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Abstract

In this work, we consider numerical approximations of a thermally coupled incompressible
magnetohydrodynamic problem. By combining the scalar auxiliary variable method and
vector penalty projection approach, we construct a fully decoupled, unconditionally stable
finite element scheme to solve this nonlinear and coupled multi-physics system efficiently.
The proposed scheme has three distinct features: (i) although the nonlinear term is treated
explicitly, the scheme is still unconditionally stable; (ii) it can approximate divergence-free
solution, when penalty parameter tends to zero; (iii) all unknown physical quantities are
decoupled, and only a series of linear elliptic equations with constant coefficient need to
be solved. Moreover, the presented scheme is provably unconditionally stable. Then error
estimates for the velocity field, magnetic field and temperature of the fully discrete scheme
are established. Finally, various numerical simulations are provided to verify the features of
the presented scheme.

Keywords Thermally coupled magnetohydrodynamic - Divergence constraint - Vector
penalty projection - Zero-energy-contribution - Stability - Error estimate
1 Introduction

The thermally coupled incompressible magnetohydrodynamic (MHD) model, which describes
the hydrodynamical behaviors of a conductive fluid in an electromagnetic field when buoy-
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ancy effects cannot be neglected in the momentum equation, has many vital applications in
the metal hardening, casting, melting, magnetic propulsion devices, design of electromag-
netic pumps, nuclear reactor technology, semi-conductor manufacture, etc. The governing
equations of this model are formed by coupling the incompressible Navier-Stokes equation
in fluid mechanics, the Maxwell equation in electromagnetism and the heat equation through
the Boussinesq approximation.

Let Q c R4 (d = 2,3) be a bounded region and final time 7 > 0, find fluid velocity
fieldu : (0,7] x  — R, the pressure p : (0, T] x Q — R, the magnetic field H :
0, T x 2 — R4 and temperature 6 : (0, 7] x Q — R satisfying [27]

w—R;IAU+Vp —BOj=f — (u-V)u+scurlH x H, inQ x (0, T],

diva = 0, in 2 x (0,71,

H, + R,;ls curlcurlH = curlg + s curl(u x H), inQ x (0, T1, (1)
divH = 0, in Q x (0, T],
0 —kAO =w— (u-V)o, in 2 x (0,71,

where R, denotes the fluid Reynolds number, R, the magnetic Reynolds number, s the
coupling number, « the thermal conductivity, and S is the thermal expansion coefficient.
Besides, the given function f is the external force, g is the known applied current with
divg = 0, w is the heat source and j denotes a unit vector in the direction opposite to the
gravitational for u. The system is equipped with the following initial values and boundary
conditions [23]

u(x, 0) = up(x), H(x,0) =Hy(x), 6(x,0)=6)(x) inQ, )
uls, =0, (H-n)|s, =0, (nx curlH)|s, =0, 6|5, =0, (3)

with divug = 0 and divHy = 0. Here S7 := 92 x [0, T'], and n represents the unit outer
normal to the boundary 0€2.

For the steady-state thermally coupled incompressible MHD equations, Meir has proven
the existence and uniqueness of solutions in [27, 28], in which the dissipative heating and
Joule heating are disregarded. Bermudez et al. [10] have studied the existence and uniqueness
of weak solutions. Yang and Zhang [38] have proposed three iterative finite element methods
on 2D/3D bounded domain and established the analyses of convergence and stability. Based
on the Arrow-Hurwicz iterative method, the finite element method has been proposed to
avoid solving saddle-point system coming from the considered problem [22]. For the time-
dependent thermally coupled incompressible MHD equations, Ravindran [29] has presented
a decoupled Crank-Nicolson time-stepping scheme, in which mixed finite element method
is used for spatial discretization, and has derived optimal order error estimates in suitable
norms. It is noteworthy that this scheme only decouples the MHD equations from the heat
equation. Ding et al. [17] have studied the Crank-Nicolson extrapolation scheme, where the
generalized Taylor-Hood element, Nédélec edge element, Lagrange element are employed to
approximate the Navier-Stokes, Maxwell’s and thermal equations, respectively. Meanwhile,
the authors have proven that the proposed scheme is unconditionally energy stable, and have
established optimal error estimates for the velocity, magnetic induction and temperature under
a weak regularity hypothesis of the exact solution. In [31], a modified characteristics finite
element method, which approximates the hyperbolic part with the modified characteristics
tracking scheme, has been presented by Si et al. When dissipative heating and Joule heating
are taken into account, a stabilized finite element method, which splits the unknowns into a
finite element component and a subscale, has been designed by Codina and Hernandez in [14].
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Finally, for solving the thermally coupled inductionless MHD equations, Badia et al. [9] have
designed a new family of recursive block LU preconditioners. Although the works mentioned
above have made essential contributions to the construction of the numerical method for the
thermally coupled incompressible MHD model, there is less research on explicit treatment
for the nonlinear terms in the model, and efficient scheme for the divergence-free constraint
concerning velocity and magnetic fields.

On the one hand, inspired by the scalar auxiliary variable method [25, 30], the “zero-
energy-contribution” idea has been proposed by Yang in [32-36], where an ordinary
differential equation is constructed to decouple the nonlinear system. With the help of
“zero-energy-contribution” idea, a fully decoupled finite element scheme, which involves
a pressure-correction method, explicit treatment for the nonlinear terms, second-order back-
ward differential scheme, has been proposed by Zhang et al. [39] for the MHD equations.
Note that the stability analysis for fully discrete scheme is carried out, but the error analysis
is not established. A fully decoupled algorithm for the MHD equations without “magnetic
pressure” can be found in [37].

On the other hand, for the time-dependent thermally coupled incompressible MHD flows,
itis essential to construct a numerical scheme that generates the numerical solution satisfying
the conservation of mass and Gauss’s law. As is known, by using Mini element or Taylor-Hood
element for spatial discretization, the velocity solutions are not divergence-free [13]. Recently,
the vector penalty-projection (VPP) method, which approximately satisfies the divergence-
free conditions, has aroused the researchers’ attention. Based on the augmented Lagrangian
and splitting methods under vector form, Angot et al. firstly presented the two-step artificial
compressibility (VPP,) method and the two-parameter vector penalty-projection (VPP, )
method in [1]. For the VPP, method, the authors have developed it into incompressible non-
homogeneous or multiphase Navier-Stokes problems [2] and the fast numerical computation
of incompressible flows with variable viscosity and density [5]. Furthermore, Bruneau et
al. [11] have applied the combinatorial method of the VPP, method and corrected pressure
gradient scheme to the displacement of a moving body for the incompressible viscous flows.
Based on the stability result, the authors have proven the weak convergence of the scheme
towards the continuous incompressible Navier-Stokes problem with a penalization term when
time step and penalty parameter go to zero. In a following work of Angot et al. [1], the VPP,
method has been applied to compute the solution of unsteady incompressible Navier-Stokes
equations [3, 8], the incompressible MHD equations [26], the time-dependent incompressible
Stokes equations with Dirichlet boundary conditions [6] and open boundary conditions [7]. To
be specific, the authors have proven that the numerical solution converges to the weak solution
of the Navier-Stokes equations when the penalty parameters tend to zero [8]. Moreover, the
stability of the proposed method and second convergence rate with respect to time step of
velocity and pressure are analyzed in [6]. As a matter of fact, based on Helmholtz-Hodge
decomposition [4], the divergence of the velocity is controlled by the parameter ¢ and r in
[1].

The aim of this paper is to construct a fully discrete decoupled finite element scheme for the
thermally coupled incompressible MHD problem. First, we introduce an ordinary differential
equation containing the nonlinear terms in the thermally coupled MHD equations, which leads
to an equivalent system of (1)—(3). Further, the VPP, . method is used to penalize lack of the
mass conservation and Gauss’s law in the fully discrete scheme. Finally, we develop a fully
decoupled unconditionally stable finite element scheme by employing first-order backward
Euler scheme for the time derivative terms and explicit treatment for the nonlinear terms.
Theoretically, the unconditional stability of the proposed scheme will be derived, and error
estimates will be established. Numerically, several examples are given to test the stability and
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accuracy of the presented scheme. By comparing with the implicit-explicit scheme, namely
Algorithm 5.1 in this paper, we illustrate the effectiveness of the proposed scheme.

The arrangement of this paper is organized in the following way. We start in Sect. 2
by writing down some notations, functional spaces and the basic facts. In Sect. 3, a fully
decoupled finite element scheme is proposed, and its stability is given. Then, some error
estimates of the velocity, magnetic and temperature are showed in Sect. 4. In the next section,
we present various numerical experiments to test the stability, accuracy and performance of
the presented scheme. In Sect. 6, the conclusion is given. The stability and error estimates of
the presented method are proved in the Appendix.

2 Preliminaries

Let us give some mathematical preliminaries and notations which will be frequently applied
throughout the paper. For m € N* and 1 < p < oo, let W™?(Q) be the usually Sobolev
space, which is equipped with the norm || - ||wm.»(q), with abbreviations L” (2) = wor(Q)
and H™(Q) = W™2(Q). || - lzr(q) and || - ||, denote L7 (€2), H™(£2) norm, respectively.
Particularly, (-, -) and || - ||o denote L? inner product and norm on the domain 2. For a function
space X on 2, L?(0, t; X) and L°°(0, t; X) are the function spaces defined on (0, T'] x
for which the norm

1
t »
I lLr.x) = (/0 [ - |I§dt> , if p € [1, 00),

Il Iz, x) = €ss sup,po.ll - lx, if p = oo.
To setup the mathematical formulation of the problem (1)—(3), we introduce the following
Sobolev spaces:
X={ve H(Q" :vjo=0, W={BecH @:B nfe=0}
M={qeL*Q):(,q) =0} Y ={p e H'(Q): ¢lao =0}

Besides, for f an element in the dual space of X, denoted by X/, its norm is defined by

— [ v)]
If]l—1 = supycx ~vlo

Next, we define the trilinear forms
bi(u,v,w) =0.5((a-V)v,w) —0.5((u-V)w,v), Yu,v,w e X,
bo(H,B,v) = (H x curlB,v), VB He W, veX,
bz(u,0,9) =051V, p) —0.5-Ve,0), VueX, 6,pcY.

The following properties of the trilinear terms will be used in the next analysis and given in
the following lemma.

Lemma 2.1 [16, 19, 20, 24] The above trilinear forms satisfy following properties

1 Lol 1
1b1(u, v, w)| < c[[VullollVVlolVWllo,  [b1(u, v, w)| < cllullg [Vullg [IvIig VY VWl

|b2(H, B, v)| < clcurlH][o|curlBllo[[ V],
1 1 1 1
Ib3(u, 0, )| < c[[Vullol VOl Vello, [b3(a, 6, ¢)| < clullg Valg 1015 VOl IVello,
forallu,v,we X H,BeWand0,p €Y. Moreover, if v,B € H*()%,0 € H*(Q)

b1 (u, v, w)| < cllullollvll2[IVWllo.
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|b2(H, B, v)| < c[[H[lollcurlBllo[IVll2, [b2(H, B, V)| < c|Hllo[Bll2[IVvllo,
b3 (u, 6, )| < cllulloll@ll21IVello-

Here and after, we denote ¢ and C (with or without a subscript) are general positive constants
depending on R,, R, s, k, B, 2, T, ug, Hyp, 6y, f, ® and g, which may represent for
different values at their different occurrences. Additionally, we recall the following essential
formulas that are useful in the numerical analysis [15, 18]: for all u,v,w € H I(Q)d and
HeWw,

1
curlu xu= (u-V)u— §V|u|2, 4)
curl(vxw)=w-V)v—v-VIw+ (V-w)v—(V.-v)w, 5)
IVH|§ < llcurlH||§ + [|divH]3. (6)

By using the above notations and function spaces, the desired weak formulation of the
problem (1)—(3) reads: find u € L?(0,T;X),H € L*(0,T;W),6 € L*(0,T;Y) and
pE L2(0, T; M) such that for any (v,q,B,0) e Xx M xWxYandt e (0, T],

(w;,v) +ay(u,v) +bi(u,u,v) +sbr(H,H, v) —d(v, p) — (B0, v) = (E,v), (7)

H;,B) +ax(H, B) — sbo(H, B, u) = (g, curlB), ®)
(6, ¢) +a3(0, ¢) + b3(u, 0, ¢) = (v, ¢), (C))
d(u,q) =0, (10)
u(x, 0) = up(x), H(x, 0) = Hp(x), 0(x, 0) = 6p(x), (11)

where a;(u, v) = R;l(Vu, Vv), ax(H, B) = anls(curlH, curlB), a3(8, ¢) = «(VO, V)
and d(v, g) = (divv, g).

Through this paper, we make the following assumption in advance for (7)—(11), which
will be used in the subsequent analysis.

Assumption 2.1 Assume that the initial data ugy, Hop, 6y, the force f, heat source @ and the
current g satisfy

sup_ (IF™llo + @ ®llo + 18110 + 8002 + IHo®)l12 + 160X 2 =< .

0<t<T

From now on, let i, be a uniform partition of the domain €2 into element K with diameters
bounded by a real positive parameter & = maxk ¢, {diam(K)}. Next, we introduce X;, C X,
My, Cc M, W, C WandY), C Y as the conforming finite element spaces under the partition
TTh

X, = {vy € CODYNX: il € Po(K)Y, VK € ),
My = {gn € CUNM : gilx € PI(K),VK € m),

W), = (B, € COQQ?NW :By|x € Py(K), VK € 73},
Yo ={on € COQDNY : gplx € P2(K),VK € 7).

Furthermore, the finite element space pair X; x Mj, is assumed to satisfy the usual discrete

inf-sup condition or LB Bj, condition for the stability of the discrete pressure: there is a

constant « independent of the mesh size /4 such that
. (gn, divvy)
inf

—— >a > 0.
an€Mi vy ex, IVVrllolignllo
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We also recall the Poincaré inequality: there exists a positive constant ¢ such that
Ivillo < cllVVillo, Yvi € Xp.
The standard inverse inequality [12] will be used:
19 vallo < cinh ™" IVhllo, V¥ € Xp,

where the constant ¢;,, > 0 depends on the domain.
As is known, the discrete Gronwall’s inequality will play an important role in analysis of
convergence, so we list it in the following lemma.

Lemma 2.2 [21] Letk and ay,, b, d,,, for integers n1 < n be nonnegative numbers such that:

m m—1
am+kan§kZandn+C, Ym > n.
n=ni n=ny

Then, one has

m m—1
am +k Y by fexp<k Zd,,) C, Vm >n,.

n=nj n=nj

3 A Fully Decoupled Linearized Scheme for the Thermally Coupled
MHD Equations

In this section, we construct a fully decoupled unconditional stable finite element scheme,
which approximately satisfies the conversation of mass and Gauss’s law, to solve the thermally
coupled incompressible MHD system (1)—(3).

Introduce an auxiliary scalar variable Q and an ordinary differential equation, which is
being shown as follows:

1Y

T bi(u,u,u) + sbr(H,H,u) — sbo(H, H, u) + b3(u, 6, 60), Qli=0 = 1.
Note that by (u, u, u) +sbr(H, H, u) —sbo(H, H, u) + b3(u, 6, 8) = 0. So we have the exact
solution Q(¢) = 1. Then, the thermally coupled MHD system (1)—(3) can be rewritten in the
following equivalent system:

u + Q- Viu— R;'Au—sQcurlH x H+ Vp — B6j =T, (12)
diva = 0, (13)
H, + Rn;lscurlcurlH —sQcurl (u x H) = curlg, (14)
divH = 0, (15)
0, —kAO 4+ Q- V)f = w, (16)
% =bi(u,u,u) + shr(H, H, u) — sbo(H, H, u) + b3(u, 0, ). a7

Let {t,,},ll\'=0 (N > 0) be a uniform partition of [0, 7] with time step At =

%. Next, (u}, p;,Hj,0;) denotes the fully discrete approximation to the solution

(u(ty), p(ty), H(ty), 6(2,)) of the problem (12)—(17) at t = t,. Besides, we set f" = f(z,),
g" = g(ty) and " = w(ty).
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Then, we propose a fully discrete decoupled finite element scheme, which combines the
first order backward Euler scheme for temporal discretization and explicit treatment for
nonlinear terms. Moreover, a modified VPP, ; method is introduced to decouple the pressure
and penalize the lack of mass conservation and Gauss’s law.

Algorithm 3.1 Step 1: Given w;, € X, H; e Wy, p; € M, 6] € Y, find
@ttt A Y € X)) x Xy x Wy x W satisfying: for all (v, By) € Xj, x Wy,

i
(’, Vh) +a (ﬁﬁ'f;l, Vh) —d (va, py) — (BO}3, Vi)

At
o (divi ! divw ) = (07 v). (18)
' — H?
1,h h 7
(A;’ Bh> +a (H’;;‘,Bh) = (curlg""', By), (19)
~n+1
u2,h ~n+1 n ..n n n
N V) Ty v ) + bi(wy, . va) + sby(Hy, Hy . vi)
+r (divig}! divw, ) =0, (20)
IfInJrl
2,h -1 _ n ny __
A Bn | +ax (Hy 0. By ) — sba(Hj, By, w) =0, 1)

where r > 0 is the augmentation parameter.
Step 2 : Given ) € X, 07 € Yy, find (0] 31, 057") € Yy x Yy satisfying: for all gy, € Yy,

o -
(JAI’ (ph) + a3 (9{”21, ‘Ph) = ((,()71-‘1-1, (Ph) , (22)
91‘1+1
2,h n+1 n gn
(m,¢h) + a3 (927}[ ,(,Oh) + b3(uy,, 6, on) = 0. (23)

Step 3: Compute Q"' € R satisfying

(1-ar) ot = 0n + Azt (24)
where Al = Ar (m (wp, wp, @551 + sy (Hj, Hy, @571 — shy(Hy, L i)
by, 0. 05%D) . and AT = Ar (i g D + sha (B, HL D

—sby (HJ, B wlh) + by, 6, 077! ) .
Step 4: Find &' € X, AT € Wy, 07! € ), such that

~n+1 _ ~n+l n+l~n+1 qn+1 _ pn+l n+lyggn+l
Wt =0+ 0w, HT =Hp + 07T H,

(25)
g;llJrl = 0{’}:1 + Qn+19§:}tl.
Step 5: Update ﬁZH € My, satisfying: for all g, € My,
(PNZ-H — P qn) + rd(ﬁZH, qn) = 0. (26)
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Step 6: Based on ﬁZ'H and I:IZ+1 from (25), find (ﬁZ'H, fIZ+]) € X, x Wy, satisfying: for
all (v, By) € Xj, x Wy,

ﬁn-H 1 1
v ) @@ v+ — (v dive) = —— (daivay ' divvi), @D
£1 €1

ﬁn—}—l . 1 . 1 .
(h, By ) +a @ By + — (divE ! divBy ) = —— (divly ! divB,) (28)
At & &

with some penalty parameters 0 < €1, e < 1.

Step 7: Combine the Step 4 and Step 6, then get (uZ"’1 , H;’l+1) € X, x Wy, by

n+1 _ ~n+l ~n+1 n+1 _ gn+l n+1
' =u" +u, H™W =H" +H" . (29)

Step 8: Update pZ'H € My, satisfying: for all g, € My,
. 1
Pyt = B an) + A gn) = 0. (30)

Remark 3.1 Note that some initial values are required for the unknowns in Step 1, 2 and 5.
Setting u) = Rpuo(x), H) = T,Ho(x), p) = Ljpo(x) and 6) = G0 (x), the definitions
of the projections Ry, Ty, Ly, G, are displayed in next section. Under the Assumption 2.1,
we have [lujllo < ¢, [Hpllo < c. [ 5}llo < c, and [[6}]lo <

pllo =€, pllo = G, |[pyllo = ¢, an nllo = C.

Remark 3.2 In (18), (20) and (26), the added penalty terms can be seen as artificial com-
pressibility method but the augmentation parameter r is totally independent of the time step
At. Further, in order to ensure the fully discrete numerical method is unconditionally stable,
we choose p~;’ ;, instead of pﬁ ; in (18) and (26), which is different from the common VPP, .

method in [7].

Remark 3.3 In Step 1 and 2, the explicit treatment for convection terms and Lorentz force
terms results in constant coefficient system at each time layer, which makes the computa-
tion easy. Moreover, the addition of penalty term further decouples the pressure from the
momentum equation and achieves full decoupling of the physical variables in (1).

Remark 3.4 From Helmholtz-Hodge decomposition in [4], Step 6-8, called the vector penalty-
projection step, perform the penalty for lack of mass conservation and Gauss’s law. When the
penalty parameters are small enough, Step 6 and 7 are used to approximate well divergence-
free solution for velocity and magnetic fields.

‘We next establish stability of the partitioned scheme in Algorithm 3.1.
First of all, one needs to check the solvability of (24). In fact, if 1 — A'{“ = 0, then one

can not solve (24). Moreover, if one can prove —A'IH'I >0, then1— A?H >17#0.So(24)
can be solved. ~

In fact, by taking v, = Arity ', By = ArHy ! 0 = At657! in (20), (21) and (23),
respectively, and combining the ensuing equations, one has

— A = A (bl (W, @) + shy(HY HY, 6551 — shy(H), S uf)
b3, 67, 051 1))

Sntl)2 el Sl 2 sl 2
= ||ug,h g + R, At||Vug’h ||0+rAt||dlvugyh 5
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+ ||H”+‘ I3+ R, At||cur1H”+1 113
+ 10575115 + k ALIVOS TG = 0,

which implies the solvability of (24).
Now, we mainly list and prove the stability of Algorithm 3.1.

Theorem 3.1 Under Assumption 2.1, there holds

At ~
g 13+ IR IG + == 1155716 + 16,715 + 1Q™ 1 + Z I+ — i
n=0

1 ~n+1
+ Z ”un+ nJr ”0

1 2 +1 12
+Z||Hz - Z||O+Z||HZ —-H; 5

n=0
N-1
n=0
-1
At
+ — divu"Jrl
- Z I 13
N-1
+ Ry A (lleurlHy G 4 fleur H T — curdH(G)
n=0

N—1

At . 12
§ [divH} )15
n=0

N—1 N—1
+ ALY rldivig TG + A Y IveptG
n=0 n=0

+ oAt Z I+ — 52 <

where C = C(R,, Ry, k, B, T, 2, a9, Ho, 60, £, w, g) is a positive constant.

Proof See Appendix A.1. O

4 Error Estimates
In this section, we establish error estimate results of Algorithm 3.1 for the thermally coupled

incompressible MHD equations. First, we make the following regularity assumption for the
weak solution to system (7)—(11).
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Assumption 4.1 The exact solution of (7)—(11) satisfies

ue L®0,T; H3 (@Y, w e L0, T; H3 ()9, w; € L20,T; H-H(2)9),
He L%, T; H3()%, H; e L20,T; H3()9), Hy € L2(0, T; H-H(@)9),
0 € L®0,T; H3(Q), 6 € L*(0,T; H (), b € L20,T; H~1(Q)),

p e L®0,T: HX(Q)), pr e L%0,T; H*(Q)NL®0, T; L2(Q)).

Next, we introduce the Stokes projection for the velocity field and pressure, L2-orthogonal
projection for the magnetic field and Ritz projection for temperature as follows [17-19]:
givenu € XN H3 Q) He WNH3QY pe MNH*(Q),0 € YN H3Q), find
(Rpu, TyH, Ly, p, Gp0) € Xj, x Wy, x My x Yy, such that

aj(a — Rpu,vy) —d(vp, p—Lpp) =0, du— Ryu,qp) =0, Vv, eXy, qn € M,
(H—TyH,B;) =0, VB, € Wp, az(0 — Gpb,¢p) =0, Vo, €Y,

which satisfy the following approximation properties

vlu— Ryullo + h(vllu = Ryulli + llp — Lupllo) < ek’ wlulls + [Ipll), €19}
I — T3Hllo + 2 /H — T,Hl[ < ch’|[H|l3, [0 — Gabllo + hll0 — Gublly < ch*[16]5.
(32)

In order to facilitate the error estimates, we set v = vy in (7), B = B, in (8), ¢ = ¢}, in
(9) and g = g, in (10) with ¢ = ¢, to get

At
—d(Vp, p(ta+1)) + Q(tn+1)b1((ty11), utyt1), Vi)
+ 5Oty )2 (H(ty1), Htut1), Vi) — (BO(tus1)d, Vi)

<w vh> + ar(u(tn11), va)

fﬂ+l 1 1
={d"", v — E/r (t — ty)(uy, vp)dt, (33)
H(, — H(,
(% Bh) +ax(H(tp11), Bp) — s Qnr1)b2(H(ty11), By, u(tn11))
In+
= (g"“, curlBy,) — L / 1(1‘ — t,)(Hy, Bp)dt, (34)
At 1‘"
6(t, —0(ty,
<% <Ph> + a3 (0(tyy1), on) + QUnr1)b3((tyr1), 0 (tus1), 1)
ntl 1 th41
= ") - o /, (= 1) Orr. ), (35)
(pUn+1) — p(tn), qn) +rd (tn+1), qn) = (PUnt1) — p(ta), qn) - (36)

@ Springer



Journal of Scientific Computing (2023) 95:14 Page110f39 14

Then, we show the following notations here and hereafter
& =) —u), & =He) -H), & =p)—p &= 0) — 0.
€, =u(ty) —w,, ey =H@) —H,, ¢, =pt)—py e =0@)—0.

Next, we get the following error equations by subtracting (A.1)—(A.3) from (33)—(35), respec-

tively.
e+l _en
(5 )
+ar@F Vi) + Q1)1 Wt 41). W(Ens1). Vi)
— Q" by (), uff, vy)
+ 5Ot D)b2 (H(ta 1), H(tn 1), Vi) — s Q" by () HY vy,)
—d(vy, &) + r(dive)t!, divvy)

— (BO(tn+1)J. Vi) + (BORI. Vi)

1 Int1
=~ (t = tn) g, Vi)t — d(Viy, p(tn) — p(tas1)), (37)
In
&'~
77]3 ~n+1’B
( Ar n |+ ax(€y h)
— 5Q(tny b2 (H(ty 1), By, ultyi1)) + s Q"' by (Hj, By, uj)
1 g1
=—— t —t,)(Hy, By)dt, 38
arl, (t — 1) (Hy, By) (38)

e — el
Ts Pn

+az(ef ™, on) + QUtnr)b3(U(tas1), O(tas1), 91) — Q" b3l 61, o1)
1 In+1

=Tar ), (t — 1) (B, p)dt. (39)

Besides, subtracting (26) from (36), we arrive at

@t =y an) +rd@T an) = (pltart) — pin), qn)- (40)

Further, in order to derive estimate for error, we need to split the errors. For future conve-
nience, we define here and hereafter,

sno_ oo an sno_ on 7N -y on n no__ .n n
eu_”u_¢h’ eH_”H_'//h’ep_np_Xh’ € =My — Pps
n o_.n _ gn n _ .n _ N no__ .n __ qn
€y =My '/fh,ep—np X € =1y ﬁh,

where

W= () — Ryu(tn), @, =0 — Ryu(t), %y = H(t,) — TiH). ¥, = 0 — TH(),
77; = p(tn) — Lup(ty), )Z;,l = PNZ — Lpp(tn), ¢Z = llZ — Rpu(ty), '/’Z = HZ — T, H(t,),
XZ = I’Z - th(tn)v 77'9’ =0(ty) — Gpo(ty), ) = 9]? — Gp0(ty).
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Lemma 4.1 Consider Step 6 in Algorithm 3.1. The following estimate holds

~n+1 ~n+l o
Iy 15+ 195, 1IG
~n+1

= Iy 3+ 10— b IR+ R A IV TR = 1985 13) + 1w R

- 7 +1
+Rm1At<|lcurh/r”+1||0—||curh/fh ||0>+R LAt|curl (it — 9, )13 @)

+1 +1
+ RA| V(@I - ¢Z >||o+||w"+1 ¥ ||o+—||chv<z>"“||0

+—||d vrIE — ||d IS — ||d vy 3.

Proof From (13) and (15), it is found that the following equations hold

(u(tn—H) —u(tnt1)

. .
AL ,Vh> +ai(a(tyy1) —u(ty41), Vo) + g(dlvu(tn+l)a divvy) =0,

(42)

(H(tn+1) -

H(tn11) [ .
A B ) +ax(H(tpg1) — Htpy 1), By) + g(dlvH(th), divB;) = 0.

(43)

Applying (29) to (27)—(28) and subtracting ensuing equations from (42) and (43), respectively,
we get

n+1 _ é"‘H 1
(T vh> +ayEt — et vy + E(diveZH’ divvy) =0, (44

erH—l ~n+1
(HNH >+a2(e"+‘ &t Bh)+—(d1ve”+1 divBy) =0.  (45)

Then, set v, = 2At¢2+1 B, = 2At1/f"+1 in (44) and (45), respectively, and decompose
the errors.

~n+1

~n+1
[ e A R AR
— ~n+1 ~n+1
+R, Ar(nw“uo—nm I3+ 1Vt =i HIg)

~ ~ ~ i+l
IR T R et = I+ R Az(ncurh/f"“no—||cur1w 13)

n+1
+R; Arncurl(w"*‘ v )||0+—||d ¢"+1||0+—||d vyt 3

n+1

<—||chvn I3 + ||d v 2+ ||d n”“||o+—||d1 iz,

@ Springer



Journal of Scientific Computing (2023) 95:14 Page 130f39 14

where we have used the Cauchy-Schwarz and Young inequalities. Then, the desired result is
obtained. O

Now, we are ready to state the main result of this section.

Theorem 4.1 For the 2D thermally coupled incompressible MHD equations, under Assump-
tion 4.1 and the assumption of Theorem 3.1, we have the following estimate

la(en) —al 113+ IHEy) —HY 15+ 16en) — 0V 115

At -
+—lpw) - AIE +10xn) — OV

Re_l = nyn2 Rr;l i ny 12
+ =AY IV @) —w)lG+ 5= Ar Y fleurl () — Hi)IG
n=0 n=0
N—1
+ie Y AHIVO ) — 0I5
n=0

N—1 N-1
At . At .
+ o > lldiv(ut,) — up) g+ 3 > lldiv(H(5,) — H)IF < c1 (A% + 1%,
n=0 n=0

where c1 = c1(Re, Ry, S, K, €1, €2, 1, B) is a positive constant.

Proof The proof is similar to the 3D case (see Theorem 4.2) except some bounds as follows.
For the 2D case, the terms A», D>, E;, F> can be bounded by

Ar < 54R;1Az||v$’;+‘ 134 8sR ALV 15
+CR AP VU2, ooy IVRRUGE) I
+CRIACIVUI oo I901IG + cRe ALV I I VU I
+ eR At IV IG5 13,

_ ~n+1
Dy <8R, ALV I + cRes* AP IH 5, (oo

IHG 15
2 n 2 nn2
+ cRes” Atlcurly'y [lglicurlHy |5
+ cRes® At|[Y RIS (IHE) 13 + llcurly 13 + I1divy 15 + 72 [lcurly’, [13),
_ ~n+1 _
Ey <8R, Atllcurly, 134 8sR, At VT I3
2 2 2 2
+CRmS At ||ut||L2(tn,tn+1;H2(Q)2)”HZ”()
R zAtvﬂz lHn2 R2 zRAl‘an lHn2 d an l‘l2
+ cRys> At V2§ llcurlHE IS + cRZs? Re At | H 13 (llcurlH 1§ + 1divEL (15197113,
+1,2 2 —1 2 2 2
Fy < 8ok At VOIS + 810k AL VOIIG + e A6, oy WIS
+ e T AL IR IVULIR + e ARVl 12197 12

Then, according to the proof in Appendix A.2, it is easy to get the desired result.
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For the 2D thermally coupled incompressible MHD equations, we find that there is no
constraint on the time step. Further, we consider the error estimate for the 3D case.

Theorem 4.2 For the 3D thermally coupled incompressible MHD equations, under Assump-
tion 4.1 and the assumption of Theorem 3.1, if

1

e2(Re + k™ V) exp (TWo) (AL + h2)(ALZR2 + cinh)

_ min{R;l,K}
= 4

1 1

cas?exp (TWo) (At + h?) <Rmm% RZ + R.A% (R}

’

(46)

min{R,;l, 82_1}
4

’

1
+822) + (R, + Rm)cinh)> =

where co = ¢2(R,, Ry, 5, K, €1, €2, 1, B) is a positive constant, Wo = Wy + Wy + W3 + %
and Wy, Wy, W3 are defined in (A.32), then we have

la(en) —al 11+ IH@Ey) — HY 15+ 16en) — 0V 115

A
+ {np(m) — AR+ 100y — OV

Re_l = nyn2 erl g ny 12
+ =AY IV @) —w) G+ = Ar Y fleurl M) — H)IG
n=0 n=0
N—-1
+ie Y AHVO ) — 0I5
n=0
N—1

At
- d [ _ n 2
+ o ZO Idiv(a(s,) —uhlI3

N—1
At ) s ) \
+ 2oy 2 IGGHG) — HDIG < a8 +

Proof See Appendix A.2. O

5 Numerical Experiment

In this section, we present some numerical examples to verify the established theoretical find-
ings, and show the performances of Algorithm 3.1 for the thermally coupled incompressible
MHD problem. In order to gauge the effectiveness of the proposed algorithm, we compare it
with the classical implicit/explicit scheme, which reads as

Algorithm 5.1 Given w} € X;,, H} € Wy, and 6 € Yy, find (™, pit™' HIH! o1ty ¢
Xy x My x Wy, x Yy satisfying: for all (v, qn, Bn, on) € Xp X My x Wy X Yy,
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un+1 "
(h Al k, Vh) +ay (UZ+], Vh) + by (u), upp, vi) + sby (Hy, Hyy, viy) — d (v, PZH) +d(“2+]’ an)

— Gog v = (£ i)

Hn+l _H"
(hmh’ By ) +az (B, curlB, ) — sbz (. By, wp) + Ry,'s (vl ™ dive, ) = (g, curlBy )

+1
0/? _01? n+1 n pn _ n+1
A % +az (6, on) +b3 (a0 on) = (" 1)

5.1 Stability Test

In order to verify the stability of the presented algorithm, the thermally coupled incom-
pressible MHD problem (1)—(3) in the unit square domain [0, 1]? is considered. Set physical
parameters R, = R,, = 50, s = « = B = 1 and the final time 7 = 10. We choose
r = &1 = &3 = 1 and impose the source functions f = g = 0, w = 0. The initial values are
taken as follows:

uo(x, y) = (10x*(x — DZy(y — D2y — 1), —10y*(y — D2x(x — D(2x — 1)),
Bo(x, y) = (sin(x) cos(wy), —sin(wy) cos(x)), po(x,y) =0,
fo(x,y) = 10x*(x — D?y(y — D@2y — 1) — 10y*(y — D?x(x — D(2x — 1).

Due to the zero source functions and the homogeneous boundary conditions in the considered
domain, the numerical solutions are expected to remain bounded over time.

We denote EJ = [u |13+ [HZ |13 + 10713 + 521 513 + 1 Q"% which will be computed
with the fixed mesh size h = % Figure 1 shows the values of £}/ and Q" versus time evolution
for different time steps At = 0.1, 0.05, 0.01, 0.005. We observe that it shows monotonic
decay for all time step sizes, which numerically confirms that the proposed algorithm is
unconditionally stable. The scalar auxiliary variable Q" of the numerical algorithm converges
to 1 when the time step Ar decreases.

Further, resetting the physical parameters R, = R,,, = 100, s = 10, and taking the time-
step At = 0.1, 0.05, 0.01, we compare the value of [|u |2 + [H}||Z + |6} |3 by Algorithm

—At=01 |[]

“eee At=0.05
= -At=001 R
- At = 0.005) | T
0998} -
0.997
" o
0.996
0.995
—At=0.1
e At=005 (]
0.994 - =At=0.01
===At=0.005
0.993 .
0 2 4 6 8 10 0 2 4 6 8 10
t t
(a) (b)

Fig. 1 The values of EZ (a) and Q" (b) with different time steps
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0.6 ; .
—At=01 —at=01 ||
----- At=005 e At=005
0.5 = =At=0.01]1 = =At=0.01
w L
= 04 =
o oo
F 08 £
¥ 5
ao e
5 02f E:
01t 3
\
\
0 0 L o s
0 2 4 6 8 10 0 2 4 6 8 10

t t
(a) (b)
Fig.2 The values obtained by Algorithm 3.1 (a) and Algorithm 5.1 (b) with different time steps

3.1 with that of Algorithm 5.1 showed in Fig. 2. It is clear that both algorithms are stable with
the time step At = 0.01. However, Algorithm 5.1 blows up when Ar = 0.1, 0.05, which
shows that the classical implicit/explicit algorithm does not work well when some large time
steps are adopted. On the contrary, Algorithm 3.1 still works well.

5.2 Convergence Test
5.2.1 2D Convergence Test

Based on the same bounded domain as it in the unconditional stability test, we consider
two-dimensional time-dependent thermally coupled incompressible MHD equations with
the exact solution as follows:

Uy = amw sin? (mx)sin(wy) cos(mwy)cos(t), uy = —amsin(rx) sin? (ry) cos(mrx) cos(t),
H) = asin(mrx) cos(wy)cos(t), Hr = —acos(mwx)sin(wy)cos(t),
0 = ar sin® (rx) sin(ry) cos(mwy) cos(t) — am sin(;wrx) sinz(rry) cos(mx) cos(z),

p = acos(mx) cos(wy) cos(t),
where we choose o = 0.01. The boundary conditions and the body forces are given by the
N—1 1
exact solution. Set Err(e;) = (At > ||e;1+] ||(2)) ® with i = u, H, p and 6. The errors for
n=0

corresponding norms and convergence rates are tested with parameters R, = R, = s =
Kk =B=1,r =¢; =& = 1 and the terminal time 7 = 1. Results with various time-space
steps such that A7 = h? are listed in Table 1. This table shows that the proposed algorithm
works well and keeps the convergence rates just like the theoretical analysis.

5.2.2 3D Convergence Test

This example is to test the convergence rate for the 3D thermally coupled incompressible
magnetohydrodynamic system in the domain Q2 = [0, 1] x [0, 1] x [0, 1]. The right-hand
sides f, g, w and boundary conditions are chosen such that the exact solution is given as

2

Uy = yzz2 sin(t), u» =x 72 sin(t), uz = )czy2 sin(z),
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Table 1 Errors and convergence rates of the current algorithm with Ar = h2 for the 2D problem

h Err(Veyw) Rate Err(curleyy) Rate Err(ep) Rate Err(Veg) Rate
1/4 9.80E—03 - 1.11E—-03 - 2.88E—03 - 5.15E—03 -

1/8 2.68E—03 1.87 2.80E—04 1.99 3.16E—04 3.19 1.35E—03 1.93
1/16 6.82E—04 1.97 6.98E—05 2.00 4.46E—05 2.82 3.41E-04 1.98
1/32 1.71E-04 2.00 1.74E—-05 2.00 9.77E—06 2.19 8.54E—05 2.00
1/64 4.28E—05 2.00 4.35E—06 2.00 2.42E—-06 2.00 2.14E—-05 2.00

Table2 Errors and convergence rates of the current algorithm with Az = h? for the 3D problem

h Err(Veyw) Rate Err(curley) Rate Err(ep) Rate Err(Vey) Rate
1/2 8.49E—02 - 1.98E—02 - 3.71E—-02 - 3.48E—01 -

1/4 1.92E—02 2.14 5.50E—03 1.85 9.58E—03 1.95 9.19E—02 1.92
1/6 8.38E—03 2.05 2.50E—03 1.94 4.29E—-03 1.98 4.18E—02 1.95
1/8 4.68E—03 2.02 1.42E—-03 1.96 2.38E—03 2.05 2.37E—02 1.96
1/12 2.07E—03 2.01 6.37E—04 1.98 1.07E-03 1.96 1.06E—02 1.98

Hy =y(1 —y)?z(1 —2)?sin(r), Ha =x(1 —x)?z(1 — 2)?sin(r),
Hsz = x(1 —x)?y(1 — y)*sin(1),
0 = sin(wx) sin(wry) sin(wz) sin(t), p= (1 —x)(1 — y)(1 — z)sin(t).

The selection of parameters R,, R,,, s, k, B, r and the terminal time 7 is the same as those
in the 2D convergence test. The other parameters are set as ¢; = &2 = 0.001. The errors for
corresponding norms and convergence rates are displayed in Table 2, from which we can see
that numerical results are in good agreement with the theoretical analysis.

5.3 Assessment 2D Driven Cavity Flow

The following numerical simulations are carried out with the 2D lid-driven flow as the
experimental model. The external body force is vanished for this problem. Besides, we
choose the same bounded domain as it in the unconditional stability test. The initial values
are given by Hyp = (0,0), 6p = x and ug = (0, 0). Then, the boundary conditions are
uls, = (w,0), (Hxn)|s, =H; x nand0|s, = 6, where w satisfies w(x, 1) = 1 and
w(x,y) =0, Yy €[0,1),and H; = (1, 0). Next,weset R, = 10, R, =10, s=k =r =

1, and &1 = g3 = 0.1. The time step and mesh size are At = 0.0l and h = 3—12 The final time

T is chosen such that [[u) —u)~'|lo + [HY — H)~'o < 1.0E—05, which implies that
the fluid fields are almost steady state. Figures 3 and 4 show numerical velocity streamlines,
magnetic and isotherms obtained by Algorithms 3.1 and 5.1 with different thermal expansion
coefficient. By comparison, it is easy to find that the numerical results of both algorithms are
almost consistent with 8 = 1 and 100.

Further, we compare the computed divergence values which are listed in Tables 3 and 4.
From these tables, we see that the current algorithm computes approximations with signifi-
cantly better mass conservation and Gauss’s law than those of the implicit/explicit algorithm.
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Fig. 3 The numerical velocity field (a), magnetic field (b) and temperature (c¢) by Algorithm 3.1 for 8 =
1, B = 100 from up to down
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Fig. 4 The numerical velocity field (a), magnetic field (b) and temperature (c¢) by Algorithm 5.1 for § =
1, = 100 from up to down
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Table 3 The divergence of velocity and magnetic fields with 8 = 1, r = 1 for the 2D problem

Algorithm 3.1 Algorithm 5.1
e=1.0 e=0.1 e=0.01 &=0.001 &=0.0001 &=0.00001

ldiva} o 1.85E—01 1.09E—01 4.52E—02 1.16E-02 1.59E—-03  1.67E—04 1.66E+4-00
IdivH} o 4.67E—03 2.03E—-03 6.75E—04 1.30E-04 1.49E—05 1.52E—06 1.15SE-02

Table 4 The divergence of velocity and magnetic fields with 8 = 1, ¢ = 0.1 for the 2D problem

Algorithm 3.1 Algorithm 5.1
r=0.1 r=10 r=10 r =100 r=1000 r = 10000

ldiva}lp  1.17E—01 1.09E-01 8.11E—02 4.06E—02 1.10E-02 1.53E—03  1.66E+00
IdivH} o 2.04E—03 2.03E-03 2.01E-03 1.90E-03 1.79E-03 1.75E-03 1.ISE-02

5.4 Assessment 3D Driven Cavity Flow

In this example, let us consider thermally coupled incompressible MHD problem in a 3D
case. The domain is defined in 2 = [0, 1] x [0, 1] x [0, 1]. Impose boundary conditions:
uls, = (w,0,0), (Hxn)|s, =H; xnand¥0|s, =6, where w satisfies w(x, y, 1) =1
and w(x, y,z) =0forz # 1, and H; = (1, 0, 0). We choose initial values Hy = (0, 0, 0),
0o = x and uy = (0, 0, 0), and set time-mesh step sizes as At = 0.01, h = %. The final
time 7 is chosen such that u) —u)~'[lo + |HY — HY '[o < 1.OE — 05. Next, we
plot the velocity streamline, isodynamic and isotherm obtained by Algorithms 3.1 and 5.1
with R, = R, = B =5 =k =r = ¢ = & = 1inFig. 5. Itis easy to find that the
numerical results of both algorithms are almost consistent. Finally, we list divergence values
for different algorithms in Tables 5 and 6, from which we can get that the current scheme is
superior to the classical implicit/explicit scheme.

6 Conclusion

In this paper, we propose a fully decoupled finite element for solving the thermally coupled
incompressible MHD problem (1)—(3), which allows solving single variable at each time
layer. Theoretically, we use energy estimate to prove unconditional stability of the proposed
algorithm. Further information of the convergence properties is obtained using numerical
analysis under certain assumptions. Numerically, a series of numerical simulations, including
the stability test, convergence rate test and assessment driven cavity flow are presented to
validate the stability and accuracy of the proposed algorithm. All computational results
support the theoretical analysis and demonstrate the effectiveness of the presented algorithm.
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Fig. 5 The velocity field, magnetic field and temperature from top to down by Algorithm 3.1 (left) and
Algorithm 5.1 (right)

Table 5 The divergence of velocity and magnetic fields with » = 1 for the 3D problem

Algorithm 3.1 Algorithm 5.1
e=10 e=0.1 e=0.01 £=0.001 ¢=0.0001 &=0.00001

ldivajllp 2.65E—01 2.01E—01 9.82E—02 2.33E—02 3.01E-03 3.13E—04 3.56E—-01
||diVHZ||0 2.66E-03 1.59E-03 6.27E—04 1.11E—-04 1.23E-05 1.24E—-06 2.23E-03

Table 6 The divergence of velocity and magnetic fields with & = 0.1 for the 3D problem

Algorithm 3.1 Algorithm 5.1
r=0.1 r=1.0 r=10 r =100 r =1000 r = 10000

ldivajllp  2.08E-01 2.01E-01 1.69E—01 8.90E—02 2.18E—02 2.84E—03 3.56E—01
||diVHZ||0 1.69E-03 1.59E—03 1.59E—03 1.59E—03 142E—-03 1.33E-03 2.23E-03
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Appendix A
A.1. Proof of Theorem 3.1

Proof According to (25), multiplying (20), (21), (23) by 0"*t! and combining the ensuing
equations with (18), (19), (22), respectively, we arrive at

n+l

u u? . -
(’1&’“, Vh) +a (uZ“, Vh) —d (v, B}) + Q" by (ull, ul, vi)

450" by (HY, Z,vh)+r(divﬁ,j“,divvh)=(f"+‘,v,,)+(ﬂ9,7j,v,,), (A1)

ﬁn+l H”
hTh By | +a (H ntl Bh) — 5Q" by (HY, By, uf) = (g", curlBy,)
(A2)
9n+1 _ 9]71 |
A o) +a3 (010 ) + 0" (w07 o) = (@ 1) (A3)

Taking v, = 2A1d ! in (A.1), By = 2AH} ™ in (A.2) and ¢, = 2A16] " in (A.3), we
obtain

161G — a1 + 18— wg 1§+ I — 1HG

+ I — 3+ e I3 - ey R
+ 16+ = 6115 + 2R, Arl| VT
+ 2R, sAt|curl BT T3 4 2 At VO3
+2At0" b, (uh,uz, ﬁZ'H)
+2A1 Q" shy(HY, HY, @ (A4)
— 21 Q" by (HY, HIH ul)
+ 200" by, 67, 61t
—2Atd @I, By + 2r A fdivia I3

=2At (f"+l ~”*‘) +2At (/39{,’, ﬁZ“)

+ 24 (g curlf 1) 4240 (01, 014
where we have used (a — b, 2a) = |a|® = |b|? + |a — b%.

@ Springer



14 Page 22 of 39 Journal of Scientific Computing (2023) 95:14

Next, applying (25) to (24), it follows that

1 n
o' -0 .
= = —p@,
At (h i} )

+ shy(H, H, @)Yy — shoy(HE, B w)) + byl 6,00, (A5)
Multiplying (A.5) by 2ArQ"*!, we have
|Qn+1|2 _ |Qn|2 + |Qn+1 _ Qn|2
20" Athy (u), up, @)t
+ 250" Athy(H], H, &)
— 25 Q" Aty (HY, HP T ul) + 20" Arbs(ul, 6], 0. (A.6)

Set gy = 2Atp"+1 in (26) to get

e (A R AR A AT FEINTIC AN AU B )
Moreover, combining (A.4) with (A.6)—(A.7), we have
a1 — Ml 15+ 15— w1+ NG — 11
+ I =G+ 167G — 16715
6 =615+ 10" P — Q" + 10" — 0"
2R A VET 3 4 2R, s Arflcurl HE T3
+ 2;<At||ve"+l 113
S (LA AT R A AT
+ 2Azd(~”“, At — iy 4 2r At diva) T2
—2At (f”“ ~"+1) oA (ﬁehJ, ”“)
+2A; (g”'H, curlﬁg“) +2A; (a)"'H, 9;;*1) . (A8)
By the Cauchy-Schwarz and Young inequalities, one gets
—2Atd @)t prtt — ﬁh)
< rardival T + 2 || it =BG,
2ALEH W) 421 (,39hj, N”“)
+2A0(g" curl P + 2A1 (w"+1, 9;;“)
< RVAHIVETHIZ 4 R ALIETH2 | + R AtB2 161113
+ Ry, Arflcurl ]2 4 R, AL g3
+ kA VOIT2 T Ao T2 (A.9)

Furthermore, substitute (29) into (27)~(28), and set v, = 2Aru ™, B, = 2ArH} ™ in
the ensuing equation to obtain

+1 st g +1 Fnkl 2 +1_fetl )2
MG — 185G + PG A GG — NG + T -
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2At
+ —||divu"+1 112

+ Ry A (VTG — vy tg
+IVaptt - vapt i3 + R, Az(||cur1H"“||0—||cur1H”+1||0

+ [lcurH ' — curl Y 3) + —||d1 H 2 =0. (A.10)

Setting g5, = 2At(pp ™ — 7 in (30), we have

281At||pn+l ~n+1 ”O + 2Atd(u”+1, p;lH—l n+1) —0. (A.11)

Then, combining (A.10) and (A.11), we get

+R 1Ar(nVu"*‘ 13 — ||V "+‘||0+||Vu"+1 Vit 2
+ N =2 e - J 2+ R Ar(lfeurt IR — eurl A3

- 2At .
+ ||(:ur1HZJrl — curlHZJrl ||(2)) + 7||d1vu”H ||0 (A.12)
2A n+1 n+l ~n+1
+ 7||d1VH ||0 +2¢e1At| py, ||
<adtlpptt = prtiG + —udwu”*‘ I5-

Finally, combining (A.8) and (A.12) and applying (A.9), we obtain

+1 Sl 1 _ sntl 2
I S = g 11 + 187 = w15+ (), " g
+1 +1 _ g2
+ IHG S — IHRIG + (1H, 110
+1 +1 +1 2
+ |H, ! — H ||0 + 16515 — 16515

+ 116, =65 + 7(” 5r G — 15713

+81At”pn+l ~n+l”0 4 |Qn+1|2 |Qn|2 4 |Qn+1 _ Qn|2
+rAz||dw~"+1||0

+ —l|divu”“ 113
&1
+ Ry, Ar([leur HF I3 + [lcurtH) T — curl ) T3)
2A1
+ 2 ||divH, T2
&2
< cRAL|E2 ) + cRALB |0} 11F
+ Ry AL G + T ALl 2

Then, summing up (A.13) fromn = 0 to N — 1 and applying Assumption 2.1, we arrive at
the desired result with the help of Gronwall lemma. O
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A.2. Proof of Theorem 4.2

~n+1 ~ n+1 .
Proof Taking vj, = 2Atdy By = 2At, g = 2419/ in (37), (38), (39), respec-
tively, and combining the ensuing equations, we get

n+l o 2 ~n+1 2
I 15— I5llo + I, — Iy

~n+l1 ~n+1
HIFs 15— IRIG+ 195, — ¥ols+ 195115 — 19715
_ ~n+1 _ ~n+l
O — 92+ 2R, T ALV, 113 4 2Ry Atllcurl, 12+ 2k Ar| Vo2

—2atd@) " 7

. =n+tl
+2r At||dive), |12
<41
=200t — @y, ) 20t =, ot
~n+1 . an+l
20t ) = 281(BO (s )iy By )
. gl
+2A1(B6)S, by, )
~n+1
+201 ( QU 1b1 Wl 1), W11, B )
—Q" by (u, $Z+l))
<41
+2015 ()02 (Ht), Hltri), )
—0" by, L 6 ) (A14)
= 1
245 ( QUi b2 (i), V3 ultn1)
—0" by, ¥ )
+2At (Q(rn+1>b3<u<rn+1>, O(tns1), 97 — Q" by ul, 0, 19;;“))
~n+1
+2A1d(, T =)
. . =l ~n+1
+2r At(divy™™, divgy, ) +d(dy, , p(ta) — pltat1))
41 ~n+l
+2/ t —ty)(ugy, @y, At
i
Int1 - 1 Int1 15
w2 [ ¥ a2 [ - e oy ha= Y
I In i=1

~n+l L
where we have added +2Ard (¢Z+ , 17’;,“) and used the projections.
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In what follows, we estimate /; in (A.14), respectively. Applying the Cauchy-Schwarz
and Young’s inequalities, we have

L+ 5L+ 15 < 80R, AtV |12 +61KAIIIV19"+1||0
+52R,;1At||curh/fh I3

2 —1 2
+ CRe ”"ut ”L2(t’1 [ LZ(Q)S) +ck ”n9t ||L2(tn,tn+1;L2(Q)) (A 15)

+ Ry Atlcurly’s |13,

+1
I+ Is < 3R ALIV, 13+ cRoALB> I3

+ R ALV} + cRABONT 2, 12

Besides, for g, we get

~n+l
Is = 2Ath1 ((tyr1), W(tns1) — W, @), ) + 2Ath1 (U(tr1) — W}, uy, ¢h )

3
+ 2Ate"+1b1(llha uj, ¢Z+l) = Z Ak,

which can be bounded by employing Lemma 2.1 and Cauchy-Schwarz inequality. Then one
has

_ ~n+1 _
A1+ Ay < S4R7IALIVE, 113+ 8sRS T ALIVLIR
+ R ALVILIE (IVutus DG + IVUlIF)
+CRAP VU T2, oy (VU )G + 1V Ry IIG) (A.16)

+ R (APIVUT 2 o + IV + IV R 16713
+cRe A7 10l Ve llo V7 13-

Moreover, arguing in exactly the similar way as Ig, for I7 and I3, we have

~n+1 +1
I; = 2s Atby(H(ty41) — Hy, H(t,41), ¢Z )+ 25 Atby(Hy, H(tp41) — ¢Z )

+ 25 Atel by (HL HY 6y ) = ZD,,
=1
Iy = =25 Athy(H(ty,+1) — Hj, Wh ll(tn+1)) — 25 Athy (Hy, Vi outeg1) — u))

—2sAcely by (MY B ) = ZE

@ Springer



14 Page 26 of 39 Journal of Scientific Computing (2023) 95:14

Applying Lemma 2.1, the Cauchy-Schwarz inequality, the inverse inequality and (4)—(6), we
have

_ ~nt1
Dy + Dy < 86R; ' ALV, 5+ cRes® Atllcurln’y I (lcurTH(z,1 1) 11F + llcurlHI5)

+ RS AP IHe T2, i IH G + cRes® AP IHe T2, o IH 1)
+ cRes® ALY IG (IH G4 D13 + IHE) 13 + h =2 [curlyly 15)
+ cRes? Aty llo (lcurly o + Idivyr llo) (leurly I3 + lIdivyrI13) .
_ ~n+1
Ei + Ey < 87R,, Atllcurlyp), |13+ cRus> At (Jatas )3 105 15 + 1 VH2 I3 llcurlHY 1)
+ 83 R, ALIVLIS + cRs® At(lleurly ! 13 + Idivi ) 1D 117 1ol V) llo
e Rus A (I, oo I8 DI3 + 1002 o o IHRI)
+ cRus> AUty DIV ENE + cRZE Res* At VT H () G197 113
(A.17)

In addition, /g is estimated by

lo = 2Ath3((ty41) — ull, O(tys1), 97 + 2A8b3 (), (1 1) — 6], 97)
3
+2Atey by(uy, O, 97 = Y R
i=1
With help of Lemma 2.1 and the Cauchy-Schwarz inequality, we have
Fi+ Fy < 8ok At||VOI T2 + 8106 AL VO3
—1 2 2 2
+exT At ”Vut ”Lz(annJrlZLz(Q)}) ||V9(tn+1) ”()
+ek T ALV IGIVO (tar DI + kT AL 6,117
+ek T AL VR IGI VUL
+ei T ALIGRIGIO (e )13 + ck ™ ALl oIV} ol VO I,
+ck ALV Ryu ) 1G9 113 (A.18)

n;2
(s 12 19110

Note that the remaining terms A3, D3, E3 and F3 will be eliminated in the following estima-
tion.

The following estimates result from application of the Cauchy-Schwarz and Young
inequalities,

_ ~n+1
Lo+ It + T <8R ALV, 1§+ cRe AP np175

nsln §L2 Q
2 n+1)2 2 2 i (A.19)
+cr REAIHV” ”0 +CReAt ||pl||L2(tn,t'+l;L2(Q))~

u

And then finally, let’s estimate the truncation error terms on the right-hand side (RHS) of
(A.14):

_ ~n+1 = n+1
I3+ lia + s < 812R VALV, 13+ 81k AtV 2 + 195, — w2

+ At|yr3

2 2 2 2
+ R A [y 172 + cAr|[Hy 72

(tnytn+l;H_1(Q)3) (In:tn+l;L2(Q)3)

AP Hil o, oy F T AR 0 2 g (A20)
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Now, setting 8o + 83 + 84 + 8 + 811 + 812 = 3. & + 87 = 1 and §; + 89 + 813 = 5,
combining (A.14) with the bounds in (A.15)—(A.20) and applying Theorem 3.1, Assumption
4.1, we obtain the following inequality

~n+1 2 2 ~n+1 2 ~n+1 2
ln IIo — IPyllo + 1, — @yl + 1Yy, 11

2 12 2 +1 2
= 1¥Rlo + 19,716 — 195 1lg + 119, — 94115

3R_1 ~n+1 3R_1 ~n+1
+ AV, G+ ) Atlleurld, G

+ %’Cmnwg“ 12— 2atd@y" 7

+2rArldivgy IF — (A3 + D3 + E3 + F3)
< 85+ )R, ALl VLG

+ 810k AL VO IG + cRellmu 132, 12

+ R A IIE + ox o2, o 12y

1
+ Ry Atfleurlyy G + cRAP B0 72, 12y

+ RV I (1+ VU IG) + cReAZ VU, 20

+cr’R At V2

+ cRes At curly’ly |13 (1 + [lcurlHY |13)

2 2 2
+CReS At ||Ht||L2(t,,,t,,+|;H2(Q)3)

+ RSP ACIH T2, 120
+ cRys® At (I 13 + 1V 02 3 curl L | 3)

+ cRps2 AL (||Ht||2L2(tn,tn+l;L2(Q)3) - ||llt||iz(t"’tn+];H2(Q)3))
+ o T AV IGIVULIG + T AP IV, L
+ o AIVIIG + e AP0, e

RPNl 2, 1, 1: 200 T RPN 2, 1,120
2 2 2 2
+ AT 2, 4, 120y TR AT 2, (1)

+ AP Hy 175, + o A6y

it 1;L2(2)3) ”iz(tn,tm:ﬂ*l(ﬂ))
+eRIAL(ARIVU L gy + 1) 16713

+c (k7 + Ry s Re) Atl|@IIG + cRus* ALY

+ ALY LR+ eAr (RS +173) 19713

+ cRes2 ALY (1 + A2 lcurln’y IF)

+ e AR ol VeIl VR 115

+ cRus® At} 0l V@ llo(lcurly 7115 + Idivyr 15)

+ cR AL} 10 V) llol V) 115

+ cRes* At||¥ llo (llcurlyllo + Idivyryllo) (lurlyy I + Idiverpllg) . (A21)
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Further, taking g, = 2Ar%""" in (40), we get

~ ~ ~ 5 hn ~
S0 (00— NG 4 0 - gR) +2and@ 5

2 N (A.22)

. 241 )
=0 = XD = == () = P, %57

Adding and subtracting M’ (n’“rl 1y, Xp,)» and using the Cauchy-Schwarz and Young
inequalities, we have

2A n+l _ n ~n+1) —

1 ~ ~
22t g (n”+1 e _an 2 (n"+l )

2

t
2 sn+l ~n
= T”np,t||L2(tn7t”+l;L2(Q)) + ” ”

! 2
o . ||L2(tn,tn+1;L2(Q))'

The second term on the RHS of (A.22) can be rewritten as

At
- Zj(p(tn+l) p(tn), Xn+l)
2At - -
= == (plns) = P, T = %)

2At -
- 7(p(ln+l) — p(tn), X]Zl)

cAt2
= ||Pt ”Lz(tn /e LZ(Q))

sl snyp2
+*II n Al

PV N
+ T”Xh ” + ?||pt||L°°(t,1,In+1;L2(Q))'

~ ~ ~ . gn+l ~
Note that 2Ard (@), 7" — ) < 2r At|idive) T 12 + — Fm2.
Now, combining (A.21) and (A.22) with above bounds, and surnming the ensuing equation
from n = 0 to m, we arrive at

Z 16y 13— Z I6}12 + Z 16y — B3 + Z AT

= Z 1yl + 197115 + Z lop ! — o415

n=0 n=0

” ~n+l1

n+1
15

i —AtZ Vo1
=0

+ —n G — Z(Aa + D3 + E3 + F3)
n=0
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m

<Y (s + 8)R; ALV IIG + Sr0k A VIR )
n=0

At
10913+ SENIE + b [Re1 452 4 Ry + 2
+ R (14 (1+RE)) + (4 RIGT 4 2R, + A

+ cAt2[1 + Re(1+ 1B + %) + Rus?
1 m
+e M+ —(+ h4)] +y [cm (Ref? +73) 107113

n=0
+ eRIAL(L+ AP @113 + c(Res® + DALY
+ cReS> ALY LR + cRus*> ALY L3
+eAt (k7" + Ry Res™) 19715
YN B
+ T||X;7||(2)+CK LAt} 10l Ve lol VOIS
+ cRus> At @} o Ve lloClcurly 15 + lIdivir I3

+ cR AL} 101V} oIV, I + cRes?

Atllghllo (lleurlyillo + Idivirllo) (leurlyhlIg + Idivery I15) ] (A.23)

where we have used Theorem 3.1, Assumption 4.1 and (31)-(32).
In order to obtain the final error estimates, we now establish error analysis of the scalar
equation. Subtracting (A.5) from the scalar equation (17) at r = f,,4| gets
n+1 n
0 "¢
At

= b1 (ty11), W(tns1), W(tys1)) — b (), uf, @+

+ sby (H(tn+1), Hta11), utns1))
— shy(H}L Hy 6,1 — shy(H(tyg 1), H(tag 1) u(tag1))  (A24)
+ sby(Hj, HZH, uy)
+ b3(u(tn41), 0(tn41), 0 (tn11))
— ba(uj, 07, 6, + R,

where R = LUtm€) — 0, (,41) = 2 [/ (1, — 1) Qyrdt. Multiplying both sides
of (A.24) by 2Ate'5rl, we get

n+1,2 n+1
leg 1" —

el + 1" — el
= 280 (D11, W), W) — by (w8
sba(Mtrs2) M), i)

i (A.25)
— shy(H}, H, &) — sby(H(tyt1), Hity 1), u(tus1)) + sho(HE, H )

9
31, 0(41), Ot ) — by, 67, 0D ) +2Ar(R™, 5™ = Y Ly,
k=1
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First, for the first four terms in the RHS of (A.25), we treat them as follows:

Ly + Ly = 20 (b1 @), w1 ™)

+ br(u(tn 1), wtag1) — Wy, Rpu(ing1))
+l
b1 ltn1) = W Ryu(t) = bi (i, ) = ka,

Ly + Lo = 258t (b2(H(trs1), Bt )
+ by (H(ty11), H(tyy1) — Hh! Rpu(ty+1))

4
+1
+ b2 (H(tps1) — Hj, By, Ryu(i) — bo(HG HGL 637 )) =2 YKo

Applying the Cauchy-Schwarz and Young inequality and Lemma 2.1, we get

S+~ < 60|€nJrl - e’é|2 + €1Al|€"Q|2
+ cAt(1+ ANV B I Va0 g
+ear(+ A0 (IVLI3 + AVl o)
X IVatus DIV Rputas) 13
+ eAt(1+ AD [ ultur DB NV Riutar D IZ G113,

t
Js = 1€ PIVAGIG + R ALV + M AP w1

< IV Rputu DI + M ALV, GV Rputt g )15
+ cM? R At} 151V Ry 4 1) 15, (A.26)
K1+ Kz < eslelt — e |* + eartlely|* + cs” Ar(1 + AD |Vt Gl curlH (1) g

(tn tug1: HL(R)3)

+ cszAt(l + At)||cur1H(tn+1)||0 (llcurlnHHO + AtncurlH’||2LZ(zn,z,,+1;L2(Q)3))
X |V Ryu(ty )G + cs* Ar(1 + At>||H(tn+1)||%||VRhu(rn+1>||%||wz I3,

At n+1

K3 < 2M| | ||cur1H ||0+65R At||curllﬁ ||0—|— ||d1v1/fh||0
+ eMs? At ||curlyy 11V Rpu(tag ) 113

+ (R + e2) M2s* AP 1 IIB IV Rpu (g D1

+eMs A eurlHy |17, 2o IV RAG DG,

where we have used (5)—(6) and M := C(2R, + Ry + «~1).
To estimate residual nonlinear terms in the RHS of (A.25), we rewrite them as

Ls+ Lo = =25 Ately™ (b8t 05 0ti)
+ by (H(tyr1), TiH (1), (g 1) — W)

+1
+ by (Mt 1) — B, TyH(e), wf) = bo (ML o)) =2 ) 74,
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Ly + Ly = 2806 (b3 it ), 0tns). ™)
+ b3(u(tyq1), 0 (tny1) — 60y, GO (tng1))
4
+ b3(Utn1) = L O, Gablt) — ba(ul, 0, 91 ) =2 Y P,
From the Cauchy-Schwarz and Young inequalities, (6) and Lemma 2.1, there hold
Zi+ 2y < el — P+ esAtlell® + es Ar(l + Ar)
x [leurly’ 13 curl H(ts D 1311 Vatar )11
2 2
es?Ar(L+ A0 (191 + AVl o)
x |eurl Ty H (1) 1§l curlH (1) 113
+es? At(1+ AD @715 lcurl T H (6 D IG IH g ) 113,
At
Zy <o 15 PIVUL G + eoR,, At eurly |5
610
D idivyr 13
+cs2At llcurly’, |13 llcurl Ty H (1,4 ) IF + ¢ (R + £2) M>s*
x At[Y 13 llcurl T H (b1 11
+es? A |leurlHy 75, o leurl TiH( )15,
Pi+ Py <enlel —eb* +enhilepl’
+eAt(1+ AN VTR IV tag D3I Va1
+cAt(1 + Az)(At||V0,||L2(I e L)
IV I IVUtu s DIGIVG ROty DG
+cAz<1 + AD [t DI IO I VG RO tag)IIG,
“+1,2
Py |e" RACAT
+ei3R; ALIVLIIG
2 2 2
HMAC VU T, o0 IVGRO )
+eMAHVY R IV GOty DR + cM? R AL ) 1211V G 16 (tr1) 13
(A.27)
Finally, for the last term in the RHS of (A.25), we have
tn+1
Ly < enlel™ — ef* + ersatlely” + cAr’(1 + At)/ |Qy[7dt. (A.28)

Now, setting g + €3 + €7+ €11 +€u=1,€1 +ea+eg+ €0+ €15 = % combining

(A.25) with (A.26)—(A.28) and applying Theorem 3.1, Assumption 4.1 we get
e 1> — lep ) — J4 —Ky—Zs— P4

1
< 5 Atleg |+ |"+1| IV} 13 + llcurlH} |13 + 1V6] 13)
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In41
+ AP (1 + At)/ |0y |?dt
In

+ (€2 + €13) R AL|VPLE 4 (€5 + €9) Ry, At |[curly |3

(e6 +€10)AL | .
+ Tndwwzn%

+e(l+sHArd+ A (V23 + 1Vt 1)

+ AP (L4 A+ MV, 2o

+es? A1+ An(leurlny 1§ + AtlleurlH (55, 203,
+ cMAL| VLG

+es? A1+ Anleurl’y  I§ + e AL+ AD IV o0
+ cMs® At||curly’y |13

+eAr(L+ AD(IVaglig + Vg g

+ AUV, )

+ (1 + M)s>Ar?||curlH, ”zm,,

13 L2(Q)3)
+ cAt(1+ ADIGLIG + I07113) + cM* R At || ¢ |13
+es” AL+ AN PTG + 16715) + c(Rn + s2)Ms* At][$7 5. (A29)
Add up (A.29) fromn = 0,1,---,m*, where t,+ is a time that makes |e"Q1*+l| get its

maximum value. Then, we give

m*

|€'3*H|2 - 2(14 + K4+ My + Py)
n=0

m*
1 ), Af 12 2 2 2
< ; <§At|e"Q| + ﬁw'g I* 21V lIg + llcurH}, 1§ + V6;!1I5)

+ A2 (14571 + Ap)
+ch* [(1+ 551+ R+ At) + M(1 + R, + 5]

*

m
+ 3" [ear+ anae;i3 + 19713)
n=0
+ M2 RANGLI + es> AL+ ANV + 19513) + (R + e2)Ms* Ay 113

m*

+ ) ((e2 + €3 R, ALIVLIIG + (€5 + €9) Ry, Atllcurlyp |5
n=0

(€6 +€10)AL .,
+T||dm/f,; ||§) , (A.30)

where we have used Assumption 4.1 and (31)—(32).
Next, setting m = m™ in (A.23), combining the ensuing inequality with (A.30) and
choosing 819 = %, we get
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m* +1 m*
~n
AR T A
n=0 n=0
m ~n+l o i m*+1 ~1 n+1
+ M, 15— DI+ 1o G + R ArZ IV,
=i =i n=0
_ ~n+1
+ R~ Y Alleurlyy I
n=0
n=0
K m*+1
+ 5 A1V 112
m
Z( e 1 (20 VujIIg + leur HE G + ||ve;:||%)>
m*
+ 85+ 85+ e+ )R ALY VLI
n=0
m*
+ (65 + €I R, At Y [lcurly) |13
n=0
€6+ € " .
+ O 0A Y divi I3 + ch4[(1 + 521+ R)(1 + A1)
n=0
+ M1+ Re+5%) + Re(1 + 5>+ Re) + Ry (1 +5*(1 + R))
-1, 2 2, , At
+ (A 4+ Rk +r°R, + At )+7
+ cAtz[l + Re(1+ 1B +52) + Rps® + 7!
1 4 2
—I—;(l +h) 4+ (14571 + At)
m*
+ Ay [WillghI3 + Wallwh I
n=0
4 1
+ W31 + 131G + 5 1epl” + WiV, I
+ Wi Iver3
W (leurlyr; 13 + vy 1) . (A31)
where
Wi =cR(1+ Ar*) + e+ eM?R, + (14 Ar)(1 +57),
W3 = cRB> + ck > + (1 + A1), (A.32)

Wa = ¢ + Rosh? + ¢s>(1 + At(1 + Ryy) + R,) + (R + £2)M?s™),
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and
W =R} 0V lo, Wi = ek~ @210l V] o,

W4 = cRus> 9} 101 V@ llo + cRes> 197 lo (lcurlyr llo + [Idivyr) flo) -
Furthermore, setting §5 4 63 + €2 + €13 = %, €5 +e€9 =7 L and €6+ €10 = 7, summing (41)
overn =0, ---,m* and combining the ensuing equation with (A.31), we have

g G+ Iy T+ e G + AtZ IVt 1I5
3 R
m Zmncurwﬂ“no
iy AVoRtIG + || G+ e
n=0
¢ m *+1 n+1
< ||o+—Z||d v IG
i Rl fcury 112 + Z Idive 3
4

+—||d v S Arnwm"*‘no

< Z(2M| 2EL2 21V 13 + lleurlHY |13 + V6 ||0)>
n=0

+ ch4[(1 +5(1+ R+ A + =
¢ r

+ (M +R)(1+ Re +5%) + Ry (1 +57(1 + R.)) +

1+R, 1 _
- +— (4 R 1+r2Re+At2)]
2

€1

2 2 2 1 4 —1 2 2
+ AP 14 Re(L+ 1B +5%) + ~ (LAY k71 4 Rys® + (14 57)(1+ An)
m*

4At
+ArY [W1||¢Z||% + Wall Wil + Wsll 9315 + —— 11315
n=0

At
+ el + WHIVSLIG + W3 V93 I3
+ W’;(chrh/f?, ||(2) + ||div1p’,§ ||%)]. (A.33)

where we have used (31) and (32). Note that

Z| n+1 2||Vu ”O + ||cur1H ||0 + ||V9h ”0)
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m*

ey TP Z(leVuhllo—i-llcurlH I+ IVorIg) < | AR

=5
2M =

So as to derive |e’g+l 12 < c(AF? + h%), we employ the inductive method to prove that

*+1 1 1 ~ 1
g G+ Iy G+ e G + || AR

|€m +1|O + At Z ”V¢n+l”2

m*

_l m
+x Z At VO3 + i > Atfeurdy g
n=0 n=0
+— Z Idivep, "I + Z Idivy 13
n=0
_1 R *+1
m m
2 “0 + TA[“CUI‘I?/I ||0
+7lld v “llo < e (A% + 1. (A34)

Firstly, set m™ = 0 in (A.33), we have

At 1
10416 + 1315 + 19,15 + —= 1% 15 + Sleol® + =5
—1
+ kA VO3 + %At”curllﬁh 113 (A.35)
+ —nd CH + ||chvw||0 <o (A + 1.
Next, we assume that (A.34) holdsat 1 < k <m™* — 1, i.e.
R-1 k
1413+ I 13+ 10813 + 2 || o+ 5 | e P+ ; ALY VeI
k
+i Y AVoRtG
n=0
4 B’ Z Atourly G + — Z Idivepy ™13
n=0 n=0
k
+ 3 Z Idivy I3 < erexp <At ZWO) (A1 + 1%,
n=0
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which implies that

11 R
WA = cRN% 0 VeE llo < caRe exp (TWo) (Af + h*)(A12 R} + cinh) < =4

_ _ JR K
W3 = e~ g0l Ve llo < cax ™" exp (TWo) (At + h%)(Ar2 RE + cinh) < 7,
WA = cRus 9} 101 V@ llo + cRes 194 lo (lcurl 1o + 1divi o) (A36)
1 1 1
< cas? exp (TWo) (A + h?) (RmAr%Rg 4+ R.AZ(RD + e3) + (R + Rm)ci,,h)>

o
< 4m1n{Rm N

Hence, the following inequality holds for

16 U3 + I+ 3 + oy 113 + e AtZ VeI

-1 m*

R,
+=5- Z At|lcurly 2

+= Zm||w"+‘||o + 2
n=0

—1

Sm*+1 412
Im 15+ = I'" I

15+ 5. Z Idivy ™5

R™ 1
+ =3 Atleurlyy +1||0+ an v, I

K *
+—||d v 4 S AtV 2

< o + A + A Y [Willgh 13 + Wall Wil + Walo} 13
n=0

4 1
T8 + 51 - (A37)
r 2
Applying Lemma“ 2.2 to (A.37), we obtain (A.34) and complete the induction.

In the next part, replacing m* by N — 1 in (A.33) to get the error estimate of end-of-step
velocity filed, magnetic filed, pressure and temperature, it reads as

At
Iy 15 + ||~/rf¥||% 1015 + — 1% 15 + leg |

N—1
1 12
PG+ Y A vertG
n=0
_1N 1
1
Z At|curly 2
=0
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N—1
3At .
+—§ ||dm/;"+‘||o+—482 § Idivy T3 (A.38)
n=0

N-1
<c(AP + R+ ALY (cW1 16515 + cWall ¥y 115 + cw3||z9;:||%>
n=0

A2 NI V-l

— 2| g+ 2 Z|e”Q|2
n=0 n=0
N—-1
+Ar Y [WHIVERIE + WEIVORIS + WaCleurly 13 + Idiv 1),
n=0

where we have used |e'5“rl 12 < c(AF2 + h?).
Besides, we also use the induction method to prove the main results of this section

At 1
g 13 + ||w§¥||% F N3+ = 1xN 13 + S ledI?
r 2 Q
N—1
S+ Y A Vet
n=0

_]Nl

R
55 X avleuty; w2 Z Jaive 1 + o Z vyt 2

n=

N—-1
< crexp (At > W()) (A2 + 1. (A.39)
n=0

Firstly, when N = 1, from (A.35), the result is obviously true. Secondly, we assume that
(A.39) holds for the case of 2 <k < N — 1, i.e:

At 1
I 13+ W5 I3 + 10K I3 + = IZFIG + S leb
r 270

1 k—1
— At Z IV G+ 1 Y At vortg
n=0

ot 1 (A.40)
+ - > Atfeurdyy +— Z Idive; 113 + 5 Z divy 12

n=0

k—1
< cpexp (At ZW0> (At2 + h4).

n=0

By a similar argument as (A.36), from (46) and (A.40), we obtain W < fe_ Wk &, and

WX < Imin{R;,", &5 ). Finally, applying Lemma 2.2 to (A.38), we obtam (A.39), Whlch
together with the triangle inequality and (31)—(32) gives desired result. O
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