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Abstract
Low-rank approximation of tensors has been widely used in high-dimensional data anal-
ysis. It usually involves singular value decomposition (SVD) of large-scale matrices with
high computational complexity. Sketching is an effective data compression and dimension-
ality reduction technique applied to the low-rank approximation of large matrices. This
paper presents two practical randomized algorithms for low-rank Tucker approximation of
large tensors based on sketching and power scheme, with a rigorous error-bound analysis.
Numerical experiments on synthetic and real-world tensor data demonstrate the competitive
performance of the proposed algorithms.

Keywords Tensor sketching · Randomized algorithm · Tucker decomposition · Subspace
power iteration · High-dimensional data

Mathematics Subject Classification 68W20 · 15A18 · 15A69

1 Introduction

In practical applications, high-dimensional data, such as color images, hyperspectral images
and videos, often exhibit a low-rank structure. Low-rank approximation of tensors has become
a general tool for compressing and approximating high-dimensional data and has beenwidely
used in scientific computing, machine learning, signal/image processing, data mining, and
many other fields [1]. The classical low-rank tensor factorizationmodels include, e.g., Canon-
ical Polyadic decomposition (CP) [2, 3], Tucker decomposition [4–6], Hierarchical Tucker
(HT) [7, 8], and Tensor Train decomposition (TT) [9]. This paper focuses on low-rank Tucker
decomposition, also known as the low multilinear rank approximation of tensors. When the
target rank of Tucker decomposition is much smaller than the original dimensions, it will
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have good compression performance. For a given N th-order tensor X ∈ R
I1×I2×...×IN , the

low-rank Tucker decomposition can be formulated as the following optimization problem,
i.e.,

min
Y

‖X − Y‖2F (1)

where Y ∈ R
I1×I2×...×IN , with rank(Y(n)) ≤ rn for n = 1, 2, . . . , N , Y(n) is the mode-n

unfolding matrix of Y , and rn is the rank of the mode-n unfolding matrix of X .
For the Tucker approximation of higher-order tensors, the most frequently used non-

iterative algorithms are the improved algorithms for the higher-order singular value decom-
position (HOSVD) [5], the truncated higher-order SVD (THOSVD) [10] and the sequentially
truncated higher-order SVD (STHOSVD) [11]. Although the results of THOSVD and
STHOSVD are usually sub-optimal, they can use as reasonable initial solutions for iterative
methods such as higher-order orthogonal iteration (HOOI) [10]. However, both algorithms
rely directly on SVDwhen computing the singular vectors of intermediatematrices, requiring
large memory and high computational complexity when the size of tensors is large.

Strikingly, randomized algorithms can reduce the communication among different levels
of memories and are parallelizable. In recent years, many scholars have become increas-
ingly interested in randomized algorithms for finding approximation Tucker decomposition
of large-scale data tensors [12–17, 19, 20]. For example, Zhou et al. [12] proposed a random-
ized version of the HOOI algorithm for Tucker decomposition. Che and Wei [13] proposed
an adaptive randomized algorithm to solve the multilinear rank of tensors. Minster et al. [14]
designed randomized versions of the THOSVD and STHOSVD algorithms, i.e., R-THOSVD
and R-STHOSVD. Sun et al. [17] presented a single-pass randomized algorithm to compute
the low-rank Tucker approximation of tensors based on a practicalmatrix sketching algorithm
for streaming data, see also [18] for more details. Regarding more randomized algorithms
proposed for Tucker decomposition, please refer to [15, 16, 19, 20] for a detailed review of
randomized algorithms for solving Tucker decomposition of tensors in recent years involv-
ing, e.g., random projection, sampling, count-sketch, random least-squares, single-pass, and
multi-pass algorithms.

This paper presents two efficient randomized algorithms for finding the low-rank Tucker
approximation of tensors, i.e., Sketch-STHOSVDand sub-Sketch-STHOSVDsummarized in
Algorithms 6 and 8, respectively. The main contributions of this paper are threefold. Firstly,
we propose a new one-pass sketching algorithm (i.e., Algorithm 6) for low-rank Tucker
approximation, which can significantly improve the computational efficiency of STHOSVD.
Secondly, we present a new matrix sketching algorithm (i.e., Algorithm 7) by combining
the two-sided sketching algorithm proposed by Tropp et al. [18] with subspace power iter-
ation. Algorithm 7 can accurately and efficiently compute the low-rank approximation of
large-scale matrices. Thirdly, the proposed Algorithm 8 can deliver a more accurate Tucker
approximation than simpler randomized algorithms by combining the subspace power iter-
ation. More importantly, sub-Sketch-STHOSVD can converge quickly for any data tensors
and independently of singular value gaps.

The rest of this paper is organized as follows. Section2 briefly introduces some basic
notations, definitions, and tensor-matrix operations used in this paper and recalls some clas-
sical algorithms, including THOSVD, STHOSVD, and R-STHOSVD, for low-rank Tucker
approximation. Our proposed two-sided sketching algorithm for STHOSVD is given in
Sect. 3. In Sect. 4, we present an improved algorithm with subspace power iteration. The
effectiveness of the proposed algorithms is validated thoroughly in Sect. 5 by numerical
experiments on synthetic and real-world data tensors. We conclude in Sect. 6.
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2 Preliminary

2.1 Notations and Basic Operations

Some common symbols used in this paper are shown in the following Table 1.
We denote an N th-order tensor X ∈ R

I1×I2×...×IN with entries given by xi1,i2,...,iN , 1 ≤
in ≤ In, n = 1, 2, . . . , N . The Frobenius norm of X is defined as

‖X‖F =

√
√
√
√
√

I1,I2,...,IN∑

i1,i2,...,iN

x2i1,i2,...,iN (2)

The mode-n tensor-matrix multiplication is a frequently encountered operation in tensor
computation. The mode-n product of a tensor X ∈ R

I1×I2×...×IN by a matrix A ∈ R
K×In

(with entries ak,in ) is denoted as Y = X ×n A ∈ R
I1×...×In−1×K×In+1×...×IN , with entries:

yi1,...,in−1,k,in+1,...,iN =
In∑

in=1

xi1,...,in−1,in ,in+1,...,iN ak,in (3)

The mode-n matricization of higher-order tensors is the reordering of tensor elements into
a matrix. The columns of mode-n unfolding matrix X(n) ∈ R

In×(
∏

N �=n IN ) are the mode-n
fibers of tensorX . More specifically, an element (i1, i2, . . . , iN ) ofX is maps on an element
(in, j) of X(n), where

j = 1 +
N

∑

k=1,k �=n

⎡

⎣(ik − 1)
k−1
∏

m=1,m �=n

Im

⎤

⎦ (4)

Let the rank of mode-n unfolding matrix X(n) is rn , the integer array (r1, r2, . . . , rN ) is
Tucker-rank of N th-order tensorX , also known as the multilinear rank. The Tucker decom-
position of X with rank (r1, r2, . . . , rN ) is expressed as

X = G ×1 U(1) ×2 U(2) . . . ×N U(N ) (5)

where G ∈ R
r1×r2×...×rN is the core tensor, and {U(n)}Nn=1 with U

(n) ∈ R
In×rn is the mode-n

factor matrices. We denote an optimal rank-(r1, r2, . . . , rN ) approximation of a tensor X as
X̂ opt, which is the optimal Tucker approximation by solving the minimization problem in
(1).

Below we present the definitions of some concepts used in this paper.

Table 1 Common symbols used
in this paper a Scalar

A Matrix

X Tensor

X(n) Mode-n Unfolding matrix ofX
×n Mode-n Product of tensor and matrix

In Identity matrix with size n × n

σi (A) The i th largest singular value of A

A� Transpose of A

A† Pseudo-inverse of A
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Definition 1 (Kronecker products) The Kronecker product of matrices A ∈ R
m×n and B ∈

R
k×l is defined as

A ⊗ B =

⎡

⎢
⎢
⎢
⎣

a11B a12B ... a1nB
a21B a22B ... a2nB

: : . . . :
am1B am2B ... amnB

⎤

⎥
⎥
⎥
⎦

∈ R
mk×nl (6)

The Kronecker product helps express Tucker decomposition. The Tucker decomposition in
(5) implies:

X(n) = U(n)G(n)(U(N ) ⊗ ... ⊗ U(n+1) ⊗ U(n−1) ⊗ ... ⊗ U(1))� (7)

Definition 2 (Standard normal matrix) The elements of a standard normal matrix follow the
real standard normal distribution (i.e., Gaussian with mean zero and variance one) form an
independent family of standard normal random variables.

Definition 3 (Standard Gaussian tensor) The elements of a standard Gaussian tensor follow
the standard Gaussian distribution.

Definition 4 (Tail energy) The j th tail energy of a matrix X is defined:

τ 2j (X) := min
rank(Y)< j

‖X − Y‖2F =
∑

i≥ j

σ 2
i (X) (8)

2.2 Truncated Higher-Order SVD

Since the actual Tucker rank of large-scale higher-order tensor is hard to compute, the trun-
cated Tucker decomposition with a pre-determined truncation (r1, r2, . . . , rN ) is widely used
in practice. THOSVD is a popular approach to computing the truncated Tucker approxima-
tion, also known as the best low multilinear rank-(r1, r2, . . . , rN ) approximation, which
reads:

min
G;U(1),U(2),··· ,U(N )

‖X − G ×1 U(1) ×2 U(2) · · · ×N U(N )‖2F
s.t. U(n)�U(n) = Irn , n ∈ {1, 2, . . . , N }

(9)

Algorithm 1 THOSVD

Require: tensorX ∈ R
I1×I2×...×IN and target rank (r1, r2, . . . , rN )

Ensure: Tucker approximation X̂ = G ×1 U(1) ×1 U(2) · · · ×N U(N )

1: for n = 1, 2, . . . , N do
2: (U(n), ∼,∼) ← truncatedSVD(X(n), rn)

3: end for
4: G ← X×1U(1)� ×2 U(2)� · · · ×N U(N )�

Algorithm 1 summarizes the THOSVD approach. Each mode is processed individually in
Algorithm 1. The low-rank factor matrices of mode-n unfolding matrix X(n) are computed
through the truncated SVD, i.e.,

X(n) =
[

U(n) ˜U(n)

]
[

S(n)

˜S(n)

][

V(n)�
˜V(n)�

]

∼= U(n)S(n)V(n)� (10)
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whereU(n)S(n)V(n)� is a rank-rn approximation ofX(n), the orthogonalmatrixU(n) ∈ R
In×rn

is the mode-n factor matrix of X in Tucker decomposition, S(n) ∈ R
rn×rn and V(n) ∈

R
I1...In−1 In+1...IN×rn . Once all factor matrices have been computed, the core tensor G can be

computed as

G = X×1U(1)� ×2 U(2)� · · · ×N U(N )� ∈ R
r1×r2×...×rN (11)

Then, the Tucker approximation X̂ of X can be computed:

X̂ = G ×1 U(1) ×2 U(2) · · · ×N U(N )

= X ×1 (U(1)U(1)�) ×2 (U(2)U(2)�) · · · ×N (U(N )U(N )�)
(12)

With the notation �2
n(X ) �

∑In
i=rn+1 σ 2

i (X(n)) and �2
n(X ) ≤ ‖X − X̂ opt‖2F [14], the

error-bound for Algorithm 1 can be stated in the following Theorem 1.

Theorem 1 ([11], Theorem5.1)Let X̂ = G×1U(1)×2U(2) · · ·×NU(N ) be the lowmultilinear
rank-(r1, r2, . . . , rN ) approximation of a tensor X ∈ R

I1×I2×...×IN by THOSVD. Then

‖X − X̂‖2F ≤
N

∑

n=1

‖X ×n (IIn − U(n)U(n)�)‖2F =
N

∑

n=1

In∑

i=rn+1

σ 2
i (X(n))

=
N

∑

n=1

�2
n(X ) ≤ N‖X − X̂ opt‖2F

(13)

2.3 Sequentially Truncated Higher-Order SVD

Vannieuwenhoven et al. [11] proposed one more efficient and less computationally complex
approach for computing approximate Tucker decomposition of tensors, called STHOSVD.
Unlike THOSVD algorithm, STHOSVD updates the core tensor simultaneously whenever a
factor matrix has computed.

Given the target rank (r1, r2, . . . , rN ) and a processing order sp : {1, 2, . . . , N }, the
minimization problem (1) can be formulated as the following optimization problem:

min
U(1),··· ,U(N )

‖X − X ×1 (U(1)U(1)�) ×2 (U(2)U(2)�) · · · ×N (U(N )U(N )�)‖2F

= min
U(1),··· ,U(N )

(‖X ×1 (II1 − U(1)U(1)�)‖2F + ‖X̂ (1) ×2 (II2 − U(2)U(2)�)‖2F+

· · · + ‖X̂ (N−1) ×N (IIN − U(N )U(N )�)‖2F )

= min
U(1)

(‖X ×1 (II1 − U(1)U(1)�)‖2F + min
U(2)

(‖X̂ (1) ×2 (II2 − U(2)U(2)�)‖2F+

min
U(3)

(· · · + min
U(N )

‖X̂ (N−1) ×N (IIN − U(N )U(N )�)‖2F )))

(14)

where X̂ (n) = X ×1 (U(1)U(1)�) ×2 (U(2)U(2)�) · · · ×n (U(n)U(n)�), n = 1, 2, . . . , N − 1,
denote the intermediate approximation tensors.

In Algorithm 2, the solution U(n) of problem (14) can be obtained via truncatedSVD
(G(n), rn), whereG(n) is mode-n unfolding matrix of the (n− 1)-th intermediate core tensor
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Algorithm 2 STHOSVD

Require: tensorX ∈ R
I1×I2×...×IN , target rank (r1, r2, . . . , rN ), and processing order sp : {i1, i2, . . . , iN }

Ensure: Tucker approximation X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N )

1: G ← X
2: for n = i1, i2, . . . , iN do
3: (U(n), S(n),V(n)�) ← truncatedSVD(G(n), rn)

4: G ← foldn(S(n)V(n)�) (% forming the updated tensor from its mode-n unfolding)
5: end for

G = X ×n−1
i=1 U(i)� ∈ R

r1×r2×...×rn−1×In×...×IN , i.e.,

G(n) =
[

U(n) ˜U(n)

]
[

S(n)

˜S(n)

][

V(n)�
˜V(n)�

]

∼= U(n)S(n)V(n)� (15)

where the orthogonal matrix U(n) is the mode-n factor matrix, and S(n)V(n)�
∈ R

rn×r1...rn−1 In+1...IN is used to update the n-th intermediate core tensor G. Function
foldn(S(n)V(n)�) tensorizes matrix S(n)V(n)� into tensor G ∈ R

r1×r2×...×rn×In+1×...×IN .
When the target rank rn is much smaller than In , the size of the updated intermediate core
tensor G is much smaller than original tensor. This method can significantly improve com-
putational performance. STHOSVD algorithm possesses the following error-bound.

Theorem 2 ([11], Theorem 6.5) Let X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N ) be the low mul-
tilinear rank-(r1, r2, . . . , rN ) approximation of a tensor X ∈ R

I1×I2×...×IN by STHOSVD
with processsing order sp : {1, 2, . . . , N }. Then

‖X − X̂‖2F =
N

∑

n=1

‖X̂ (n−1) − X̂ (n)‖2F ≤
N

∑

n=1

‖X ×n (IIn − U(n)U(n)�)‖2F

=
N

∑

n=1

�2
n(X ) ≤ N‖X − X̂ opt‖2F

(16)

Although STHOSVD has the same error-bound as THOSVD, it is less computationally
complex and requires less storage. As shown in Sect. 5 for the numerical experiment, the run-
ning (CPU) time of the STHOSVD algorithm is significantly reduced, and the approximation
error has slightly better than that of THOSVD in some cases.

2.4 Randomized STHOSVD

When the dimensions of data tensors are enormous, the computational cost of the classical
deterministic algorithm TSVD for finding a low-rank approximation of mode-n unfolding
matrix can be expensive. Randomized low-rank matrix algorithms replace original large-
scale matrix with a new one through a preprocessing step. The new matrix contains as much
information as possible about the rows or columns of original data matrix. Its size is smaller
than original matrix, allowing the data matrix to be processed efficiently and thus reducing
the memory requirements for solving low-rank approximation of large matrix.
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Algorithm 3 R-SVD
Require: matrix A ∈ R

m×n , target rank r , and oversampling parameter p ≥ 0
Ensure: low-rank approximation matrix Â = ÛŜV̂� of A
1: � ← randn(n, r + p)
2: Y ← A�

3: (Q, ∼) ← thinQR(Y)

4: B ← Q�A
5: (U, S,V�) ← thinSVD(B)

6: Û ← QU(:, 1 : r)
7: Ŝ ← S(1 : r , 1 : r), V̂ ← V(:, 1 : r)

Halko et al. [21] proposed a randomized SVD (R-SVD) for matrices. The preprocessing
stage of the algorithm is performed by right multiplying original data matrix A ∈ R

m×n

with a random Gaussian matrix � ∈ R
n×r . Each column of the resulting new matrix Y =

A� ∈ R
m×r is a linear combination of the columns of original data matrix. When r < n, the

size of matrix Y is smaller than A. The oversampling technique can improve the accuracy of
solutions. Subsequent computations are summarised inAlgorithm 3, whererandn generates
aGaussian randommatrix,thinQRproduces an economy-size of theQRdecomposition, and
thinSVD is the thin SVD decomposition.WhenA is dense, the arithmetic cost of Algorithm
3 isO(2(r+ p)mn+r2(m+n)) flops, where p > 0 is the oversampling parameter satisfying
r + p ≤ min{m, n}.

Algorithm 3 is an efficient randomized algorithm for computing rank-r approximations
to matrices. Minster et al. [14] applied Algorithm 3 directly to the STHOSVD algorithm and
then presented a randomized version of STHOSVD (i.e., R-STHOSVD), see Algorithm 4.

Algorithm 4 R-STHOSVD

Require: tensor X ∈ R
I1×I2×...×IN , target rank (r1, r2, . . . , rN ), processing order sp : {i1, i2, . . . , iN },

and oversampling parameter p ≥ 0
Ensure: Tucker approximation X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N )

1: G ← X
2: for n = i1, i2, . . . , iN do
3: (Û, Ŝ, V̂�) ← R-SVD(G(n), rn , p) (cf. Algorithm 3)

4: U(n) ← Û
5: G ← foldn(ŜV̂�)

6: end for

3 Sketching Algorithm for STHOSVD

A drawback of R-SVD algorithm is that when both dimensions of the intermediate matrices
are enormous, the computational cost can still be high. To resolve this problem, we could
resort to the two-sided sketching algorithm for low-rank matrix approximation proposed by
Joel Tropp et al. [22]. The preprocessing of sketching algorithm needs two sketch matrices
to contain information regarding the rows and columns of input matrix A ∈ R

m×n . Thus we
should choose two sketch size parameters k and l, s.t., r ≤ k ≤ min{l, n}, 0 < l ≤ m. The
random matrices � ∈ R

n×k and � ∈ R
l×m are fixed independent standard normal matrices.

Then we can multiply matrix A left and right respectively to obtain random sketch matrices
Y ∈ R

m×k andW ∈ R
l×n , which collect sufficient data about the inputmatrix to compute the

low-rank approximation. The dimensionality and distribution of the random sketch matrices
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determine the approximation’s potential accuracy, with larger values of k and l resulting in
better approximations but also requiring more storage and computational cost.

Algorithm 5 Sketch for low-rank approximation

Require: matrix A ∈ R
m×n , and sketch size parameters k, l

Ensure: rank-k approximation Â = QX of A
1: � ← randn(n, k), � ← randn(l,m)

2: � ← orth(�), �� ← orth(��)

3: Y ← A�

4: W ← �A
5: (Q, ∼) ← thinQR(Y)

6: X ← (�Q)†W

The sketching algorithm for low-rank approximation is given in Algorithm 5. Function
orth(A) in Step 2 produces an orthonormal basis of A. Using orthogonalization matrices
will achieve smaller errors and better numerical stability than directly using the randomly
generated Gaussian matrices. In particular, whenA is dense, the arithmetic cost of Algorithm
5 is O((k + l)mn + kl(m + n)) flops. Algorithm 5 is simple, practical, and possesses the
sub-optimal error-bound as stated in the following Theorem 3.

Theorem 3 ([22], Theorem 4.3)Assume that the sketch size parameters satisfy l > k+1, and
draw random test matrices � ∈ R

n×k and �∈ R
l×m independently forming the standard

normal distribution. Then the rank-k approximation Â obtained from Algorithm 5 satisfies:

E� ‖ A − Â ‖2F ≤ (1 + f (k, l)) · min
�<k−1

(1 + f (�, k)) · τ 2�+1(A)

= k

l − k − 1
· min
�<k−1

k

k − � − 1
· τ 2�+1(A)

(17)

In Theorem 3, function f (s, t) := s/(t − s − 1)(t > s + 1 > 1). The minimum in
Theorem 3 reveals that the low rank approximation of given matrix A automatically exploits
the decay of tail energy.

Using the two-sided sketching algorithm to leverage STHOSVD algorithm, we propose a
practical sketching algorithm for STHOSVD named Sketch-STHOSVD. We summarize the
procedures of Sketch-STHOSVD algorithm in Algorithm 6, with its error analysis stated in
Theorem 4.

Theorem 4 Let X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N ) be the low multilinear rank-
(r1, r2, . . . , rN ) approximation of a tensor X ∈ R

I1×I2×...×IN by the Sketch-STHOSVD
algorithm (i.e., Algorithm 6) with processing order sp : {1, 2, . . . , N } and sketch size param-
eters {l1, l2, . . . , lN }. Then

E{� j }Nj=1
‖X − X̂‖2F ≤

N
∑

n=1

rn
ln − rn − 1

min
�n<rn−1

rn
rn − �n − 1

�2
n(X )

≤
N

∑

n=1

rn
ln − rn − 1

min
�n<rn−1

rn
rn − �n − 1

‖X − X̂ opt‖2F
(18)
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Proof Combining Theorems 2 and 3, we have

E{�}Nj=1
‖X − X̂‖2F

=
N

∑

n=1

E{� j }Nj=1
‖X̂ (n−1) − X̂ (n)‖2F

=
N

∑

n=1

E{� j }n−1
j=1

{

E�n‖X̂ (n−1) − X̂ (n)‖2F
}

=
N

∑

n=1

E{� j }n−1
j=1

{

E�n‖G(n−1) ×n−1
i=1 U(i)×n(IIn − U(n)U(n)�)‖2F

}

≤
N

∑

n=1

E{� j }n−1
j=1

{

E�n‖(IIn − U(n)U(n)�)G(n−1)
(n) )‖2F

}

≤
N

∑

n=1

E{� j }n−1
j=1

rn
ln − rn − 1

min
�n<rn−1

rn
rn − �n − 1

In∑

i=rn+1

σ 2
i (G(n−1)

(n) )

≤
N

∑

n=1

E{� j }n−1
j=1

rn
ln − rn − 1

min
�n<rn−1

rn
rn − �n − 1

�2
n(X )

=
N

∑

n=1

rn
ln − rn − 1

min
�n<rn−1

rn
rn − �n − 1

�2
n(X )

≤
N

∑

n=1

rn
ln − rn − 1

min
�n<rn−1

rn
rn − �n − 1

‖X − X̂ opt‖2F .

��

Algorithm 6 Sketch-STHOSVD

Require: tensor X ∈ R
I1×I2×...×IN , target rank (r1, r2, . . . , rN ), processing order sp : {i1, i2, . . . , iN },

and sketch size parameters {l1, l2, . . . , lN }
Ensure: Tucker approximation X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N )

1: G ← X
2: for n = i1, i2, . . . , iN do
3: (Q,X) ← Sketch(G(n), rn , ln) (cf. Algorithm 5)

4: U(n) ← Q
5: G ← foldn(X)

6: end for

We assume the processing order for STHOSVD, R-STHOSVD, and Sketch-STHOSVD
algorithms is sp : {1, 2, . . . , N }. Table 2 summarises the arithmetic cost of different algo-
rithms for the cases related to the general higher-order tensor X ∈ R

I1×I2×...×IN with
target rank (r1, r2, . . . , rN ) and the special cubic tensor X ∈ R

I×I×...×I with target rank
(r , r , . . . , r). Here the tensors are dense and the target ranks r j  I j , j = 1, 2, . . . , N .
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4 Sketching Algorithmwith Subspace Power Iteration

When the size of original matrix is very large or the singular spectrum of original matrix
decays slowly, Algorithm 5 may produce a poor basis in many applications. Inspired by [23],
we suggest using the power iteration technique to enhance the sketching algorithm by replac-
ing A with (AA�)qA, where q is a positive integer. According to the SVD decomposition
of matrix A, i.e., A = USV�, we know that (AA�)qA = US2q+1V�. It can see that A and
(AA�)qA have the same left and right singular vectors, but the latter has a faster decay rate
of singular values, making its tail energy much smaller.

Although power iteration can improve the accuracy of Algorithm 5 to some extent, it still
suffers from a problem, i.e., during the execution with power iteration, the rounding errors
will eliminate all information about the singular modes associated with the singular values.
To address this issue, we propose an improved sketching algorithm by orthonormalizing the
columns of the sample matrix between each application ofA andA�, see Algorithm 7.When
A is dense, the arithmetic cost of Algorithm 7 is O((q + 1)(k + l)mn + kl(m + n)) flops.
Numerical experiments show that a good approximation can achieve with a choice of 1 or 2
for subspace power iteration parameter [21].

Using Algorithm 7 to compute the low-rank approximations of intermediate matrices, we
can obtain an improved sketching algorithm for STHOSVD, called sub-Sketch-STHOSVD,
see Algorithm 8.

Algorithm 7 Sketching algorithm with subspace power iteration ( sub-Sketch)

Require: matrix A ∈ R
m×n , sketch size parameters k, l, and integer q > 0

Ensure: rank-k approximation Â = QX of A
1: � ← randn(n, k), � ← randn(l,m)

2: � ← orth(�), �� ← orth(��)

3: Y = A�, W = �A
4: Q0 ← thinQR(Y)

5: for j = 1, . . . , q do
6: Ŷ j = A�Q j−1

7: (Q̂ j , ∼) ← thinQR(Ŷ j )

8: Y j = AQ̂ j
9: (Q j , ∼) ← thinQR(Y j )
10: end for
11: Q = Qq

12: X ← (�Q)†W

Algorithm 8 sub-Sketch-STHOSVD

Require: tensor X ∈ R
I1×I2×...×IN , target rank (r1, r2, . . . , rN ), processing order sp : {i1, i2, . . . , iN },

sketch size parameters {l1, l2, . . . , lN }, and integer q > 0
Ensure: Tucker approximation X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N )

1: G ← X
2: for n = i1, i2, . . . , iN do
3: (Q,X) ← sub-Sketch(G(n), rn , ln , q) (cf. Algorithm 7)

4: U(n) ← Q
5: G ← foldn(X)

6: end for
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The error-bound for Algorithm 8 states in the following Theorem 5. Its proof is deferred
in Appendix.

Theorem 5 Let X̂ = G ×1 U(1) ×2 U(2) . . . ×N U(N ) be the low multilinear rank-
(r1, r2, . . . , rN ) approximation of a tensor X ∈ R

I1×I2×...×IN by the sub-Sketch-STHOSVD
algorithm (i.e., Algorithm 8) with processing order sp : {1, 2, . . . , N } and sketch size param-
eters {l1, l2, . . . , lN }. Then

E{� j }Nj=1
‖X − X̂‖2F

≤
N

∑

n=1

(1 + f (rn, ln)) · min
�n<rn−1

(1 + f (�n, rn)�r
4q) · τ 2�+1(X(n))

≤
N

∑

n=1

(1 + f (rn, ln)) · min
�n<rn−1

(1 + f (�n, rn)�r
4q)‖X − X̂ opt‖2F

(19)

Proof See Appendix. ��

5 Numerical Experiments

This section conducts numerical experiments with synthetic data and real-world data, includ-
ing comparisons between the traditional THOSVD algorithm, STHOSVD algorithm, the
R-STHOSVD algorithm proposed in [14], and our proposed algorithms Sketch-STHOSVD
and sub-Sketch-STHOSVD. Regarding the numerical settings, the oversampling parameter
p = 5 is used in Algorithm 3, the sketch parameters ln = rn + 2, n = 1, 2, . . . , N , are used
in Algorithms 6 and 8, and the power iteration parameter q = 1 is used in Algorithm 8.

5.1 Hilbert Tensor

Hilbert tensor is a synthetic and supersymmetric tensor, with each entry defined as

X i1i2...in = 1

i1 + i2 + ... + in
, 1 ≤ in ≤ In, n = 1, 2, . . . , N (20)

In the first experiment, we set N = 5 and In = 25, n = 1, 2, . . . , N . The target rank is
chosen as (r , r , r , r , r), where r ∈ [1, 25]. Due to the supersymmetry of the Hilbert tensor,
the processing order in the algorithms does not affect the final experimental results, and thus
the processing order can be directly chosen as sp : {1, 2, 3, 4, 5}. The results of different algo-
rithms are given in Fig. 1. It shows that our proposed algorithms (i.e., Sketch-STHOSVD and
sub-Sketch-STHOSVD) and algorithm R-STHOSVD outperform the algorithms THOSVD
and STHOSVD. In particular, the error of the proposed algorithms Sketch-STHOSVD and
sub-Sketch-STHOSVD is comparable to R-STHOSVD (see the left plot in Fig. 1), while they
both use less CPU time than R-STHOSVD (see the right plot in Fig. 1).

This result demonstrates the excellent performance of the proposed algorithms and indi-
cates that the two-sided sketching method and the subspace power iteration used in our
algorithms can indeed improve the performance of STHOSVD algorithm.

For a large-scale test, we use a Hilbert tensor with a size of 500× 500× 500 and conduct
experiments using ten different approximate multilinear ranks. We perform the tests ten
times and report the algorithms’ average running time and relative error in Tables 3 and 4,
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Fig. 1 Results comparison on the Hilbert tensor with a size of 25× 25× 25× 25× 25 in terms of numerical
error (left) and CPU time (right)

respectively. The results show that the randomized algorithms can achieve higher accuracy
than the deterministic algorithms. The proposed Sketch-STHOSVD algorithm is the fastest,
and the sub-Sketch-STHOSVD algorithm achieves the highest accuracy efficiently.

5.2 Sparse Tensor

In this experiment, we test the performance of different algorithms on a sparse tensor X ∈
R
200×200×200, i.e.,

X =
10
∑

i=1

γ

i2
xi ◦ yi ◦ zi +

200
∑

i=11

1

i2
xi ◦ yi ◦ zi (21)

Where xi , yi , zi ∈ R
n are sparse vectors all generated using the sprand command in

MATLAB with 5% nonzeros each, and γ is a user-defined parameter which determines the
strength of the gap between the first ten terms and the rest terms. The target rank is chosen
as (r , r , r), where r ∈ [20, 100].

The experimental results show in Fig. 2, in which three different values γ = 2, 10, 200
are tested. The increase of gap means that the tail energy will be reduced, and the accuracy of
the algorithms will be improved. Our numerical experiments also verified this result. Figure2
demonstrates the superiority of the proposed sketching algorithms. In particular, we see that
the proposed Sketch-STHOSVD is the fastest algorithm, with a comparable error against
R-STHOSVD; the proposed sub-Sketch-STHOSVD can reach the same accuracy as the
STHOSVD algorithm but in much less CPU time; and the proposed sub-Sketch-STHOSVD
achieves much better low-rank approximation than R-STHOSVD with similar CPU time.

Now we consider the influence of noise on algorithms’ performance. Specifically, the
sparse tensor X with noise is designed in the same manner as in [24], i.e.,

X̂ = X + δK (22)

whereK is a standard Gaussian tensor and δ is used to control the noise level. Let δ = 10−3

and keep the rest parameters the same as the settings in the previous experiment. The relative
error and running time of different algorithms are shown in Fig. 3. In Fig. 3, we see that
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Fig. 2 Results comparison on a sparse tensor with a size of 200× 200× 200 in terms of numerical error (first
row) and CPU time (second row)

noise indeed affects the accuracy of the low-rank approximation, especially when the gap is
small. However, the influence of noise does not change the conclusion obtained on the case
without noise. The accuracy of our sub-Sketch-STHOSVD algorithm is the highest among
the randomized algorithms. As γ increases, sub-Sketch-STHOSVD can achieve almost the
same accuracy as that of THOSVD and STHOSVD in a comparable CPU time against R-
STHOSVD.
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Fig. 3 Results comparison on a 200 × 200 × 200 sparse tensor with noise in terms of numerical error (first
row) and CPU time (second row)

5.3 Real-World Data Tensor

In this experiment, we test the performance of different algorithms on a colour image, called
HDU picture,1 with a size of 1200 × 1800 × 3. We also evaluate the proposed sketching
algorithms on the widely used YUV Video Sequences.2 Taking the ‘hall monitor’ video as

1 https://www.hdu.edu.cn/landscape.
2 http://trace.eas.asu.edu/yuv/index.html.
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Fig. 4 Results comparison on a HDU picture with a size of 1200 × 1800 × 3 in terms of PSNR (i.e., peak
signal-to-noise ratio) and CPU time. The target rank is (500,500,3). The two values in e.g. (2.62; 40.61)
represent the CPU time and the PSNR, respectively

an example and using the first 30 frames, a three order tensor with a size of 144× 176× 30
is then formed for this test.

Firstly, we conduct an experiment on the HDU picture with target rank (500, 500, 3), and
compare the PSNR and CPU time of different algorithms.

The experimental result is shown in Fig. 4, which shows that the PSNR of sub-Sketch-
STHOSVD, THOSVD and STHOSVD is very similar (i.e., ∼ 40) and that sub-Sketch-
STHOSVD is more efficient in terms of CPU time. R-STHOSVD and Sketch-STHOSVD
are also very efficient compared to sub-Sketch-STHOSVD; however, the PSNR they achieve
is 5 dB less than sub-Sketch-STHOSVD.

Then we conduct separate numerical experiments on the HDU picture and the ‘hall mon-
itor’ video clip as the target rank increases, and compare these algorithms in terms of the
relative error, CPU time and PSNR, see Figs. 5 and 6. These experimental results again
demonstrate the superiority (i.e., low error and good approximation with high efficiency)
of the proposed sub-Sketch-STHOSVD algorithm in computing the Tucker decomposition
approximation.

In the last experiment, a larger-scale real-world tensor data is used. We choose a color
image (called the LONDON picture) with a size of 4775 × 7155 × 3 as the test image
and consider the influence of noise. The LONDON picture with white Gaussian noise is
generated using the awgn(X,SNR) built-in function in MATLAB. We set the target rank
as (50,50,3) and SNR to 20. The results comparisons without and with white Gaussian noise
are respectively shown in Figs. 7 and 8 in terms of the CPU time and PSNR.

Moreover, we also test the algorithms on the LONDONpicture as the target rank increases.
The results regarding the relative error, the CPU time and the PSNR are reported in Tables
5, 6 and 7, respectively. On the whole, the results again show the consistent performance of
the proposed methods.

In summary, the numerical results show the superiority of the sub-sketch STHOSVD algo-
rithm for large-scale tensors with or without noise. We can see that sub-Sketch-STHOSVD
could achieve close approximations to that of the deterministic algorithms in a time similar
to other randomized algorithms.
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Fig. 5 Results comparison on a HDU picture with size of 1200× 1800× 3 in terms of numerical error (left),
CPU time (middle) and PSNR (right). The HDU picture is with target rank (r , r , 3), r ∈ [50, 1000]

Fig. 6 Results comparison on the ‘hall monitor’ grey video with size of 144× 176× 30 in terms of numerical
error (left), CPU time (middle) and PSNR (right). The ‘hall monitor’ grey video is with target rank (r , r , 10),
r ∈ [5, 100]
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Fig. 7 Results comparison on LONDON picture with a size of 4775 × 7155 × 3 in terms of CPU time and
PSNR. The target rank is (50,50,3)

Fig. 8 Results comparison on LONDON picture with a size of 4775× 7155× 3 and white Gaussian noise in
terms of CPU time and PSNR. The target rank is (50,50,3)

6 Conclusion

In this paper we proposed efficient sketching algorithms, i.e., Sketch-STHOSVD and sub-
Sketch-STHOSVD, to calculate the low-rank Tucker approximation of tensors by combining
the two-sided sketching technique with the STHOSVD algorithm and using the subspace
power iteration. Detailed error analysis is also conducted. Numerical results on both syn-
thetic and real-world data tensors demonstrate the competitive performance of the proposed
algorithms in comparison to the state-of-the-art algorithms.
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Appendix

Lemma 1 ([25], Theorem 2) Let � < k − 1 be a positive natural number and � ∈ R
k×n be

a Gaussian random matrix. Suppose Q is obtained from Algorithm 7. Then ∀A ∈ R
m×n, we

have

E�‖A − QQ�A‖2F ≤ (1 + f (�, k)� 4q
k ) · τ 2�+1(A) (23)

Lemma 2 ([22], Lemma A.3) Let A ∈ R
m×n be an input matrix and Â = QX be the

approximation obtained from Algorithm 7. The approximation error can be decomposed as

‖A − Â‖2F = ‖A − QQ�A‖2F + ‖X − Q�A‖2F (24)

Lemma 3 ([22], Lemma A.5) Assume � ∈ R
l×n is a standard normal matrix independent

from �. Then

E�‖X − Q�A‖2F = f (k, l) · ‖A − QQ�A‖2F (25)

The error-bound for Algorithm 7 can be shown in Lemma 4 below.

Lemma 4 Assume the sketch size parameter satisfies l > k + 1. Draw random test matrices
� ∈ R

n×k and �∈ R
l×m independently from the standard normal distribution. Then the

rank-k approximation Â obtained from Algorithm 7 satisfies

E ‖ A − Â ‖2F ≤ (1 + f (k, l)) · min
�<k−1

(1 + f (�, k)�k
4q) · τ 2�+1(A) (26)

Proof Using Eqs. (23), (24) and (25), we have

E ‖ A − Â ‖2F = E�‖A − QQ�A‖2F + E�E�‖X − Q�A‖2F
= (1 + f (k, l)) · E�‖A − QQ�A‖2F
≤ (1 + f (k, l)) · (1 + f (�, k)�k

4q) · τ 2�+1(A).

After minimizing over eligible index � < k − 1, the proof is completed. ��
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We are now in the position to prove Theorem 5. Combining Theorem 2 and Lemma 4, we
have

E{� j }Nj=1
‖X − X̂‖2F

=
N

∑

n=1

E{� j }Nj=1
‖X̂ (n−1) − X̂ (n)‖2F

=
N

∑

n=1

E{� j }n−1
j=1

{

E�n‖X̂ (n−1) − X̂ (n)‖2F
}

=
N

∑

n=1

E{� j }n−1
j=1

{

E�n‖G(n−1) ×n−1
i=1 U(i)×n(IIn − U(n)U(n)�)‖2F

}

≤
N

∑

n=1

E{� j }n−1
j=1

{

E�n‖(IIn − U(n)U(n)�)G(n−1)
(n) )‖2F

}

≤
N

∑

n=1

E{� j }n−1
j=1

(1 + f (rn, ln)) · min
�n<rn−1

(1 + f (�n, rn)�r
4q)

In∑

i=rn+1

σ 2
i (G(n−1)

(n) )

≤
N

∑

n=1

E{� j }n−1
j=1

(1 + f (rn, ln)) · min
�n<rn−1

(1 + f (�n, rn)�r
4q)�2

n(X )

=
N

∑

n=1

(1 + f (rn, ln)) · min
�n<rn−1

(1 + f (�n, rn)�r
4q)�2

n(X )

≤
N

∑

n=1

(1 + f (rn, ln)) · min
�n<rn−1

(1 + f (�n, rn)�r
4q)‖X − X̂ opt‖2F

which completes the proof of Theorem 5.
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