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Abstract
Due to its significance in terms ofwave phenomena a considerable effort has been put into the
design of preconditioners for the Helmholtz equation. One option to design a preconditioner
is to apply a multigrid method on a shifted operator. In such an approach, the wavenumber
is shifted by some imaginary value. This step is motivated by the observation that the shifted
problem can be more efficiently handled by iterative solvers when compared to the standard
Helmholtz equation.However, up to now, it is not obviouswhat the best strategy for the choice
of the shift parameter is. It is well known that a good shift parameter depends sensitively
on the wavenumber and the discretization parameters such as the order and the mesh size.
Therefore, we study the choice of a near optimal complex shift such that a flexible generalized
minimal residual (FGMRES) solver converges with fewer iterations. Our goal is to provide a
mapwhich returns the near optimal shift for the preconditioner depending on thewavenumber
and themesh size. In order to compute this map, a data driven approach is considered:We first
generate many samples, and in a second step, we perform a nonlinear regression on this data.
With this representative map, the near optimal shift can be obtained by a simple evaluation.
Our preconditioner is based on a twogrid V-cycle applied to the shifted problem, allowing us
to implement a semi matrix-free method in which only the coarse grid and boundary matrices
need to be stored in memory. On the fine grid, only the action of the matrix applied to a vector
is computed, without assembling the global matrix. This enables efficient use of computing
resources and allows problems to be solved at scales that were previously limited by the
available memory. The performance of our preconditioned FGMRES solver is illustrated
by several benchmark problems with heterogeneous wavenumbers in two and three space
dimensions.
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1 Introduction

The Helmholtz equation plays an important role in the mathematical modeling of wave
phenomena like the propagation of sound and light. Because of its importance, the Helmholtz
equation is of large interest for both, analytical and numerical research. In this work, we deal
with the efficient solving of linear systems of equations resulting from standard conforming
finite element discretizations of the Helmholtz equation.

According to [11, 20], there are several reasons why the numerical solution of these
equation systems is a challenging task. One reason is that the solutions of the Helmholtz
equation are oscillating on a scale of 1/k, where k denotes the wavenumber. Thewavenumber
k is proportional to the frequency of the simulated waves. As a consequence, a large number
ofmesh nodes is required to resolve high frequencywaves. On closer examination, it turns out
that the required number of mesh nodes is proportional to k2. Moreover, low-order methods
suffer from pollution effects, which implies thatO(k2)mesh nodes are not sufficient to bound
the discretization error as the wavenumber k increases. This implies that very large systems
of equations have to be solved if large wavenumbers are considered. A further difficulty is
that for large wavenumbers, these linear systems of equations can be distinctly indefinite such
that classical iterative solvers perform poorly [12]. For instance, standard multigrid methods
yield unsatisfactory results, since it can be shown that the smoothers as well as the coarse grid
corrections cause growing error components [8, 14]. These observations motivate the design
of more effective iterative solvers. As a consequence, great effort has been made to achieve
this goal. An overview of different solution methods that have been tested in this context can
be found in [17, 21]. Due to the fact that classical iterative solvers like the Jacobi method
and multigrid methods are not appropriate for a direct application to the Helmholtz problem
[10, 38], Krylov subspace methods like GMRES [35] or BiCGSTab [16] have attracted more
attention. This is motivated by the fact that these Krylov subspace methods converge even
in the case of indefinite matrices. However, their convergence can be very slow without a
sophisticated preconditioner [29, 31, 37, 40].

It turns out that a simple modification of the original Helmholtz problem forms the basis
to derive an efficient preconditioner for a Krylov subspace method. This is achieved, e.g., by
adding a complex shift to the square of the wave number resulting in a new partial differential
equation (PDE). This PDE is referred to as the shifted Laplacian problem or the shifted Lapla-
cian preconditioner. In the remainder of this work, we will use the term shifted Laplacian
problem [2, 6, 10, 20, 28, 39].

A crucial issue in this context is to determine the optimal shift denoted by ε [10, 20]. It
can be shown that for ε ∈ O(k), the shifted Laplacian problem is a preconditioner for the
GMRESmethodwith wavenumber-independent convergence. On the other hand using a shift
ε ∈ O(k2) [10, 15], the standardmultigridmethod shows optimal convergence for the discrete
counterpart of the shiftedLaplacian problem.Thismeans that there is a gapbetween the choice
ε ∈ O(k) and ε ∈ O(k2). From this conclude that a shift of ε ∈ O(k)σ ), σ ∈ [1, 2] should
yield a solver for the unshifted Helmholtz problem, which can be regarded as a compromise
between a fast multigrid convergence and a good preconditioner which reduces the total
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number of required iterations. One cannot expect, nor is it the goal, that this approach yields
wavenumber independent iteration numbers. Obviously, it is of great interest to determine
not only qualitatively but also quantitatively ε depending on the wave number k such that
the convergence rate is minimal. However, there is no analytical formula how to choose the
optimal order exponent σ , and according to our knowledge, no article has been published
yet which provides a-priori optimal shifts for problems considering general heterogeneous
wavenumbers.

The goal of this paper is to design a Krylov subspace method using a near optimal shift.
As the outer iterative solver for the standard Helmholtz equation, we choose the FGMRES
method [36]. As the preconditioner for the outer solver, we use the standard twogrid solver
[41] applied to the shifted problem. The twogrid solver uses the damped Jacobi method as a
smoother. This allows for a semi-matrix free implementation of the iterative solver, meaning
that most of the required matrix vector products can be realized without accessing a stored
global sparse matrix. The Helmholtz equation as well as the shifted Laplacian problem are
discretized using standard Qp, p ∈ {1, 2, 3}, finite elements. In order to circumvent the
lack of knowledge on how to choose an optimal shift, we use a data driven approach such
as in [23, 24, 32]. Thereby, for a given constant wavenumber k and a mesh size h, the near
optimal complex shift is determined by an optimization method. For this purpose, we use
the golden-section method [25]. This procedure is repeated for a large number of samples
with respect to k and h. Having for each sample the optimal exponent σopt at hand, a map is
constructed, such that a near optimal shift can be obtained by just evaluating the map for a
given wavenumber and mesh size. By means of such a map, an optimal FGMRES solver can
be constructed in an efficient way, particularly, if a highly heterogeneous distribution of the
wavenumber has to be considered. In order to support our numerical findings, we perform a
Local Fourier Analysis (LFA) for the Q1-discretization in two space dimensions. Similar to
[12, 15], we determine for a certain wavenumber and meshsize exponents shifts such that the
twogrid solver is convergent. LFA is a standard tool for analyzing the convergence behavior
of a multigrid solver. Thus it has a long tradition in the multigrid context. Details on LFA
can be found e.g. in the following references: [7, 27, 41, 43].

The rest of this paper is organized as follows: Sect. 2 contains the problem setting as well
as the variational formulations of the Helmholtz equation and the shifted Laplacian equation.
Furthermore, the standard finite element discretizations and theoretical results from literature
are recalled. Section3 focuses on the twogrid preconditioner. Using a LFA, we study the
convergence behavior of the twogrid solver. Then in Sect. 4, the FGMRES solver combined
with the twogrid solver is introduced. In Sect. 5, the generation of training data that are used
to estimate the optimal shift is described. The numerical results are presented and discussed
in Sect. 6. In case of the two dimensional settings, the optimal shifts are related to the results
of the LFA in Sect. 3. Finally in Sect. 7, we summarize our main findings and give an outlook.

2 Problem Setting and Variational Formulations

The basic equation for modeling wave phenomena like the propagation of sound and light,
is the linear wave equation

wt t − c2Δw = f̃ , (1)

where the solution variable w represents, e.g., the intensity of sound or light. The term c
denotes the propagation speed in a specific medium, and f̃ incorporates external source
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terms. Considering only time-harmonic solutions

w(x, t) = u(x)e−iωt ,

with an angular frequency ω ∈ R, (1) can be transformed into a stationary equation which is
known as the Helmholtz equation [18]:

−Δu − k2u = f in Ω,

∂u

∂n
− iku = g on ∂Ω.

(2)

The parameter k is given by k = ω/c and is referred to as the wavenumber. In the remainder
of this work, we assume that it is given by a spatially varying function k : Ω → R, where
Ω ⊂ R

d , d ∈ {2, 3}, represents a tensorial bounded domain. The source term f results from
the transformation of f̃ . The Helmholtz equation is equipped with an impedance boundary
condition, i.e., a first-order absorbing boundary condition with g : ∂Ω → C. Using this
notation, the shifted Laplacian problem can be defined as follows [10, 20]:

−Δu − (k2 + iε)u = f in Ω,

∂u

∂n
− iku = g on ∂Ω.

(3)

Thereby the parameter ε ∈ R represents the imaginary shift with respect to the Helmholtz
equation (2). For ε ≥ 0, f ∈ L2(Ω), g ∈ L2(Γ ), and k ∈ L∞(Ω), the standard variational
formulation of (3) reads as follows: Find u ∈ H1(Ω,C) such that

aε(u, v) = F(v), for all v ∈ H1(Ω,C). (4)

The space H1(Ω,C) consists of complex valued functions, whose real and imaginary parts
are in the real valued spaceH1(Ω). The sesquilinear formand the linear formof the variational
formulation are given by:

aε(u, v) =
∫

Ω

∇u · ∇v dx −
∫

Ω

(k2 + iε)uv dx − i
∫

∂Ω

k uv dx

= a(u, v) − m(u, v; k, ε) − ib(u, v; k)
and

F(v) =
∫

Ω

f v dx +
∫

∂Ω

gv dx.

Note that the sesquilinear form for the original Helmholtz problem is given by a0(·, ·).
According to [33, Prop. 8.1.3] the variational formulation (4) is well-posed.

In order to solve this equation numerically, standard Qp-elements, p ∈ {1, 2, 3}, are used.
Our assumptions on Ω guarantee that we can easily construct suitable meshes yielding an
exact presentation of the boundary ∂Ω . The mesh size of the used tensorial grid is denoted
by h. Further, let Vh be the finite dimensional subspace of H1(Ω,C) defined by conforming
Qp-elements. Using this notation, the discrete version of (4) has the following form: Find
uh ∈ Vh such that:

aε(uh, vh) = a(uh, vh) − m(uh, vh; k, ε) − ib(uh, vh; k) = F(vh) for all vh ∈ Vh . (5)

As it has been shown in [19, Prop. 2.1], the discrete variational Helmholtz formulation has
a unique solution. Taking uh = ∑N

i=1 uiφi , where {φi }Ni=1 is a basis for Vh , problem (5)
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induces the following matrix equation for the coefficient vector u = [u1, u2, . . . , uN ]T:
Ku − M(k, ε)u − iB(k)u = F, (6)

where Ki j = a(φ j , φi ), Mi j (k, ε) = m(φ j , φi ; k, ε), Bi j (k) = b(φ j , φi ; k), and Fi =∫
Ω

f φi dx + ∫
∂Ω

gφi dx. We define the system matrix as

A(k, ε) = K − M(k, ε) − iB(k). (7)

3 Local Fourier Analysis for the Twogrid Solver in Two Space
Dimensions

In this section, we study the convergence behavior of the twogrid solver applied to the
discrete equation (5). Thereby only the two dimensional problem and the Q1-discretization
is considered. With respect to the reference element (0, 1)2, we use the following basis
functions:

ϕ1 (x, y) = x · y, ϕ2 (x, y) = (1 − x) · y,
ϕ3 (x, y) = (1 − y) · x and ϕ4 (x, y) = (1 − x) · (1 − y) .

Furthermore, we investigate only the local convergence of the twogrid solver i.e. we neglect
the boundary conditions and consider only the following matrix:

A(k, ε) = K − (k2 + iε)M, (8)

whereM = m(φ j , φi ; 1, 0). Of particular interest is the region of convergence of the twogrid
solver. To analyze the convergence behavior of a twogrid solver, we use a standard technique
which is referred to as Local Fourier Analysis (LFA) [7, 12, 27, 41, 43]. In this work it is
used to determine for which shifts ε the twogrid solver is converging. Thereby, we restrict
ourselves to shifts having the form ε = kσ , where k is the wavenumber and σ ∈ [1, 2]
denotes an exponent. Therefore,we consider in the remainder of thiswork the systemmatrices
A(k, kσ ), σ ∈ [1, 2]. The matrices A(k, kσ ) in (8) can be represented in a simplified way by
means of the stencil notation:

Lh(σ ) = 1

3

⎡
⎣−1 −1 −1

−1 8 −1
−1 −1 −1

⎤
⎦ − (k2 + ikσ )

h2

36

⎡
⎣1 4 1
4 16 4
1 4 1

⎤
⎦ .

The first part of the stencil Lh(σ ) corresponds to the standard stiffness matrix, while the
second part represents the standard mass matrix. Let Gh be the grid given by

Gh = {
x = (x1, x2) = (l1h, l2h), l = (l1, l2) ∈ Z

2} ,

and V the index set of compact stencils

V = {κ = (l1, l2)| l1, l2 ∈ {−1, 0, 1}} ⊂ Z
2.

For simplicity, we have assumed that the Q1-discretization is based on a mesh consisting of
squares with an edge length of h. A stencil S applied to a grid function wh works as follows
[41, Chapter 4]:

Swh(x) =
∑
κ∈V

sκwh(x + hκ), x ∈ Gh .
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The values sκ ∈ C are the coefficients of a stencil S. In a next step, we introduce the notation
for the operator of the twogrid solver T 2h

h [9]. Applying T 2h
h to the error function elh of the

l-th iteration yields:

el+1
h = T 2h

h elh, T 2h
h = Sν2

h K 2h
h Sν1

h , K 2h
h = Ih − I h2h L

−1
2h I

2h
h Lh .

Thereby, Sh denotes the smoothing operator. In our work, we use the damped ω-Jacobi
smoother, where ω is the damping factor and ν j , j ∈ {1, 2}, are the number of pre- and
postsmoothing steps. It is a well known fact that the operator for the damped Jacobi is given
by

Sh(σ ) = Ih − ωD−1
h (σ )Lh(σ ),

where Ih is the identity operator, and Dh(σ ) corresponds to the diagonal of the matrix in (8).
A straightforward computation yields the following stencil for Sh(σ ):

Sh(σ ) = ω

8 − λh2 43

⎡
⎢⎢⎢⎢⎣

1 + λh2 1
12 1 + λh2 13 1 + λh2 1

12

1 + λh2 13
( 1

ω
− 1

) (
8 − λh2 43

)
1 + λh2 13

1 + λh2 1
12 1 + λh2 13 1 + λh2 1

12

⎤
⎥⎥⎥⎥⎦ ,

where we have used the abbreviation λ = k2 + ikσ . Combining the smoothing operator with
the correction operator K 2h

h , results in the twogrid operator T 2h
h . K 2h

h itself is given by a
combination of L2 h , I 2 hh , and I h2h . The operators

I 2hh : Gh → G2h and I h2h : G2h → Gh

stand for the restriction and prolongation where G2h denotes the coarse grid.
According to [41, Chapters 2 and 4], the stencils for the prolongation, restriction and

identity operator are given by:

I h2h = 1

4

⎤
⎦1 2 1
2 4 2
1 2 1

⎡
⎣ , I 2hh = 1

4

⎡
⎣1 2 1
2 4 2
1 2 1

⎤
⎦ , and Ih =

⎡
⎣0 0 0
0 1 0
0 0 0

⎤
⎦ .

L2h in stencil notation has a similar shape as Lh , the only difference is that h has to be
replaced by 2h, and x is an element of the coarse grid G2h . The inverted brackets for the
stencil of the prolongation operator I h2h indicate that this stencil has to be applied in a different
way as the remaining stencils, see [41, Chapter 2] for more details on the notation. Applying
I h2h to a coarse grid function w2h yields a fine grid function wh using the following rule [41,
Chapter 2]:

wh(x + hκ) = (I h2h)κw2h(x), x ∈ G2h,

where (I h2h)κ is the entry of the stencil I h2h belonging to the index κ ∈ V . By means of a LFA
we determine for the twogrid operator T 2h

h a local convergence factor ρloc (σ ) depending on
the exponent σ . Thereby, we follow the steps as described in [12] and [41, Chapter 4]. For
more detailed information the interested reader is referred to “Appendix A”.

Once calculated, the local convergence factor ρloc (σ ) helps us to determine the mini-
mal exponent σc for the shift ε separating the interval Iσ = [1, 2] into two subsets Iconv

and Idiv = Iσ \Iconv , where Iconv = [2, σc] and σc = argminσ∈Iσ {ρloc(σ ) < 1} . In other
words: Iconv ⊂ Iσ contains the exponents σ for which the twogrid method converges. Vary-
ing the smoothing steps ν1 and ν2 as well as the damping factor ω for kh < 0.75 and a
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Fig. 1 Minimal exponent σc with respect to kh for different mesh sizes h ∈
{
2−4, . . . , 2−10

}

fixed mesh size h shows only little impact on the graph of σc. On the other hand, varying
the mesh size h and keeping the remaining parameters fixed, shows a significant impact on
σc (see Fig. 1). On closer examination, it can be observed that for a fixed wavenumber k a
small mesh size h enlarges the interval Iconv . Reduced intervals Iconv arise for a fixed h and
a sufficiently large k.

4 Semi Matrix-Free FGMRES with Twogrid Shifted Laplacian
Preconditioner

In this section, we draw our attention to the twogrid method from the previous section being
used as a preconditioner within a Krylov subspacemethod. Therefore, we briefly describe the
building blocks of the iterative solver used for the numerical experiments in the subsequent
sections. For the outer iterations of our solver, we use the preconditioned FGMRES Krylov
subspace method [36] to solve the system

A0P−1
ε (Pεu) = F

for a matrix A0, a preconditioner Pε , and a right-hand side F. In our applications, the system
matrix A0 is given by (7) without a complex shift, i.e., A0 = A(k, 0) and the corresponding
right-hand side F is as in (6). The preconditioner P−1

ε is a single twogrid (ν, ν)-cycle with
ν ∈ N pre- and postsmoothing steps applied to the preconditioner systemmatrix of the shifted
problem Aε = A(k, ε).

Let V1 ⊂ V2 = Vh be a given hierarchy of two discrete subspaces of Vh . To each of these
subspaces, we relate a preconditioner system matrix A(�)

ε stemming from the discretization
of (5) with V� for � = 1, 2. By I, we denote the canonical interpolation or prolongation
matrix, mapping a discrete function from V1 to V2. Moreover, we define a damped Jacobi
smoother Sε with damping factor ω = 2

3 . The Jacobi smoother may be divergent [38], but we
choose it because of its straightforward matrix-free implementation in which only the inverse
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diagonal of the system matrix needs to be stored in an additional vector. Additionally, the
multiplication by the inverse diagonal may be easily parallelizable. Convergent smoothers
like the damped Kacmarz-like smoother [11] require the conjugate transpose of the system
matrix which is not available in a matrix-free method.

The application of P−1
ε is implemented by performing a twogrid (ν, ν)-cycle to approxi-

mately solve the system Pεu = f for u, given some right-hand side vector f. This is achieved
by calling the function cycle(u, f) given in algorithm 1. An important aspect of using this

Algorithm 1 Twogrid (ν, ν)-cycle

1: function cycle(u(2), F(2))

2: For ν steps u(2) ← u(2) + Sε
−1(F(2) − A(2)

ε u(2)) 	 Presmoothing

3: r(1) ← IT(F(2) − A(2)
ε u(2)) 	 Restrict residual

4: Solve A(1)
ε u(1) = r(1) 	 Direct solve

5: u(2) ← u(2) + Iu(1) 	 Add coarse grid correction

6: For ν steps u(2) ← u(2) + Sε
−T(F(2) − A(2)

e u(2)) 	 Postsmoothing
7: return u(2)

8: end function

iterative method is that on the fine level � = 2, the matrices A(2)
ε , S(2)

ε , and I never need to be
formed explicitly. Only the result of their action to a vector is required. More precisely, the
action of A is implemented in a matrix-free fashion by summing the results of the underlying
matrices K and M(k, ε). Due to software limitations, the boundary matrix corresponding to
B(k)was not implemented in a matrix-free way, but is assembled instead. However, since the
integration in the sesquilinear form of b(·, ·; k) is performed on the boundary, the number
of non-zeros in B(k) is of lower order O(h−d+1) compared to the other terms with O(h−d)

non-zeros. Furthermore, the system matrix A(1)
ε on the coarse level � = 1 is assembled and

its LU factorization is stored in memory. Because of this mix of matrix-free operations and
stored matrices, we denote this method as semi matrix-free.

Using such a semi matrix-free approach effectively saves the memory required for stor-
ing the global sparse matrices on finer grids which in turn allows solving problems for
which the matrices and its factorizations do not fit in memory. The direct solve in line 4 of
alg:line:coarsesolve 1 is only performed on the coarse grid and thus requires fewer floating
point operations and less memory storage. Note that the smaller memory consumption is not
the only advantage of a matrix-free approach, since it also significantly reduces the memory
traffic. It can be shown that using matrix-free methods instead of matrix-based approaches is
beneficial for the performance and may even outperform matrix–vector multiplications with
stored matrices [13, 26].

In the remainder of this article, V2 is formed by uniformly subdividing each element in the
mesh corresponding to V1. The mesh size corresponding to V1 is therefore 2h. Additionally,
we do not consider any restarts in the FGMRES method.

5 Data Generation and Processing

In this section, we present our approach to obtain the near optimal complex shift exponents
σ̂ depending on the wavenumber k and discretization parameters � ∈ N with h = 2−� and
p ∈ {1, 2, 3}. The analysis in Sect. 3 justifies the existence of a near optimal complex shift
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σ for which the twogrid method converges, but this does not necessarily need to be optimal
shift for which the FGMRES converges faster. The ultimate goal is to construct a map which
maps the input parameters to the near optimal shift exponent σ̂ , i.e., (k, �, p) 
→ σ̂ . In
order to compute this map, we consider a data based approach in which we generate a set
of samples (k, �, p, σ̂ ) that are used in a subsequent nonlinear regression step. The number
of samples that have been generated are contained in Table 1. We first generated samples
for mesh sizes down to h = 2−7. After this initial sample generation, more samples were
obtained for levels h < 2−7. Since the sample generation on finer meshes takes more time
than on coarser meshes, only fewer samples were collected for h < 2−7, which explains
the smaller number of samples for these levels. However, this disparity in the number of
samples per level is relativized by our special choice of objective function. The following
steps describe the process of generating such a single data point:

1. Choose an order p from the set {1, 2, 3}.
2. Choose a mesh size h = 2−� by selecting an � from the set {4, . . . , 10}.
3. Choose a wavenumber from the interval [ 3p

16h ,
3p
4h ].

4. Generate a right-hand side vector f with components laying uniformly in the interval
[−1, 1].

5. Find the optimal exponent σ̂ ∈ [1, 2] of the complex shift kσ̂ using the gradient free
golden-section search [25] with a tolerance of 10−2. This involves repeatedly solving (2)
on Ω = (0, s)2 with s = 1 and g = 0 using the parameters (k, �, p) and f. The term
optimal indicated that we are looking for exponents that are minimizing the number of
outer iterations for the FGMRES.

6. Store the tuple (k, �, p, σ̂ ) and go to Step 1.

Let r0 be the residual norm at beginning of a solve in Step 5, i.e., r0 = ‖A0u(0) − f‖2. In this
process, we solve until either a relative residual reduction of 10−8 is obtained or a maximum
of 50 iterations is reached. Let rend = ‖A0u(end)−f‖2 be the final residual at termination after
end iterations. In the case without convergence after 50 iterations, the obtained sample is still
included in the data, but the corresponding ρ may be close to one. The objective function

for the minimization in Step 5 is then given by ρ = ( rendr0
)

1
end . Note that the actual residual

norm and not the residual norm of the preconditioned system is used since it reflects the error
of the underlying physical problem more closely. Repeating the above process N times will
generate a set of training data D = {(ki , �i , pi , σ̂i )}Ni=1. Plots of the sample points for this
particular case are presented in Fig. 2 for different values of p. The corresponding average
convergence rate ρ for the near optimal complex shifts are illustrated in Fig. 3. The idea of
this approach is to approximate this map by a smooth function which can be evaluated for
any reasonable input (k, �, p). Even if this data is obtained only for a constant wavenumber
over the whole domain, we will use the approximated map to obtain optimal complex shifts
for inhomogeneous wavenumbers in the numerical experiments in Sect. 6.

In this and the following section, we fixed the number of smoothing steps ν to 3, but
ultimately the parameters ν andω can also be included in the data generation in order to further
augment the data set. However, the values of ν should be restricted to small values since the
Jacobi smoothermay be divergent. Let N�,p = |{(ki , �i , pi , σ̂i ) ∈ D : pi = p}| and define the
weighting coefficient as w�,p = N�,p

|D| . For a vector of coefficients (k̂c,0, k̂c,1, α̂0, α̂1)
T ∈ R

4,
let the approximated map σp be defined as

kc(�) = k̂c,1 · exp(k̂c,0 · �),

α(�) = α̂1 · exp(α̂0 · �),

β(k, �) = 2 − exp(−α(�) · (k − kc(�))),
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Table 1 Number of samples that
have been generated for the
different polynomial degrees p
and meshsizes h

h Samples p = 1 Samples p = 2 Samples p = 3

2−4 4384 4405 3811

2−5 4344 4410 3723

2−6 4434 4376 3780

2−7 2142 2217 2067

2−8 56 55 57

2−9 57 74 53

2−10 62 66 62

Fig. 2 Optimized shift exponents σ̂ for decreasing h and p ∈ {1, 2, 3} from left to right

Fig. 3 Average convergence rate ρ using the optimized exponential shift for decreasing h and p ∈ {1, 2, 3}
from left to right

σp(k, �) = min(max(β(k, �), 1), 2). (9)

The objective function of our regression for a fixed p is defined as

lossp(k̂c,0, k̂c,1, α̂0, α̂1) =
∑

(ki ,�i ,pi ,σ̂i )∈D,pi=p

w−2
�i ,p

· (σ̂i − σp(ki , �i ))
2.

Each summand ismultiplied by the inverseweighting coefficient squared in order to relativize
the disparity in the number of samples per level. For each p ∈ {1, 2, 3}, we train a map σp

with the data obtained in the previous step. This is achieved by optimizing for the vector
of coefficients (k̂c,0, k̂c,1, α̂0, α̂1)

T ∈ R
4. For this purpose, we use PyTorch [34] together

with the ADAM optimizer and a learning rate of 10−3. The weights are initialized with
(0.1, 1.0,−0.5, 1.0)T and the final weights after 50 000 epochs are depicted in Table 2 for
each p. The approximated optimal shift maps together with the sampling points are illustrated
in Fig. 4. These optimized values are used in the MFEM [4] solver code described in the next
section.

This process of training data generation and learning of the parameters in (9) may be
considered as offline computations which only need to be done once. Even if our goal is that
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Table 2 Optimal weights in function σp for p ∈ {1, 2, 3}
p k̂c,0 k̂c,1 α̂0 α̂1

1 0.4592788619853418 2.5790032999702346 −0.6261637288068426 1.7580549857142198

2 0.5736926870738827 2.5729974893966001 −0.6615199737374460 1.5966386518185063

3 0.6305770719029798 2.4284320222555804 −0.4465407372367102 0.1287828338493968

Fig. 4 Sampling points in orange and approximated optimal shift map σp in blue for p ∈ {1, 2, 3} from left
to right

users use our pretrained parameters from Table 2 and plug them directly into (9) to obtain
the optimal shift exponent, we briefly assess these offline costs. Obtaining each training data
sample requires solving the Helmholtz problem several times in order to find the optimal
shift. We assume that generating a single sample for � = 10 and p = 1 requires solving
the Helmholtz problem for 5 times on average. On the machine used in Sect. 6, this requires
in the worst case 5 · 3.5 min = 17.5 min. Generating the 62 samples on the finest mesh
for p = 1 therefore took about 18 h in total. However, since each sample can be generated
independently, this process can be trivially parallelized if enough resources are available. The
final learning process requires much less resources because of the relatively small number
of training data and parameters. On a state-of-the-art laptop, the parameter identification
required only about one minute using just the CPU.

Next, we compare the minimal exponents σc from Sect. 3 to the optimal shifts for the
FGMRES solver. For this purpose, we gradually enlarge the computational domain in order
to exclude the influence of the boundary conditions. By means of this comparison, we want
to theoretically support the choice of the shift kσ obtained by the optimization procedure
described in the first part of this section.

From the LFA, we obtain the shift exponent for which it is guaranteed that the twogrid
method applied to the shifted Laplacian problem converges, provided that the domain is very
large and boundary effects do not play a role. This shift exponent, however, does not need
to be the optimal one when used in conjunction with the outer FGMRES solver. Since our
data generation provides us with near optimal shift exponents of the whole solver, we can
compare them to the values from the LFA. We expect that, asymptotically, the near optimal
shift exponents are larger than the LFA exponents, since these guarantee convergence.

The LFA yields results on an infinitely large domain, therefore, we need to make the near
optimal shifts from the numerical experiments comparable. For this purpose, we perform
two different systematic comparisons. In the first setup, we fix the parameters p = 1 and set
h ∈ {2−5, 2−6, 2−7}. In the second setup, we consider growing square domainsΩs = (0, s)2
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Fig. 5 Required shift exponent σc obtained from the LFA and numerically sampled near optimal shifts on
different domains Ωs for p = 1 and a fixed mesh size h ∈ {2−5, 2−6, 2−7}

for s ∈ {2i : i ∈ {0, 1, . . . , 5}} and keep the mesh size fixed. For both setups, the number of
degrees of freedom increases. More precisely in Fig. 5, we have an increase in the number of
degrees of freedom within each picture from the blue to the brown color as well as from the
left to the right picture within each color group.

We illustrate the results in Fig. 5 by plotting the required shift obtained fromLFAalongside
the near optimal shifts obtained by the data driven approach on different domains Ωs and
different fixed shifts h. Wemay observe that the near optimal shift exponents are in fact larger
than the required shift exponent, if the domain is enlarged.

6 Numerical Results

In this section, we demonstrate the effectiveness of using the approximated near optimal shift
exponents when applied to solving (2). For this purpose, we consider a set of synthetic and
actual scenarioswith heterogeneouswavenumbers. In particular,we solve (2) onΩ = (0, 1)d ,
d ∈ {2, 3}, with a source term

f (x) = 2 · exp(−1000 · ‖x − s‖22),
where the source location s ∈ R

d is specified in each of the scenarios. The additional
boundary term g is set to zero, i.e., g = 0. In each of the following scenarios, we normalize
the given velocity profile such that its values lie in the interval [0, 1] and denote this scaled
profile byμ : Ω → [0, 1]. In the following,μ is called velocity profile. Moreover, we choose
a kmax ∈ R and set the final heterogeneous wavenumber profile as k(x) = kmax · μ(x).

The solver with the two-grid preconditioner described in Sect. 4 is implemented using
the MFEM modular finite element library [4] with its support for multigrid operators. The
operators on the fine grid are implemented in a matrix-free fashion by using the partial
assembly approach in which only the values at quadrature points are stored. The operator
applications reuse these precomputed data to compute the action of the operators on-the-fly.
The coarse grid problem is solved by computing the LU decomposition with MUMPS [3]
through the PETSc [5] interface within the first FGMRES iteration. Subsequent iterations
reuse the factorization for an efficient inversion of the coarse grid matrix. The linear systems
in each of the scenarios are solved without restarts and until a relative residual reduction 10−8

is achieved or the maximum number of 500 iterations is reached. The data and source code
for the nonlinear regression in Sect. 5 as well as the MFEM driver source code are available
in the Zenodo archive.1

1 https://doi.org/10.5281/zenodo.4607330.
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All run-time measurements for the 2D examples are obtained on a machine equipped
with two Intel Xeon Gold 6136 processors with a nominal base frequency of 3.0 GHz. Each
processor has 12 physical coreswhich results in a total of 24 physical cores. The total available
memory of 251 GB is split into two NUMA domains, one for each socket. All available 24
physical cores are used for each computation.

The measurements for the 3D examples are conducted on the SuperMUC-NG system
equipped with Skylake nodes. The following values were taken from [30]. Each node has two
Intel Xeon Platinum 8174 processors with a nominal clock rate of 3.1 GHz. Each processor
has 24 physical cores which results in 48 cores per node. Each core has a dedicated L1 (data)
cache of size 32kB and a dedicated L2 cache of size 1024kB. Each of the two processors
has a L3 cache of size 33MB shared across all its cores. The total main memory of 94GB is
split into equal parts across two NUMA domains with one processor each. We use the native
Intel 19.0 compiler together with the Intel 2019 MPI library.

In the following subsections, we consider scenarios with velocity profiles stemming from
different sources: an artificial wedge example and three profiles from synthetic and non-
synthetic geological cross-sections. Lastly, we consider a 3D scenario in which one of the
2D cross-sections are extruded to 3D. For each possible scenario, we compare the outer

FGMRES iteration numbers for different values of the complex shift ε ∈ {0, k, k 3
2 , k2, kσp }.

By kσ , we denote the case in which the optimal shift exponent map σp from (9) is used with
the respective coefficients from Table 2. Note that for heterogeneous k, the shift exponent
σp = σp(x) depends on the spatial location x. The speed-ups are calculated with respect
to the case without a shift. In particular, let tre f be the time-to-solution for ε = 0 and tnew
the time-to-solution for one of the methods with ε �= 0. The respective speed-up is then
calculated as 100 · (

tre f
tnew

− 1)%.

6.1 Wedge Example

In the first scenario, we consider an artificial velocity profile μ with three distinct values
as illustrated in the left of Fig. 6. The maximum value of the source term is located at
s = (0.5, 0.55)T. We collect the required number of FGMRES iterations and the respective
compute times for p ∈ {1, 2, 3} and the maximum wavenumbers kmax ∈ {450, 1100, 1800}
in Table 3. Additionally, in the center and right of Fig. 6, we present the real and imaginary
parts of the solution in the case of p = 2. We observe that using the near optimal shift
exponent results in the smallest number of iterations throughout all the considered cases.

However, due to a faster LU factorization, using a shift k
3
2 still results in a shorter compute

time for p = 2 even if five more iterations are performed.
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Fig. 6 Wedge example velocity profile with source location (left) and real and imaginary part of the solution
in the case p = 2 (center and right)

Table 3 Parameter values,
iteration numbers, and compute
times for the 2D wedge example

Param. Value ε Iter Time [m:s] Speed-up

p 1 0 412 3:33.68

h 2−10 k 330 2:10.38 63.89%

kmax 450 k
3
2 96 0:32.16 564.43%

kmax · h 0.585938 k2 > 500 – –

DoFs 2,101,250 kσ 93 0:31.29 582.90%

p 2 0 491 19:01.23

h 2−10 k 385 12:52.17 47.80%

kmax 1100 k
3
2 114 3:09.02 503.76%

kmax · h 1.07422 k2 > 500 – –

DoFs 8,396,802 kσ 109 3:18.40 475.22%

p 3 0 371 28:04.96

h 2−10 k 297 21:04.68 33.23%

kmax 1800 k
3
2 111 7:13.79 288.43%

kmax · h 1.75781 k2 > 500 – –

DoFs 18,886,658 kσ 106 6:53.57 307.42%

6.2 Marmousi Model

In a second scenario, we consider the velocity profile stemming from the synthetic Marmousi
model devised by the Institut Français du Petrole [42]. The corresponding scaled velocity
profile is illustrated in the left of Fig. 7. Here, the maximum value of the source term is
located at s = (0.5421, 0.8946)T. We collect the required number of FGMRES iterations
and the respective compute times for p ∈ {1, 2, 3} and the maximum wavenumbers kmax ∈
{600, 800, 1250, 1900} in Table 4. Additionally, in the center and right of Fig. 7, we present
the real and imaginary parts of the solution in the case of p = 2.Weobserve that using the near
optimal shift exponent results in the smallest number of iterations for large wavenumbers.
For a smaller wavenumber kmax = 800 and p = 2, the trained shift still yields the minimal
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Fig. 7 Marmousi example velocity profilewith source location (left) and real and imaginary part of the solution
in the case p = 2 (center and right)

number of required iterations when compared to the other shifts. This means that using
the trained shift does not worsen the performance if the wavenumber is not in the critical

regime. Using a shift k
3
2 results in a slightly shorter compute time for p = 1 even if eight

more iterations are performed, since the LU factorization required more time. This cannot
observed for the higher order cases with p > 1.

6.3 Migration fromTopography

In a third scenario, we consider the velocity profile stemming from the migration from
topography model representing a cross section through the foothills of the Canadian rockies;
courtesy of Amoco and BP [22]. The corresponding scaled velocity profile is illustrated in the
left of Fig. 8. Here, themaximumvalue of the source term is located at s = (0.2159, 0.6054)T.
We collect the required number of FGMRES iterations and the respective compute times
for p ∈ {1, 2, 3} and the maximum wavenumbers kmax ∈ {500, 1100, 1900} in Table 5.
Additionally, in the center and right of Fig. 8, we present the real and imaginary parts of the
solution in the case of p = 2. We observe that using the optimal shift exponent results in the
smallest number of iterations and the shortest compute time throughout all the considered

examples. The choice k
3
2 yields similar small iterations when compared to using no shift or

a shift of k, but using the trained shift yields the fastest solution without requiring a manual
choice of the shift.

6.4 BP Statics BenchmarkModel

In a fourth scenario, we consider the velocity profile stemming from the synthetic BP statics
benchmarkmodel created byMikeO’Brien andCarl Regone, provided by courtesy ofAmoco
and BP [1]. The corresponding scaled velocity profile is illustrated in the left of Fig. 9. Here,
the maximum value of the source term is located at s = (0.4368, 0.6852)T. We collect the
required number of FGMRES iterations and the respective compute times for p ∈ {1, 2, 3}
and the maximum wavenumbers kmax ∈ {450, 1100, 1900} in Table 6. Additionally, in the
center and right of Fig. 9, we present the real and imaginary parts of the solution in the case
of p = 2. We observe that using the optimal shift exponent results in the smallest number of
iterations and shortest compute time throughout all the considered examples. Considerably,
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Table 4 Parameter values,
iteration numbers, and compute
times for the 2D Marmousi
example

Param Value ε Iter Time [m:s] Speed-up

p 1 0 358 3:03.67

h 2−10 k 312 1:59.62 53.54%

kmax 600 k
3
2 147 0:49.81 268.74%

kmax · h 0.5859 k2 > 500 – –

DoFs 2,101,250 kσ 139 0:50.73 262.05%

p 2 0 15 0:55.37

h 2−10 k 15 0:41.30 34.07%

kmax 800 k
3
2 55 1:47.19 −48.34%

kmax · h 0.78125 k2 > 500 – –

DoFs 8,396,802 kσ 15 0:41.41 33.71%

p 2 0 197 6:54.95

h 2−10 k 181 5:33.39 24.46%

kmax 1250 k
3
2 125 3:44.19 85.09%

kmax · h 1.2207 k2 > 500 – –

DoFs 8,396,802 kσ 109 3:21.13 106.31%

p 3 0 89 6:08.71

h 2−10 k 85 5:35.00 10.06%

kmax 1900 k
3
2 99 6:29.95 −5.45%

kmax · h 1.85547 k2 > 500 – –

DoFs 18,886,658 kσ 76 5:01.33 22.36%

Fig. 8 Migration from topography velocity profile with source location (left) and real and imaginary part of
the solution in the case p = 2 (center and right)
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Table 5 Parameter values,
iteration numbers, and compute
times for the 2D migration from
topography example

Param Value ε Iter Time [m:s] Speed-up

p 1 0 421 3:38.80

h 2−10 k 345 2:18.51 57.97%

kmax 500 k
3
2 118 0:40.02 446.73%

kmax · h 0.4883 k2 > 500 – –

DoFs 2,101,250 kσ 107 0:35.98 508.12%

p 2 0 147 5:09.24

h 2−10 k 134 4:05.64 25.89%

kmax 1100 k
3
2 91 2:36.09 98.12%

kmax · h 1.07422 k2 > 500 – –

DoFs 8,396,802 kσ 73 2:18.60 123.12%

p 3 0 402 31:39.68

h 2−10 k 345 26:23.38 19.98%

kmax 1900 k
3
2 118 7:48.05 305.87%

kmax · h 1.85547 k2 > 500 – –

DoFs 18,886,658 kσ 108 7:04.33 347.69%

Fig. 9 BP statics benchmark model velocity profile with source location (left) and real and imaginary part of
the solution in the case p = 2 (center and right)

for p = 2 and p = 3 the choice of k
3
2 results in a larger number of required iterations and a

longer compute time than for the case without a shift.

6.5 Marmousi 3DModel

In the last scenario, we consider again the velocity profile stemming from the synthetic
Marmousi model devised by the Institut Français du Petrole [42] extruded along a third
dimension. The corresponding scaled velocity profile is illustrated in the left of Fig. 10. Here,
the maximum value of the source term is located at s = (0.5421, 0.8946, 0.5)T. We collect
the required number of FGMRES iterations and the respective compute times for p ∈ {1, 2}
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Table 6 Parameter values,
iteration numbers, and compute
times for the 2D BP statics
benchmark model example

Param Value ε Iter Time [m:s] Speed-up

p 1 0 192 1:35.43 –

h 2−10 k 154 0:59.33 60.85%

kmax 450 k
3
2 125 0:42.00 127.21%

kmax · h 0.439453 k2 > 500 – –

DoFs 2,101,250 kσ 109 0:39.22 143.32%

p 2 0 113 4:01.63 –

h 2−10 k 94 2:53.50 %

kmax 1100 k
3
2 148 4:25.31 −8.93%

kmax · h 1.07422 k2 > 500 – –

DoFs 8,396,802 kσ 79 2:27.00 64.37%

p 3 0 146 9:58.49 –

h 2−10 k 129 8:28.25 17.76%

kmax 1900 k
3
2 185 12:23.17 −19.47%

kmax · h 1.85547 k2 > 500 – –

DoFs 18,886,658 kσ 107 7:01.24 42.08%

Fig. 10 Marmousi 3D model velocity profile (left) and isosurfaces at value 0 of the real and imaginary part of
the solution in the case p = 1 (center and right)

and the maximum wavenumbers kmax = 150 in Table 7. Additionally, in the center and right
of Fig. 10, we present the real and imaginary parts of the solution for p = 1. The timings
were obtained on the SuperMUC-NG cluster described above by using 384 cores across 16
compute nodes,i.e., 24 cores per compute node. We observe that for p = 1, the near optimal
shift yields the smallest number of outer FGMRES iterations, but like in the 2D Marmousi

case, using a shift of k
3
2 is faster even if six more iterations are performed. For p = 2, the

number of iterations using the near optimal shift was larger by one compared to the smallest
number of iterations obtained by using no shift or a shift by k, but the compute time was still
smaller. These discrepancies in the run-time and number of iterations may be explained by
the time deviations of the parallel LU decomposition performed in the first application of the
preconditioner.
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Table 7 Parameter values,
iteration numbers, and compute
times for the 3D Marmousi
model example with p = 1

Param Value ε Iter Time [m:s] Speed-up

p 1 0 51 12:47.05 –

h 2−8 k 47 12:03.38 6.04%

kmax 150 k
3
2 45 10:40.04 19.84%

kmax · h 0.585938 k2 239 25:03.34 −48.98%

DoFs 33,949,186 kσ 39 11:17.22 13.26%

p 2 0 16 10:35.21 –

h 2−7 k 16 10:01.42 5.62%

kmax 150 k
3
2 35 10:56.22 −3.20%

kmax · h 1.17188 k2 241 24:13.33 −56.29%

DoFs 33,949,186 kσ 17 9:59.29 5.99%

7 Conclusion

In this work, we have presented a preconditioner for the Helmholtz equation obtained from
a data driven approach. The preconditioner uses near optimal complex shifts in the shifted
Laplacian problem which is used as a preconditioner of the Helmholtz equation by applying
a twogrid V-cycle to the discrete problem. The near optimal shifts were obtained by gener-
ating training data for different mesh sizes h, wavenumbers k, and discretization orders p,
and subsequently performing a nonlinear regression to construct a near optimal shift map.
Using such an approximated optimal shift map allows users to obtain near optimal shifts
automatically without having to tune the required complex shifts manually. In order to solid-
ify this approach, we have performed theoretical considerations based on a local Fourier
analysis which justify this data driven approach and we have related the theoretical results to
experimental data. Additionally, the twogrid method has been implemented in a semi matrix-
free fashion which saves on memory storage and traffic which usually required for matrices
corresponding to the finer grids. Furthermore, we have used these near optimal shifts on a
set of numerical benchmarks with heterogeneous wavenumbers in 2D and 3D. It could be
observed that using these near optimal shifts yielded the smallest FGMRES iteration numbers
throughout almost all the examples with speed ups up to 582%.

In the data generation and the numerical experiments, we had restricted ourselves to a
single V (3, 3) twogrid cycle and a damped Jacobi smoother with damping factor ω = 2

3 .
Moreover, the complex shift had been always in the form ikσ . Possible further work could
take into account more levels of subspaces resulting in a multigrid solver for which, e.g., the
number of smoothing steps per levelmaybe optimized for. Likewise,wavenumber coefficients
of the form β1kσ1 + iβ2kσ2 with β1, β2, σ1, σ2 ∈ R are of interest as well.
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A Local Fourier Analysis for the Twogrid Operator

The convergence analysis by means of LFA is based on the assumption that the error function
elh on the fine grid Gh can be represented by a linear combination of Fourier modes [41]:

ϕh(θ, x) = eiθ ·x/h = eiθ1x1/heiθ2x2/h, x ∈ Gh .

θ = (θ1, θ2) ∈ R
2 denote the Fourier frequencies, which may be restricted to the domain

Θ = (−π, π]2 ⊂ R
2, see [12], as a consequence of the fact that

ϕh(θ + 2π, x) = ϕh(θ, x).

Thus the space of Fourier modes is given by:

Eh = span
{

ϕh(θ, x) = eiθ ·x/h
∣∣∣ x ∈ Gh, θ ∈ Θ

}
.

According to [41], the Fourier modes are the formal eigenfunctions of an operator

H ∈
{
T 2h
h , Ih, I 2hh , I h2h, Lh, L2h, Sh

}
.

This means that:

Hϕh(θ, x) = H̃(θ)ϕh(θ, x),

where H̃(θ) is called the Fourier symbol of the operator H . In a next step, we decompose the
frequency space into a low frequency space T low = (−π

2 , π
2

]2 and a high frequency space

T high = Θ \ T low . For each low frequency θ ∈ T low = (−π
2 , π

2

]2
, we define the following

four frequencies:

θ(0,0) = (θ1, θ2), θ(1,1) = (θ1, θ2), θ(1,0) = (θ1, θ2), θ(0,1) = (θ1, θ2),

where

θ i =
{

θi + π if θi < 0,

θi − π if θi ≥ 0.

Obviously, the four frequencies fulfil

ϕh(θ
α, x) = ϕ2h(2θ

(0,0), x), x ∈ G2h, ∈ I = {(0, 0), (1, 1), (1, 0), (0, 1)} .

Fourier modes with this relationship are called harmonic to each other. Considering a given
low frequency θ = θ(0,0), we define a four dimensional space of harmonics by

Eθ
h = span

{
ϕ(θα, ·)∣∣ ∈ I

}
.

An important feature of these spaces is that they are invariant under the twogrid operator T 2h
h .

Applying T 2h
h to an arbitrary element Ψ ∈ Eθ

h which is represented by some coefficients A:

Ψ =
∑
∈I

Aϕ(θα, ·),

yields new coefficients B :
⎛
⎜⎜⎝
B(0,0)

B(1,1)

B(1,0)

B(0,1)

⎞
⎟⎟⎠ = T̂ 2h

h (θ, σ )

⎛
⎜⎜⎝
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞
⎟⎟⎠ .
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T̂ 2 h
h (θ, σ ) ∈ C

4×4 is a matrix depending on the frequency θ and the exponent σ . It represents
the operator T 2h

h with respect to Eθ
h . In order to determine the convergence behavior of the

twogrid method, we study how the coefficients A are transformed by T̂ 2h
h (θ, σ ) into new

coordinates B . Therefore, the local convergence factor ρloc(σ ) depending on the complex
shift exponent in the twogrid operator is taken into account:

ρloc(σ ) = sup
{

ρ(T̂ 2h
h (θ, σ ))

∣∣∣ θ ∈ T low, θ /∈ Λ
}

.

TherebyΛ ⊂ (−π, π]2 denotes the set of frequencies forwhich L̂2 h and L̂h are not invertible
and ρ(T̂ 2h

h (θ, σ )) is the spectral radius of T̂ 2h
h (θ, σ ). This means that finding the convergence

factor for a fixed frequency is reduced to finding the spectral radius of a 4 × 4 matrix. To
obtain the convergence rate of the twogrid solver, one has to search for the maximum of
this quantity in the low frequency space T low . The search for the maximal spectral radius is
restricted to T low, since the pattern of ρ(T̂ 2h

h ) in T low is extended periodically to the whole
frequency domain Θ . Furthermore, an important feature of a multigrid solver is the damping
of the low frequency error components [41].

To compute T̂ 2h
h (θ, σ ), the operators occurring in the definition of T 2h

h are represented
with respect to the harmonic space Eθ

h by means of 4 × 4 matrices. Exceptions are the
prolongation, restriction and L−1

2h operator whose matrices are given by 1 × 4, 4 × 1 and
1× 1 matrices, since these are mappings related to Eθ

h and Eθ
2h . The latter space is the space

of harmonics with respect to the coarse grid G2h :

Eθ
2h = span

{
ϕ2h(θ

α, ·)∣∣ α ∈ {(0, 0)}} .

The matrices defined with respect to the harmonic spaces are indicated by a hat:

T̂ 2h
h (θ, σ ) = Ŝν2

h (θ, σ )K̂ 2h
h (θ, σ )Ŝν1

h (θ, σ ),

K̂ 2h
h (θ, σ ) = Îh − Î h2h(θ)L̂−1

2h (2θ, σ ) Î 2hh (θ)L̂h(θ, σ ).

In the following, we list the matrices with respect to the harmonic spaces. Obviously, the
matrix for the identity operator Îh is given by the identity matrix. The discretization operator
Lh can also be represented by a diagonal matrix [12] [41, Chapter 2]:

L̂h(θ, σ ) = diag
(
L̃h(θ

(0,0), σ ), L̃h(θ
(1,1), σ ), L̃h(θ

(1,0), σ ), L̃h(θ
(0,1), σ )

)
.

The symbol of Lh is given by:

L̃h(θ, σ ) = 1

3
(8 − 2 cos(θ1) − 2 cos(θ2) − 4 cos(θ1) cos(θ2))

− λh2

36
(16 + 8 cos(θ1) + 8 cos(θ2) + 4 cos(θ1) cos(θ2)).

The matrix for the coarse grid operator and θ = θ(0,0) is given by:

L̂2h(θ, σ ) = L̃2h(θ, σ ), L2h(σ )ϕ2h(2θ, x) = L̃2h(θ, σ )ϕ2h(2θ, x).

The exact formula for L̃2h(θ, σ ) reads as follows:

L̃2h(2θ, σ ) = 1

3
(8 − 2 cos(2θ1) − 2 cos(2θ2) − 4 cos(2θ1) cos(2θ2))

− λh2

9
(16 + 8 cos(2θ1) + 8 cos(2θ2) + 4 cos(2θ1) cos(2θ2)).
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Fig. 11 Convergence factors ρ in the frequency space T low in case of four different shifts σ ∈
{1.0, 1.25, 1.75, 2.0}

In a next step the matrices for the restriction operator and the prolongation operator are
derived:

Î h2h(θ) =

⎛
⎜⎜⎝
Ĩ h2h(θ

(0,0))

Ĩ h2h(θ
(1,1))

Ĩ h2h(θ
(1,0))

Ĩ h2h(θ
(0,1))

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(1 + cos(θ1))(1 + cos(θ2))
(1 − cos(θ1))(1 − cos(θ2))
(1 − cos(θ1))(1 + cos(θ2))
(1 + cos(θ1))(1 − cos(θ2))

⎞
⎟⎟⎠ and Î 2hh (θ) = 1

4
· ( Î h2h(θ))T .

Thereby the matrix entries are determined by the following equation:

I h2hϕ2h(2θ, x) =
∑
α

Ĩ h2h(θ
α)ϕh(θ

α, x) and I 2hh ϕh(θ
α, x) = Ĩ 2hh (θα)ϕ2h(2θ

(0,0), x), α ∈ I .

We point out that the restriction and prolongation operator are independent of k and σ . Sum-
marizing the previous considerations, one obtains the matrix K̂ 2h

h (θ, σ ). Finally, it remains
to specify the matrix for the smoother. According to [41, Chapter 4], it is given by a diagonal
matrix:

Ŝh(θ, σ ) = diag
(
S̃h(θ(0,0), σ ), S̃h(θ(1,1), σ ), S̃h(θ(1,0), σ ), S̃h(θ(0,1), σ )

)
.

A straightforward calculation yields for θ = θ(0,0):

S̃h(θ, σ ) = (1 − ω) + ω

2
3 + λh2 8

36
8
3 − λh2 1636

cos(θ1)
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Fig. 12 Convergence factor ρ for θ2 = 0 and θ1 ∈ [−π
2 , π

2
]
.The exponents for the shift are chosen as follows:

σ ∈ {1.00, 1.25, 1.50, 1.75, 2.00}

+ ω

2
3 + λh2 8

36
8
3 − λh2 1636

cos(θ2) + ω

4
3 + λh2 4

36
8
3 − λh2 1636

cos(θ1) cos(θ2).

Finally, we have all ingredients at hand to assemble the matrix T̂ 2h
h so that ρloc(σ ) can be

computed numerically.
In Fig. 11, we show some typical surfaces for ρ in the space consisting of low frequencies

for ν1 = ν2 = 3,ω = 2/3, h = 2−5 and k = 0.35/h. It can be observed that the maximum of
the spectral radius ρ(T̂ 2h

h ), i.e., ρloc increases as σ is decreased from σ = 2 towards σ = 1.
In addition to that, there is a symmetry with respect to the axes of the coordinate system. This
can be explained by the fact that the entries of the Fourier symbols are composed of cosine
functions (see “Appendix A”). We further observe numerically that the maxima are located
on the axes for θ1 = 0 or θ2 = 0 (see Fig. 1). Motivated by these observations, we restrict
our search for the maximal spectral radius of T̂ 2h

h to the line with θ2 = 0 (see Fig. 12).
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