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Abstract
In this work, we propose a new class of parallel time integrators for initial-value problems
based on the well-known Picard iteration. To this end, we first investigate a class of sequential
integrators, known as numerical Picard iteration methods, which falls into the general frame-
work of deferred correction methods. We show that the numerical Picard iteration methods
admit a min(J , M + 1)-order rate of convergence, where J denotes the number of Picard
iterations and M + 1 is the number of collocation points. We then propose a class of parallel
solvers so that J Picard iterations can be proceeded simultaneously and nearly constantly.
We show that the parallel solvers yield the same convergence rate as that of the numeri-
cal Picard iteration methods. The main features of the proposed parallelized approach are
as follows. (1) Instead of computing the solution point by point [as in revisionist integral
deferred correction (RIDC) methods], the proposed methods proceed segment by segment.
(2) The proposed approach leads to a higher speedup; the speedup is shown to be J (M + 1)
(while the speedup of the J th order RIDC is, at most, J ). (3) The approach is applicable for
non-uniform points, such as Chebyshev points. The stability region of the proposed methods
is analyzed in detail, and we present numerical examples to verify the theoretical findings.

Keywords Parallel computation · Picard iteration · Initial-value problems · Stability region

1 Introduction

Numerical methods are of significant importance in science and engineering for initial-
value problems (IVPs). In the past several decades, great efforts have been focused on the
construction of efficient, stable, high-order, and easily parallelized time integrators for solving
IVPs [3–5, 15–17].WhileRunge–Kutta and linearmulti-stepmethods are popular approaches
used to obtain a high-order rate of convergence, alternative approaches, such as enhancing the
convergence of low-order schemes through deferred correction (DC) methods [12, 21], have
also been proposed. Two important variants of DC methods, the spectral deferred correction
(SDC) method [12] and the integral deferred correction (IDC) method [6], have also been
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proposed in recent years. To further enhance efficiency, parallel-in-time computations have
begun to receive great attention. In fact, early studies along this line date back to more than
50 years ago [20]. Since then, there have been several interesting approaches for parallel-in-
time computations; the reader is referred to [13, 14, 19, 22] and references therein for more
detailed information.

In this paper, we propose a novel parallel-in-time integrator based on Picard iterations:
parallel numerical Picard iteration. The main reason for choosing the Picard iteration as our
starting point is that it is one of the simplest approaches and has been successfully applied to
the propagations of perturbed orbits in astrodynamics [26, 27]. The original efforts weremade
by Clenshaw and collaborators [9–11], who developed the Picard iteration numerically with
Chebyshev polynomials. The Picard iteration has also been adopted in [24, 25] to improve the
convergence of SDCs and low-ordermethods.Nevertheless, the convergence of the numerical
Picard method has not been well studied. To this end, our first contribution in this work is
to present detailed convergence analysis of a class of numerical Picard iteration methods. In
particular, we show a super-convergence property of the numerical Picard iteration methods
by using the Legendre–Gauss points. More precisely, we demonstrate that the numerical
Picard iteration methods admit a min(J , M +1)-order rate of convergence, where J denotes
the number of Picard iterations and M + 1 is the number of collocation points.

In addition, we propose a class of parallel solvers by rearranging the order of numeri-
cal Picard iterations in different sub-intervals so that J Picard iterations can be proceeded
simultaneously and nearly constantly. Furthermore, we demonstrate that the parallel solvers
yield the same convergence rate as that of the numerical Picard iteration methods. We remark
that our approach is analogous to that of the revisionist integral deferred correction (RIDC)
methods in [7, 8]. However, compared to RIDC, the approaches proposed herein yield the
following main features.

• Instead of computing the solution point by point (as in RIDC methods), the proposed
methods proceed segment by segment.

• The proposed approach leads to a higher speedup: the speedup is shown to be J (M + 1)
(while the speedup of the J th order RIDC is, at most, J ).

• The approach is applicable for non-uniform points, such as Chebyshev points.

The stability region of the proposed methods is analyzed in detail; we also present
numerical examples to verify the theoretical findings.

The rest of this paper is organized as follows. In Sect. 2, we review the numerical Picard
iterationmethods and present our convergence analysis results. The parallel numerical Picard
iteration methods are presented in Sect. 3, followed by stability analysis in Sect. 4. Numerical
examples are presented in Sect. 5 to verify the theoretical results. We finally give concluding
remarks in Sect. 6.

2 Numerical Picard IterationMethods

In this section, we present the basic ideas of the numerical Picard iteration methods. First,
we consider the following problem:

{
y′(t) = f (t, y(t)), t ∈ [a, b],
y(0) = ya,

(1)

123



Journal of Scientific Computing (2023) 95 :27 Page 3 of 23 27

where ya, y(t) ∈ C
m and f : R × C

m → C
m . We assume that the function f satisfies the

Lipschitz continuous condition

‖ f (·, y1) − f (·, y2)‖ ≤ L‖y1 − y2‖, (2)

where L is the Lipschitz constant and ‖ · ‖ denotes the Euclidean norm. Integrating Eq. (1)
with respect to t , we obtain

y(t) = y(a) +
∫ t

a
f (τ, y(τ ))dτ. (3)

The well-known form of the Picard iteration is given by [16]

yi+1(t) = y(a) +
∫ t

a
f (τ, yi (τ ))dτ, i = 0, 1, . . . , (4)

where y0 is an initial guess. It has been shown that the above Picard iteration yields a super-
linear convergence rate when t is close enough to a [18]. Consequently, for a large time
domain, one can split the interval [a, b] into small sub-intervals and conduct the Picard
iteration on each sub-interval.

Note that, in the above iterations, repeated evaluations of integrals are needed. To alleviate
this computational issue, a numerical version of the Picard iterations is proposed. To illustrate
its main idea, we consider a standard interval I = [−1, 1] and let {ci : i = 0, 1, . . . , M}
be a set of collocation points on I such that −1 ≤ c0 < c1 < · · · < cM ≤ 1. For a given
vector ϕ = [ϕ0, ϕ1, . . . , ϕM ]�, we introduce the standard Lagrange interpolation operator
IM : CM+1 × I → C:

IM (ϕ, t) =
M∑
j=0

ϕ j� j (t), t ∈ I ,

where the functions � j (t) are given by

� j (t) :=
∏
i �= j

i=0,1,...,M

t − ci
c j − ci

, j = 0, . . . , M .

We setY [0](t) ≡ y(−1), t ∈ I , and once the i th approximationY [i] is obtained, the numerical
Picard iteration solves the (i + 1)th approximation Y [i+1] by

Y [i+1](t) = y(−1) +
∫ t

−1
IM ( f (Y[i]), s)ds, i = 0, 1, . . . , (5)

where

Y[i] := [Y [i](c0), Y [i](c1), . . . , Y [i](cM )]�,

f (Y[i]) := [ f (c0, Y [i](c0)), f (c1, Y
[i](c1)), . . . , f (cM , Y [i](cM ))]�.

For easily presenting our analysis results, we next define a numerical-Picard-iteration-
based integrator for Eq. (1). To this end, we first discretize [a, b] into sub-intervals

Mh := {tn : a = t0 < t1 < · · · < tN = b}.
Then, we set

In := (tn, tn+1], Īn := {tn} ∪ In, hn := tn+1 − tn, n = 0, 1, . . . , N − 1.
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We also define the size of the mesh Mh as

h := max{hn : 0 ≤ n ≤ N − 1}.

We now denote SM+1(Mh) as the space of the piecewise polynomial space

SM+1(Mh) := {v ∈ C([a, b]) : v|In ∈ πM+1, 0 ≤ n ≤ N − 1
}
,

where πM+1 denotes the space of all polynomials of degree M + 1. We assume that Yn is the
initial condition for the interval In , i.e., y(tn) = Yn , which is obtained by the previous step
or initial condition, and set an initial guess as Y [0]

n (t) ≡ Yn . We then make a transform from
In to I and adopt the numerical Picard iteration (5) to obtain

Y [i+1]
n (t) = Yn + hn

2

∫ 2
hn

(t−tn)−1

−1
IM ( f (Y[i]

n ), s)ds, i = 0, 1, . . . , (6)

where

tn,i := tn + hn
2

(ci + 1), i = 0, 1, . . . , M .

Y[i]
n := [Y [i]

n (tn,0), Y
[i]
n (tn,1), . . . , Y

[i]
n (tn,M )]�,

f (Y[i]
n ) := [ f (tn,0, Y

[i]
n (tn,0)), f (tn,1, Y

[i]
n (tn,1)), . . . , f (tn,M , Y [i]

n (tn,M ))]�.

We are now ready to define the numerical Picard iteration solution on the entire domain: for
a given positive number J , the element η[J ]

h ∈ SM+1(Mh) is called the J -Picard solution of
Eq. (1) if it satisfies

η
[J ]
h |In = Y [J ]

n , n = 0, 1, . . . , N − 1,

where Y [J ]
n is generated by Eq. (6).

Remark 1 Different kinds of collocation points have been proposed in the numerical Picard
iteration methods. For the special case in which Chebyshev points are used, i.e.,

ci = cos
iπ

M
, i = 0, 1, . . . , M,

the method is called the modified Chebyshev-Picard iteration method [2].

To easily present the numerical Picard iteration method, we next introduce the integration
matrix associated with the points {ci : i = 0, 1, . . . , M} : given a vector ϕ ∈ C

M+1 and
φ = [φ0, φ1, . . . , φM ]� that is given by

φi =
∫ ci

−1
IM (ϕ, s)ds, i = 0, 1, . . . , M,

we define the linear mapping SM : CM+1 → C
M+1 by

φ = SM (ϕ).
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With these notations, we summarize the numerical Picard iteration method as follows.

Algorithm 1: Numerical Picard iteration method
Input: Domain [a, b], initial condition ya , number of intervals N , number of points on

each interval M , number of Picard iterations J
Output: Evaluations on the endpoints of N intervals η := [η[J ]

0 , η
[J ]
1 , . . . , η

[J ]
N ]�

1 (Initialize and pre-compute integration matrix);

2 Set η[J ]
0 = ya and derive the matrix SM ;

3 for n = 1 to N do
4 Yn = [η[J ]

n−1, η
[J ]
n−1, . . . , η

[J ]
n−1]�;

5 Set the initial approximate solution Y[0]
n = Yn ;

6 (Picard iteration)
7 for j = 1 to J do
8

Y[ j]
n = Yn + hn

2
SM f (Y[ j−1]

n ), (7)

9 end

10 If cM = 1, the approximation η
[J ]
n at t = tn is included in Y[J ]

n .
11 If cM �= 1, derive the approximation at t = tn

η[J ]
n = η

[J ]
n−1 + hn

2
ω′ f (Y[J−1]),

where ω = (ω0, ω1, . . . , ωM )� and ωi := ∫ 1−1 �i (s)ds, i = 0, 1, . . . , M .
12 end

According to (7) in the numerical Picard iteration method, it is clear that the values Y [ j]
n

at different nodes in In depend only on the values Y [ j−1]
n in the previous iteration; hence,

the numerical Picard iteration method refreshes the state values segment by segment, which
means that the values Y [ j]

n can be obtained simultaneously. This is quite different from the
SDC methods, in which the values at different nodes must be computed point by point.
This property has the merit that the matrix–vector product and the evaluations of the forcing
function f are easily computed in parallel in one numerical Picard iteration.

We next present the convergence analysis of the above numerical Picard method. For this
purpose, we recall the following interpolation error in terms of the Peano kernel theorem
[23].

Lemma 1 If ϕ ∈ Cd( Īn), 1 ≤ d ≤ M + 1, then the Lagrange interpolant defined on the set
{tn, j } satisfies

ϕ

(
tn + hn

2
(s + 1)

)
− IM (ϕ, s) =

(
hn
2

)d ∫ 1

−1
Kd(s, z)ϕ

(d)

(
tn + hn

2
(z + 1)

)
dz,

where ϕ := [ϕ(tn,0), ϕ(tn,1), . . . , ϕ(tn,M )]� and

Kd(s, z) := 1

(d − 1)!

⎧⎨
⎩(s − z)d−1+ −

M∑
j=0

� j (s)(c j − z)d−1+

⎫⎬
⎭ ,

with (s − z)p+ := 0 for s < z and (s − z)p+ := (s − z)p for s ≥ z.
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We also have the following lemma.

Lemma 2 Suppose that N and m are non-negative integers and h is a positive real number
such that Nh is a constant independent of N and h. If the sequence {εn : 0 ≤ n ≤ N }
satisfies ε0 = 0 and

εn+1 ≤ c0h
m + (1 + c1h)εn, 1 ≤ n ≤ N − 1,

where c0 and c1 are positive numbers independent of h, then there exists a positive number
c independent of h such that

εn ≤ chm−1, n ≤ N .

Proof It is obtained through iteration that

εn ≤ c0h
m

n−1∑
i=0

(1 + c1h)i = c0hm−1

c1

(
(1 + c1h)n − 1

)
≤ c0

c1

(
ec1nh − 1

)
hm−1, 1 ≤ n ≤ N ,

where we use the inequality 1 + x ≤ ex . Since Nh is a constant independent of h, the
conclusion follows directly. �


We are now ready to present the following convergence analysis.

Theorem 1 Assume that the solution y(t) of Eq. (1) is (M + 2)-times continuously differen-
tiable and η

[J ]
h is the J -Picard solution. For sufficiently small h, the following error estimate

holds: ∥∥∥y − η
[J ]
h

∥∥∥∞ = max
t∈[a,b]

∣∣∣y(t) − η
[J ]
h (t)

∣∣∣ ≤ Chmin(J ,M+1), (8)

where the constant C is independent of h.

Proof We denote yn = [y(tn,0), y(tn,1), . . . , y(tn,M )]�. By Lemma 1, there exists

y′
(
tn + hn

2
(s + 1)

)
= f

(
tn + hn

2
(s + 1), y

(
tn + hn

2
(s + 1)

))
= IM ( f (yn), s) +

(
hn
2

)M+1
Hn(s),

(9)
where

Hn(s) =
∫ 1

−1
KJ (s, z)y

(M+2)
(
tn + hn

2
(z + 1)

)
dz.

Integration of Eq. (9) leads to

y

(
tn + hn

2
(s + 1)

)
= y(tn) + hn

2

∫ s

−1
IM ( f (yn), z)dz +

(
hn
2

)M+2 ∫ s

−1
Hn(z)dz. (10)

Recalling the formula for Y [J ]
n in the Picard iteration, we rewrite eh(t) := y(t) − η

[J ]
h (t) as

eh

(
tn + hn

2
(s + 1)

)
= eh(tn) + hn

2

∫ s

−1
IM ( f (yn) − f (Y[J−1]

n ), z)dz +
(
hn
2

)M+2 ∫ s

−1
Hn(z)dz.

Using the Lipschitz condition, we have

|eh
(
tn + hn

2
(s + 1)

)
| ≤ |eh(tn)| + chn

∥∥∥yn − Y[J−1]
n

∥∥∥ M∑
i=0

|βi (s)| + chM+2
n , (11)
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where βi (s) = ∫ s−1 �i (z)dz and c is a generic constant independent of h. In particular, setting
s = 1, the following is obtained:

|eh(tn+1)| ≤ |eh(tn)| + chn
∥∥∥yn − Y[J−1]

n

∥∥∥+ chM+2
n . (12)

We next analyze the bounds of eh(tn) and
∥∥∥yn − Y[J−1]

n

∥∥∥. Combining Eqs. (6) and (10), we

have ∥∥∥yn − Y[ j+1]
n

∥∥∥ ≤ |eh(tn)| + chn
∥∥∥yn − Y[ j]

n

∥∥∥+ chM+2
n , j = 0, 1, . . . , J − 2.

Note that we also have∥∥∥yn − Y[0]
n

∥∥∥ ≤ |eh(tn)| + max
i=0,1,...,M

|y(tn,i ) − y(tn)| ≤ |eh(tn)| + chn .

It then follows that

∥∥∥yn − Y[J−1]
n

∥∥∥ ≤
(
|eh(tn)| + chM+2

n

) J−2∑
j=0

(chn)
j + (chn)

J−1
∥∥∥yn − Y[0]

n

∥∥∥

≤ |eh(tn)|
J−1∑
j=0

(chn)
j + chmin(J ,M+2)

n .

(13)

By substituting (13) into Eq. (12), we obtain

|eh(tn+1)| ≤ |eh(tn)|
J∑

j=0

(chn)
j + chmin(J+1,M+2)

n ≤ |eh(tn)|
J∑

j=0

(ch) j + chmin(J+1,M+2).

(14)
For a sufficiently small h, there exists a constant c1 independent of h such that

J∑
j=0

(ch) j ≤ 1 + c1h.

Moreover, we have that eh(t0) = 0. By Lemma 2, we have that

eh(tn) ≤ chmin(J ,M+1), n = 1, 2, . . . , N .

It then follows directly from (13) that∥∥∥yn − Y[J−1]
n

∥∥∥ ≤ chmin(J ,M+1).

Then, the desired error bound (8) follows by using the bounds of eh(tn),
∥∥∥yn − Y[J−1]

n

∥∥∥ ,

and the equality (11). �


Next, we show that the J -Picard solution yields a super-convergence property when the
Gaussian quadrature points are adopted. For this purpose, let

δ
[J ]
h (t) := −η

[J ]
h

′(t) + f (t, η[J ]
h (t)), t ∈ [a, b]

be the defect associated with the J -Picard solution. We first present the following lemma.
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Lemma 3 If f is bounded and satisfies the Lipschitz condition, then there exists a constant
C independent of h such that

max
i=0,1,...,M

n=0,1,...,N−1

∣∣∣δ[J ]
h (tn,i )

∣∣∣ ≤ ChJ .

Proof Let η[J ]
h (t) = Y [J ]

n (t), t ∈ In and {Y [ j]
n : j = 0, 1, . . . , J } be the sequences generated

by the Picard iteration on In . For t ∈ {tn,i : i = 0, 1, . . . , M}, δ[J ]
h can be represented by

δ
[J ]
h (t) = f (t, Y [J ]

n (t)) − f (t, Y [J−1]
n (t)).

Using the Lipschitz condition of f , there exists a constant independent of h such that∣∣∣δ[J ]
h (tn,i )

∣∣∣ ≤ C
∣∣∣Y [J ]

n (tn,i ) − Y [J−1]
n (tn,i )

∣∣∣ , i = 0, 1, 2 · · · , M . (15)

Let Y[ j]
n be the vector of the function Y [ j]

n evaluated at the points {tn,i : i = 0, 1, . . . , M}. It
is noted from the Picard iteration that Y [0]

n (tn,i ) = η
[J ]
h (tn) and

Y [ j+1]
n (tn,i ) = η

[J ]
h (tn) + hn

2

∫ ci

−1
IM ( f (Y[ j]

n ), s)ds, j = 0, 1, . . . , J − 1.

Hence, there exists a constant C independent of h such that∥∥∥Y[ j+1]
n − Y[ j]

n

∥∥∥ ≤ Chn
∥∥∥Y[ j]

n − Y[ j−1]
n

∥∥∥ , j = 1, 2, . . . , J − 1,

and
∥∥∥Y[1]

n − Y[0]
n

∥∥∥ ≤ Chn . It follows directly that∥∥∥Y[J ]
n − Y[J−1]

n

∥∥∥ ≤ ChJ
n . (16)

The desired inequality follows directly from (15) and (16). The proof is completed. �

We also recall the following standard lemma for the Gauss quadrature error [1].

Lemma 4 If ϕ ∈ C2M+2( Īn), and the points {c j : j = 0, 1, . . . , M} are chosen to be
Legendre–Gauss points, then the error

EM (ϕ) =
∫ tn+1

tn
ϕ(t)dt − hn

2

M∑
j=0

ω jϕ(tn, j )

satisfies

|EM (ϕ)| ≤ Ch2M+3
n ,

where C is a constant independent of hn.

We are now ready to present the super-convergence result.

Theorem 2 Assume that the solution y(t) of (1) is (2M+3)-times continuously differentiable
and η

[J ]
h is a J -Picard solution. If the step size h is sufficiently small and the points {c j }Mj=0

are chosen to be Legendre–Gauss points, then the following error estimate holds:

max
t∈Mh

|y(t) − η
[J ]
h (t)| ≤ Chmin(J ,2M+2), (17)

where the constant C is independent of h.
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Proof By Theorem 1, it holds that ‖eh‖ := ‖y(t)−η
[J ]
h (t)‖ ≤ Chmin(J ,M+1). Moreover, we

have

e′
h(t) = f (t, y(t))− f (t, η[J ]

h (t))+ δ
[J ]
h (t) = fy(t, y(t))eh(t)+ δ

[J ]
h (t)+ Rh(t), t ∈ [a, b]

(18)
with eh(a) = 0 and ‖Rh‖ ≤ Chmin(2J ,2M+2). We then have

eh(t) =
∫ t

a
r(t, s)(δ[J ]

h (s) + Rh(s))ds, t ∈ [a, b],

where r(t, s) denotes the resolvent of the ODE (18):

r(t, s) := exp

(∫ t

s
fy(z, y(z))dz

)
, with r ∈ C2M+2(D),

where D := {(t, s) : a ≤ s ≤ t ≤ b}. The error eh(tn) can be written as

eh(tn) =
n∑
j=0

∫ t j+1

t j
r(tn, s)δ

[J ]
h (s)ds.

Supposing that each of the integrals is approximated by the Gaussian quadrature based on
the Legendre Gauss points, we have

∫ t j+1

t j
r(tn, s)δ

[J ]
h (s)ds = h j

2

M∑
k=0

ωkr(tn, tn,k)δ
[J ]
h (tn,k) + EM,n,

where the term EM,n denotes the quadrature error. Then, Lemma 4 indicates that EM,n is
bounded by Ch2M+3,. Furthermore, Lemma 3 shows that

h j

2

M∑
k=0

ωkr(tn, tn,k)δ
[J ]
h (tn,k) ≤ ChJ+1,

where C is a generic constant independent of h. Hence, the integral
∫ t j+1
t j

r(tn, s)δ
[J ]
h (s)ds

is bounded by Chmin(J+1,2M+3), which completes the proof. �


3 Parallel Numerical Picard IterationMethods

In addition to the parallelization in one Picard iteration due to the property of computation
segment by segment, we further investigate the parallelization between the numerical Picard
iterations on different sub-intervals. We propose a new parallel method called the parallel
numerical Picard iteration (PNPI) method. Note that in the traditional numerical Picard
iterationmethod onemust complete the Picard iterations on the current interval beforemoving
on to the next one. Instead, the proposed PNPImethod allows one to perform Picard iterations
simultaneously on different sub-intervals, once rough initial conditions and approximations
are obtained.

We first illustrate one parallelization idea by considering a casewith N = 4 and J = 3.We
denote by η

[ j]
n the j th approximation value at tn for all n = 0, 1, . . . , N , j = 0, 1, . . . , J−1,,

and set
η

[ j]
0 = ya, j = 0, 1, . . . , J − 1.
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Fig. 1 Diagrams of parallel algorithm

The notation Y [ j]
n denotes the j th approximation of solution on the sub-interval In . The

computation consists of the following steps (See Fig. 1):

• On the first sub-interval I0, the initial-state value η
[0]
0 is known and a rough approximation

Y [0]
0 is obtained by setting Y [0]

0 (t) ≡ η
[0]
0 , t ∈ I0. One numerical Picard iteration can be

performed to obtain a more accurate solution Y [1]
0 on I0 and an initial-state value η

[0]
1 for

the second sub-interval I1.
• The second numerical Picard iteration can proceed on I0 with η

[1]
0 and Y [1]

0 to obtain

a more accurate solution Y [2]
0 for I0 and a more accurate initial-state value η

[1]
1 for I1.

Meanwhile, another numerical Picard iteration can be conducted on I1 with η
[0]
1 and

Y [0]
1 ≡ η

[0]
1 to obtain a more accurate approximation Y [1]

1 for I1 and an initial-state value

η
[0]
2 for I2.

• We can next conduct three numerical Picard iterations on I0, I1, and I2 simultaneously
to obtain a more accurate approximation for the current sub-interval and provide a more
accurate initial-state value for the next sub-interval.

• The procedure can continue until the computations are finished.

We note that there are J numerical Picard iterations that can be computed in parallel all
the time, except at the beginning and last J − 1 steps.

However, the parallelization of the numerical Picard iterations shown in Fig. 1 leads to
bad convergence of the iteration. To explain this, we focus on the second Picard iteration on
I1 with the initial-state condition η

[1]
1 and a rough approximation Y [1]

1 . Although η
[1]
1 is more

accurate than η
[0]
1 , it is easily found that the accuracy of Y [1]

1 is of the same level as that of

η
[0]
1 according to (6); that is,

Y [1]
1 (t) = η

[0]
1 + h1

2

∫ 2
h1

(t−t1)−1

−1
IM ( f (Y[0]

1 ), s)ds.
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Then, the accuracy ofη[1]
2 andY [2]

1 obtained from the numerical Picard iterationwill be limited

by the accuracy of Y [1]
1 , i.e., that of η

[0]
1 . In fact, it can also be proved that the convergence of

the numerical Picard iteration method with the above parallelization is only of one order. To
overcome bad convergence, we make a slight modification for Y [1]

1 by adding the difference

between η
[0]
1 and η

[1]
1 ,

Ỹ [1]
1 = Y [1]

1 + η
[1]
1 − η

[0]
1 ,

and then conduct the numerical Picard iteration with η
[1]
1 and Ỹ [1]

1 to derive η
[1]
2 and Y [2]

1 . It
will be shown in Theorem 3 that the convergence order stays the same as that of the serial
numerical Picard iteration methods.

We are now ready to present parallel numerical Picard iteration methods that make use of
both the merits of the parallelization and the high-order convergence.

Definition 1 For a given positive number J , the element η
[J ]
h ∈ SM+1(Mh) is called the

parallel J -Picard solution of Eq. (1) if it satisfies

η
[J ]
h

∣∣∣
In

= Y [J ]
n , n = 0, 1, . . . , N − 1,

where Y [J ]
n is generated by the iteration

Ỹ [i]
n (t) =

{
Y [i]
n (t), i = 0,

Y [i]
n (t) + η

[i]
n − η

[i−1]
n , i = 1, 2, . . . , J − 1,

(19)

Y [i+1]
n (t) = η[i]

n + hn
2

∫ 2
hn

(t−tn)−1

−1
IM ( f (Ỹ[i]

n ), s)ds, i = 0, 1, . . . , J − 1, (20)

with η
[ j]
0 = ya , j = 0, 1, . . . , J −1, η[ j]

k = Y [ j+1]
k−1 (tk), k = 1, . . . , N−1, j = 0, 1, . . . , J −

1, and Y [0]
k (t) ≡ η

[0]
k , t ∈ Ik, k = 0, 1, . . . , N − 1.

With the above definition, the PNPI method is presented in Algorithm 2. It is clear from
Algorithm 2 that there is no restriction on the selection of points in each subinterval for the
PNPI method. It is more flexible for the PNPI method than the RICD method [8] which
requires the uniform nodes for easily conducting the parallelization.

The convergence analysis of the PNPI method is given in Theorem 3.

Theorem 3 Assuming that the solution y(t)of (1) is (M+2)-times continuously differentiable
and that η

[J ]
h is a parallel J -Picard solution, if the step size h is sufficiently small, then the

following error estimate holds:

∥∥∥y − η
[J ]
h

∥∥∥∞ = max
t∈[a,b]

∣∣∣y(t) − η
[J ]
h (t)

∣∣∣ ≤ chmin{J ,M+1}, (21)

where the constant c is independent of h.
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Algorithm 2: Parallel Numerical Picard Iteration Method
Input: Domain [a, b], initial condition ya , number of intervals N , number of points on

each interval M , number of Picard iterations J
Output: Evaluations on the endpoints of N intervals η := [η[J ]

0 , η
[J ]
1 , . . . , η

[J ]
N ]�

1 (Initialize and precompute integration matrix);

2 Set η[ j]
0 = ya, j = 1, 2 · · · , J , and derive the matrix SM ;

3 for k = 2 to N + 1 do
4 for j = 1 to min(k − 1, J ) do
5 (Parallel Computation)
6 n = k − j ;

7 yn := [η[ j]
n−1, η

[ j]
n−1, . . . , η

[ j]
n−1]�;

8 if j = 1 then
9 Y[0]

n = yn ;
10 �yn := [0, 0, . . . , 0]�;
11 else
12 �yn := [η[ j]

n−1 − η
[ j−1]
n−1 , η

[ j]
n−1 − η

[ j−1]
n−1 , . . . , η

[ j]
n−1 − η

[ j−1]
n−1 ]�;

13 end

14 Y[ j]
n = yn + hn

2 SM f (Y[ j−1]
n + �yn);

15 η
[ j]
n = η

[ j]
n−1 + hn

2 ω′ f (Y[ j−1]
n + �yn);

16 end
17 end
18 for k = N + 2 to N + J do
19 for n = max(1, k − J ) to N do
20 (Parallel Computation)
21 j = k − n;

22 yn := [η[ j]
n−1, η

[ j]
n−1, . . . , η

[ j]
n−1]�;

23 if j = 1 then
24 Y[0]

n = yn ;
25 �yn := [0, 0, . . . , 0]�;
26 else
27 �yn := [η[ j]

n−1 − η
[ j−1]
n−1 , η

[ j]
n−1 − η

[ j−1]
n−1 , . . . , η

[ j]
n−1 − η

[ j−1]
n−1 ]�;

28 end

29 Y[ j]
n = yn + hn

2 SM f (Y[ j−1]
n + �yn);

30 η
[ j]
n = η

[ j]
n−1 + hn

2 ω′ f (Y[ j−1]
n + �yn);

31 end
32 end

Proof Denoting the error e[i]
n (t) := y(t)−Y [i]

n (t) and ξ
[i]
n := y(tn)−η

[i]
n ,n = 0, 1, . . . , N−1,

i = 0, 1, . . . J − 1, it is obtained that

e[i+1]
n

(
tn + hn

2
(s + 1)

)
= ξ

[i]
n + hn

2

∫ s

−1
IM ( f (yn) − f (Ỹ[i]

n ), z)dz +
(
hn
2

)M+2 ∫ s

−1
Hn(z)dz,
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with i = 0, 1, . . . , J−1, n = 0, 1, . . . , N−1 and s ∈ [−1, 1]. Using the Lipschitz condition,
we have ∣∣∣∣e[i+1]

n

(
tn + hn

2
(s + 1)

)∣∣∣∣ ≤
∣∣∣ξ [i]
n

∣∣∣+ ch
∥∥∥yn − Ỹ[i]

n

∥∥∥+ chM+2, (22)

where c is a generic constant independent of h. In particular, we have from Eq. (22) that∥∥∥yn − Ỹ[i+1]
n

∥∥∥ ≤
∣∣∣ξ [i+1]
n

∣∣∣+ ch
∥∥∥yn − Ỹ[i]

n

∥∥∥+ chM+2. (23)

Noting that ξ
[i]
n+1 = e[i+1]

n (tn+1), n = 0, 1, 2, . . . , N − 1, i = 0, 1, . . . , J − 1, it follows
from Eq. (22) that ∣∣∣ξ [i]

n+1

∣∣∣ ≤ ∣∣∣ξ [i]
n

∣∣∣+ ch
∥∥∥yn − Ỹ[i]

n

∥∥∥+ chM+2. (24)

We next present the bounds for ξ
[0]
n and

∥∥∥yn − Ỹ[0]
n

∥∥∥. Since∥∥∥yn − Ỹ[0]
n

∥∥∥ ≤ ‖yn − y(tn)‖ +
∣∣∣ξ [0]
n

∣∣∣ ≤ ch +
∣∣∣ξ [0]
n

∣∣∣ ,
we obtain from Eq. (24) that∣∣∣ξ [0]

n+1

∣∣∣ ≤ (1 + ch)

∣∣∣ξ [0]
n

∣∣∣+ ch2 + chM+2, n = 0, 1, . . . , N − 1. (25)

Since ξ
[0]
0 = 0, Lemma 2 shows that

max
n=0,1,...,N−1

∣∣∣ξ [0]
n

∣∣∣ ≤ ch, and max
n=0,1,...,N−1

∥∥∥yn − Ỹ[0]
n

∥∥∥ ≤ ch. (26)

We then turn to the bound of
∣∣∣ξ [i]
n+1

∣∣∣, i ≥ 1. With the combination of Eqs. (23) and (24),

it is obtained by induction that

∣∣∣ξ [i]
n+1

∣∣∣ ≤ ∣∣∣ξ [i]
n

∣∣∣+ i∑
j=1

(ch)i+1− j
(∣∣∣ξ [ j]

n

∣∣∣+ (ch)M+2
)

+ (ch)i+1
∥∥∥yn − Ỹ[0]

n

∥∥∥+ (ch)M+2.

(27)

Combining the bound (26) for
∥∥∥yn − Ỹ[0]

n

∥∥∥ and Eq. (27), we have, for a small enough h, that

∣∣∣ξ [i]
n+1

∣∣∣ ≤ (1 + ch)

∣∣∣ξ [i]
n

∣∣∣+ i−1∑
j=1

(ch)i+1− j
∣∣∣ξ [ j]
n

∣∣∣+ chmin{i+2,M+2}. (28)

Combining the inequality (28) and the fact that ξ
[ j]
0 = 0, j = 0, 1, . . . , J − 1, it can be

verified by induction on i with the help of Lemma 2 that

max
n=1,2,...,N−1

∣∣∣ξ [i]
n

∣∣∣ ≤ chmin{i+1,M+1}, i = 0, 1, . . . , J − 1. (29)

Combining Eqs. (23) and (29), we have∥∥∥yn − Ỹ[i+1]
n

∥∥∥ ≤ ch
∥∥∥yn − Ỹ[i]

n

∥∥∥+ chmin{i+2,M+1}.

By induction on i , it is obtained from
∥∥∥yn − Ỹ[0]

n

∥∥∥ < ch that

max
n=1,2,...,N−1

∥∥∥yn − Ỹ[i]
n

∥∥∥ ≤ chmin{i+1,M+1}, i = 0, 1, . . . , J . (30)

123



27 Page 14 of 23 Journal of Scientific Computing (2023) 95 :27

It follows directly from Eqs. (22), (29), and (30) that∥∥∥y − η
[J ]
h

∥∥∥∞ = max
n=0,1,...,N−1

∣∣∣e[J ]
n

∣∣∣ ≤ chmin{J ,M+1},

which finishes the proof. �


We remark that the PNPImethods also possess the super-convergence property.Wepresent
this property as the following theorem, the proof of which is similar to that of Theorem 2.

Theorem 4 Assuming that the solution y(t) of (1) is (2M + 3)-times continuously differen-
tiable and η

[J ]
h is a parallel J -Picard solution, if the step size h is sufficiently small and the

points {c j : j = 0, 1, . . . , M} are chosen to be Legendre–Gauss points, then the following
error estimate holds:

max
t∈Mh

|y(t) − η
[J ]
h (t)| ≤ Chmin(J ,2M+2), (31)

where the constant C is independent of h.

We end this section by presenting the speedup property of PNPI. To this end, we define
the following index for speedup:

Speedup = Tserial
Tparallel

,

where Tserial and Tparallel are the computational times for the traditional method and PNPI
method, respectively. We denote by u0 one unit time to evaluate one force function and by
u1 one unit time to compute a dot product of two vectors of size (M + 1). To implement one
numerical Picard iteration to obtain one Y[ j]

n and η
[ j]
n , (M + 1) functions and m(M + 1) dot

products must be evaluated, as shown in Algorithm 2. Since N J Picard iterations in total are
needed, it is clear that

Tserial = N J (M + 1)(u0 + mu1).

Supposing that P cores are adopted in Algorithm 2, for simplicity we assume that there
are J numerical Picard iterations in each outer iteration. In each outer iteration, there are
(M + 1)J functions and m(M + 1)J dot products to be evaluated independently, which can
be computed in parallel. It then follows that

Tparallel ≈ 1

P
(N + J − 1)(M + 1)J (u0 + mu1).

Thus, the speedup of the parallel numerical Picard method is given by

Speedup = PN

N + J − 1
.

Owing to the combination of parallelizations inside one numerical Picard iteration and
between numerical Picard iterations on different sub-intervals, the parallel numerical Picard
iteration method yields a larger speedup compared to the RIDC method [8]. In fact, the
speedup of a J th-order RIDC is at most J , while that for PNPI with the speedup can be
J (M + 1), at least in theory.
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Fig. 2 Stability regions for numerical Picard iteration methods. Dependence of stability on a orders, b number
of points, c iteration, and d type of points

4 Stability Analysis

We now investigate the numerical stability region for the numerical Picard iteration method.
First, we recall the following definitions.

Definition 2 The amplification factor for a numerical method, Am(λ), can be interpreted as
the numerical solution to Dalhquist’s test equation,

y′(t) = λy(t), y(0) = 1, (32)

after one time step of size 1 for λ ∈ C, i.e., Am(λ) = y(1).

Definition 3 The stability region S for a numerical method is the subset of the complex plane
C consisting of all λ such that Am(λ) ≤ 1,

S = {λ : Am(λ) ≤ 1}.
The stability regions for the numerical Picard iteration methods with different settings

are computed numerically and presented in Fig. 2. In Fig. 2a–c, we explore the dependence
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Fig. 3 Stability regions for parallel numerical Picard iteration methods. Dependence of stability on a orders,
b number of points, c iteration, and d type of points

of the stability on the convergence order, number M of points, and iteration number J with
Chebyshev points. One observes a circle of radius 1 for the stability region after one Picard
iteration, which is the same as the forward Euler integrator used. This is shown clearly in
Fig. 2a, i.e., the area of the stability regions increases with increasing convergence order of
the numerical Picard iteration methods. When the convergence order is unchanged, Fig. 2b
shows that the stability regions would not increase with increasing numberM of points, while
Fig. 2c shows that the stability regions still increase with increasing iteration number J before
the value J attaches 2(M + 1). We also study the dependence of the stability regions on the
choice of points. We chose three different types of points: Chebyshev, Legendre–Gauss, and
uniform points. Interestingly, FIg. 2d shows that the stability regions almost do not depend
on the choice of the points.

To study the stability regions of the PNPI methods, we introduce another definition of the
stability region based on a uniform mesh.

Definition 4 The stability region S for a numerical method with a uniform mesh that has a
size of �t is the subset of the complex plane C consisting of all λ�t such that Am(λ) ≤ 1,

S = {λ�t : Am(λ) ≤ 1}.
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Fig. 4 Absolute error as function of number of intervals for different numbers of iterations, J ,. NPM with J
iterations adopts a five Chebyshev-Gauss nodes per interval and b three Legendre–Gauss nodes per interval.
Expected orders of accuracy are observed

The stability regions for the parallel numerical Picard iteration methods with different
settings are displayed in Fig. 3 . In the first three Fig. 3a–c, we explore the dependence of
the stability of the methods on the number M of points and the iteration number J while
using Chebyshev points. One can also observe a circle of radius 1 for the stability region
after one Picard iteration. Figure 3a shows that the area of the stability regions decreases
with the convergence order of the numerical Picard iteration methods, but they encompass an
increasing amount of the imaginary axis. This result is consistent with the stability regions
of the RIDC [8]. We also note in Fig. 3b that the stability regions do not nearly depend on
the number M of points, which is quite different from that for the numerical Picard iteration
methods. The stability regions in Fig. 3c are nearly the same as those in Fig. 3a, which
indicates that the stability regions depend mainly on the number of the iterations. Similarly,
Fig. 3d shows that the stability regions do not nearly depend on the choice of points.

5 Numerical Examples

In this section, we illustrate the performance of numerical Picard iteration (NPI) and PNPI
methods by numerical examples.

Example 1 Our first example is taken from [21]⎧⎪⎨
⎪⎩
y′
1(t) = t y2(t) + y1(t),

y′
2(t) = −t y1(t) + y2(t),

y(0) = (1, 1)�, t ∈ [0, T ].
(33)

The analytic solution is y(t) = (et (cos t2
2 +sin t2

2 ), et (cos t2
2 −sin t2

2 ))�.We use this example
to show the convergence rate of NPI methods.

We set T = 1 and adopt fiveChebyshev–Gauss points, i.e., {cos iπ
n−1 : i = 0, 1, . . . , n−1.}

in the NPI methods. The numerical errors with respect to the number of intervals is presented
in Fig. 4a for different numbers of iterations. It is noted that the rates of convergence confirm
the theoretical results. The super-convergence property with the Legendre–Gauss points is
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Fig. 5 Absolute error as function of number of intervals for different number of iterations, J . PNPI methods
with J iterations adopting a five Chebyshev-Gauss nodes per interval and b three Legendre–Gauss nodes per
interval. Expected orders of accuracy are observed

Table 1 Rate of convergence of NPI methods with five different nodes (J = 5, T = 1)

N Chebyshev points Uniform points Irregular points

Error Order Error Order Error Order

10 7.1188e−08 – 1.1426e−07 – 2.2807e−07 –

20 2.2623e−09 4.98 3.6240e−09 4.98 7.2287e−09 4.98

40 7.1275e−11 4.99 1.1408e−10 4.99 2.2747e−10 4.99

80 2.2387e−12 4.99 3.5794e−12 4.99 7.1458e−12 4.99

160 7.0166e−14 5.00 1.1369e−13 4.98 2.4025e−13 4.89

Table 2 Rate of convergence of NPI methods with 10 nodes (J = 10, T = 6)

N Chebyshev points Uniform points Irregular points

Error Order Error Order Error Order

10 9.2939e+00 – 9.2920e+00 – 9.2528e+00 –

20 1.2409e−02 9.55 1.2407e−02 9.55 1.2361e−02 9.55

40 1.4560e−05 9.74 1.4561e−05 9.73 1.4739e−05 9.71

80 1.2176e−08 10.22 1.3068e−08 10.12 1.1963e−07 6.94

160 1.3188e−11 9.85 8.7309e−10 3.90 8.7145e−08 0.46

also presented in Fig. 4b, where three Legendre–Gauss nodes are used. It is clearly shown
in Fig. 4b that the order increases as the number of iterations increases before it reaches two
times the number of nodes.

The NPI methods with different choice of collocation points were also tested. More pre-
cisely, we compared three different types of nodes: Chebyshev–Gauss points, uniformly
spaced nodes, and irregularly spaced nodes. Table 1 shows the numerical errors and rates
of convergence for the NPI methods M, J = 5, while Table 2 shows similar results with
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Table 3 Comparison of
convergence of PNPI and NPI
methods with five Chebyshev
points and J = 5

N PNPI methods NPI methods

Error Order Error Order

10 1.4723e−06 – 1.1684e−06 –

20 3.0713e−08 5.58 3.1909e−08 5.19

40 8.1510e−10 5.24 9.2687e−10 5.11

80 2.3644e−11 5.11 2.7884e−11 5.05

160 7.1321e−13 5.05 8.5487e−13 5.03

Table 4 Rate of convergence of PNPI methods with 10 nodes (J = 10, T = 5)

N Chebyshev points Uniform points Irregular points

Error Order Error Order Error Order

20 5.3941e−04 – 5.3941e−04 – 5.3941e−04 –

40 1.7467e−08 14.91 1.7467e−08 14.91 1.7457e−08 14.92

80 6.2746e−12 11.44 6.1571e−12 11.47 3.0896e−11 9.14

160 3.8858e−15 10.66 3.9563e−13 3.96 2.8869e−11 0.10

M, J = 10. Here, the uniform points are chosen as{
− 1 + 2i

n − 1
: i = 0, 1, . . . , n − 1.

}
,

while the irregular points are selected as [−0.9 − 0.6 − 0.5 0.2 0.25] in Table 1 and as
[−0.9 − 0.8 − 0.6 − 0.55 − 0.5 − 0.15 0.2 0.225 0.25 0.4] in Table 2. It is noted
that, when the numbers of nodes and iterations are not too large (Table 1), the NPI methods
steadily yield a fifth-order rate of convergence of no matter what kinds of nodes are adopted.
However, when the numbers of nodes and iterations are relatively large (Table 2), the NPI
methods with irregular points and uniform points demonstrate a reduction of the convergence
order, while the NPI methods with Chebyshev points behave more stably.

Example 2 We next consider the following nonlinear ODE system [8]⎧⎪⎨
⎪⎩
y′
1(t) = −y2(t) + y1(t)(1 − y21 (t) − y22 (t)),

y′
2(t) = y1(t) + 3y2(t)(1 − y21 (t) − y22 (t)),

y(0) = (1, 0)�, t ∈ [0, T ].
(34)

The analytic solution is given by y(t) = (cos t, sin t)�. We use this example to validate the
order of accuracy of PNPI methods. Figure5a shows the error with respect to the number of
intervals for different numbers of iterations. The desired order of accuracy is observed and
the super-convergence of the PNPI methods is also observed in Fig. 5b when the Legendre–
Gauss points are used. Comparison of the performance between the NPI and PNPI methods
is presented in Table 3. The numerical result shows that the PNPI methods can preserve the
convergence order of the NPI methods. As seen in Table 4, the PNPI methods exhibit similar
behaviors as the NPI methods.

Example 3 The last example is the one-dimensional N -body problem [8]. Supposing that
N+ ions are uniformly spaced on the interval [0, 1] and that N− electrons are also uniformly
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Table 5 Performance of PNPI methods with different numbers of iterations and of cores for fixed numbers of
intervals, N = 1000, and of points, M + 1 = 12, on each interval

J Error ST (s) Cores PT (s) Speedup Efficiency

Theoretical Actual

2 4.1069e−02 154.88 2 59.86 2.00 2.59 1.29

4 1.7261e−04 238.93 4 60.37 3.99 3.96 0.99

6 2.7795e−07 358.56 6 63.59 5.97 5.64 0.94

8 1.2337e−10 477.79 8 73.88 7.94 6.47 0.81

10 1.2218e−13 597.19 10 79.23 9.91 7.54 0.75

12 2.6756e−14 716.68 12 87.02 11.86 8.24 0.69

spaced on the interval [0, 1], the motion of particles is then dominated by the equations

[
x+
i

v+
i

]
t
=
⎡
⎢⎣

v+
i

q+
m+

(∑N+
j=1

q+(x+
i −x+

j )√
(x+

i −x+
j )2+d2

+∑N−
j=1

q−(x+
i −x−

j )√
(x+

i −x−
j )2+d2

)⎤⎥⎦ , i = 1, . . . , N+,

[
x−
i

v−
i

]
t
=
⎡
⎢⎣

v−
i

q−
m−

(∑N+
j=1

q+(x−
i −x+

j )√
(x−

i −x+
j )2+d2

+∑N−
j=1

q−(x−
i −x−

j )√
(x−

i −x−
j )2+d2

)⎤⎥⎦ , i = 1, . . . , N−,

where t ∈ [0, T ], {x+
i , v+

i }N+
i=1 and {x−

i , v−
i }N−

i=1 denote the locations and velocities of the
ions and the electrons, respectively. The charge of each ion and electron is set to q+ = 1

N+
and q− = − 1

N− , respectively. The mass of each ion and electron is set to m+ = 1000
N+ and

m− = 1
N− , respectively, which are physically reasonable mass ratios to work with. d is a

regularization constant, which is set to 0.05 in this simulation. The initial conditions are set
to

x+
i (0) = i − 0.5

N+
, v+

i (0) = 0, i = 1, . . . , N+,

x−
i (0) = i − 0.5

N−
, v−

i (0) = sin(6πx−
i (0)), i = 1, . . . , N−.

In this example, we set T = 20 and N+ = N− = 200, and the reference solution is
obtained using the built-in solver ode45 in MatLab (MathWorks, Natick, MA, USA). We
consider the maximum norm errors at the terminal time. For a fixed number of intervals,
N = 1000, and a fixed number of collocation points, M + 1 = 12, in each interval, we
tested the efficiency of the PNPI methods with different iterations J on different numbers
of cores ranging from 2 to 12. The associated numerical results are presented in Table 5. It
is noted that the error decays rapidly when the number of iterations, J , increases. To show
the efficiency, we present both the CPU time of sequential computation (denoted ST) and
of parallel computation (denoted PT) with different cores. We also introduce two indexes,
speedup and efficiency, which are defined, respectively, by

Speedup = ST

PT
, Efficiency = Speedup

number of cores
.
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Table 6 Performance of PNPI
methods with different numbers
of cores for fixed numbers of
intervals, N = 1000; of
iterations, J = 12; and of points,
M + 1 = 12, on each interval

No. of cores Time (s) Speedup Efficiency

Theoretical Actual

1 716.68 – – –

2 361.03 1.98 1.99 0.99

4 185.01 3.96 3.87 0.97

6 133.10 5.94 5.38 0.90

8 111.68 7.92 6.42 0.80

10 97.46 9.90 7.35 0.73

12 87.02 11.88 8.24 0.69

ode45 174.07 (Error=1.0819e−13)

Table 7 Performance comparison between PNPI methods with J = M +1 = 8 and RIDC8 based on forward
Euler method with different cores

Cores PNPI methods (Error = 2.45e−10) RIDC8 (Error = 5.47e−10)

Time (s) Speedup Efficiency Time (s) Speedup Efficiency

1 318.18 – – 442.55 – –

2 159.40 2.00 1.00 236.54 1.87 0.94

4 81.94 3.88 0.97 122.80 3.60 0.90

8 48.93 6.50 0.81 70.07 6.31 0.79

12 40.64 7.83 0.65 70.45 6.28 0.52

To achieve similar accuracy, number of intervals is set to N = 1000 for PNPI methods and to N = 6000 for
RIDC8

The results are listed in Table 5. It is noted that the speedup well matches that of theory
and that the parallel efficiency is approximately 69% when 12 cores are used. According to
theory, the CPU time is expected to decrease if one increases the number of cores until up
to 12J . We also adopted different cores to implement the PNPI methods with J = 12 and
M + 1 = 12 in parallel, and the resulting computation times are listed in Table 6. Speedup
in this table is defined by

Speedup = CPU time of one core

CPU time of multiple cores
.

Again, the results match the theoretical results very well and the efficiency can be maintained
above 69%. As a comparison, we present the computation time of the built-in function ode45
in MatLab. It is noted that that the PNPI methods with more than six cores outperform the
ode45 solver.

We also performed a parallel performance comparison between the PNPI methods and the
eighth-order RIDC method (denoted RIDC8). We set J = M + 1 = 8 and N = 1000 for the
PNPI methods. To achieve similar accuracy, the number of intervals was set as N = 6000
for RIDC8. The numerical results are shown in Table 7, from which it can be seen that the
PNPI methods take less time to achieve comparable accuracy and exhibit better speedup and
efficiency.
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6 Concluding Remarks

In this paper, we propose a new class of parallel time integrators for initial-value problems
based on Picard iterations. We demonstrate that the parallel solvers yield the same conver-
gence rate as the traditional numerical Picard iteration methods. The main features of our
approach are as follows. (1) Instead of computing the solution point by point (as in RIDC
methods), the proposed methods proceed segment by segment. (2) The proposed approach
leads to a higher speedup: the speedup is shown to be J (M + 1) (while the speedup of the
J th-order RIDC is, at most, J ). (3) The proposed approach is applicable to non-uniform
points, such as Chebyshev points. We also present a stability analysis and numerical exam-
ples to verify the theoretical findings. In future work, we plan to apply the proposed PNPI
method to more challenging engineering problems.
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