϕh), ξh] = G(ξh) ∀ ξh ∈ Hχ
h . (4.3c)
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4.1 The Discrete Fixed Point Strategy

We adopt the discrete analogue of Sect. 3.2 to analyze (4.3). Let Sh : Hu
h ×Hϕ

h → Hu
h be the

operator given by
Sh(zh, φh) = uh ∀ (zh, φh) ∈ Hu

h × Hϕ
h ,

where (�th, �uh) := (
(th, σ h), (uh, γ h)

) ∈ Hh × Qh is the unique solution (to be confirmed
below) of the linear problem given by

Aφh

(
(�th, �uh), (�sh, �vh)

) + b(zh;uh, sh) = Fφh (�sh, �vh) ∀ (�sh, �vh) ∈ Hh × Qh . (4.4)

In turn, we let S̃h : Hu
h → Hϕ

h be the operator defined by

S̃h(zh) := ϕh ∀ zh ∈ Hu
h ,

where (ϕh, χh) ∈ Hϕ
h × Hχ

h is the unique solution (to be confirmed below) of

[Azh (ϕh), ψh] + [B(ψh), χh] = 0 ∀ ψh ∈ Hϕ
h ,

[B(ϕh), ξh] = G(ξh) ∀ ξh ∈ Hχ
h .

(4.5)

Then, we define the operator Th : Hu
h → Hu

h by

Th(zh) := Sh
(
zh, S̃h(zh)

) ∀zh ∈ Hu
h , (4.6)

and realize that solving (4.3) is equivalent to seeking a fixed point of Th : Find zh ∈ Hu
h such

that
Th(zh) = zh . (4.7)

4.2 Well-Definedness of the Discrete Problems

In this section we apply the discrete versions of the solvability result for perturbed saddle-
point problems and the nonlinear version of theBabuška–Brezzi theory employed in Sect. 3.3,
to prove that the operators Sh , S̃h , and henceTh , are well-defined. As observed in the previous
section, these goals reduce, equivalently, to establishing that the uncoupled problems (4.4)
and (4.5) arewell-posed. To this end,we begin by remarking, as in the continuous counterpart,
that the solvability of the discrete problem (4.4) is addressed in [34, Section 4.2], and for this
reason we just state the following result.

Lemma 4.1 For each (zh, φh) ∈ Hu
h × Hϕ

h such that ‖zh‖0,4;� ≤ αA,d

2
(cf. [34, eq. 4.23]),

problem (4.4) has a unique solution (�th, �uh) := (
(th, σ h), (uh, γ h)

) ∈ Hh ×Qh, and hence
Sh(zh, φh) := uh ∈ Hu

h is well-defined. Moreover, there exists a positive constant CS,d,
depending only on αA,d, C f , |�| and ‖k‖∞, and hence independent of h, such that

‖Sh(zh, φh)‖0,4;� = ‖uh‖0,4;� ≤ ‖(�th, �uh)‖Hh×Qh ≤ CS,d

{
‖uD‖1/2;� + ‖φh‖1;�

}
.

(4.8)

Proof It follows directly from [34, Lemma 4.2] to (3.14). ��
The following assumptions, specified in [34, Section 4.2], are necessary to apply Lemma

4.1.
(H.0) H̃σ

h contains the multiplies of the identity tensor I.
(H.1) div(H̃σ

h ) ⊆ Hu
h .
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(H.2)
(
V0,h

)d ⊆ H
t
h , where Vh := H

t
h × V0,h is the kernel of b|Hh×Qh , with

V0,h :=
{
τ h ∈ H

σ
h :

∫
�

τ h : δh = 0 ∀ δh ∈ H
γ
h and

∫
�

vh · div(τ h) = 0 ∀ vh ∈ Hu
h

}
.

(H.3) There exists a positive constant βb,d, independent of h, such that

sup
�s∈Hh�s �=0

b(�s, �v)
‖�s‖H ≥ βb,d ‖�v‖Q ∀ �v ∈ Qh .

In addition, the previous lemma suggests to consider the ball

WS,h :=
{
zh ∈ Hu

h : ‖zh‖0,4;� ≤ αA,d

2

}
,

which will be employed below in Sect. 4.3.
Next, aiming to prove the solvability of (4.5), we require a consequence of the generalized

Poincaré inequality, which establishes the existence of a positive constant ĉP such that

|φ|21;� ≥ ĉP ‖φ‖21;� ∀ φ ∈ V̂ , (4.9)

where V̂ := {
φ ∈ H1(�) : ∫

�
φ = 0

}
. Then, in order to apply Theorem 3.2, we introduce

appropriate hypotheses on the discrete spaces Hϕ
h and Hχ

h :
(H.4) P0(�) ⊆ Hχ

h .
(H.5) There exists a positive constant βB,d, independent of h, such that

sup
ψh∈Hϕ

h
ψh �=0

[B(ψh), ξh]
‖ψh‖1;� ≥ βB,d ‖ξh‖−1/2;� ∀ ξh ∈ Hχ

h . (4.10)

We highlight here that each one of the above hypotheses has a clear purpose regarding
the solvability of (4.4) and (4.5), and hence of (4.3). In fact, (H.0) allows to employ the
discrete version of the decompositionH(div4/3;�) = H0(div4/3;�) ⊕ R I, namely H̃σ

h =
H

σ
h ⊕ R I, thanks to whichHσ

h can be used as the subspace where the unknown σ h is sought.
In turn, (H.1) is utilized to conclude that the tensors of the subspace V0,h are divergence
free, so that ‖ · ‖0,� and ‖ · ‖div4/3;� become equivalent there. On the other hand, (H.2) plays
a key role in the proof of the discrete inf-sup conditions for b1 and b2, whereas (H.3) and
(H.5) constitute inf-sup conditions required to be able to apply the discrete versions of the
solvability result for perturbed saddle point problems in Banach spaces, and the Babuška-
Brezzi theory in Hilbert spaces, respectively. Finally, the need of (H.4) is explained below
in the proof of Lemma 4.2.

Taking the above assumptions into account, and defining

WS̃,h :=
{
zh ∈ Hu

h : ‖zh‖0,4;� ≤ ρ κ0 ĉP

2(1 + Lŝ)‖i4‖
}

,

we can prove that the operator S̃h is well-posed, which is abridged in the following lemma.

Lemma 4.2 For each zh ∈ WS̃,h, problem (4.5) has a unique solution (ϕh, χh) ∈ Hϕ
h × Hχ

h ,

and hence S̃h(zh) := ϕh ∈ Hϕ
h is well-defined. Moreover, there exist positive constants CS̃,d

and C̃S̃,d, depending on ρ, κ0, ĉP (cf. (4.9)) and κ1, βB,d (cf. (4.10)), such that

‖̃Sh(zh)‖1;� := ‖ϕh‖1;� ≤ CS̃,d ‖ϕD‖1/2;� and ‖χh‖−1/2;� ≤ C̃S̃,d ‖ϕD‖1/2;� .

(4.11)
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Proof We begin by introducing the discrete kernel of B, namely

Ṽh :=
{
ψh ∈ Hϕ

h : 〈ξh, ψh〉� = 0 ∀ ξh ∈ Hχ
h

}
,

which, as a consequence of (H.4), is clearly contained in V̂, and thus, (4.9) is certainly valid
in Ṽh . On the other hand, given zh ∈ Hu

h , φh ∈ Hϕ
h and θ1,h, θ2,h ∈ Ṽh , and proceeding as in

Lemma 3.4, using in this case (4.9) instead of (3.19), we obtain

[Azh (θ1,h + φh) − Azh (θ2,h + φh), θ1,h − θ2,h]
≥ (

ρκ0ĉP − (1 + Lŝ)‖i4‖ ‖zh‖0,4;�
)‖θ1,h − θ2,h‖21;�,

from which, defining αA,d := ρ κ0 ĉP/2 and using that zh ∈ WS̃,h , we readily conclude
that the family of operators Azh (· + φh), with φh ∈ Hϕ

h , is uniformly strongly monotone
in Ṽh with constant αA,d. In addition, (3.18) and the specified bound on ‖zh‖0,4;� imply
the Lipschitz-continuity of Azh with constant LA,d = ρκ1 + αA,d. Moreover, thanks to
assumption (H.5) (cf (4.10)), a straightforward application of Theorem 3.2 and the upper
bound for G (cf. (3.17b)), we obtain (4.11) with

CS̃,d := 1

βB,d

(
1 + LA,d

αA,d

)
and C̃S̃,d := LA,d

β2
B,d

(
1 + LA,d

αA,d

)
.

��

4.3 Solvability Analysis of the Discrete Fixed Point

Having proved that Th is well-defined, we now apply the following version of Brouwer’s
theorem (cf. [22, Theorem 9.9-2]) needed to show the solvability of (4.7).

Theorem 4.3 Let W be a compact and convex subset of a finite dimensional Banach space
X and T : W → W be a continuous mapping. Then T has at least one fixed-point.

Similarly to Sect. 3.4, we introduce the ball

Wh := WS,h ∩ WS̃,h :=
{
zh ∈ Hu

h : ‖zh‖0,4;� ≤ �d

}
,

with �d := min

{
αA,d

2
,

αA,d

(1 + Lŝ)‖i4‖
}

, (4.12)

which is a compact and convex subset of the finite dimensional spaceHu
h . Then, the discrete

analogue of Lemma 3.7 is stated as follows.

Lemma 4.4 Assume that

CT,d

{
‖uD‖1/2,� + ‖ϕD‖1/2;�

}
≤ �d , (4.13)

where CT,d := CS,dmax{1, CS̃,d}, and CS,d and CS̃,d are the constants specified in Lemmas
4.1 and 4.2, respectively. Then, there holds Th(Wh) ⊆ Wh.

Proof Similarly to the proof of Lemma 3.7, it is a direct consequence of the assumption (4.13)
and Lemmas 4.1 and 4.2, particularly of the respective a priori bounds (4.8) and (4.11). ��

We now aim to prove that Th is continuous, for which we previously address the same
property for Sh and S̃h . Indeed, in what follows we state the discrete analogues of Lemmas
3.8 and 3.9.
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Lemma 4.5 There exists a positive constant LS,d, independent of h, depending only on αA,d,
Lμ, Lη, ‖i4‖, |�| and ‖k‖∞, such that for all (z1,h, φ1,h), (z2,h, φ2.h) ∈ WS,h × Hϕ

h , there
holds

‖Sh(z1,h, φ1,h) − Sh(z2,h, φ2,h)‖H×Q ≤ LS,d

{
‖Sh(z2,h, φ2,h)‖0,4;�‖z1,h − z2,h‖0,4;�

+ (‖t2‖0,4;� + ‖̃Sh(z2,h, φ2,h)‖0,4;� + L f
)‖φ1,h − φ2,h‖1;�

}
.

(4.14)

Proof Given (z1,h, φ1,h), (z2,h, φ2.h) ∈ WS,h × Hϕ
h , we let Sh(zi,h, φi,h) := ui,h , for each

i ∈ {1, 2}, where (�ti,h, �ui,h) = (
(ti,h, σ i,h), (ui,h, γ i,h)

)
is the unique solution of (4.4) with

(zi,h, φi,h) instead of (zh, φh). Then the proof of (4.14), starting now from the discrete global
inf-sup condition [34, eq. (4.24)], is very similar to the one for Lemma 3.8. However, since
a regularity assumption such as (3.25) is not available in the present discrete settings, we
estimate aφ2,h − aφ1,h by using an L4(�) − L

4(�) − L
2(�) argument along with (3.4). In

this way, we obtain

(aφ2,h − aφ1,h )(t2,h, sh) ≤ λ Lμ ‖i4‖ ‖φ2,h − φ1,h‖1;�‖t2,h‖0,4;�‖sh‖0;� .

The rest of the estimates are similar to those in the proof of Lemma 3.8, and are therefore
omitted. ��
Lemma 4.6 There exists a positive constant L S̃,d, independent of h, depending only on s3,
‖i4‖ and αA,d (cf. proof of Lemma 4.2), such that for all z1,h, z2,h ∈ WS̃,h, there holds

‖̃Sh(z1,h) − S̃h(z2,h)‖1;� ≤ L S̃,d‖̃Sh(z2,h)‖1;�‖z1,h − z2,h‖0,4;� . (4.15)

Proof It follows very closely the arguments from the proof of Lemma 3.9. ��
As a consequence of the previous two lemmas, we have the continuity of the operator Th .

Lemma 4.7 There exists a positive constant LT,d, independent of h, depending only on CS̃,d,
CT,d, LS,d and L S̃,d, such that for all z1,h, z2,h ∈ Wh, there holds

‖Th(z1,h) − Th(z2,h)‖0,4;�
≤ LT,d

{
‖uD‖1/2;� + ‖ϕD‖1/2;� + Cd(uD, ϕD, th,2)‖ϕD‖1/2;�

}
‖z1,h − z2,h‖0,4;� ,

(4.16)
where

Cd(uD, ϕD, th,2) := ‖uD‖1/2;� + ‖ϕD‖1/2;� + ‖t2,h‖0,4;� + L f .

Proof Given z1,h, z2,h ∈ Wh , and proceeding as in the proof of Lemma 3.10, but now using
the definition of Th (cf. (4.6)) and the continuity of Sh (cf (4.5)), we readily find that

‖Th(z1,h) − Th(z2,h)‖0,4;� ≤ LS,d

{
‖Th(z2,h)‖0,4;�‖z1,h − z2,h‖0,4;�

+ (‖t2,h‖0,4;� + ‖Th(z2,h)‖0,4;� + L f
)‖Sh(z1,h) − Sh(z2,h)‖1;�

}
.

(4.17)

Then, thanks to the a priori estimate (4.8), the Lipschitz-continuity of S̃h (cf (4.15)) yields

‖̃Sh(z1,h) − S̃h(z2,h)‖1;� ≤ L S̃,dCS̃,d‖ϕD‖1/2;�‖z1,h − z2,h‖0,4;� . (4.18)

In addition, using the a priori estimates for Sh and S̃h (cf. (4.8) and (4.11)), we have

‖Th(z2,h)‖0,4;� ≤ CT,d

{
‖uD‖1/2;� + ‖ϕD‖1/2;�

}
. (4.19)
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Finally, replacing (4.18) and (4.19) in (4.17), and performing some minor algebraic manip-
ulations, we obtain (4.16) with the constant

LT,d := LS,dmax
{
CT,d, 1

}
max

{
1, L S̃,dCS̃,d

}
.

��
We remark that, while the inequality (4.16) establishes the continuity of Th , the lack of

control of the term ‖t2,h‖0,4;� prevents us from deducing Lipschitz-continuity and hence
contractivity of Th . Consequently, we are only able to establish existence of a fixed point.

Theorem 4.8 Assume that the data satisfy (4.13). Then, the Galerkin scheme (4.3) has at
least a solution (�th, �uh) := (

(th, σ h), (uh, γ h)
) ∈ Hh × Qh and (ϕh, χh) ∈ Hϕ

h × Hχ
h , with

uh ∈ Wh. Moreover,

‖(�th, �uh)‖H×Q ≤ CT,d

{
‖uD‖1/2;� + ‖ϕD‖1/2;�

}
,

‖ϕh‖0;� ≤ CS̃,d ‖ϕD‖1/2;� and ‖χh‖−1/2;� ≤ C̃S̃,d ‖ϕD‖1/2;�.

Proof Since Wh is compact and convex, and Th maps Wh into itself (cf. Lemma 4.4), then
Brouwer’s theorem yields the existence of solution for (4.3). In turn, since uh = Th(uh) =
Sh

(
uh, S̃h(uh)

)
and ϕh = S̃h(uh), then (4.8) and (4.11) imply the continuous dependence

on data of the solutions. ��

4.4 A Priori Error Analysis

In this section we derive a priori error estimates for the Galerkin scheme (4.3) with arbitrary
finite element spaces satisfying the hypotheses (H.0)–(H.5) from Sect. 4.2. We focus on the
global error

‖�t − �th‖H + ‖�u − �uh‖Q + ‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;� ,

where (�t, �u) := (
(t, σ ), (u, γ )

) ∈ H × Q and (ϕ, χ) ∈ H1(�) × H−1/2(�), with u ∈ W
(cf. (3.23)), is the unique solution of (3.8), and (�th, �uh) := (

(th, σ h), (uh, γ h)
) ∈ Hh ×Qh

and (ϕh, χh) ∈ Hϕ
h × Hχ

h , with uh ∈ Wh (cf. (4.12)), is a solution of the discrete coupled
problem (4.3). To this end, we establish next two ad-hoc Strang-type estimates. Hereafter,
given a subspace Xh of a generic Banach space (X, ‖ · ‖X), we set as usual dist(x,Xh) :=
inf

xh∈Xh
‖x − xh‖X for all x ∈ X.

Lemma 4.9 Let H be a reflexive Banach space, and let a : H × H be a bounded bilinear
form inducing the operator A ∈ L(H,H′), such that a satisfies the hypothesis of the Banach–
Nečas–Babuška theorem (cf. [32, Theorem 2.6]). Furthermore, let {Hh}h>0 be a sequence
of finite dimensional subspaces of H, and for each h > 0, consider a bounded bilinear form
ah : Hh × Hh → R inducing Ah ∈ L(Hh,H′

h), such that ah |Hh×Hh satisfies the hypotheses
of Banach–Nečas–Babuška theorem as well, with constant α̃ independent of h. In turn, given
F ∈ H′, and a sequence of functionals {Fh}h>0, with Fh ∈ H′

h for each h > 0, we let u ∈ H
and uh ∈ Hh be the unique solutions to problems

a(u, v) = F(v) ∀v ∈ H, (4.20)

and
ah(uh, vh) = Fh(vh) ∀vh ∈ Hh, (4.21)
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respectively. Then, there holds

‖u − uh‖H ≤ CS,1 dist (u,Hh) + CS,2

{
‖F − Fh‖H′

h
+ ‖a(u, ·) − ah(u, ·)‖H′

h

}
, (4.22)

where CS,1 and CS,2 are the positive constants given by

CS,1 :=
(
1 + 2‖A‖

α̃
+ ‖Ah‖

α̃

)
and CS,2 := 1

α̃
. (4.23)

Proof See [20, Lemma 5.1]. ��

Lemma 4.10 LetH andQ be separable and reflexive Banach spaces, withH uniformly convex,
and let a : H → H′ be a nonlinear operator and b ∈ L(H,Q′) satisfying the hypotheses of
Theorem 3.2 with constants L, α and β. Furthermore, let {Hh}h>0 and {Qh}h>0 be sequences
of finite dimensional subspaces of H and Q, respectively, and for each h > 0 consider a
nonlinear operator ah : H → H′, such that a|Hh : Hh → H′

h and b|Hh : Hh → Q′
h satisfy

the hypothesis of Theorem 3.2 with constants Ld, αd, and βd, all independent of h. In turn,
given F ∈ H′, G ∈ Q′, and sequences of functionals {Fh}h>0 and {Gh}h>0, with Fh ∈ H′

h
and Gh ∈ Q′

h for each h > 0, we let (σ, u) ∈ H × Q and (σh, uh) ∈ Hh × Qh be the unique
solutions to problems

[a(σ ), τ ] + [b(τ ), u] = [F, τ ] ∀τ ∈ H,

[b(σ ), v] = [G, v] ∀v ∈ Q,
(4.24)

and
[ah(σh), τh] + [bh(τh), uh] = [Fh, τh] ∀τh ∈ Hh,

[bh(σh), vh] = [Gh, vh] ∀vh ∈ Qh,
(4.25)

respectively. Then, there exists a positive constants CS,i , depending only on L, αd, βd, and
‖b‖, such that

‖σ − σh‖H + ‖u − uh‖Q ≤ CS,1 dist (σ,Hh) + CS,2 dist (u,Qh)

+CS,3

{
‖F − Fh‖H′

h
+ ‖G − Gh‖Q′

h
+ ‖a(σ ) − ah(σ )‖H′

h

}
.

(4.26)

Proof See [12, Lemma 5.1]. ��

In order to apply Lemmas 4.9 and 4.10, we now observe that (3.8) and (4.3) can be
rewritten as two pairs of continuous and discrete formulations as (4.20)–(4.21) and (4.24)–
(4.25), respectively, namely

Aϕ

(
(�t, �u), (�s, �v)) + b(u;u, s) = Fϕ(�s, �v) ∀ (�s, �v) ∈ H × Q ,

Aϕh

(
(�th, �uh), (�sh, �vh)

) + b(uh;uh, sh) = Fϕh (�sh, �vh) ∀ (�sh, �vh) ∈ Hh × Qh ,
(4.27)

and
[Au(ϕ), ψ] + [B(ψ), χ] = 0 ∀ ψ ∈ H1(�) ,

[B(ϕ), ξ ] = [G, ξ ] ∀ ξ ∈ H−1/2(�) ,

[Auh (ϕh), ψh] + [B(ψh), χh] = 0 ∀ ψh ∈ Hϕ
h ,

[B(ϕh), ξh] = [G, ξh] ∀ ξh ∈ Hχ
h .

(4.28)

The following lemma provides a preliminary estimate for the error ‖�t−�th‖H + ‖�u−�uh‖Q.
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Lemma 4.11 There exists a positive constant CST , independent of h, such that

‖�t − �th‖H + ‖�u − �uh‖Q ≤ CST

{
dist

(�t,Hh
) + dist

(�u,Qh
)

+ C(uD, ϕD) ‖ϕ − ϕh‖1;� + (‖uD‖1/2;� + ‖ϕD‖1/2;�
)‖u − uh‖0,4;�

}
,

(4.29)

where C(uD, ϕD) is given by (3.39).

Proof We recall from Sects. 3.4 to 4.2 that Aϕ + b(u; ·, ·) and Aϕh + b(uh; ·, ·), with u ∈ W
and uh ∈ Wh , satisfy the hypotheses of Banach–Nečas–Babuška theorem on H × Q and
Hh × Qh , respectively, the latter with constant αA,d/2 (cf. [34, eq. (4.23)]). Then, applying
Lemma 4.9 to (4.27), and according to (4.23), the estimates [34, eqs. (3.41a) and (3.43)],
and the bounds (3.23) and (3.23), we conclude the existence of CS,1 > 0, independent of h,
depending only on λ, μ1, η1, |�|, αA,d, � and �d, such that

‖�t − �th‖H + ‖�u − �uh‖Q ≤ CS,1dist
(
(�t, �u),Hh × Qh

) + 2

αA,d

{
‖Fϕ − Fϕh ‖(Hh×Qh)′

+‖Aϕ

(
(�t, �u), ·) − Aϕh

(
(�t, �u), ·)‖(Hh×Qh)′ + ‖b(u;u, ·) − b(uh;u, ·)‖

H
t
h
′
}

.

(4.30)

Then, proceeding exactly as in Lemma 3.8, particularly from Eqs. (3.32), (3.33) to (3.34),
yields

‖Fϕ − Fϕh ‖(Hh×Qh)′ ≤ L f LF‖ϕ − ϕh‖1;� , (4.31a)

‖Aϕ

(
(�t, �u), ·) − Aϕh

(
(�t, �u), ·)‖(Hh×Qh)′ ≤ LA

{
‖t‖ε;� + ‖u‖0,4;�

}
‖ϕ − ϕh‖1;� and

(4.31b)

‖b(u;u, ·) − b(uh;u, ·)‖
H
t
h
′ ≤ ‖u‖0,4;�‖u − uh‖0,4;� . (4.31c)

In this way, replacing (4.31) back into (4.30), using (3.25) and the bounds for ‖u‖0,4;� and
‖ϕ‖1;� from Theorem 3.11, and performing algebraic manipulations, we obtain (4.29). ��

Next, we have the following result concerning ‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;�.

Lemma 4.12 There exists a positive constant C̃ST , independent of h, depending only on s3,
‖i4‖, L, αA,d, βB,d and CS̃, such that

‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;� ≤ C̃ST

{
dist

(
ϕ,Hϕ

h

) + dist
(
χ,Hχ

h

) + ‖ϕD‖1/2;�‖u− uh‖0,4;�
}

.

(4.32)

Proof With u ∈ W and uh ∈ Wh given, the continuous and discrete systems associated with
(4.28) satisfy the hypothesis of Theorem 3.2, with constants LA, αA, βB = 1, LA,d, αA,d

and βB,d (cf. Lemmas 3.3, 3.4, 3.5 and 4.2). Therefore, applying Lemma 4.10 to (4.28), we
deduce the existence of a constant ĈST > 0, depending on LA, αA,d and βB,d, and hence
independent of h, such that

‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;� ≤ ĈST

{
dist

(
ϕ,Hϕ

h

) + dist
(
χ,Hχ

h

) + ‖Au(ϕ) − Auh (ϕ)‖Hϕ
h

′
}

.

(4.33)

Then, employing (2.4), (3.4) and Hölder inequality, we find that for each ψh ∈ Hϕ
h there

holds
|[Au(ϕ) − Auh (ϕ), ψh]| ≤ (1 + s3)‖i4‖‖ϕ‖1;�‖u − uh‖0,4;�‖ψh‖1;� ,
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which yields

‖Au(ϕ) − Auh (ϕ)‖Hϕ
h

′ ≤ (1 + s3)‖i4‖‖ϕ‖1;�‖u − uh‖0,4;� . (4.34)

Then from (4.34), (4.33) to (3.22), we obtain (4.32) with C̃ST := ĈST max
{
1, (1 +

s3)‖i4‖CS̃

}
. ��

The requiredCéa estimatewill follow fromLemmas 4.10 to 4.11. Incorporating (4.32) into
(4.29), and performing some algebraic manipulations, we find that there exist C̃1, C1 > 0,
independent of h, such that

‖�t − �th‖H + ‖�u − �uh‖Q
≤ C̃1

{
dist

(
(�t, �u),Hh × Qh

) + dist(ϕ,Hϕ
h ) + dist(χ,Hχ

h )
}

+ C1

{
C(uD, ϕD)‖ϕD‖1/2;� + ‖uD‖1/2;� + ‖ϕD‖1/2;�

}
‖u − uh‖0,4;� .

(4.35)

Thus, imposing the constant multiplying ‖u − uh‖0,4;� in (4.35) to be sufficient small, say
less than or equal to 1/2, provides the a priori error estimate for ‖�t − �th‖H + ‖�u − �uh‖Q,
which, employed then to bound the third term on the right-hand side of (4.32), provides
an upper bound for ‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;� . More precisely, we have proved the
following result.

Theorem 4.13 Assume that the data uD and ϕD satisfy

C1

{
C(uD, ϕD)‖ϕD‖1/2;� + ‖uD‖1/2;� + ‖ϕD‖1/2;�

}
≤ 1

2
. (4.36)

Then, there exists a positive constant Cd, independent of h, such that

‖�t − �th‖H + ‖�u − �uh‖Q + ‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;�
≤ Cd

{
dist

(�t,Hh
) + dist

(�u,Qh
) + dist

(
ϕ,Hϕ

h

) + dist
(
χ,Hχ

h

)}
. (4.37)

Finally, regarding the pressure error ‖p − ph‖0;�, where ph is the discrete pressure
computed by the postprocessing formula suggested by the second identity in (2.7), that is

ph = −1

n
tr
(
σ h + (uh ⊗ uh)

)
, (4.38)

we readily deduce from (4.37), similarly as in [16, Section 4] (see also [34, eq. (4.39)]), the
existence of a positive constant Ĉ , independent of h, such that

‖p − ph‖0;� ≤ Ĉ
{
‖σ − σ h‖0;� + ‖u − uh‖0,4;�

}
. (4.39)

Thus, combining (4.37) and (4.39), we conclude the existence of Ĉd > 0, independent of h,
such that

‖�t − �th‖H + ‖�u − �uh‖Q + ‖p − ph‖0;� + ‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;�
≤ Ĉd

{
dist

(�t,Hh
) + dist

(�u,Qh
) + dist

(
ϕ,Hϕ

h

) + dist
(
χ,Hχ

h

)}
.

(4.40)
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4.5 Specific Finite Element Spaces

We refer to [34, Section 4.4] and [7, Section 3.5] to specify two examples of finite element
subspacesHt

h , H̃
σ
h ,H

u
h ,H

γ
h , H

ϕ
h and Hχ

h satisfying the hypotheses (H.0), (H.1), (H.2), (H.3),
(H.4) and (H.5) from Sect. 4.2, and establish the associated rates of convergence for the
Galerkin scheme (4.3).

4.5.1 Preliminaries

Given an integer � ≥ 0 and K ∈ Th , let P�(K ) denote the space of polynomials of degree
≤ � defined on K with vector and tensorial versions denoted by P�(K ) := [P�(K )]n and
P�(K ) := [P�(K )]n×n , respectively. By RT�(K ) := P�(K ) + P�(K )x we denote the local
Raviart–Thomas space of order � defined on K , where x stands for a generic vector in Rn .
Furthermore, denoting by bK the bubble function on K (the product of its n + 1 barycentric
coordinates), we set the local bubble space of order � as

B�(K ) := curl
(
bK P�(K )

)
if n = 2, and B�(K ) := curl

(
bK P�(K )

)
if n = 3,

where curl(v) := (
∂v
∂x2

,− ∂v
∂x1

)
if n = 2 and v : K → R, and curl(v) := ∇ × v if n = 3 and

v : K → R3. In addition, we need to set the global spaces

P�(�) :=
{
vh ∈ L2(�) : vh |K ∈ P�(K ) ∀ K ∈ Th

}
,

P�(�) :=
{
δh ∈ L

2(�) : δh |K ∈ P�(K ) ∀ K ∈ Th

}
,

RT�(�) :=
{
τ h ∈ H(div;�) : τ h,i |K ∈ RT�(K ) ∀ i ∈ {

1, . . . , n
}
, ∀ K ∈ Th

}
,

B�(�) :=
{
τ h ∈ H(div;�) : τ h,i |K ∈ B�(K ) ∀ i ∈ {

1, . . . , n
}
, ∀ K ∈ Th

}
,

where τ h,i stands for the i th-row of τ h . As noticed in [35], it is easily seen that P�(�) and
P�(�) are also subspaces of L4(�) and L

4(�), respectively, and that RT�(�) and B�(�)

are both subspaces of H(div4/3;�) as well. Actually, since H(div;�) is clearly contained
in H(div4/3;�), any subspace of the former is also subspace of the latter.

4.5.2 Two Specific Examples

Similarly to [34, Section 4.4], we employ the stable triplets for linear elasticity proposed in
[35, Section 4.4] to describe two examples of finite element subspaces H̃σ

h , H
u
h and H

γ
h and

H
t
h satisfying (H.0)-(H.3).
First, we consider PEERS� (plane elasticity element with reduced symmetry of order

� ≥ 0, [8, 38]), and the subspace H
t
h introduced in [34, Section 4.4.2]. Letting C(�̄) :=

[C(�̄)]n×n , we have

H
t
h := P�+n(�) ∩ L

2
tr(�) , H

σ
h := (RT�(�) ⊕ B�(�)) ∩ H0(div4/3;�) ,

Hu
h := P�(�) , and H

γ
h := C(�̄) ∩ L

2
skew(�) ∩ P�+1(�) .

(4.41)

Secondly, AFW� (Arnold–Falk–Winther elements of order � ≥ 0, [9]), and H
t
h as in [34,

Section 4.4.3]:

H
t
h := P�+1(�) ∩ L

2
tr(�) , H

σ
h := (

P�+1(�) ∩ H(div;�)
) ∩ H0(div4/3;�) ,

Hu
h := P�(�) , H

γ
h := L

2
skew(�) ∩ P�(�) .

(4.42)
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In addition, and similarly to [7, Section 3.5] (see also [5, Section 4.3]), the approximation
space for temperature will consist of continuous piecewise polynomials of degree ≤ � + 1

Hϕ
h := {

ψh ∈ C(�̄) : ψh |K ∈ P�+1(K ) ∀K ∈ Th
}

, (4.43)

and for the normal heat flux, we let
{
�̃1, �̃2, . . . , �̃m

}
be an independent triangulation of �

(made of straight segments in R2, or triangles in R3), and hence h̃ := max
j∈{1,...,m} |�̃ j |. Then,

we approximate χ by piecewise polynomials of degree ≤ � over this new mesh, that is

Hχ

h̃
:=

{
ξh̃ ∈ L2(�) : ξh̃ |�̃ j

∈ P�(�̃ j ) ∀ j ∈ {
1, . . . , m

}}
. (4.44)

Assumption (H.4) is trivially satisfied, whereas it can be proved (cf. [10, Section III], [24,
Lemma 4.10], [33, Lemma 4.7]) that there exists a positive constant c̃0 ∈ (0, 1] such that,
provided that h ≤ c̃0 h̃, Hχ

h̃
satisfies (H.5) as well.

4.5.3 The Rates of Convergence

According to [34, 35], and denoting �∗ :=
{

� + n for PEERS-based
� + 1 for AFW-based

, the approximation

properties of Ht
h , H

σ
h , H

u
h , and H

γ
h , for PEERS (cf. (4.41)) as well as for AFW (cf. (4.42)),

are given as follows:(
APt

h

)
there exists a positive constant C , independent of h, such that for each r ∈ [0, �∗ +1],

and for each s ∈ H
r (�) ∩ L

2
tr(�), there holds

dist
(
s,Ht

h

) ≤ C hr‖s‖r ,� , (4.45)(
APσ

h

)
there exists a positive constant C , independent of h, such that for each r ∈ [0, � + 1],

and for each τ ∈ H
r (�) ∩ H0(div4/3;�) with div(τ ) ∈ Wr ,4/3(�), there holds

dist
(
τ ,Hσ

h

) ≤ C hr
{
‖τ‖r ,� + ‖div(τ )‖r ,4/3;�

}
, (4.46)

(
APu

h

)
there exists a positive constant C , independent of h, such that for each r ∈ [0, � + 1],

and for each v ∈ Wr ,4(�), there holds

dist
(
v,Hu

h

) ≤ C hr‖v‖r ,4;� , (4.47)

and(
APγ

h

)
there exists a positive constant C , independent of h, such that for each r ∈ [0, � + 1],

and for each δ ∈ H
r (�) ∩ L

2
skew(�), there holds

dist
(
δ,H

γ
h

) ≤ C hr‖δ‖r ,� . (4.48)

Aditionally, the approximation properties for the subpaces Hϕ
h and Hχ

h̃
(cf. [13] and [33]),

are the following:(
APϕ

h

)
there exists a positive constant C , independent of h, such that for each r ∈ [0, � + 1],

and for each ψ ∈ H1+r (�), there holds

dist
(
ψ,Hϕ

h

) ≤ C hr‖ψ‖1+r ,� , (4.49)
(
APχ

h

)
there exists a positive constant C , independent of h̃, such that for each r ∈ [0, � + 1],

and for each ξ ∈ H−1/2+r (�), there holds

dist
(
ξ,Hχ

h̃

) ≤ C h̃r‖ξ‖−1/2+r ,� . (4.50)
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We are now in position to specify the rates of convergence of (4.3) with the spaces from
Sect. 4.5.2.

Theorem 4.14 Assume that the data satisfy (4.36), and let (�t, �u) := (
(t, σ ), (u, γ )

) ∈ H×Q
and (ϕ, χ) ∈ H1(�) × H−1/2(�), and (�th, �uh) := (

(th, σ h), (uh, γ h)
) ∈ Hh × Qh and

(ϕh, χh) ∈ Hϕ
h × Hχ

h , be solutions of (3.8) and (4.3), respectively, with u ∈ W (cf. (3.23))
and uh ∈ Wh (cf. (4.12)), whose existences are guaranteed by Theorems 3.11 and 4.8,
respectively. In turn, let p and ph be the exact and approximate pressure defined by the
second identity in (2.7) and (4.38), respectively. Furthermore, given an integer � ≥ 0, assume
that there exists r ∈ [0, � + 1] such that t ∈ H

r (�) ∩ L
2
tr(�), σ ∈ H

r (�) ∩ H0(div4/3;�),
div(σ ) ∈ Wr ,4/3(�), u ∈ Wr ,4(�), γ ∈ H

r (�) ∩ L
2
skew(�), ϕ ∈ H1+r (�), and χ ∈

H−1/2+r (�). Then, there exist constants c̃0 ∈ (0, 1] and C > 0, independent of h and h̃, such
that for all h ≤ c̃0 h̃, there holds

‖�t − �th‖H + ‖�u − �uh‖Q + ‖p − ph‖0,� + ‖ϕ − ϕh‖1;� + ‖χ − χh‖−1/2;�
≤ C hr

{
‖t‖r ,� + ‖σ‖r ,� + ‖div(σ )‖r ,4/3;� + ‖u‖r ,4;� + ‖γ ‖r ,� + ‖ϕ‖1+r;�

}

+C h̃r‖χ‖−1/2+r ,�. (4.51)

Proof It follows straightforwardly from Céa’s estimate (4.40) and the approximation prop-
erties

(
APt

h

)
,
(
APσ

h

)
,
(
APu

h

)
,
(
APγ

h

)
,
(
APϕ

h

)
and

(
APχ

h

)
. ��

5 Illustrative Numerical Examples

In this sectionwedemonstrate properties of the proposed family ofmethods.Meshgeneration,
discretization, and solvers were implemented using the automated finite element library
FEniCS [4] and, in particular, the specializedmodule FEniCSi i [36] required for the treatment
of mixed-dimensional meshes of non-conforming type (and also instrumental to numerically
realize the H−1/2(�) norm). The nonlinear algebraic equations were solved using a Newton–
Raphson method with exact Jacobian, and the iterations were terminated once the �2-norm
of either the relative or absolute residual drops below the prescribed tolerance 10−7. The
numerical tests are divided into three parts: a verification of convergence, the simulation of
stationary phase change in 2D, and the extension to the 3D case.

Example 1 Let the square domain � = (0, 1)2 meshed by successively refined regular trian-
gles.We use this simple test case to assess the convergence of the finite element discretization,
and consider the following smooth closed-form primary variables for an adaptation of the
Burggraf flow [14] (a regularization of the well-known lid-driven cavity flow but here there
is no velocity singularity at the top corners) to the case of thermally driven problems (see,
e.g., [40])

u = C0

(
C ′
1(x)C ′

2(y)

−C ′′
1 (x)C2(y)

)
,

p = C0

Re
[C (3)

2 (y)C1(x) + C ′′
1 (x)C ′

2(y)] + C2
0

2
C ′
1(x)2[C2(y)C ′′

2 (y) − C ′
2(y)2],

ϕ = ϕ0 + (ϕ1 − ϕ0)y + C3(x)C4(y),

with C0 > 0 a scaling parameter and

C1(x) = x5

5
− x4

2
+ x3

3
, C2(x) = y4 − y2, C3(x) = cos(πx), C4(y) = y(1 − y).

123



79 Page 28 of 38 Journal of Scientific Computing (2023) 95 :79

These solutions are used to set boundary velocity and temperature to be imposed on the
boundary. Also, as typically done when using manufactured solutions, after inserting these
closed-form functions into the governingmomentum and energy equations, additional source
terms appear that constitute an augmented problem [48] (the mass conservation is satisfied
as the manufactured velocity is divergence-free).

We consider the strong form (2.8) with the following constitutive equations and adimen-
sional model parameters

μ(ϕ) = exp(−ϕ), f (ϕ) = ϕ(1 − ϕ), η(ϕ) = 1

4
+ 1

2

(
1 + tanh

(
2

(
1

4
− ϕ

)))
,

s(ϕ) = 1

2

(
1 + tanh

(
2

(
1

4
− ϕ

)))
, C0 = λ = ρ = 1, ϕ0 = 0, ϕ1 = 1,

κ = 1.4, k = (0, 1)t.

This choice of parameter regime is simply exemplary and similar in magnitude to the exper-
iments considered in [40]. The null mean value for the trace of the stress is enforced through
a real Lagrange multiplier method. Note that, as requested by the constraint h ≤ c̃0 h̃ (cf.
remark on the verification of (H.5) at the end of Sect. 4.5.2), the mesh for the heat flux
approximation is simply taken as two levels lower than a conforming mesh to the boundary
of the bulk mesh (the former is constructed with 2 j+2 + 4 segments per side and the latter
with 2 j + 1 segments per side, giving h̃ ≈ 4h).

Absolute errors are measured in the norms suggested by the analysis (where the exact
solutions are evaluated at the quadrature points), which we denote – together with the exper-
imental rates of convergence – as usual

e(t) = ‖t − th‖0,�, e(σ ) = ‖σ − σ h‖H(div4/3;�), e(u) = ‖u − uh‖0,4,�,

e(γ ) = ‖γ − γ h‖0,�,e(p) = ‖p − ph‖0,�, e(ϕ) = ‖ϕ − ϕh‖1,�,

e(χ) = ‖χ − χh̃‖−1/2,�,r(χ) = log(e(χ)/e′(χ))

log(̃h/h̃′)
, r(%) = log(e(%)/e′(%))

log(h/h′)
,

with % ∈ {t, σ ,u, p, γ , ϕ}, and where e,e′ stand for errors generated on two consecutive
meshes of sizes h, h′ (̃h and h̃′ for χ), respectively.

To compute ‖χ − χh̃‖−1/2,� we use the characterization of H−1/2(�) in terms of the
spectral decomposition of the Laplacian operator (see, e.g., [37, Sect. 2]). More precisely, let
S : H1

0(�) −→ H1
0(�) be the bounded linear operator defined by

(Su, v)1,� = (u, v)0,� for all u, v ∈ H1
0(�),

where (·, ·)1,� and (·, ·)0,� denote the inner products of H1
0(�) and L2(�), respectively. Then,

one can find a basis {zi }∞i=1 of eigenfunctions of S with a non-increasing sequence of positive
eigenvalues λi , and for any u = ∑∞

i=1 ci zi there holds

‖u‖2−1/2,� =
∞∑

i=1

c2i λ
−1/2
i ,

so that H−1/2(�) becomes the closure of the span of the basis {zi }∞i=1 in this norm. Cer-
tainly, for the practical computation of ‖u‖2−1/2,� one utilizes a discrete approximation of
the aforementioned spectral decomposition.

We take � = 0, 1 in the PEERS�- and AFW�-based families of finite elements (4.41) and
(4.42), respectively; with (4.43), (4.44). We show the results of the convergence verification
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analysis in Table 1. There we depict the errors and decay rate and observe, for all field
variables, the optimal convergence order h�+1 predicted by (4.51). Sample approximate
solutions are provided in Fig. 1, which are confirmed to follow the flow patterns obtained
in [40]. With the aim of illustrating the performance of the method in a higher Re regime
we repeat the experiments of accuracy verification using Re = 1000, and we only take the
lowest-order cases. The results displayed in Table 2 (using also a different ratio between the
bulk and surface meshes h̃ ≈ 2h) confirm that the method exhibits optimal convergence in
this regime as well.

We further demonstrate the momentum conservation property by computing the norm of
the momentum residual (considering the last case of Re = 1000). More precisely, we project
the forcing term on Hu

h and compute the �∞-norm of the residual vector

mh := η(ϕh)uh − div(σ h) − f (ϕh)k.

We use as an example the AFW�-based discretization with � = 0 and for sake of com-
parison we also tabulate the obtained loss in momentum conservation obtained with the
similar method in [7]. The results are presented in Table 3 confirming the machine precision
momentum conservation of the proposed family of methods.

Example 2 Next we consider the steady regime of the phase change of a material adopting
a 2D slice of a shell-and-tube geometry configuration, which is commonly used in thermal
energy storage systems [2, 41]. We construct a unit disk-shaped geometry with four circular
inclusions of radius 1

8 . The inner tubes are kept hot with ϕhot = 1 and the outer shell is kept
cold ϕcold = −0.01 (which differs from the mixed Dirichlet–Neumann conditions used in
[41]). For the flow equations, all boundaries are equipped with no-slip velocity conditions.
The meshes are unstructured, and the mesh sizes selected for the bulk and for the boundary
are h ≈ 0.022 and h̃ ≈ 0.051, respectively.

Similarly as in [40, 46], we use a porosity-enthalpy model, which means that the viscosity
is taken constant. The temperature-dependent buoyancy, porosity and enthalpy functions are
chosen as follows

f (ϕ) = Ra

Pr
ϕk, η(ϕ) = 105

(
1 + tanh

(
0.01 − ϕ

0.2

))
,

s(ϕ) = 1

Ste
− 1

2 · Ste
(
1 + tanh

(
0.01 − ϕ

0.2

))
,

respectively, where the denominator in the argument of the hyperbolic tangent regularization
indicates the size of the mushy zone (the region that approximates a sharp phase fraction
jump). The remaining coefficients assume the following values

μ = λ = ρ = 1, Pr = 56.2, Ste = 0.02, Ra = 3.27 × 105, κ = 1

Pr
, k = (0, 0, 1)t,

where Ste denotes the Stefan number.
In Fig. 2 we have portrayed the approximate solutions, generated with the second-order

PEERS�-based finite element family (4.41). In particular, the bottom-right panel of the figure
shows the approximate heat flux on the (coarser) boundary mesh, and the top-right panel
shows the typical counter rotating flow patterns expected in differentially heated enclosures.
No closed-form solution is available for this problem but all fields exhibit a well resolved
behavior, even on relative coarse meshes.
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Fig. 1 Example 1. Primal variables (velocity line integral convolution colored according to velocitymagnitude,
and temperature distribution) and mixed unknowns (velocity gradient magnitude, stress magnitude, vorticity
magnitude, and heat flux on the coarser boundary mesh) for the Burggraf stationary flow with thermal effects
obtained after 4 steps of uniform refinement

Example 3 Our last test, adapted from [7], simulates the phase change occurring in themelting
of N–octadecane. The domain consists of the cuboid � = (0, 1.5, 0.3, 1.5)cm3. For the
thermal energy conservation, the boundary is split into two regions:�hot∪�cold (left and right
ends) and �flux (remainder of the boundary) where temperature and heat flux are prescribed,
respectively. The molten material is on the “left" of the domain (towards the wall at x = 0
where we prescribe ϕhot = 1). The low temperature imposed on the right wall x = 1.5cm,
ϕcold = −0.01 is lower than the phase change temperature ϕ = 0, in order to allow the phase
change to occur. The remaining boundaries are insulated (zero temperature flux), and on the
whole boundary we impose no-slip conditions (u = 0 everywhere on �). For this test we
use a space resolution of h ≈ 0.07cm and for the boundary sub-mesh we use a triangulation
with h̃ ≈ 0.12cm.

As in example 2, here we use a porosity-enthalpy model together with the following
constitutive relations and parameter scalings

μ = Re = 1, f (ϕ) = Ra

Pr · Re2 ϕk, η(ϕ) = 105
(
1 + tanh

(
0.01 − ϕ

0.1

))
,

Pr = 56.2, Ra = 3.27 × 105,

s(ϕ) = 1

Ste
− 1

2 · Ste
(
1 + tanh

(
0.01 − ϕ

0.1

))
, Ste = 0.045, λ = ρ = 1,
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Table 3 Example 1. Momentum conservativity verification for the AFW�-based discretization with � = 0
(top) and comparison against a similar (but augmented) formulation from [7] (bottom)

AFW�-based
method

DoF 542 1184 3212 10,244 36,212 135,764

‖mh‖�∞ 2.96e−16 3.23e−16 3.39e−16 3.37e−16 4.16e−16 4.73e−16

P0 − RT0 −
P1 − P0 − P1

DoF 428 1308 4508 16,668 64,028 250,908

augmented
method from
[7]

‖mh‖�∞ 1.03 0.64 0.63 0.61 0.55 0.45

Fig. 2 Example 2. Phase change on a differentially heated shell-tube system. Approximate solutions (velocity
gradient magnitude, total stress magnitude, velocity streamlines, vorticity magnitude, dimensionless temper-
ature, and heat flux) computed with the second-order PEERS�-based mixed-primal method

κ = 10

Pr · Re , k = (0, 0, 1)t.

Given the strong nonlinearity of the non-isothermal coupling, it was necessary to use
a continuation approach (the initial guess at each Newton–Raphson iteration is improved
by solving intermediate problems with an increased value of a given parameter) and as
continuation parameter we use the Rayleigh number starting from Ra= 103. Nine iterations
are required in this case to reach the prescribed tolerance.

The thermal and fluid flow characteristics of the system are shown in Fig. 3 where we
plot temperature iso-surfaces, velocity streamlines, and all other computed quantities using
the lowest-order method based on the AFW� family of finite elements. The obtained flow
structures are qualitatively similar to the expected behaviour for a stationary coupling (that is,
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Fig. 3 Example 3. Phase change of an octadecane specimen. Approximate solutions (velocity gradient magni-
tude, total stress magnitude, velocity streamlines, vorticity magnitude, temperature, and heat flux) computed
with the lowest-order AFW�-based method

a buoyancy-driven recirculation with a relatively large solid–liquid interface and the typical
temperature distribution on the xz-plane).

6 Summary and Concluding Remarks

The purpose of this paper has been to extend and adapt the analysis developed in previous
works for the Navier–Stokes–Brinkman equations to include the coupling with phase change
models.We have introduced amodel problem and derived the continuous formulation, adopt-
ing a fixed-point strategy to analyze the corresponding solvability. We have utilized recent
results on perturbed saddle-point problems and the Babuška–Brezzi theory, both in Banach
spaces, to study the corresponding uncoupled problems and then applied the classical Banach
theorem to conclude the existence of a unique solution. We have also introduced a Galerkin
scheme and used the Brouwer theorem to prove the existence of a solution, while deriving
a priori error estimates and establishing corresponding rates of convergence using specific
finite element subspaces satisfying suitable assumptions.

Overall, our results contribute to the understanding and analysis of coupled problems in
heat-driven flow, specifically in the context of phase change models, using Banach spaces-
based frameworks. The use of a Banach spaces-based framework has allowed for a more
general approach, avoiding augmentation techniques and maintaining a closer structure to
the physical model in mixed form. The techniques and methodologies presented in this paper
can be applied to other models and problems in continuum mechanics and related fields,
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further advancing our understanding and ability to simulate and predict various physical
phenomena.
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