
Journal of Scientific Computing (2023) 95:10
https://doi.org/10.1007/s10915-023-02137-1

Corrector-Predictor Interior-Point MethodWith New Search
Direction for Semidefinite Optimization

B. Kheirfam1

Received: 21 November 2021 / Revised: 25 December 2022 / Accepted: 29 January 2023 /
Published online: 15 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we present a new corrector-predictor interior-point method for solving semidef-
inite optimization. We use an algebraic equivalent transformation of the centering equation
of the system which defines the central path. The algebraic transformation plays an essential
role in the calculation of the new search directions. We prove that the iteration complexity
of the algorithm coincides with the best known ones for interior-point methods (IPMs). To
the best of our knowledge, this is the first corrector-predictor interior-point algorithm that
uses the search directions obtained from the desired algebraic transformation for semidefinite
optimization. Finally, some numerical experiments are provided to demonstrate the efficiency
of our new algorithm.

Keywords Semidefinite optimization · Interior-point methods · Corrector-predictor
methods · New search directions · Polynomial complexity

Mathematics Subject Classification 90C22 · 90C51

1 Introduction

Semidefinite optimization (SDO) optimizes a linear objective function over the intersection
of the cone positive semidefinite matrices with an affine space. Many practical problems
in combinatorial optimization can be modeled or approximated as SDOs [1]. SDOs are
also used in control theory [4] and eigenvalue optimization problems [23]. SDOs can be
efficiently solved by IPMs. Independently of Nesterov and Nemirovskii [27] and Alizadeh
[2] generalized IPMs from linear optimization (LO) to SDO. Some articles on IPMs for SDO
are published by Helmberg et al. [14], de Klerk [12], Halicka et al. [13], Kheirfam [19, 20]
and Wang et al. [32].

The full-Newton step feasible IPM was first introduced for LO by Roos et al. [30]. They
provided a novel convergence analysis of the method and obtained the best known iteration
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complexity for such methods. The extension of this method to SDO based on Nesterov-Todd
(NT) directions is discussed by deKlerk [12]. In 2003, an algebraic equivalent transformation
(AET) of the system that defines the central path is proposed by Darvay [5]. He used the
Newton method for resulting system to obtain search directions based on the square root
function, and provided a full-Newton step IPM for LO. The method later generalized to SDO
[32], second-order cone optimization (SOCO) [31], symmetric cone optimization (SCO) [33]
and convex quadratic symmetric cone optimization (CQSCO) [3]. Subsequently, Wang et al.
[34, 35] have tried to improve complexity analysis of IPMs for SDO and SCO, respectively.

An important class of interior-point algorithmswhich have proven to be efficient in practice
are called predictor-corrector (PC) IPMs (see [25, 26]). The first PC interior-point algorithm
that uses the AETmethod for defining the search directions has been proposed by Darvay [6]
for LO. Later on,Kheirfam [16–18] developed corrector-predictor (CP) IPMs for P∗(κ) linear
complementarity problem, convex quadratic symmetric optimization (CQSO) and second-
order cone optimization (SOCO), which use the search directions based on the square root
function. Darvay et al. [11] introduced an CP interior-point algorithm for LO. The authors
used the AET method that is based on the difference of the identity map and the square root
function, which the first proposed by Darvay et al. in [10] for a full-Newton step IPM. Later
on, Darvay et al. [7] and Kheirfam et al. [21] generalized this method to P∗(κ)-LCP and
SCO, respectively.

The aim of this paper is to give a new CP IPM for SDO. The method uses the AET
technique that is based on the transformationψ(t) = ψ(

√
t)withψ(t) = t2, which was first

introduced in [9]. To the best of our knowledge, this is the first CP interior-point algorithm
that uses the aforementionedAET for SDO, and therefore the analysis of the algorithm differs
from the existing ones. We prove that the complexity of the algorithm coincides with the best
known ones of IPMs.

The paper is organized as follows. In Sect. 2 the primal-dual pair of SDO problem, the
notation of the central path and the main idea of the AET of the system defining the central
path are given. In Sect. 3 we present the newCP interior-point algorithm. Section 4 is devoted
to the convergence analysis of the proposed algorithm. In Sect. 5 we present some numerical
results. Concluding remarks are given in Sect. 6.

2 The SDO Problem

Let us consider the following primal-dual pair of SDO problems

(P) min{tr(CX) : tr(Ai X) = bi , i = 1, . . . ,m, X � 0},
and

(D) max{bT y :
m∑

i=1

yi Ai + S = C, S � 0},

where C, X , S ∈ S
n , bi ∈ R and Ai ∈ S

n, i = 1, . . . ,m are linearly independent. Here, Sn

denotes the set of real symmetric n × n matrices and X � 0 means that X is a symmetric
positive semidefinite matrix. For convenience, we denote the feasible set of the primal-dual
pair of (P) and (D) as

F =
{
(X , y, S) ∈ S

n × R
m × S

n : tr(Ai X)
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= bi , i = 1, . . . ,m, X � 0
m∑

i=1

yi Ai + S = C, S � 0

}
,

and its relative interior by

F0 = {
(X , y, S) ∈ F : X � 0, S � 0

}
,

where X � 0 is to mean that X is a symmetric positive definite matrix. Throughout this
paper, we assume that F0 �= ∅. Under this last assumption, it is well known that the problem
pair (P) and (D) have optimal solutions and their optimal values coincide. Hence, the set of
optimal solutions contain of all solutions (X , y, S) ∈ S

n ×R
m × S

n to the following system
is [12]:

tr(Ai X) = bi , X � 0, i = 1, . . . ,m,
m∑

i=1

yi Ai + S = C, S � 0,

XS = 0, (1)

where the last equality so-called the complementarity condition. The primal-dual path-
following IPMs usually replace the complementarity condition with XS = μI where
μ ∈ R, μ > 0. Under this, we have

tr(Ai X) = bi , X � 0, i = 1, . . . ,m,
m∑

i=1

yi Ai + S = C, S � 0,

XS = μI . (2)

It is also well known that the system (2) has a unique solution; (X(μ), y(μ), S(μ)), for each
μ > 0 [22, 27]. The set of all solutions (X(μ), y(μ), S(μ)) is called the central path. The
limit of the central path exists as μ ↓ 0 and is a solution of (1) [13].

Let

V := 1√
μ
D−1XD−1 = 1√

μ
DSD (3)

where

D = (
X

1
2 (X

1
2 SX

1
2 )

−1
2 X

1
2
) 1
2
[ = (

S
−1
2 (S

1
2 XS

1
2 )

1
2 S

−1
2

) 1
2
]
.

Note that the matrices D and V are symmetric and positive definite. Thus, we have

V 2 =
( 1√

μ
D−1XD−1

)( 1√
μ
DSD

)
= 1

μ
D−1XSD = I

⇔ V = I ⇔ V 2 = V ⇔ XS

μ
= (XS)

1
2√

μ
.

Now the central path problem (2) can be equivalently stated as

tr(Ai X) = bi , X � 0, i = 1, . . . ,m,
m∑

i=1

yi Ai + S = C, S � 0,
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XS

μ
= (XS)

1
2√

μ
. (4)

Let ψ̄ : (ξ2,∞) → R, with 0 ≤ ξ < 1, be a continuously differentiable, invertible and
monotone increasing function. Now, by applying the AET to the central path problem in the
form (2), we have

tr(Ai X) = bi , X � 0, i = 1, . . . ,m,
m∑

i=1

yi Ai + S = C, S � 0,

ψ̄
( XS

μ

)
= ψ̄

(
I
)
. (5)

However, if theAET is applied to (4), using the continuously differentiable, invertible function
ψ : (ξ2,∞) → R such that 2tψ

′
(t2) − ψ

′
(t) > 0 for all t > ξ with 0 ≤ ξ < 1 [8], then we

have

tr(Ai X) = bi , X � 0, i = 1, . . . ,m,
m∑

i=1

yi Ai + S = C, S � 0,

ψ
( XS

μ

)
= ψ

( (XS)
1
2√

μ

)
. (6)

Assuming that we are given a feasible solution (X , y, S)with X � 0 and S � 0 and applying
Newton’s method to system (6) leads to the following system, which defines the search
directions �X ,�y and �S

tr(Ai�X) = 0, i = 1, . . . ,m,
m∑

i=1

�yi Ai + �S = 0,

ψ

(
XS

μ
+ X�S + �XS + �X�S

μ

)
= ψ

((
XS

μ
+ X�S + �XS + �X�S

μ

) 1
2
)

.

(7)

Applying Lemma 2.5 in [32], the third equation of system (7) can be written as

ψ
( XS

μ

)
+ ψ

′( XS

μ

)( X�S + �XS

μ

)
− ψ

(( XS

μ

) 1
2
)

−1

2

( XS

μ

)− 1
2
ψ

′(( XS

μ

) 1
2
)( X�S + �XS

μ

)
= 0.

Therefore, we obtain the following system

tr(Ai�X) = 0, i = 1, . . . ,m,
m∑

i=1

�yi Ai + �S = 0,

�X + X�SS−1
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= μ
(
ψ

′( XS

μ

)
− 1

2

( (XS)
1
2√

μ

)−1
ψ

′( (XS)
1
2√

μ

))−1

×
(
ψ

( (XS)
1
2√

μ

)
− ψ

( XS

μ

))
S−1. (8)

Clearly, from the second equation of (8) we have �S ∈ S
n . However, in generally �X

does not belong to S
n , because X�SS−1 may be non-symmetric. To remedy this situation,

many researchers have proposed methods for symmetrizing the third equation in the system
(8) such that the resulting new system has a unique symmetric solution. Here, we consider
the symmetrization scheme that yields the Nesterov–Todd (NT) direction [28, 29]. In the
NT-scheme, the term X�SS−1 is replaced by D2�S(D2)T , where D is defined as in (3).
Moreover, let us define

Āi := 1√
μ
DAi D, DX := 1√

μ
D−1�XD−1, DS := 1√

μ
D�SD. (9)

Using these notations, the Newton system (8) can be written as

tr( Āi DX ) = 0, i = 1, . . . ,m,
m∑

i=1

�yi Āi + DS = 0,

DX + DS = PV , (10)

where

PV = √
μD−1(Dψ

′
(V 2)D−1 − 1

2
D−1V−1DDψ

′
(V )D−1)−1

×(
Dψ(V )D−1 − Dψ(V 2)D−1)S−1D−1.

3 Corrector-Predictor Algorithm

In this section, we present a corrector-predictor interior-point algorithm based on the search
directions obtained by using the function ψ(t) = t2, t > 1√

2
introduced in [9]. In this way,

we have

PV = (2V 2 − I )−1(V − V 3),

and the third equation of (8) becomes

�X + D2�S(D2)T = 1

2

(
μ(2XS − μI )−1XS − XS

)
S−1. (11)

For analysis of our algorithm, we define a norm-based proximity measure δ(X , S;μ) as
follows:

δ(V ) := δ(X , S;μ) := ‖PV ‖F
2

= 1

2

∥∥(V − V 3)(2V 2 − I )−1
∥∥
F . (12)

Using this, we give the τ -neighborhood of the central path as follows:

N (τ ) := {
(X , y, S) ∈ F0 : δ(X , S;μ) ≤ τ

}
,

where τ ∈ (0, 1). Our algorithm starts with a given point (X , y, S) ∈ N (τ ) and performs
corrector and predictor steps.
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Algoritm 1 : Corrector − predictor interior − point algorithm for SDO
Input :

Let > 0 be the accuracy parameter, 0 <θ< 1 the update parameter
(default value θ = 1

3
√
n
) and τ the proximity parameter (default value τ = 1

10 ).

Let (X0, y0, S0) be a primal dual strictly feasible,μ0 = tr(X0S0)
n and

λmin(V
0) > 1√

2
. Furthermore, suppose that δ(X0, S0; μ0) < 1√

2
.

begin
k := 0;

while tr(Xk Sk ) ≥ ε do
begin

solve system (13) and set (Xk+, Sk+) = (Xk , Sk ) + (�c Xk ,�cSk );
solve system (15) and set ((X p)k , (S p)k ) = (Xk+, Sk+) + θ(�p Xk , �p Sk );

(μp)k := (1 − θ
2 )μk ;

Xk+1 := (X p)k , yk+1 := (y p)k , Sk+1 := (S p)k ;
k := k + 1;
end

end.

In a corrector step, the searchdirection (Dc
X ,�c y, Dc

S) is obtainedby solving the following
scaled system:

tr( Āi D
c
X ) = 0, i = 1, . . . ,m,

m∑

i=1

�c yi Āi + Dc
S = 0,

Dc
X + Dc

S = (2V 2 − I )−1(V − V 3). (13)

Using the first two equations of the system (13), it follows that

tr(Dc
X D

c
S) = 0. (14)

Now, using (9), we have �c X = √
μDDc

X D and �cS = √
μD−1Dc

SD
−1. In this way, the

corrector iterate is calculated by considering a full-NT step as follows:

(X+, y+, S+) = (X , y, S) + (�c X ,�c y,�cS).

In general, the goal of the predictor step is to reach the optimal solution of the underlying
problem in a greedy way. This corresponds to the case when we set μ = 0 in (11), which
leads to

�X + D2�S(D2)T = −1

2
X ,

or equivalently, in terms of scaled directions, we have

DX + DS = −1

2
V .

Therefore after updating

P+ = X
1
2+(X

1
2+S+X

1
2+)

−1
2 X

1
2+, D+ = P

1
2+ ,

Āi+ = 1√
μ
D+Ai D+, V+ = 1√

μ
D+S+D+,
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whereμ = tr(XS)
n , in the predictor we follow the search direction (Dp

X ,�p y, Dp
S ) by solving

the following scaled Newton system

tr( Āi+Dp
X ) = 0, i = 1, . . . ,m,

m∑

i=1

�p yi Āi+ + Dp
S = 0,

Dp
X + Dp

S = −1

2
V+. (15)

Then, we compute the predictor directions in the original space as

�p X = √
μD+Dp

X D+, �pS = √
μD−1+ Dp

S D
−1+ , (16)

and the new predictor iterate is given by

(X p, y p, S p) = (X+, y+, S+) + θ(�p X ,�p y,�pS),

where θ ∈ (0, 1) is the update parameter and also μp = (1 − 1
2θ)μ. We expect to obtain

a new iterate which belongs to the same neighborhood, thus (X p, y p, S p) ∈ N (τ ). The
algorithm repeats corrector and predictor steps alternatively until tr(XS) ≤ ε is satisfied.

4 Analysis of the Algorithm

In this section, we will analyze the corrector and the predictor steps in detail, respectively.
We first recall some results from [12] which are required in the rest of this paper.

Lemma 1 Suppose that X � 0 and S � 0. Moreover, let X(α) = X + α�X and S(α) =
S + α�S for 0 ≤ α ≤ 1. If one has

det
(
X(α)S(α)

)
> 0, ∀ 0 ≤ α ≤ ᾱ,

then X(ᾱ) � 0 and S(ᾱ) � 0.

Lemma 2 Suppose that Q ∈ S
n++, and let M ∈ Rn×n be skew-symmetric. One has det(Q +

M) > 0. Moreover, if λi (Q + M) ∈ R, i = 1, . . . , n, then

0 < λmin(Q) ≤ λmin(Q + M) ≤ λmax(Q + M) ≤ λmax(Q),

which implies Q + M � 0.

Lemma 3 Let DX , DS ∈ S
n be such that tr(DX DS) = 0. Then

‖DXS‖∞ ≤ 1

4
‖DX + DS‖2F , ‖DXS‖F ≤

√
2

4
‖DX + DS‖2F ,

where DXS := 1
2 (DX DS + DSDX ).

Let QV = Dc
X − Dc

S . In this way, by using (14), we have

‖PV ‖2F = ‖Dc
X + Dc

S‖2F = ‖Dc
X‖2F + ‖Dc

S‖2F = ‖QV ‖2F .

Thus, we can define

δ(X , S;μ) = ‖QV ‖F
2

.
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Furthermore, we have

Dc
X = PV + QV

2
, Dc

S = PV − QV

2
,

hence

Dc
XS = P2

V − Q2
V

4
. (17)

4.1 The Corrector Step

The next lemma gives a condition which guarantees the strict feasibility of the corrector step.

Lemma 4 Let δ := δ(X , S;μ) < 1 and λmin(V ) > 1√
2
. Then X+ � 0 and S+ � 0.

Proof Let us consider 0 ≤ α ≤ 1 and denote X(α) = X + α�c X and S(α) = S + α�cS.
In this way, using (3) and (9), we have

X(α) = √
μD(V + αDc

X )D, S(α) = √
μD−1(V + αDc

S)D
−1.

We have

X(α)S(α)

μ
∼ (V + αDc

X )(V + αDc
S)

= V 2 + α(V Dc
S + Dc

XV ) + α2Dc
X D

c
S

= V 2 + α(V Dc
S + V Dc

X ) + α(Dc
XV − V Dc

X )

+α2Dc
XS + 1

2
α2(Dc

X D
c
S − Dc

SD
c
X )

= (1 − α)V 2 + α(V 2 + V PV ) + α2Dc
XS

+α(Dc
XV − V Dc

X ) + 1

2
α2(Dc

X D
c
S − Dc

SD
c
X )

= : Q(α) + M(α). (18)

It is clear that M(α) is skew-symmetric and also we have

V 2 + V PV = V 2 + (2V 2 − I )−1(V 2 − V 4)

= (2V 2 − I )−1V 4 − I + I

= (2V 2 − I )−1(V 2 − I )2 + I

� I .

From this last inequality and (17) we deduce that

Q(α) � (1 − α)V 2 + α
(
I + α

P2
V − Q2

V

4

)

� (1 − α)V 2 + α
(
I − (1 − α)

P2
V

4
− α

Q2
V

4

)
.

In view of the above inequality, Q(α) is positive definite if α ≤ 1 and

I − (1 − α)
P2
V

4
− α

Q2
V

4
� 0.
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The last condition follows from

∥∥∥(1 − α)
P2
V

4
+ α

Q2
V

4

∥∥∥
2

≤
∥∥∥(1 − α)

P2
V

4
+ α

Q2
V

4

∥∥∥
F

≤ (1 − α)
‖PV ‖2F

4
+ α

‖QV ‖2F
4

= (1 − α)δ2 + αδ2 = δ2 < 1.

Thus, by Lemma 2, det(X(α)S(α)) > 0,∀α ∈ [0, 1], in addition since X(0) = X �
0, S(0) = S � 0, Lemma 1 implies that X(1) = X+ � 0 and S(1) = S+ � 0. Thus we have
completed the proof. ��

Lemma 5 Let δ := δ(X , S;μ) < 1√
2
and λmin(V ) > 1√

2
. Then, λmin(V+) > 1√

2
and

δ(X+, S+;μ) ≤ 5δ2
√
1 − δ2

1 − 2δ2
.

Proof From (18), with α = 1, we obtain

V 2+ ∼ Q(1) + M(1) = V 2 + V PV + P2
V

4
− Q2

V

4
+ M(1)

= I + (2V 2 − I )−1(V 2 − I )2 + P2
V

4
− Q2

V

4
+ M(1)

= I + (
4(2V 2 − I )V−2 + I

) P2
V

4
− Q2

V

4
+ M(1)

= I + (
(9V 2 − 4I )V−2) P

2
V

4
− Q2

V

4
+ M(1). (19)

Therefore, we have

∥∥∥I − V 2+
∥∥∥
2

F
=

n∑

i=1

(
λi

(
I + (

(9V 2 − 4I )V−2) P
2
V

4
− Q2

V

4
+ M(1)

)
− 1

)2

=
n∑

i=1

λi

((
(9V 2 − 4I )V−2) P

2
V

4
− Q2

V

4
+ M(1)

)2

= tr
((

(9V 2 − 4I )V−2) P
2
V

4
− Q2

V

4
+ M(1)

)2

≤
∥∥∥
(
(9V 2 − 4I )V−2) P

2
V

4
− Q2

V

4

∥∥∥
2

F

≤
(∥∥(9V 2 − 4I )V−2

∥∥‖PV ‖2F
4

+ ‖QV ‖2F
4

)2

≤ (9δ2 + δ2)2 = 100δ4, (20)

where the first inequality is due to M(1) is skew-symmetric. Beside these, since
P2
V
4 � 0 and

V 2 + V PV � I , we have

V 2+ ∼ V 2 + V PV + P2
V

4
− Q2

V

4
+ M(1) � I − Q2

V

4
+ M(1).
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Therefore,

λmin
(
V 2+

) ≥ 1 −
∥∥∥
Q2

V

4

∥∥∥
F

= 1 − δ2. (21)

Using δ < 1√
2
, we have λmin

(
V+

) ≥ √
1 − δ2 > 1√

2
. This proves the first part of the lemma.

Moreover, we have

δ(V+) := δ(X+, S+;μ) = 1

2

∥∥(I − V 2+)V+(2V 2+ − I )−1
∥∥
F . (22)

Let us consider the function f (t) = t
2t2−1

,∀t > 1√
2
. We get f

′
(t) < 0, this means that f (t)

is decreasing on t > 1√
2
. Using this, (22), (21) and (20), we obtain

δ(V+) := δ(X+, S+;μ) ≤ 1

2

√
1 − δ2

2(1 − δ2) − 1

∥∥I − V 2+
∥∥
F ≤ 5δ2

√
1 − δ2

1 − 2δ2
.

This completes the proof. ��

Lemma 6 Suppose that δ := δ(X , S;μ) < 1√
2
and λmin(V ) > 1

2 . Then

tr(X+S+) ≤ μ
(
n + 4

)
.

Proof Since V 2+ ∼ X+S+
μ

, we have tr(X+S+) = μtr(V 2+). Therefore, from (19) it follows
that

tr(X+S+) = μ
(
n + tr

(
(9V 2 − 4I )V−2 P

2
V

4
− Q2

V

4
+ M(1)

))

≤ μ
(
n + λmax

(
(9V 2 − 4I )V−2)tr

( P2
V

4

) − tr
(Q2

V

4

))

≤ μ
(
n + 9

‖PV ‖2F
4

− ‖QV ‖2F
4

)
= μ(n + 8δ2) ≤ μ(n + 4),

where the first inequality is due to M(1) is skew-symmetric. ��

4.2 The Predictor Step

The next lemma gives a sufficient condition for the strict feasibility of the predictor step.

Lemma 7 Let (X+, y+, S+) ∈ F0 and μ > 0. Let

X p = X+ + θ�p X , S p = S+ + θ�pS

denote the iterates after a predictor step, where θ ∈ [0, 1]. Then (X p, y p, S p) ∈ F0 if

h(δ+, θ, n) = 1

ρ2(2δ+)
− n

√
2θ2

16(1 − θ/2)
ρ2(2δ+) > 0,

where δ+ = δ(X+, S+;μ) and ρ(δ+) = δ+ +
√
1 + δ2+.
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Proof Let 0 ≤ α ≤ 1. We set X p(α) = X+ + αθ�p X and S p(α) = S+ + αθ�pS. In this
way, we have

X p(α)S p(α) = (
X+ + αθ�p X

)(
S+ + αθ�pS

)

∼ μ(V+ + αθDp
X )(V+ + αθDp

S )

= μ
(
V 2+ + αθ

(
Dp

XV+ + V+Dp
S

) + α2θ2Dp
X D

p
S

)

= μ
((
1 − αθ

2

)
V 2+ + αθ

(
Dp

XV+ − V+Dp
X

) + α2θ2Dp
X D

p
S

)

= μ
((
1 − αθ

2

)
V 2+ + 1

2
α2θ2

(
Dp

X D
p
S + Dp

S D
p
X

))

+μαθ
((

Dp
XV+ − V+Dp

X

) + 1

2
αθ

(
Dp

X D
p
S − Dp

S D
p
X

))
. (23)

Note that

Q(α) := (
1 − αθ

2

)
V 2+ + 1

2
α2θ2

(
Dp

X D
p
S + Dp

S D
p
X

) ∈ S
n++,

and

M(α) := (
Dp

XV+ − V+Dp
X

) + 1

2
αθ

(
Dp

X D
p
S − Dp

S D
p
X

)

is skew-symmetric. Invoking Lemmas 2 and 3, and using (23) it follows that

λmin

( X p(α)S p(α)

(1 − αθ/2)μ

)
≥ λmin

(
V 2+ + α2θ2

2(1 − αθ/2)

(
Dp

X D
p
S + Dp

S D
p
X

))

≥ λmin
(
V 2+

) − α2θ2

2(1 − αθ/2)

∥∥Dp
X D

p
S + Dp

S D
p
X

∥∥
F

≥ λ2min

(
V+

) −
√
2α2θ2

4(1 − αθ/2)

∥∥Dp
X + Dp

S

∥∥2
F

≥ λ2min

(
V+

) −
√
2θ2

16(1 − θ/2)

∥∥V+
∥∥2
F , (24)

where the third inequality follows from Lemma 3 and the last inequality is due to the fact

that the g(α) = α2θ2

1−αθ/2 function is increasing with respect to 0 ≤ α ≤ 1 and each fixed
0 < θ < 1; that is g(α) ≤ g(1), and the third equation of (15).

Now, we define σ+ = 1
2

∥∥V−1+ − V+
∥∥
F that was first introduced by Jiang [15] (without

the constant 1
2 ) and with the coefficient 1

2 in [12]. In this case, for each 1 ≤ i ≤ n we have

1

ρ(σ+)
≤ λi (V+) ≤ ρ(σ+). (25)

On the other hand, we have

δ+ = 1

2

∥∥∥V 2+(V−1+ − V+)(2V 2+ − I )−1
∥∥∥
F

≥ 1

2
σ+,

where the inequality follows from the inequality of V+ � 1√
2
I and the fact that the function

f (t) = t2

2t2−1
≥ 1

2 for t > 1√
2
. The above inequality implies that σ+ ≤ 2δ+. Since ρ(σ+)
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is increasing with respect to σ+, we obtain ρ(σ+) ≤ ρ(2δ+). Hence, λmin(V+) ≥ 1
ρ(2δ+)

.
Therefore,

λmin

(
X p(α)S p(α)

(1 − αθ/2)μ

)
≥ 1

ρ2(2δ+)
−

√
2θ2

16(1 − θ/2)

n∑

i=1

λ2i (V+)

≥ 1

ρ2(2δ+)
− n

√
2θ2

16(1 − θ/2)
ρ2(2δ+)

= h(δ+, θ, n) > 0. (26)

The above inequality implies that det(X p(α)S p(α)) > 0 for each 0 ≤ α ≤ 1. Therefore,
in view of Lemma 1 it follows that X p(1) = X p � 0 and S p(1) = S p � 0. The proof is
completed. ��
Let V p = 1√

μp (Dp)−1X p(Dp)−1 = 1√
μp D

pS pDp, where

Dp = [
(X p)

1
2 ((X p)

1
2 S p(X p)

1
2 )

−1
2 (X p)

1
2
] 1
2 , μp =

(
1 − θ

2

)
μ.

In this way, we have

(V p)2 = 1

μp
(Dp)−1X pS pDp ∼ 1

μp
X pS p. (27)

Invoking (26) with α = 1, together with (27), we obtain

λmin
(
(V p)2

) ≥ h(δ+, θ, n) > 0. (28)

Lemma 8 Let X+ � 0 and S+ � 0 be a primal-dual feasible solution and μp = (1 − θ
2 )μ,

where 0 < θ < 1. Moreover, let h(δ+, θ, n) > 1
2 and let (X p, y p, S p) denotes the iterate

after a predictor step. Then, λmin(V p) > 1√
2
and

δ p := δ(X p, S p;μp) ≤
√
h(δ+, θ, n)

2(2h(δ+, θ, n) − 1)

(
10δ2 + nθ2ρ2(2δ+)

8
√
2(1 − θ

2 )

)
.

Proof From the assumption h(δ+, θ, n) > 1
2 and (28) it follows that λmin(V p) > 1√

2
. From

Lemma 7, together with h(δ+, θ, n) > 1
2 > 0, we deduce that the predictor step is strictly

feasible; i.e, (X p, y p, S p) ∈ F0.
By the definition of proximity measure at (X p, y p, S p) one finds that

δ p = δ(X p, S p;μp) = 1

2

∥∥(
V p − (V p)3

)
(2(V p)2 − I )−1

∥∥
F

= 1

2

∥∥(
I − (V p)2

)
V p(2(V p)2 − I )−1

∥∥
F

= 1

2

√√√√
n∑

i=1

(
λi (V p)

(2λ2i (V
p) − 1)

(
1 − λ2i (V

p)
)
)2

. (29)

Let us consider the function

g(t) = t

2(2t2 − 1)
, t >

1√
2
.
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Since g′(t) < 0, g(t) is decreasing, from (29) and λi (V p) ≥ λmin(V p) it follows that

δ p ≤ g
(
λmin(V

p)
)
√√√√

n∑

i=1

(
1 − λ2i (V

p)
)2

≤ g
(√

h(δ+, θ, n)
) ∥∥I − (V p)2

∥∥
F

= g
(√

h(δ+, θ, n)
) ∥∥I − V 2+ − θ2

2(1 − θ/2)
(Dp

X D
p
S + Dp

S D
p
X ) − θ

1 − θ/2
M(1))

∥∥
F

≤ g
(√

h(δ+, θ, n)
) (∥∥I − V 2+

∥∥
F + θ2

2(1 − θ/2)

∥∥Dp
X D

p
S + Dp

S D
p
X

∥∥
F

)

≤ g
(√

h(δ+, θ, n)
) (∥∥I − V 2+

∥∥
F + θ2

2
√
2(1 − θ/2)

∥∥Dp
X + Dp

S

∥∥2
F

)

≤ g
(√

h(δ+, θ, n)
) (∥∥I − V 2+

∥∥
F + θ2

8
√
2(1 − θ/2)

∥∥V+
∥∥2
F

)

≤
√
h(δ+, θ, n)

2(2h(δ+, θ, n) − 1)

(
10δ2 + nθ2ρ2(2δ+)

8
√
2(1 − θ/2)

)
,

where the second inequality follows from that g is decreasing and (28), the equality is due
to (23) with α = 1 and (27). Since M(1) is skew-symmetric, the third inequality is obtained
in a similar fashion to the proof of Lemma 4.8 in [24] and the triangle inequality, the fourth
inequality concludes from Lemma 3, the fifth inequality is obtained from the third equation
of the system (15) and the last inequality is due to (20), (25) and ρ(σ+) ≤ ρ(2δ+). Thus we
have completed the proof. ��

In the next lemma, we give an upper bound for the duality gap after a main iteration.

Lemma 9 Suppose that δ := δ(X , S;μ) < 1√
2
and λmin(V ) > 1√

2
. Moreover, let 0 < θ < 1.

Then

tr(X pS p) ≤ (
n + 4

)
μp.

Proof Using (27) and (23) with α = 1, we have

tr(X pS p) = μptr
(
(V p)2

)

= μptr
(
V 2+ + θ2

2(1 − θ/2)
(Dp

X D
p
S + Dp

S D
p
X ) + θ

1 − θ/2
M(1)

)

= μptr
(
V 2+

)
= μptr

( X+S+
μ

)
≤ μp(n + 4

)
,

where the third equality is due to the fact that M(1) is skew-symmetric and tr(Dp
X D

p
S ) =

tr(Dp
S D

p
X ) = 0 and the last inequality follows from Lemma 6. The proof is completed. ��

4.3 Fixing Parameters

In this subsection, we fix the parameters θ and τ to guarantee that after a main iteration, the
proximity measure will not exceed the proximity parameter τ .
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Let (X , y, S) ∈ N (τ ) be the iterate at the start of a main iteration with X � 0 and S � 0
such that δ := δ(X , S;μ) ≤ τ < 1√

2
. Then, after a corrector step, by Lemma 5, we have

δ+ ≤ 5δ2

1 − 2δ2

√
1 − δ2.

One can easily verify that the right-hand side of the inequality above is increasingwith respect
to δ, thus we have

δ+ ≤ 5τ 2
√
1 − τ 2

1 − 2τ 2
=: ω(τ). (30)

Following the predictor step and the μ-update, by Lemma 8, we obtain

δ p ≤
√
h(δ+, θ, n)

2(2h(δ+, θ, n) − 1)

(
10δ2 + nθ2ρ2(2δ+)

8
√
2(1 − θ

2 )

)
. (31)

The function h(δ+, θ, n) is decreasing with respect to δ+, hence h(δ+, θ, n) ≥ h(ω(τ), θ, n).
We have seen earlier that the function g(t) = t

2(2t2−1)
for t > 1√

2
is decreasing, thus we get

g
(√

h(δ+, θ, n)
) ≤ g

(√
h(ω(τ), θ, n)

)
. (32)

By invoking (31) and using (32) and the fact that ρ(δ+) is increasing with respect to δ+, we
deduce that

δ p ≤
√
h(ω(τ), θ, n)

2(2h(ω(τ), θ, n) − 1)

(
10τ 2 + nθ2ρ2(2ω(τ))

8
√
2(1 − θ

2 )

)
.

To keep δ p ≤ τ , it suffices that
√
h(ω(τ), θ, n)

2(2h(ω(τ), θ, n) − 1)

(
10τ 2 + nθ2ρ2(2ω(τ))

8
√
2(1 − θ

2 )

)
≤ τ.

If we take τ = 1
10 and θ = 1

3
√
n
, n ≥ 2, then the above inequality holds and h(δ+, θ, n) > 1

2 .

This means that X , S � 0 and δ(X , S;μ) < 1√
2
are maintained during the algorithm.

Therefore, the algorithm is well-defined.

4.4 Polynomial Complexity

The next lemma gives an upper bound for the total number of iterations produced by the
algorithm.

Lemma 10 Let X0 � 0 and S0 � 0 be strictly feasible primal-dual solutions, μ0 = tr(X0S0)
n

and δ(X0, S0;μ0) < 1√
2
. Moreover, let Xk and Sk be the iterates obtained after k iterations.

Then, tr
(
Xk Sk

) ≤ ε if

k ≥ 1 +
⌈2

θ
log

5tr(X0S0)

ε

⌉
.

Proof Let μk denote the barrier parameter after the k main iteration. From Lemma 9 we
deduce that

tr
(
Xk Sk

) ≤ μk(n + 4
)

< 5
(
1 − θ

2

)k−1
μ0n = 5

(
1 − θ

2

)k−1
tr(X0S0).
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Table 1 The number of iterations and CPU time

Name (n,m) New Algor. Algor. in [17] Algor. in [18]
Iter. Time Iter. Time Iter. Time

MC (25, 25) 147 4.51 184 6.05 353 11.25

(40, 40) 195 17.07 244 19.97 467 37.51

(50, 50) 223 28.67 278 36.16 532 69.31

(60, 60) 248 69.38 309 87.36 590 168.33

Nm (20, 20) 110 0.96 137 1.17 265 2.25

(30, 30) 136 3.16 170 3.88 326 7.42

(40, 40) 157 6.24 196 7.90 376 14.63

(50, 50) 176 11.45 220 13.91 421 26.70

(60, 60) 193 34.59 241 42.49 461 81.99

C (24, 11) 182 3.91 232 5.46 442 9.62

(35, 16) 221 10.12 282 13.24 535 24.60

(48, 22) 263 21.87 334 27.62 633 53.03

(63, 29) 284 51.63 388 72.05 751 89.45

Gp (20, 21) 187 4.35 234 4.53 452 8.88

(30, 31) 244 12.01 305 14.80 586 28.79

(40, 41) 294 26.33 367 32.06 703 62.50

(50, 51) 339 47.61 423 59.43 810 115.03

This means that tr
(
Xk Sk

) ≤ ε holds if

5
(
1 − θ

2

)k−1
tr(X0S0) ≤ ε.

Taking logarithms, we obtain

(k − 1) log
(
1 − θ

2

)
+ log 5tr(X0S0) ≤ log ε.

Since log(1 + β) ≤ β for β > −1, we obtain that the above inequality holds if

−θ

2
(k − 1) + log 5tr(X0S0) ≤ log ε.

From this, we conclude that

k ≥ 1 + 2

θ
log

5tr(X0S0)

ε
.

This proves the lemma. ��
Using Lemma 10, we can easily conclude the main result of the paper.

Theorem 1 Let θ = 1
3
√
n
and τ = 1

10 . Then, the proposed corrector-predictor interior-point

algorithm is well-defined and requires at most

O
(√

n log
5tr(X0S0)

ε

)

iterations. The output is a strictly feasible primal-dual pair (X , S) satisfying tr(XS) ≤ ε.
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5 Numerical Results

In this section, we compare our new algorithm (new Algor.) with the presented algorithms
in [17, 18]. Numerical results were obtained by using MATLAB R2014b on an Intel Core i7
PC with 8GB RAM under Windows 10 to test some SDO problems: Max-cut problem(Mc);
Norm-min problem(Nm); Control problem(C) and Graph partitioning problem (Gp). The
algorithms are stopped when μ ≤ εμ0 with ε = 10−5. In Table 1, we present the names of
the test problems, the dimension of the blocks and the number of the constraint equations
(denoted by (n,m)), the number of iterations (iter) and CPU time. Numerical results show
that our presented algorithm is reliable and promising.

6 Concluding Remarks

We have presented a new CP interior-point algorithm for SDO. We used the AET method
based on the functionψ(t) = ψ(

√
t)withψ(t) = t2 for the systemwhich defines the central

path. We then used the symmetrization scheme that yields the NT directions and applied
Newton’s approach to the transformed system in order to get the new search directions.
Furthermore, we presented the convergence analysis of the proposed algorithm and obtained

the iteration complexity bound O
(√

n log 5tr(X0S0)
ε

)
. We had to assure that the smallest

eigenvalue of V -matrices of the scaled space is greater than 1√
2
. To our best knowledge,

this is the first CP IPM for solving SDO where the AET method based on the function
ψ(t) = ψ(

√
t) is used to derive the new search directions. According to our preliminary

numerical results, the new algorithm performs efficiently.
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