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Abstract

In this paper, we study a mixed discontinuous Galerkin-finite element method (DG-FEM) for
solving the semi-stationary compressible Stokes system in a bounded domain. The approx-
imation of continuity equation is obtained by a piecewise constant discontinuous Galerkin
method. The discretization of momentum equation is obtained by conforming Bernardi—
Raugel finite elements. The convergence of mixed DG-FEM for nonlinear, isentropic stokes
problem is rigorously established by compactness arguments and the existence analysis of
Lions on the discrete level. Employing the continuous relative energy functional method and
a detailed consistency analysis, we derive two error estimates for the numerical solution of
the semi-stationary isentropic stokes system. In particular, we establish the L? error esti-
mates for the pressure. All convergence results do not require the boundedness of numerical
solutions.

Keywords Compressible Stokes system - Discontinuous Galerkin method -
Bernardi-Raugel finite element - Convergence - Error estimates
1 Introduction

Let 2 C R?, d = 2,3 be a bounded domain, we consider the following semi-stationary
compressible Stokes problem:

{ 3 p + div(pu) =0, in (0, T) x £2, 0

—pAu — (A+p)Vdivu +Vp(p) =0, in (0,7T) x $2,
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where p is the fluid density and u is the velocity. The parameters coefficients u and A are
assumed to be constant and satisfy p > 0, dA + 2 > 0. The pressure p(p) is governed by
the isentropic equation (or Boyle’s law):

p(p) =ap”, a=>0, (1.2)

where y > 1 is the adiabatic exponent. The internal energy H is given by H(p) = 20) The

system (1.1)—(1.2) is supplemented with initial conditions for the density e
p(0,x) = pg, in £2 (1.3)
Together with the following no-slip boundary condition for the velocity
u=20, on(0,7r) x 952. (1.4)

In recent years, numerical methods for compressible Stokes equations have received some
attention. In the pioneering work of [20], the authors proposed a low order mixed finite
element-finite volume (FE-FV) scheme based on nonconforming P; (also called Crouzeix—
Raviart) finite element for solving the stationary compressible isothermal Stokes problem
and analyzed its convergence to a weak solution of the continuous problem. After that,
the convergence of mixed FE-FV scheme to weak solution of the isentropic case under
the assumption of ¥ > 1 has been established by Eymard et al. [10]. Meanwhile, they
generalized the results to the well known Marker-and-Cell (MAC) scheme in [9]. Later,
the convergence of mixed FE-FV scheme to weak solution of the general compressible
Stokes problem (p = ¢(p), where ¢ is a superlinear nondecreasing function from R to
R) under the hypothesis y > 1 was proved by Fettah and Gallouét in [18]. The models
studied in the above mentioned literature are all steady state compressible stokes models.
The semi-steady compressible Stokes model is known as a reasonable approximation of
the isentropic Navier—Stokes equations when the convective effects can be neglected. The
convergence of mixed DG-FEM based on nonconforming P; finite element for the semi-
steady compressible Stokes flow with a Navier boundary condition was shown by Karlsen
and Karper in [26]. Meanwhile, they proposed and analyzed the convergence of a new mixed
DG-FEM (here the velocity and vorticity were approximated by the div-conforming and
curl-conforming Nédélec finite element spaces) to the semi-stationary compressible Stokes
systems in [27]. We also mention that the convergence of the MAC scheme for the semi-
stationary compressible Stokes flow with Dirichlet boundary conditions was proved in [21].
Very recently, a mixed FE-FV scheme based on Bernardi-Raugel finite element scheme for
the stationary compressible isothermal Stokes system was proposed in [2]. The authors gave
a convergence proof for the isothermal Stokes equations and investigated the convergence of
numerical solutions to its incompressible limit. The convergence analysis is restricted to the
isothermal Stokes equations (the pressure of the form (1.2) with y = 1) and the extension to
the case y > 1 remains open.

The aim of this paper is to show the convergence and error estimates of a mixed DG-FEM
based on Bernardi-Raugel finite element for the semi-stationary (isentropic) compressible
Stokes equations. This work consists of two major parts. The first part of this paper is to
show the convergence of a mixed DG-FEM to a weak solution of the system (1.1) for any
y > 1. The convergence result of this paper is nontrivial compared to the existing literature.
On the one hand, we see that the function v, = H}YVA’I [on]is not a solution to the div-curl
problem

divvy, = pp, curlv, =0,
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where H,Y is the reconstruction interpolation operator of Bernardi-Raugel finite element
space V. Therefore, it is more difficult to obtain the discrete version of the effective vis-
cous flux compared to [26], which will complicate the convergence analysis in this paper.
On the other hand, the convergence analysis of this paper is valid for the semi-stationary
(isentropic) compressible Stokes equations for any y > 1. Of course, it is also valid for
the stationary compressible Stokes equations with a slight modification, which fills the gap
in the convergence analysis of [2] for the case y > 1. We also want to remark that the
H'-conforming Bernardi—Raugel finite element has several advantages compared to the
nonconforming Crouzeix—Raviart element used in the references [10, 18, 20, 23, 26]. Firstly,
the conforming finite element method has less number of degrees of freedom which results in
a cheaper computational cost. Secondly, the Korn’s inequality is admissible for the conform-
ing method employed to approximate the velocity unknown. It is well known that the Korn’s
inequality does not hold for the nonconforming Crouzeix—Raviart finite element space. There-
fore, the conforming setting of this paper is easier to generalize to other viscous stress tensor
compared to the nonconforming method in the references. Third, the convergence proofs of
the conforming setting is less “structure dependent” than the nonconforming method. In other
words, the methodology of the convergence proofs in this paper can be easily generalized to
other numerical schemes.

The second part of this paper is to derive an error estimate between the mixed DG-
FEM solution of the semi-stationary compressible Stokes system and its strong solution.
By a detailed consistency analysis and the relative energy functional method introduced
in reference [13], two error estimates for the numerical solutions of problem (1.1) under
the hypothesis y > g are proved in this paper. All the error results are unconditional in
the sense that we do not require the boundedness of numerical solutions and the CFL like
condition on the temporal mesh size. The relative energy method was originally designed to
analyze the weak-strong uniqueness property of the compressible Navier—Stokes equations.
Recently, this idea has been used to analyze the error estimate of numerical schemes of
compressible Navier—Stokes system under the hypothesis y > %, such as the mixed DG-
FEM based on nonconforming Crouzeix—Raviart finite element [12, 23], the implicit MAC
scheme [24] and the finite difference method [31]. The error analysis of this paper uses similar
analytical techniques but with some modifications. Firstly, our analysis is based on a detailed
consistency analysis and the continuous relative energy functional method, rather than the
discrete version used in the above literatures. Secondly, our numerical scheme is different
from the above work and it requires to deal with some different technical estimates. Thirdly
and more importantly, we derive the unconditional L? error estimate of pressure under the
assumption of y > g. To the best of our knowledge, this is the first unconditional error
estimate of pressure for the compressible flows.

A brief overview of this work is provided as follows. In the next section, we introduce
some notations and preliminary knowledge for this paper. In Sect. 3, we consider a mixed
DG-FEM based on Bernardi-Raugel finite element for the semi-stationary compressible
Stokes equations. After that, we deduce the discrete energy law, a priori estimate of pressure,
the existence of numerical solutions and some uniform bounds. In Sect. 4, we establish the
consistency formulation for the continuity equations. In Sect. 5, we show the boundedness
of discrete time derivative and an important priori estimates for the density. The convergence
of mixed DG-FEM for the nonlinear, isentropic Stokes equations is proved by compactness
arguments and the existence analysis of Lions on the discrete level in Sect. 6. In Sect. 7,
an unconditional error estimate for mixed DG-FEM solution of the problem (1.1) under the
hypothesis y > g is proved by the relative energy functional method.
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2 Notation and Preliminaries

In this section, we introduce some notations and preliminary results used in this paper. For any
1 < g < o0, L1($2) denotes the usual Lebesgue space on £2. For all non-negative integers k
and r, W57 (£2) stands for the standard Sobolev spaces. We write H*(2) = WK2(2). We
define HO1 (£2) as the subspace of H'(£2), which is zero on 3$2. The vector-valued quantities
will be denoted in boldface notations, such as u = (ui)?;1 and L2(2) = (L2(£2))“.

Hypothesis 2.1 The initial data pg satisfies the following properties:
po € LY (£2), po > 0.

Definition 2.1 We say that (p, u) is a weak solution of the problem (1.1) if it satisfies the
following properties:
(1) The solution (p, u) satisfied the regularity requirements

p € L0, T; LY(2)) N LY ((0,T) x £2), ueL*0,T; H\(2)).

(ii) For any test fuctions (¢, v) € C3°((0,T) x £2) x C°((0,T) x £2) and tr € [0, T,
there holds the weak formulation

tF I=tp
/ / [pdrp + pu - Voldxdt = |:/ p(pdxi| , 2.1
0 2 2 t=0
173
/ / [uVu : Vv + (u+ A)divadive — p(p) diveldxdt = 0. 2.2)
0o Je
(iii) The solution (p, u) satisfies the energy inequality
t=tfp IF
U H(p)dx] - / / [ Vul? + (. + )| div u|*1dxdr < 0. (2.3)
Q =0 0o Je

Next, we recall the following renormalized solution argument introduced by DiPerna and
Lions (see e.g., [6]).

Definition 2.2 We say that (o, u) € L>(0, T; LY (£2)) x L*(0, T; H}(£2)) is arenormalized
solution of the continuity equation 9, p + div(pu) = 0 if the identity

3D (p) + div(®(p)u) + ¥ (p)dive =0,

in D'((0,T) x £2) holds for any & € C[0, c0) N C1(0, c0) with @(0) = 0, ¥(p) =
@'(p)p — D (p) and P (p), u®(p) € L'((0, T) x 2).

Finally, we recall the following well-known lemma [30] which says that the weak solution
p is a renormalized solution.

Lemma 2.1 Suppose that couple (p,u) € L2((0,T) x £2) x L*0, T; H(l)(.Q)) satisfies
the continuity equation in the weak sense (2.1). Then (p, u) is also renormalized solution
according to Definition 2.2.

3 Numerical Method

In this section, we consider a mixed DG-FEM based on Bernardi—Raugel finite element for
solving the compressible stokes problem (1.1).
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3.1 Finite Dimensional Function Spaces

In order to introduce the mixed DG-FEM scheme, the mesh and some discrete function
spaces are defined. Let 7, be a quasi-uniform tetrahedral partition of £2 with 2 = Uker, K,
KiNK; = for K;,K;j € Ty, i # j. The mesh size is defined by h = maxge7;, hg,
where h g is the mesh size of K. We write F}, as the set of faces in 7, while F is the face.
Furthermore, F}, x; is the set of faces F' € 052, while Fp i = Fin \ Fh,ext-

In order to discretize the problem, we introduce two families of finite-dimensional spaces.
Before proceeding further, we write [P, (K) as the space of polynomials of degree n, while
[P’,‘f(K ) =[P, (K )]d. We define the space of piecewise constant functions

Qn:i={veL*(R):vlxg € Py(K), VK €T}

for the approximation of the density. In addition, we introduce the associated projection
operator

1
2 122) - Q, 20l = ﬁ/ vdx, VK €T
K

By recalling the standard Poincaré and Jensen’s inequalities, we have the following interpo-
lation error estimates

||17;(1@[<P]||Lq(1<) <lellraky, o —ngﬂ]llmu{) < Ch|VollLik) 3.0)
IT2llec2) <lellriey, e — T2l < ChIVelLa@).
forany K € 7, and 1 < g < oco. We define the trace
vV = lim v(x +énp), v = lim v(x — 8np),
§—0t §—07t

where nr is the outer normal vector to the face F. Moreover, we define the jumps [v] :=
vt — v~ forany F € Fj, iy, Finally, we introduce the semi-norm of the space Q,

2
g, = > /Mds, Vo eQy.

h
FeFh int
We employ the Bernardi—Raugel finite element space (see, e.g., [3, 25])
Vi = (v e C'%R2) :v|x € BR(K),VY K € T;} N H\(2)
for the approximation of the velocity. The local Bernardi—Raugel finite element space BR(K)
is given by
d+1
J=Lj#i

where A is the barycentric coordinate of K and n; is the unit outward normal to F; C 0K.
We introduce the reconstruction interpolation operator (see, e.g., [25, Chapter II])

BR(K) :=P{(K)@Span{p;, 1 <i <d+1}, p;:=]] Ajn;,

o) - H\(2) — V), /divn)’[v]gohdszf divvgpdS, Y on € Qp.
2 2

The interpolation operator H}Y has the following error estimates (see, e.g., [25, Chapter II,
Lemma 2.2 and 2.8)):

1) v — vl < CHE™ )i o, Ve HY(Q), 3.2)
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where | - |y, is the semi-norm of H™(§2) and m = 0,1, k = 1, 2. Obviously, taking
k =m = 11n (3.2), the interpolation operators 1727 have the following H '-stable

17 vl g1 (o) < Clvlig ey, ¥ v € HY(S). (3.3)

Finally, we introduce some basic estimate for finite dimensional function spaces. By
recalling the following inverse estimate from [5, Theorem 4.5.11], there holds

—r+3min{L-—L 0
vllwra @y < CH™ ™™ =5 %y s ), (3.4)

for any polynomial functions v|x € Pﬁ(K ), K € 7T, where C > 0 is a generic constant
independent of the mesh-size &, m and r are two real numbers withO < m < r, g and ¢ are
two integers with 1 < g1, g2 < co. By applying the scaling arguments and the trace theorem,
we obtain

_1
lvilrary < Ch a(vliLax) + hlIIVUllLek)), (3.5)

forany K € 7, and 1 < g <ocoandv € Wl*”(K); see, e.g., [1]. Moreover, we apply the
inverse estimate (3.4) and the trace inequality (3.5) to obtain

_1
lvllary < Ch avllLak), (3.6)
forany K €e Tpand 1 < g < oo, v e]P’g(K).

3.2 The Discretization of the Convection Term

Before introducing the scheme, we discuss the approximation of the convection operators in
the continuity equation. To this end, we define the standard upwind operator Up[ry, v;,] on
a face F, which is described by

Uplra, val = rplvnr 0]~ +rp—lopr-nl", Yr, € Qu vy €V,

where [vy, F -n]T = max{0, vpr - n}and [vpp - r]” = min{0, v, F - 0}, V4 F =
ﬁ JrvrdS. By applying the following lemma, we can show the distributional error of
the convective term and its numerical analogue.

Lemma 3.1 Forallry, € Qp and vy € Vy, ¢ € HO1 (£2), we conclude that

[ - oas = 32 [ Vot oillm2te1as + [ (11— g div s

Fe]'-h,int

+y. ) / (11,219) — @) [rallvn r - n]~dS
KeT, Fcok *F

+ Y / (@ —@r)(Un — vy F) - ndS.
Koz, )0k

Proof By the same procedure as in [14, Section 2.3], we easily see that

/ vy - Vodx = Z / Uplry, villgn]dS +/ (gn — @)rp divvdx
$ FeFpim” T $2

+y > A(gh—w)[[rh]][vw-n]—ds+ > /aKw(vh—vh,m-ndS

KeT, FCaK KeT,
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for any ry, gn € Qp,up € Vyand ¢ € HOl (£2). It can easily be seen that

> [ et =i onas = 3 [ it = prwn— i) -nds.
K K

KeTy KeT,

Combining the above analysis, the proof is thus complete. O

3.3 Numerical Scheme

For the time discretization, let N be a fixed integerand 0 = 1) < #; < --- <ty =T bea
uniform partition of [0, 7] with time-step size T = T /N.Moreover, lett, = nt be the discrete
time points and v" is the approximation value of the function v at time #, for 0 < n < N.
For convenience, we introduce d,v" = (v — v"~!)/t and D,v(t) = (v(t) — v(t — 7))/T.

We initialize the scheme p,? = H?[po]. Forany 1 < n < N, we compute (o}, uy) €
Qn x V, by the following numerical scheme

Scheme 1 Given p]';*l € Qp, for any (on, vi) € Q x Vy, find (o), up) € Qp x Vy, such
that

/d,,o}'l'gohdx— Z /UP[PZ,HZ][[%WS
fo)

FeFnin
+h 3 | [epllgnldx =0, 3.7)
FeFhint
/Q (uVuy, : Vo, + (u+ A) div ug, div v, ldx — /;2 p(pp) divv,dx = 0. (3.8)
Remark 3.1 (i) Taking ¢;, = 1 in the discrete continuity equation (3.7), we can show

f o ppdx = f o pZﬁldx. In other words, we have immediately the scheme satisfying the
conservation of mass. (ii) The stabilization term in the discrete continuity equation is useful
in the convergence analysis. More specifically, it provides control over the discrete semi-norm
of pj, by some (negative) power of the mesh size 4. We remark that the artificial stabilization
term in the convergence analysis of compressible flows is introduced by [10, 18, 20].

The renormalized continuity scheme can derived by the following lemma and the proof
can be referred to [14, Section 4.1] for more details.

Lemma 3.2 (Renormalized continuity scheme). Forany 1 <n < N, let (o}, u}) € Qp x V,
satisfy the continuity scheme (3.7). Then (p};, u};) also satisfies the following renormalized
continuity scheme

/Q dB(py)endx — Y fF UplB(py), upllenlds

Fe}—h,int

+ht Y f B(op DlenllenldS +h" Y | B'G7) leal*dS
FE}-h,inr F Fe}—h,inl

. 1 _
+ [ oy~ B divuar =5 [ 56 l60 - o Pods
2 2

1
-5 2 / onB" (s IO 1wy 5 - nldS, (3.9)
FE]:h,inr
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forany B € C*(Ry.) and ¢, € Qy,, where é;"h € CO{pz_] , pj, } on each element K € Ty, and

7_;;‘) e nz » € co{py, (,oZ)‘*‘} on each face F € Fy,, where co{a, b} = [min{a, b}, max{a, b}].
In the upcoming analysis, the discrete density solution pj, is necessary for positive. For

this purpose, we recall the following lemma (see, e.g., [22, 26, 28]).

Lemma3.3 Forany 1 <n < N, we assume that ,0;:_1 > 0in 2 and "Z € Vy, holds. Then

the solution p}’: € Qp of the discontinuous Galerkin method (3.7) satisfies

: n—1
MiNxeR POy

- > 0.
T || div u;’l ||Loo(_Q)

n>
Ph =17

3.4 A Priori Estimates

In this subsection, we establish some a priori estimates for the discrete solutions of the scheme
(3.7)-(3.8), including the energy estimate and the uniformly boundedness of pressure in
L2((0,T) x £).

Theorem 3.1 (Discrete energy law) Forany 1 < m < N, the solution (p;;, u}) of the scheme
(3.7)—(3.8) satisfies the following discrete energy law

3 m m
T +1 Y Y D+ Y Dauy) = Tilpp), (3.10)

i=1 n=1 n=1

where the discerte energy Jy and the discrete dissipation Dy, are defined by
Tn(pp) = /Q H(pi)dx, Dyy) = | Vit l72 o) + O+ Wl divag 172 g

and the numerical diffusion terms Dﬁ , are given by

) 1 1"
= E/QH L)

Dy, =h" Y| Han plerlPds,
Fefh,im

1
D=y 3 [ RO e nl s,
Fth,int £

n n—1 2
Pn — Py ‘ dx,

Proof Taking (B, ¢5) = (H, 1) in the renormalized continuity scheme (3.9) and by applying
H'(p)p — H(p) = p(p), we can show

f p(pp) div updx =_dt/ H(pp)dx — E/ H'(E" ) (drp))dx
Q Q 2 Je o

_he—l Z H”(ﬁz,h)[[pzl]]zds

FEFh,int
1
-5 Z /H”(ng’h)[[p]’ﬂ]quzf -n|dS.
FeFnim " F

Let v, = uy, in (3.8), we conclude that

IV G2 o) + O WIVER T2 o) — /Q p(pp) divujdx = 0.
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Combining the above analysis implies

3

/H(ph)dx+Dh(uh)+ZD;'h_0 (3.11)
i=1

forany 1 < n < N. Summing (3.11) with respect to n from n = 1 to n = m, we obtain
(3.10). The proof is thus complete. O

In order to show the L?(£2) estimate of pressure, we introduce an inverse of the divergence
operator B, which satisfies the following result (see [4] and [19, Chapter 3]).

Lemma3.4 Let 2 C RY, d = 2,3 be a bounded domain. There exists a linear operator B
enjoying the properties

B[r] e W(l)’q(.Q), divB[r]=r VreLi(), / rdx =0, V1<gq < oo.
k7]
Moverever, the linear operator B satisfies the following estimate
IBI Uy 1) = CllrlliLac), V1 <g <oo. (3.12)
Next, we prove the stability estimate for the discrete pressure.

Theorem 3.2 Suppose that Hypothesis 2.1 is satisfied. Forany 1 < m < N, then the pressure
p(pn) satisfies the following estimate

m
Y P72 < C- (3.13)

n=1

Proof Letr) := p(pp) — ﬁ f_Q p(p;)dx for 1 <n < N. Taking v = H/YB[r;l‘] in (3.8)
and by the definition of 1'[;/ and B, we can show

. \%
PO ) = WP g 00 [ St 9T Bl
+ (4w f div u} div IT, B[r}' 1dx.
2
By applying Holder inequality, the estimates (3.3) and (3.12), we obtain

'/9 Vaj, o VITBlrildx| <[\ Vaj |l 200 IV IT)BIF I 2

<CIVuylip2) P20

fg div uf, div 17, B[rf1dx | <|| div ul || 2 o)l div T, BIrf 1l 122

<C| div "Z ||L2(_{2) ||P(P}r;) ||L2(Q)~

Combining the above analysis, by applying Young inequality, we have

1Py ST 1P ) + CIVERI, o

IQI

F OV g+ 5 1P ae, (3.14)
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forany 1 <n < N.
Summing (3.14) with respect to n from n = 1 to n = m and applying the discrete energy
estimate (3.10) implies

m m m
T 1P 720y <CT Y 1PN )+ CT Y IVHUGIT2 g (3.15)
n=1

n=1 n=1

2
<CJ; (o) + CTn(pi) < Cllpoll s o) + Cllpoll]y g)-

By applying Hypothesis 2.1 for the inequality (3.15), we have (3.13). The proof is thus
complete. O

3.5 Existence of Numerical Solution

By applying Schaeffer’s fixed point theorem, we can show the existence of numerical solu-
tions for the scheme (3.7)—(3.8) in this subsection. Firstly, we recall Schaeffer’s fixed point
theory (see, e.g., [8, Theorem 9.2.4]):

Lemma3.5 Let L : D — D be a continuous mapping defined on a finite dimensional normed
vector space D. Suppose that the set

{zeD:z=AL(z), Aec]0,1]}
is non empty and bounded. Then there exists z € D such that z = L(z).
Then we can prove an existence result of numerical solutions for the scheme (3.7)—(3.8).

Theorem3.3 Forany 1 <n < N, let (p}'l’_l, u',;_l) € Qu x Vy, and ,0}':_1 > 0 be given.
Then, for each fixed h, T > 0, the scheme (3.7)—(3.8) has at least one solution

(o, up) € Qp x Vp, pp > 0.

The proof of Theorem 3.3 can be found in “Appendix A.1”.

3.6 Uniform Bounds

In this subsection, we deduce some priori estimates from the discrete energy law (3.10). To
this end, we need to extend the definition of discrete solution for any r+ < T'. We define the
piecewise constant interpolations of p; by

0
pp, for t e (—o0,0],

on(t,)=1" (3.16)
Phs forte(til—lvtn]7V1§n§Ns

and the piecewise constant interpolations of uj, by
up(t,”) :=uy, fortre(t,—1,1,], V1<n<N. (3.17)

The following stable results are proved by the discrete energy law and the L estimate of
pressure, which is crucial in both error estimates and convergence analysis.
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Lemma 3.6 Suppose that Hypothesis 2.1 is satisfied. Then the family (pp, up) defined in
(3.16)—(3.17) satisfies the following estimates:

lonllLoo.1:Lr 2)) <C, lpenllL2yo,myx2) < C,
PGl 20,1y x2) <Cs Nunll 20,7152y < C-

I div uh”LZ((o,T)xQ) =<C, ”uh”LZ(OyT;Hl(Q)) <C.

Lemma 3.7 Suppose that Hypothesis 2.1 is satisfied. Then the family (pp, uy) defined in
(3.16)—(3.17) satisfies the following estimates:

T
/ / H'(Ep.)lon — pi)*dxdt <Cr,
0 2

T
/Ohf—l > /H”(ﬁp,h)[[ph]]zdsm <C,

FeFn.int

fo / H' o ) |un, F - nl[pp]*dSdt <C.

FeFn.int

Lemma 3.8 Suppose that Hypothesis 2.1 and y > 2 are satisfied. Then the family (pp,, up)
defined in (3.16)—(3.17) satisfies the following estimates:

T
/ he—l
0 FeFn int

/ / wn r - nllpn]PdSds <C.
0

FeFh,int

T
/ [pn]*dSdt <C. /0 /Q lon — pp|*dxdt < Cr,

Proof Taking (B(p), ¢n) = (,02, 1) in renormalized continuity scheme (3.9) and summing
this result with respect to n fromn = 1ton = N, we obtain

/ /|ﬂh—/’h|2dxdt+/0 Rty /[phﬂzdet

FeFh.in

[y s iy Pasa
0 FeFh,int

T
5—/ /pﬁdivuhdxdt—/ ph(T,-)zdx—i—/ on (0, )%dx _Zu,
0 2 2 i=1

By applying Hélder inequality and the embedding L2 < L*and LY < L2 fory > 2, we
conclude that

2] <1on17 0.7y 1 iV Rl 2 0,70 2)
2 .
SC”IOh ”LZV((O,T)XQ) ” div Up ||L2((O,T)><Q)v
2 2
[t SC”Ph”LOO((),T;Ly(Q))a [t < CHIOOHLV(Q)'

Combining the above analysis with Hypothesis 2.1 and Lemma 3.6, we have the required
estimates, the proof is thus complete. O
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4 Consistency Formulation of the Continuity Scheme

In this section, we establish the consistency formulation for the discrete solution of the
numerical scheme (3.7)—(3.8). In other words, the discrete solution asymptotically satisfies
the weak formulation of continuous problem.

Lemma 4.1 The family (pp, up) defined in (3.16)—(3.17) satisfies the following consistency
formulation

T T
/ / [D;pne — pruy - Veldxdt = / / %y - Vodxdt, “4.1)
0 Je 0 Je
forany ¢ € L*(0, T; H'(£2)), where the remainder functional ), is given by
T T o
| [ nvoandi= [ 3 [ 0~ m2t00 ol -mi-asas (42)
0 Je 0 ger, JOK

T T
+ /0 fg (¢ — 21D oy div updxdr + he™! /0 > /F lowlle — M 1g1ldSdt

Fth,int

+/OTZ

4
/ (@ — @r)(n,r — up) - ndSdt :=»_ Pi(p).
ke, VK i=1

Proof Taking ¢, = IT P[(p] in the continuity method (3.7) and summing this identity with
respect to n fromn = 1 ton = N, we can show

T T
| [ poviioiasas = [ 5 [ pton, i ontasar

FeFnint
T
s [0 [ oo - glasar =o.
0 FeFn,int F

It is easy to check that

T T
/ / D, pn T2 @ldxdt = / / D, ppodxdt.
0 2 0 2

By taking (1, vp,) = (p;:, ”Z) in Lemma 3.1 and summing this idenity with respect to n from
n = 1ton = N, we conclude that

T T
> [ vetonwimdiondsa = [ [ - m2ibp,divusdrar
0 FE]:h.im F 0 §2

T T
+/ f pnttp - Vodxdt +/ > / (¢ — M2 @Donllun,F - n]~dSd
0o Ja 0 oK

KeT),
T
+ / > f on(@ — @p) (Wn.r — up) - ndSdt.
0 Ko, JoK
Combining the above analysis, we obtain (4.1). The proof is thus complete. O

Next, the error estimate of the remainder term %), of Lemma 4.1 is proved in the following
lemma.
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Lemma 4.2 Suppose that Hypothesis 2.1 is satisfied. There exists a constant C > 0 inde-
pendent of h and t, such that the error functional %), of Lemma 4.1 satisfies the following
estimates

T
/g Pn - Veodxdt| < ChA Vol Lan 0.7 152 4.3)

where the parameters A and my are given by

A % my = 2V

Proof We show the proof of this Lemma in four steps.
Bound on P;. We estimate this term for | < y <2 and y > 2 separately. If | < y <2, by
applying Cauchy—Schwarz inequality, we can show

[P1(@)| < VP11 X+/P1,1,2, 4.4)
where P; 1,1 and Py 12 are given by

Pi1.1.1 —f Z ’H (p.)un,F - nl[pn]?dSdt,
FE]'—h int

Prisi= / > [ 0 - nllp = tgIasar
FeFn,int

It is easy to check that

H' o)™ <Clon+ + pn,—)*7"
<C( + pp,+ +pn-), with 1 <y <2. “4.5)

For the term P 1 2, by applying the inequality (4.5), we obtain
Pr12 = C(Pri21 + Pri2,2)- (4.6)
where P; 12,1 and P; 1,22 are defined by

le—/ > [ - nllon s+ pn-le = 11191 Pasar,
FE}-hml

P22 —/ > /|uh,F-n||go—H,?[<p]|2d5dt.
FE}-hmr

Using the trace inequalities (3.5)—(3.6), we conclude that

T
Priag < / 3 lunll Lo lonll 2ol = 210112 6o A1

KeT),
1 ! Q 2
<Ch~ / D Ml lonll 2 e = T 101176 At
KeT,
+Ch / S Nunllsci ol 2 V01 g -
K€771
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Therefore, using the Holder inequality and the interpolation error estimate (3.1), we get that

Pi1,2,1 = Chllupllp20,7: 162 1 on ||L2y((o,T)x_rz)||V<P||izml(0’T;Le(m)- 4.7
By a similar proof to the error estimate of Py,1,2,2, we find

Pr122 < Chlluy|| 1o lIVel? : 4.8)
, 120,7; LS (2l V¥ L4(O,T;L%(.Q))

Inserting (4.7) and (4.8) into (4.6), using Lemma 3.6, we have arrived at
PI,I,Z S Ch”V(p”izml(O,T;[ﬁ(Q))' (49)

By applying Lemma 3.7 and (4.9) to (4.4) leads to the bound
1
[P1(p)| < Ch? ||V(P||L2'"1(0,T;L6(Q))-
For the case y > 2, by using Cauchy—Schwarz inequality, we obtain
P1@)| = Pr2,1 X /P1122,
where P 2 is defined by
T
Pian = / > / Lon]?lun, F - nldSd.
0 Fe-rh,int F

By virtue of the inequality (4.8), Lemmas 3.6 and 3.8, we have

1
<Ch2|V .
IP1(@)| = Ch2|| ¢|IL4(O,T;L|572(_Q))

Bound on P>(¢). By applying the Holder inequality, the inverse estimate (3.4) and the
embedding L? < L? for y > 1, we obtain

[P2(@)| <llp — H;,Q[QD]“L"TI o.1;5nlenllL2y o, 703 1 div unll 20,7, 12(2))
<Chz e — H?[QO]HL'M(o,T;Lﬁ(Q))||ph||L2V(o,T;L2(Q))|| divupliz2o,7:12(02)
SCh% Vel o.7:Locanllenll L2y o, 1y 2y 1 iV #r ll 20, 7. .2 (2y)
<Ch ||Vl m (0.T;L5(2))-

Bound on P3(¢). We shall treat the case | < y <2 and y > 2 separately. If | < y <2, by
applying the Cauchy Schwarz inequality, we have

IP3(@)] < /P311 % /P31 (4.10)

where P31 and P are defined by

T
P31, ::/ he! Z /H”(ﬁp’h)[[,oh}]zdet,
0 Fe}—h,[nl

T
Puai= [ 0 S [ 0/, 116 - oPdsar
0 FeFnin

By employing the inequality (4.5), we can show
P31,2 = C(P31.2,1+P3,1,22), (4.11)
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where P31 2,1 and P3,1,2,2 are given by

T
Ps21 i=h! / Yo | le—mle)dsar,
0 FeFn.int £

T
Paiaa = [ [ ons + pully — MRS,
0 FeFn.int F

By applying the trace estimate (3.5)—(3.6) and the Poincaré inequality (3.1), the embedding
L% < L2 for y > 1, we get

Ps121 <Ch IR0 = 0122 0 1yx) + CHIVOIR2 0 1y x 2y

<ChNIVOlT20.1yx 2y 4.12)
P.1.22 ZCh ol 20,y 0] = 013 0.1y )
+ Chllonll 20,1y x ) IVO L4 0.7y 2)
<Chlonll2r 0.1y <) IV N4, 1y ) 4.13)
Inserting (4.12) and (4.13) into (4.11), using Lemma 3.6, we conclude that
P12 < ChNIVOI a0 1yx0): (4.14)

For the inequality (4.10), by using (4.14) and Lemma 3.7, we easily see that

[P3(0)] < Ch2[Voll L40.1yx2)-
For the case y > 2, by applying the Cauchy Schwarz inequality, we obtain

[P3(@)| < /P321 X /P31.2.1,
where P32 is given by

T
Pyo = / Rty f lpn]*dSdr.
0 FeFhint F

According to Lemma 3.8 and the estimate (4.12), we have

IP3(@)] < ChE IVl L0, 1)x2)-

Bound on P4(¢). By employing the Holder inequality, the trace estimates (3.5)—(3.6), the
Poincaré and inverse inequalities, the embedding L2 < L2 for y > 1, we easily establish
that

1
IPa(@)| =ChZ(IN @l Lmi o, 7,162y lorll L2v 0.7y x ) 1 | 20,7 Y (52))
1
=Ch2|IVelpm ©,1;16(02))-
Combining the above analysis, we have the required estimate (4.3). The proof is thus com-

plete. O
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5 Basic Estimates

This section establishes the boundedness of discrete time derivative D; p, and a priori estimate
of discrete density pp, in L2(0, T; Qp).

Lemma 5.1 Suppose that the conditions of Lemma 4.2 are satisfied, then the discrete time
derivative Dy py, satisfies

4y
D <C, 1 = .
I tPh||Lm2(O’T;W,,<g(m) < <m 3 41

(5.1)

Proof Let ¢ € L?"1(0, T; W"6(£2)) such that @]l 2n o 7.w16(0), = 1. Taking ¢ =

171 ;9) [¢] in (3.7) and summing this result with respect to n fromn = 1 to n = N, applying
the same argument as Lemma 4.1, we infer that

T T T
/ / D;pnpdxdt = / / pnuy - Vodxdt +/ / Xy - Vodxdt.
0 Jo 0 Je 0 Je

Using Holder inequality, Lemmas 4.2 and 3.6, we conclude that

T
| fo /Q Dyonbdxdt] <Cllonll v .1 81l 2072500 1Vl o1 0.7 2320

+ C||V¢||LZM| (()yT;LG(_Q)) = C||¢||L2m1 0,T;Who(02))-

This inequality immediately implies Lemma 5.1. The proof is thus complete. O

Lemma 5.2 Suppose that Hypothesis 2.1 and the CFL condition T ~ h are satisfied, there
exists €g > 0 and 0 < § < 1 such that for any 0 < € < €,

T
/0 lon G, dt < Ch™. (5.2)

Proof We divide our proof in two steps. Firstly, if | < y < 2, by applying Cauchy—Schwarz
inequality, we obtain

T
[ voniiy dr < P x 7 53)

where Ps and Pg are given by

Ps =he" 1/ > /H @, pn]*dSdt,

FE]:h int
P :=h~ (e+1)/ (H//(ﬁp,h))il[[phﬂzdkgdt'
0 Fe]'—hmt

According to the trace estimate (3.6) and the inequality (4.5), we infer that

Po < Ch™ D14 (5.4)

L4~ V((o T)x$)"

On the one hand, for 1 < y < %, it is easy check that 4 — y > 2y. Therefore, by applying
the inverse estimate (3.4) and the CFL condition T ~ h, we have

”Ioh”L4 7((0,T)xR2) — < ”'OhHLZV((O T)x$2)" (55)
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On the other hand, for the case % < y < 2, by using the embedding result L% < L*77,
we conclude that

4— 4—
el 7%y 0wy < PRl 0.1y x 2 (5.6)
Inserting (5.5) and (5.6) into (5.4), using Lemma 3.6, we obtain
ChAGTED oy < %
Pe < 1 4 5.7
Ch4t2), 3SY=2
By substituting (5.7) into (5.3), using Lemma 3.7, we get that
(€42 4
T cn 2ty b, <y <z
| ot e < ) 58)
0 -2(5+D) -
Ch , 3V S 2.
Secondly, for the case y > 2, by using Lemma 3.8, we easily see that
T T
/ lonll,dt =h™! / Z / lon]?dSdt < Ch™¢. (5.9)
0 0 F

FeFh,int

Combining the inequalities (5.8) and (5.9), we have the required estimate (5.2), where the
parameter «p and § are given by

€ + 2 1 1
1 4 RV sr=3
81——), l<y<xz, oy 3
- Y 3 s2le 1 4
€0 1= PRI R (R Ssy<2,
) T 4 2 3~
: 3=V c )
— > 2.
o Yy =
It is easy check that § < 1. The proof is thus complete. O

Remark 5.1 (i) In fact, for the case of y > %, the CFL condition T & # is not required for the
estimate (5.2). (i) Lemma 5.2 plays a key role in deriving the discrete version of the effective
viscous flux identity. See Lemma 6.7 and Theorem 6.2 for more on why it is needed.

6 Convergence Analysis

In this section, we will prove the family (o, up, p(pp)) defined in (3.16)—(3.17) converges
to weak solution ( see Definition 2.1). For that purpose, we first need to establish a spatial
compactness estimate for Bernardi—Raugel finite element space.

Theorem 6.1 Let g satisfies 2 < g < 6 and L — g + %, 0 € [0, 1]. For any vy, € Vp,
there exists a constant C > 0 such that the following estimate holds

loa () = va( — Ol pagray < CIEILIVORI 200y, YV E R

The proof of Theorem 6.1 can been found in “Appendix A.2”.
According to Lemma 3.6 and Theorem 3.2, we can assert the existence of functions

p € L0, T; L(2)) N LY ((0,T) x £2), ueL*0,T; H\(2))
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such that the family (o, up,) defined in (3.16)—(3.17) exists suitable subsequences satisfy

pn—"p, in L0, T; LY (£2)) N L¥ (0, T) x £2),
p(on)—p, in L*((0,T) x £2), up—u, in L*((0,T) x £2), (6.1)
divup—diva, in L>((0,T) x 2), wup—u, in L*(0, T; H'(2)).

The following lemma can be found in [26, Lemma 2.3].

Lemma6.1 Let { f}7° | and {gn}52 | be two function sequences on (0, T) x §2 such that

(1) fn and gn converge weakly to f and g respectively in LP'(0,T; L1'(£2)) and

. 1 1 _ 1 1 _
LPZ(O,T,L‘IZ(.Q)),Wherel§p1,q1SOO,E—FE—(T]—%(E—I.

(ii) Assume that W is bounded in L'(0, T; W="1(82)), for some m > 0
independent of h. And || fi (t, x)— frn(t, x =8l Lr1(0,1:Lr2(2)) — Oas|&] — Ouniformly
in h.

Then, fngn converges to fg in the sense of distributions on (0, T) x 2.

Next, we present a weak convergent results for pjuy.

Lemma 6.2 Suppose that the condition of Lemma 4.2 are satisfied, then the family (pp,, up)
defined in (3.16)—(3.17) satisfies

prup—pu, in D'((0,T) x £2).
Proof From Lemma 5.1, we can show
Dipy € L'0, T; Wh1(2)). (6.2)

By applying Theorem 6.1 and Lemma 3.6, we conclude that

1§]—>0 0 63
||uh(t,x) —uh(f»x—§)||L2(0,T;L2(Rd)) — L. ( . )
By substituting (6.1)—(6.3) into Lemma 6.1, the proof is thus complete. O

6.1 Limit in the Compressible Stokes Equations

In this subsection, we can show the limit (p, u, p) constructed in (6.1) is a weak solution of
Definition 2.1. The remaining major difficulty is to prove the pressure p(pp) — p(p).

Lemma 6.3 Suppose that the condition of Lemma 4.2 is satisfied, then the accumulation
point (p, u) constructed in (6.1) satisfies the weak formulation (2.1).
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Proof We pass to the limit with iz, T — 0 in the consistency formulation (4.1). Firstly, we
rewrite the discrete time derivative term

T T 1 T
/ / Dy pppdxdt =—/ / pnDip(t + 7, ~)dxdt+f/ / on(t, ot + 7, )dxdt
0 Je 0 Je TJr—tJQ

1 0
- *'/ / on(t, He(t + 1, )dxdt
TJ-J@

T
=— / / prDrgp(t + 7, )dxdt — / P 0, )dx
0 2 2

_/ /pgwdmt
0 Ja T

T T
__ / f prOrg(t, ) + Soupes, dxdi — / (0, )dx
0o Jo 2 Q

T
- / / PY3(ts, dxdt,
0 2

wheret; € (t,t+71)andt; € (0, 7). By applying Lemma 3.6 and the embedding LY — L',
we have

ol (T
= ’/ / PrOu@(ty, dxdt
21Jo Je

T
‘ / f prdhp(ts, dxdt
0 2

<Crtllpn ||L1((0,T)><Q) 10:: @l Loo (0, T)x 2)

h,t—0
<CtllprllL=©,1;L7 @) 10 @llL0,1yx2) — O,

<CrllppllL ) 13l o0, 1yx2)

h,7—0
<CtllpollLy )19 @llL(0,1)x2) — O.

According to (6.1) and H?[pg]—\pg in LY (£2), we obtain

T
—/ f PR (1, -)dxdt—/ P90, dx
0 Jo 2

h,t—0 T
= —/ / pB,(pdxdt—/ pop(0, )dx.
0 J& 2

Next, by applying Lemma 6.2, we can show

r h,7—0 r
/ / pnuy - Vodxdt —> / / pu - Vodxdt.
0 Je 0 Je

Finally, by employing the inequality (4.3) of Lemma 4.2, we conclude that

r h,t—0
/ / P - Vodxdt — 0.
0 2

Combining the above analysis, the proof is thus complete. O
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Lemma 6.4 Suppose that Hypothesis 2.1 is satisfied, the accumulation limit (p, u) con-
structed in (6.1) satisfies the following weak formulation:

T T
" / / Vu : Vodxdt + (0 + ) / f div u div vdxdt (6.4)
0 2 0 2
T
—/ / pdivedxdt =0, YveCP(0.T)x Q).
0 2

Proof We define Fy, as the Lz-orthogonal projection operator from L?(£2) into Vy,. For any
ve C8°((O, T) x §2), we can choose v, = Fy,v and v}, = %ftt" 1 vy, dt such that

vt ) =2 v, ), in HY(), (6.5)

forany ¢ € (0, T). Taking v}, in (3.8), multiplying by 7 and summing the results with respect
ton fromn = 1ton = N, we conclude that

T
/ / [uVuy : Vo, + (0 4 ) divuy div v, ldxdt
0o Je

T
—/ / p(pp) divvydxdt = 0.
0 Je

Obviously, by applying (6.1) and (6.5), we have the required weak formulation (6.4). The
proof is thus complete. O

6.2 Strong Convergence of the Density

The strong convergence of the density is proved by the discrete version of the weak continuity
property of the effective viscous flux introduced on the continuous level in [30]. For this
purpose, we first introduce the following notation

) ) ) 0 0 0 0 0
curly = 2 — T i g =2, curlv = | oo 222000 OUS B2 UL e g =3,
0x1 0x) dx2 dx3  0x3 dx1  0xp 0x)

where v is a vector-valued function. Obviously, if v € HY () and w € Hé(.Q), we can
show

/ Vv : Vwdx =/ div v div wdx—i—[ curl v curl wdx. (6.6)
Q Q Q

Next, we report the following Lemma, which plays a key role in deriving the discrete version
of the effective viscous flux.

Lemma6.5 Ler 2 C R? (d = 2,3) be a bounded open set. For any 1 < r < oo and
q € L"($2), there exists w € W (£2) such that

divw =g, curlw =0, a.e. in £, ||w||W1,,~(Q) < CligllLr ().

where C only depends on 2 and r. Moreover, if ¢ € W' (2) (or ¢ € W™ (2)), it is
possible to have w € W27(2) (or w € L7 (§2)) such that

lwlly2r o) < Cllgliwir (@), (or w2y < Cligliw-1-(2))-
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Proof 1t is easy to check that VA~![g] can be served as the desired solution, where A~
is the inverse of the Laplacian on R, and here we applied to ¢ extended by 0 outside
£2. Obviously, vA~! is a continuous linear operator from L"(§2) to W7 (£2) and from
WL (§2) to W27(£2), from W17 (2) to L' (£2) (see e.g., [29, Lemma 8.3]). The proof is
thus complete. O

In the next step, we introduce the operator I7 2{ : Qn +— Yj, which interpolates the
piecewise constant functions to the space of continuous finite element space Yy,

1
A4 , Yy A)i= —— s
an € Qi I 1qn)(A) 1= oo KZN anlk

for any vertices A in the discretization, where Ny is the set of elements K € 7, of which
takes A as its vertices. The operator /1 2{ satisfies the following results (see e.g., [10, Lemma
5.8)]).

Lemma 6.6 For any qn € Qp, there exists a constant C > 0, depending only on the shape-
regularity of Tj, such that

IVIT, Tgnlll122) < Cllgnlla,.  llgn — T lanlll 20y < Chllgnllg,-
Then we can prove the following estimates.

Lemma 6.7 Suppose that the condition of Lemma 5.2 is satisfied, there exists a constant
C > 0 such that the following estimates hold

T T
/0 o = I Tonll7 2 g dt <CH*=, /0 1T Tonl 3 gy d1 < C,

T
/0 VTE Lol oyt <C.
Proof By applying the inequality (5.2) and Lemma 6.6, we can show
T T
/0 lon = T Tonl1 7 gy dt < CH*Y, fo IV I Tl 72 qydt < Ch2.
According to the embedding L%’ < L? for y > 1, we have

T T T
i gyt <2 [ o= gy +2 [ ol g
2(1-8 2
SCh ( ) + C”’Oh”LZV((O,T)XQ) < C.
These inequalities immediately implies
(- 2 28
/0 1T Tn]2p1 gt < Ch72.

Combining the above analysis, the proof is thus complete. O

Theorem 6.2 Suppose that the condition of Lemma 5.2 is satisfied. The family (py,, up) defined
in (3.16)—(3.17) and the accumulation limit (p, u) constructed in (6.1) satisfy the following
convergence properties:

h,7—0

T
lim W/ (A +2p) divuy, — p(on)) pppdxdt
0 2

T
= / W / (A +2w) divu — p)pedxdt. (6.7)
0 2
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forany ¥ € C3°((0,T)) and ¢ € Ci°(£2).

Proof According to Lemmas 6.5, 6.7 and 3.6, the inequality (5.1), and there exists wy j €
L%(0, T; H*(£2)) and wy, € L%(0, T; H'(£2)) such that

{ divwy, = I, [pp], in (0, T) x £2, i divwy =pp inO.T)x 2. o
curlwy , =0, in (0,T) x £2, curlw, =0, in (0, 7T) x £2,
and a generic constant C independent of / and t such that
{ lwy nll 20785 2y =C- lwall;20.7.1'2)) =C. 69
lwvillizor a2y SCH | 1Pl Ly 780 = |
Subtracting the right side of (6.8) from its left side, we obtain
div(wy , — wp) = I [pn] — pn, curl(wy, — wy) =0, in (0, T) x £2.
By employing Lemmas 6.5 and 6.7, we can show
lwy.n — wall 20,7112y < Cllon — T ol 20,1y 2y < CH' P, (6.10)

Using the Lemma A.4 together with the estimates (6.9), we deduce for a suitable subsequence
that

w, — w, in L>((0,T) x 2). (6.11)
In addition, the accumulation limit w satisfies the following properties
divw =p, curlw=0, in (0,7) x £2. (6.12)

Taking v, = H}Y[(pwy,h] in (3.8), multiplying by ¥ € C§°((0, T')) and integrating from
t =0to T, we derive

T T
/,L/ 1/// Vuy : V(gowy,h)dxdt—i-(k—i-u)/ 1#/ div uy, div(pwy p)dxdt
0 Q 0 Q
T
—/ 1#/ p(pn) div(pwy p)dxdt = %1 p, (6.13)
0 2
where #1 , is given by
T
Ry =1 / W / Vuy, : Vipwy ;, — I, [pwy j))dxdt
0 2
T
+ X +wp f 1/// div uy, div(pwy j — H}Y[wwyh])dxdt.
0 Q?

By applying the inequalities (3.2) and (6.9), we can show

| %1 1 §C||1p||L°°((O,T))”uh”LZ(()yT;H](Q)) lowy , — H}Y[‘P“’Y,h]”LZ(o,T;Hl(Q))
ECh”w”LOO((O,T))||uh||L2((),T;H1(Q)) lowy , ”LZ(O,T;HZ(_Q))

<Ch' 2 |¥lloqo.rn lenll 20,7 1 2y |10l waso () - (6.14)

@ Springer



Journal of Scientific Computing (2023) 94:47 Page 23 0f41 47

Obviously, we have div(pwy ;) = H,?{[ph]ga + wy,;, - Vo and curl(pwy ;) = J(@)wy j,
where J (@) is a matrix with entries involving some first-order derivatives of ¢. Combining
the identities (6.6) and (6.13), we obtain

T
[ v [ o2 dvu, = poopdsar
0 Q
T T
=—(x +2u)/ 1/,/ divupwy p - Vodxdt — M/ 1/// curluy - J(@)wy pdxdt
0 Q 0 Q
T
+/ 1/f/ plon)wy i - Vodxdt + %1 n + %o, (6.15)
0 Q
where %> 5, is defined by
r Y
Ko = / 1#/ (A +2w) divuy — p(pn)(one — I, [pnlp)dxdt.
0 Q

Applying the Holder inequality and Lemma 6.7 implies

%21 <C Il div unll 20,7y lon — T Tonll 207y x2)
+ Cllp(om)lz20.7yx 2 llon — H}?([ph]||L2((O,T)><_Q)
<Ch'llunll 20.7: 1 2y + CP' PO 1200, 7y x 2)- (6.16)

The identity (6.15) can be rewritten as

T
/ VI/ (O +2p) divuy, — p(on)) ppedxdt
0 Q
T T
=—( +2/L)/ t/f/ divupwy - Vodxdt — pL/ 1p/ curluy - J(p)wpdxdt
0 Q 0 Q
T
+/ W/ plon)wy - Vodxdt + %y + Zon + X3.h- (6.17)
0 Q
where #3 , is given by
T
H3pi=— A+ 2#)/ 1/// divuy(wy , — wp) - Veodxdt
0 Q
T
— /L/ 1/// curluy, - J(p)(wy , — wy)dxdt
0 Q
T
+/ lﬁf P(on)(wy,n — wy) - Vodxdt.
0 Q

Using the Holder inequality and the estimate (6.10), we conclude that

| %3, SCI/J,(,D”uh”LZ(()yT;H](_Q)) lwyr — wp ||L2(()’T;L2(_Q))
+ Cyollp(omliL20,1;02(2)) 1 WY,H — wh”LZ(O,T;LZ(Q))

§C1//,¢h1_8 llzes ||L2(()’T;H1(Q)) + Cl//,(/zhl_(S ||P(Ph)||L2(O,T;L2(.Q))- (6.18)
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Passing to the limit with #, T — 0 in (6.17), using (6.1) and (6.11), we find

T
lim 1/f/ (A +2p) divup — p(on)) pppdxdt
h,t—=0 Jo Q

T T
=—A+ Z,u)/ 1/// divuw - Vodxdt — /L/ w/ curlu - J(p)wdxdt
0 2 0 2

T
+ / v / pw-Veodxdt + lim %, + lim %+ lim %3 ,. (6.19)
0 Q h,7—0 h,t—0 h,t—0
By applying Lemma 3.6, the estimates (6.14), (6.16), (6.18) and § < 1, we get that
lim % lim % lim %3, =0. 6.20
h,ll'go Lk +h,%§0 2k F h,%ﬂo 3. ( )
Taking v = Y ¢w in (6.4) and using the identity (6.12), imply

T T
/ 1ﬁ/ (A +2w)divu — p)ppdxdt = —(A + 2#)/ l/f/ divuw - Vodxdt
0 2 0 2

T T
- /L/ 1/// curlu - J(p)wdxdt + / 1//f pw - Vodxdt. (6.21)
0 2 0 2

Combining the identities (6.19)—(6.21), we have the required discrete effective viscous flux
identity (6.7). The proof is thus complete. O

Lemma 6.8 (Strong convergence of py,) Suppose that the condition of Lemma 5.2 is satisfied,
then, passing to a subsequence if necessary

on — p in L'((0,T) x 2). (6.22)

Proof Firstly, we can show the sequences p(pp)pon, log(on)pn and py divuy, have the fol-
lowing convergent properties:

plon)pn—p(p)p, log(on)pn—log(p)p, pndivu,—pdiva,

in a suitable LY((0, T) x §2) space with ¢ > 1, where the overbar is used to denote the
weak limit of a nonlinear function. According to the notation introduced above, we write
p = p(p), then it can be easily checked

T
lim 14 f ¢ LA+ 2w) divy up — p(pn)] ppdxdt
h—0 Jo Q

T J—
_ /O v [ 916+ 200 dvu — ploplda, 623)

for any ¥ € C3°(0,T) and ¢ € C§°(£2). By applying the discrete effective viscous flux
identity (6.7) and the identity (6.23), we conclude that

T
/ 1///¢(pdivu—,odivu)dxdt=/ w/ PO = pP)P 00 (6.24)
0 2 A+2u

Take the following functions sequence v, € C5°((0, T)) and ¢, € C3°(£2) such that

1 1
szo; wm_>l; l[fm:L 7SIET_77
m m

1
¢on >0; ¢pp > 1; ¢ =1, dist(x, 082) > —.

N
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Let (¥, ) = (Y, ¢dn) in (6.24) and m,n — —o00, by applying Lebesgue’s dominated
convergence theorem, we obtain

/ / (pdivu — pdivu)dxds = f / p()p )Ap - 2p LYY (6.25)

For the identity (6.25), by employing Lemma A.1, we get that
T
/ / (pdivu — pdivu)dxdt > 0. (6.26)
0 Je

According to Lemmas 2.1 and 6.3, we obtain (p, u) is a renormalized solution of the con-
tinuity equation (2.1). Therefore, taking @ (p) = p log(p) in Definition 2.2 and integrating
over [0, 1r] x £2 for the results, we can show

tp
/ plog(p)(tF,~)dx+/ / pdivudxdt =/ plog(p)(0, Hdx, (6.27)
2 0o Ja 2
forany tr € [0, T].

Taking (B(p), ¢n) = (plog(p), 1) in the discrete renormalized continuity scheme (3.9)
and passing to the limit with i, T — 0, we have

t
f 7 Tog(0) (i, Ydx + f ’ / P divudxds < / plog(p)(0, Vdx.  (628)
2 0 2 2

for any t7 € [0, T]. Subtracting the identity (6.27) from the inequality (6.28), we can show

7
(plog(p) — plog(p))(tr, )dx < / / (pdivu — pdivu)dxdt (6.29)
2 0 Jo

for any ¢ € [0, T]. Inserting (6.26) into (6.29), we obtain

/Q (plog(p) — plog(p))(tr, dx <0, (6.30)
On the other hand, according to Lemma A.2, we have
plog(p) = plog(p), a.e. in (0, T) x £2. (6.31)
Combining the inequalities (6.30) and (6.31) implies
m = plog(p), a.e. in (0,T) x £2.

By applying Lemma A.3, we have the required result (6.22). The proof is thus
complete. O

Theorem 6.3 Suppose that the condition of Lemma 5.2 is satisfied. For any q1 € [1,2y) and
q2 € [1,2), then, passing to a subsequence if necessary

pn — p in LT((0,T) x £2), p(pn) = p(p) in LZ((0,T) x £2).
Proof By applying (6.22) and Lemma 3.6, we have
pn — p in LY((0,T) x 2), q1 €[1,2y). (6.32)

1 . . .
Noticing x? and x¥ are increasing functions for x € Ry and (x — y)? < x? — y? for
x >y >0and ¢ > 0, we obtain

= (p(on) — P() (o1 — p) = alpy, — P17 in (0. 7) x 2. (6.33)
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By employing the Holder inequality, (6.32) and Lemma 3.6, we can show

T
/0 /ﬂ Frpdxdt <|p(om)liL20,1)x2)lPn = PlliL20,1)x2)
+ C”plll)iZy ((0,T)x ) ||10h - 10||L2((0,T)><Q)' (634)

Inserting (6.33) into (6.34), using (6.32), we can show

T
li oYY ddt<71 Fudxdt = 0,
h,igo/o /leh P * igo/ / hax

which implies that

p(on) — p(p), in L'((0, T) x 2). (6.35)

By applying (6.35) and Lemma 3.6, we conclude that

p(pn) = p(p) in LT((0,T) x £2),

where g2 € [1, 2). The proof is thus complete. O

Combining Lemmas 6.3 and 6.4, and Theorem 6.3, we can obtain the main result of the
first part of this paper:

Theorem 6.4 Let 2 C RY, d = 2,3 be a bounded domain and assume that the viscosity
coefficients u and A satisfy u > 0 and dx + 2u > 0. Suppose that the pressure p =
p(p) satisfies the assumption (1.2) with y > 1. Furthermore, the initial values pg satisfies
Hypothesis 2.1. The family (py,, up,) defined in (3.16)—(3.17) satisfies p, > O foranyh,t > 0
witht &~ h and 0 < € < €y. Then we have the following convergent properties:

up—u in L*0, T; H'(22)), on—"p in L0, T; LY (£2)),
pn—p in L ((0,T) x £2), p(on)—p(p) in L*((0, T) x £2),
pn — p in LY((0, T) x £2), p(on) = p(p) in L2((0,T) x £2),

foranyl < g1 <2y and1 < gy < 2, where (p, u) is a weak solution of the semi-stationary
compressible Stokes equations (1.1)—(1.4) in the sense of Definition 2.1.

Remark 6.1 (i) Theorem 6.4 provides an alternative proof of existence of weak solutions via
a mixed DG-FEM based on Bernardi—Raugel finite element for the problem (1.1) under the
hypothesis y > 1. (ii) In the case y > %, the CFL condition T & h is not required for
Theorem 6.4. It is worth noting that the values of adiabatic exponent y in the convergence
result without the CFL condition includes the real fluid range of y € [%, %], such as the
monoatomic gas (y ~ %) and the diatomic gas (y ~ %). (ii1) Theorem 6.4 is also true with
the external force f # 0 € L%((0, T) x £2) in the momentum equation.

7 Error Estimate
An unconditional error estimate for the semi-stationary compressible Stokes equations is

established in the section. Note that the existence of weak solution to this model under the
assumption of y > 1 is proved by Theorem 6.4. Now we report the weak-strong uniqueness
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for this model. To this end, we introduce the following functional E : [0, oo) x (0, o0) — R,
which is given by

E(p|p) :=H(p) —H (p)(p — p) — H(p).
Noticing that the function H is strictly convex in (0, 0o0), we obtain
E(plp) =0, and E(p|p)=0<% p=p. (7.1)

Furthermore, the functional E(p | p) satisfies the following estimates (see, e.g., [13, 17] for
more details)

1
2
— 02 - 2.
Eplp) = Clpy | © 07 22 =F =20 (7.2)

(14 p?), otherwise,

where C(p) is uniformly bounded if p lies in some compact subset of (0, o). Finally, we
introduce the relative energy functional of the problem (1.1), which is defined by

Eplp) = /QJE(/O [ p)dx.

Theorem 7.1 Ler 2 C R3 be a bounded domain and assume that the viscosity coefficient
w, A satisfies > 0 and 31 + 2 > 0. Suppose that the pressure p = p(p) satisfies the
assumption (1.2) with y > 1. Let (p, u) be a weak solution to the problem (1.1) emanating
from the initial data (po, ug) with the finite energy Ey = fg H(po)dx and finite mass
My = f_Q podx. Let (p, u) be a strong solution of the same problem belonging to the class

Vp e LXO.T: LUR)). 0<p <p=p .

6y
5y —6

Viu e L*(0,T; LY(2)), ue L*0,T; H)(2)), ¢ > max{3, b

emanating from the same initial data. Then
p=p, u=u, in (0,7) x £2.

The proof of Theorem 7.1 can been found in [13, Theorem 4.1].

Next, we deduce the discrete version of the relative energy inequality from the scheme
(3.7)—(3.8), which will play a key role in the subsequent error estimate. To this end, we first
introduce the convenient notations

{07, :=17)9[Q”], p"i=pty,r), Y1<n<N,

ul =10, [u"], u":=ulty,), Y1<n<N,
where (p, u) is a strong solution of the problem (1.1) belonging to the class of C? functions
such that u|,7)x92 = 0and 0 < Poin =P =P Furthermore, we define the piecewise
constant temporal interpolations of (BZ, uwy, p" u"),1 <n < N,ie,foranyt € [t,_1, 1]

- (7.3)

Qh(t’ ) = 8715 B;l(ta ) = Bhn717 El;(tv ) = EZ?
p () =p" pl(t,)=p""" u () =u".
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Theorem 7.2 Suppose that Hypothesis 2.1 and y > 1 are satisfied. The family (pp, up) and
(Br’ u.) are defined in (3.16)—(3.17) and (7.3), respectively. Then there exists a constant
C > 0 independent of h and t such that

I€Con | p )lIL=o,1) = C. (7.4)
Proof Using the identity H'(p)p — H(p) = p(p) and the Holder inequality, we can show

5(9;’,’ |£n) SC”ph”}[/IOO(O,T;LV(_Q)) + C”Q”Zoo(oj;l_v(_o))
y—1
+Clol s 7. 20-n@plPrlle©1:27 (2, Y1 =n<N.

By employing Lemma 3.6, we have the estimate (7.4). This proof is thus complete. O

Now we establish the discrete version of the relative energy inequality.

Theorem 7.3 Let the families (py, up) and (Br’ u,) be defined as in (3.16)—(3.17) and (7.3),
respectively. Then the discrete relative energy inequality holds, for any 1 <m < N,

Z‘}’Il
5(pz"lg’">+u/0 /QW(uh—g,nzdxdt

tm 6
+ 4w / / | div(up — u,)*dxdt < E(pj) | 0°) + > Ri. (7.5)
o Je Il

where the remainder terms R; (1 <i < 5) are defined by
tm
Ri :2/ / (uVu, : V@, —up) + 0+ p)dive, dive, —up)ldxds,
0 2
tW!
R :2/ / (wVup : V@, —u,) + O+ p)diva, div(e, —u,)ldxdr,
0 2
Im tm
Raoim= [ [ ptondivadxar, Rai= [ [ (o, ~ D (o, pdxar,
0 2 0 2 -
m tm
Rs = —f f oty - VH (p¥)dxdt, Re:= —/ f Ry, - VH (p*)dxdt.
0o Je i 0o Je =

Proof First, taking v, = uj, in the discrete momentum equation (3.8), and summing this
result with respect to n from n = 1 to n = m, we conclude that

tm
/ / [uVuy, : Vu, + A+ p)dive, diva, — p(op) divu, ldxdt (7.6)
0o Je

t”l
+ / / [(wVuy : V@, —u,)+ A+ p)dive, div(w, —u,)ldxdt = 0.
0o Je

Next, using the same argument as Lemma 4.1 by taking ¢ = H/(£:) in Lemma 4.1, we
obtain

tm Im
—/ / Dtth’(p:)dxdt =— / / onu - VH’(p:)dxdt
0o Je - 0o Je -

tln
—/ / Ry, - VH (p*)dxdt. 7.7
0 Je =t
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Note that the numerical diffusion terms D}, (1 < i < 3) in the discrete energy identity
(3.10) are all positive, we have

tm tlll
/ / Dy H(pp)dxdt + / / (1|Vup > 4+ O+ | divuy|*ldxdr < 0. (7.8)
o Je 0o Je
By applying the identity
o' (p_) — oy H'(02) = pr(H'(p ) = H'(p)) + (on — o) H' (02),

we rewrite

tm tm tm
/ /Dtth/(g)dxdr:/ /D,(,ohH’(BT))dxdt—/ /phD,H/(BT)dxdt,
0 2 0 2 0 2

which implies that

[m tm tm
/ / DyH(op)dxdt — / / Dy pyH'(p})dxdt = / / DiE(py | p_)dxdt
0 Je 0 Je 0 Je
tm Im
+/ f ,ohD,H’(Br)dxdt — / / DI(BTH/(BT) — H(p_ )dxdr. (7.9)
0 Je 0o Je
According to the convexity of the function H, we obtain

Hp,) —H (D) (p, — p) — H(p}) = 0. (7.10)

By using the inequality (7.10), we have
Im Im
/ / Di(p H'(p.) —H(p )dxdt = / / p DiH (p )dxdt (7.11)
0 ko) 0 2

1 Im tm ,
— ;/(; /S;H(Bl’) — H’(B’T*)(Br _B:) — H(B;)dxdt < /0 /Q&D,H (p,)dxdt.

Combining the inequalities (7.6)—(7.9) and (7.11), we obtain the inequality (7.5). This proof
is thus complete. O

In the next step, we deduce the approximate version of the relative energy inequality from
the estimate (7.5).

Theorem 7.4 Suppose that Hypothesis 2.1 is satisfied and the pressure p = p(p) satisfies
the hypothesis (1.2) with y > 1. Let the internal energy H be given by H(p) = Lf;. Let the
families (pp, up) and (Br’ u,) be defined as in (3.16)—(3.17) and (7.3), respectively. Then
there exists
P /
C:=C(T, £2, Mo, Eo, Bmin’ Bmax’ lp |C1([Bmin’£max])’

”(atﬁv al‘l‘ga VB! atVB)HLOO((O,T)X.Q)’ ”!”]}O(Oyﬂ}ﬂ(g))) > 0,

such that for any 1 < m < N, we have the approximate relative energy inequality holds,

tm
5<p;l"|g’")+f0 /[W(uh—af)|2+<x+m|div<uh—a,)|2]dxdr
2
3

<€) 1P + R+ Rs+ Y L3, (7.12)

i=1
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where the remainder terms L; (1 < i < 3) are defined by

fm p'(p,) oo
Ly := (P, = pn) [0 plcdxdt, Ly:=— P (pJun-Vp dxdt,
0o Je P o Je b,

A __ min{e, 1} .
L] = C(hT+ 1), A= ————. [diple :=0p(t. ). for [tn—1. tn].

Proof We start the proof from the discrete version of the relative energy inequality (7.5)
derived in the previous Theorem 7.3. The terms R; (i = 2, 4,5, 6) will be transformed to a
more convenient form, and the other terms R; (i = 1, 3) will remain unchanged.

e The term R,. By applying the Cauchy—Schwarz inequality and the estimate (3.2), we
can show

IRal <Cllunll20,7:m p 12 = el 20151 @)
<C(Eo, lull 1. 12 2))h-

e The term RR4. Firstly, by applying the Taylor formula, we have
- - 1 -
H(p") = H(p" ™) = H'(p") (" = p"™D) = SH"ED" = "D, (713)

where & € co{p", B"’l}. Let§,(t, ) := &) fort € [t,—1, 1,]. By applying the identity
(7.13), the term R4 can be rewritten as

Ra=L1+ L3714+ L3,

where the remainder terms £3; are given by

tm p'(p)
L3 = (o, = Pn) (Dip, — [9:plr)dxdr,
0 2 P

4
1 tm 2
— _ " o x
L3 =3 fo /Q (on — p YH"(Ep)(p, — p7) dxdr.
Using the Taylor formula and the mass conservation (see, Remark 3.1), we obtain
|L3,11 =tC(p, . gmax)|P/|c1([£min,£max])||£T = pnllLro.1yx2) 10 Pl Lo (0. 7)< 2)
StC(Mo, s P |P/|cl([£mm,£max])» 10 o1l Lo (0. 7y 2)) -
By a similar argument, we conclude that
1L32l = tC (Mo, p s P |P/|c1([gmm,£max])7 19: £l oo 0,7y % 2))-

e The term Rs5. We may write
tlTl
Rs =— / / On) - (HH(BZ)VB: - H”(BT)ng)dxdt
o Jo

tm
- f / prten - H'(p )V p._dxdt = L33 + L.
0o Je - =
By applying the first-order Taylor formula, we obtain

Ip"(p) = P'(p )L, 1)x2)
< C(Ip/lcl@mm,ﬁmx]), 19: pllLoo 0.7y x2))T- (7.14)

@ Springer



Journal of Scientific Computing (2023) 94:47 Page310f41 47

Using the estimate (7.14) and the Taylor formula, we have

||HN(£:) - HU(QT)”LOO((O,T)X.Q)
= C(Bmin’ o,

max

P () = p'(p ) L0, 1% 2)
+CP i Prax? |P’|c1([&mn,&m]))||g’rk — P llL=0.1)x2)
< CP i Lo 1P M1, o 0 10521l (0.1 x2))T- (7.15)

Therefore, by using the Holder inequality and the estimate (7.15), we obtain

[L33] <C (82, T)llpn ||L2V((0,T)x9)||uh||L2(o,T;Hl(_Q))
x I(H"(p) = "' (e NV L% L0, 1) 2)
=C 2, DllprliLzr .1y 1nll 20,7 1 (52))
x IH" (p )V (P = p ) lL(0,1)x2)
<C(2,T, Eo, P onin’ Pmax’ |P/|cl([3mm,£max])a 1B p, Vp, 3:Vp)llLoo,1)x2))T-

e The term R¢. By applying the estimate (4.3) of Lemma 4.2, we get that

IR6l <C(2, DIVH (o)L (0, )<

A

<C(,T, Pinin’ Prmax’ |P/|c1([£mm£max]), IVollLeo.myx2)h”.
Combining the above analysis, we have 21‘6:1 Ri = R+ Rs + 21‘3:1 L;. After setting
L3 = Z?:l L3,i + R2 + Re, we deduce the approximate relative energy inequality (7.12)
from the estimate (7.5). The proof is thus complete. O

Next we derive a discrete identity for the strong solutions.

Theorem 7.5 Suppose that Hypothesis 2.1 is satisfied and the pressure p = p(p) satisfies
the hypothesis (1.2) with y > 1. Let the internal energy 'H is given by H(p) = %. Let

the family (Br’ u.) be defined as in (7.3). For any 1 < m < N, then the following identity
holds:

5
R +Zﬁf =0, (7.16)
j=4

where the remainder terms L; are defined by

tm
L4 := —/ / p'(p up - Vp_dxdt,
0 Je
tm
Ls ::—/ / p(p_)divu dxdt.
o Jo

Proof Since (p, u) is a strong solution of the problem (1.1), the second equation of (1.1) can
be rewritten in the form

nAu + A+ pn)Vdivu = Vp(p). (7.17)
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Taking ¢t = t, in (7.17), multiplying this identity by u} — u" and integration over £2. We get,
after summation fromn = 1ton = m,

thl
0:—/ / (nAu, + A+ p)Vdivu,) - (wy —u,)dxdt
0 Je

Im tm
+/ / Vp(pr) ~updxdt — [ / Vp(,or) ~u dxdt.
0 2 - 0 2 -

which implies that R + Z?=4 L; = 0. The proof is thus complete. O

Now, we will derive the unconditional error estimate of the problem (1.1) based on the
approximate relative energy inequality (7.13) and the discrete identity (7.16).

Theorem 7.6 Let 2 C RY, d = 2.3 be a bounded domain and assume that the viscosity
coefficient ., ) satisfies u > 0 and dix + 2u > 0. Suppose that the pressure p = p(p)
satisfies the assumption (1.2) with y > g. The initial values (po, uo) satisfies Hypothesis 2.1
with the finite energy Ey := fQ H(po)dx and finite mass My = f_Q podx. Let (p, u) be a
strong solution of the problem (1.1) belonging to the class
{pecz([o,ﬂxm, 0<Pin P = P
ueC(0,T1x 2), ulorxe =0,

emanating from the initial data (po u). Let the families (pp, up) and (p u,) be defined
as in (3.16)—(3.17) and (7.3), respectively. Then there exists

C: C(T .Q M(),E() 1%

“min’ max |p |CI Prnin® pmax])’

13 p, dp, Vo, 3 Vp, V 2w (0.7)x2)) > 0,

such that for any 1 < m < N, then we have

tm
5(p;:“|g'")+/0 /Q[mvwh—g,>|2+<x+u>|div<uh—ar)ﬁ]dxdt

e
<CEf I+, A= (7.18)

Proof Combining the approximate relative energy inequality (7.12) and the discrete identity
(7.16), we can show

Im
Elpp' 1p™) +/O /Q (Wl V (@ —u)* + O+ )l divu, — u,)|*ldxde

7
<l PN+ ) Li.
i=6

where the terms £; are defined by

/

t}’ll p - ph llﬂ p (p )
Le :=/ / =t p’(gr)uh - Vp_dxdt +/ / (p, — Pn) —*
o Jo p, o Jo p.

T

[0, pledxdr,

I
+/ / (p(p,) — plon)) divucdxde, |L7] < Ch* +1).
0 Je
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We next bound the term Lg. Since the pair (p, u) is a strong solution of the problem (1.1),
the first equation of (1.1) can be rewritten in the form

[0p]r = —u, - Vgr - P, dive, . (7.19)
By the identity (7.19), we write
Le = Le,1 + Ls,2,

where

tm
Lo, = —/0 /Q (p(on) = P'(p ) on — p) — p(p)) divurdxdt,

fm (P = Ph
Le,2 ::f / =t p'(p ) (up —u,)-Vp_dxdt.
o Je P,

It is easy to check that
tm
[Leal = C(T, £2, | diVE||L°°((0,T)><SZ))/ E(pn | p )dt.
0

Let 25,1 := {%’ < pn < 2&} and §2), 2 := §2 \ £25,,1. The term L > can be rewritten as

Lo = L62,2,1 + L6222

where

I P, — Ph ,
L6.2,2. 5=/ f =t p'(p ) up —u,)-Vp dxdt, i=1,2.
0 2 Py

By applying the Poincaré and Young inequalities, the estimate (7.2), P, € (Bmin’ P ) We

max
can show

[L6.2,02,,1 <C(6, $2, p

tm
+5/ /IV(uh—gT)lzdxdt.
0 2

By employing the estimate (7.2) and P, € (

Bmin ’ Bmax

tm
v P P11 e IV RIL(0.12) /0 Eon | p, )it

),y > g, we have

[
A+ pp) = lpn = p 15, in 250 (7.20)

Using the Poincaré€ and Young inequalities, the estimates (7.20) and (7.4), p . € ( Lonin’ Bmax)’
we conclude that

E(onlp ) = Clp, .- P,

max

tln
62,20 SO 2. Ly D 1001, 5, 00 IR 01120 [ €112, )e

tm
+5/ /W(uh—g,)ﬂdxdt.
0 2

Combining the above analysis with § = %, we get that
r"'l
(R p™) +f / IV @n — u)* + O+ )l div(u, — u,)*1dxdt
0o Jo

t’ﬂ
< CE 10 + i+ C [ el p
0
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where the constant C > 0 is given by

C ::C(Tv Qa M07 EOa gminv Bmax’ |p/|C]([p

Zmin’ Bmax

D
I@p. diep. V. %V p, V)| L2 ((0,7)x 2))-

Using the estimate (7.4), we can show

m—1

Im m
/O Elpnlp )dt =7 ZS(pZ ") <t ZE(/)Z | p") + Cr,
n=1 n=1

which implies that

m
EQ 1™+ r/ [V @)y — wh)? + (1 + w)l div(uy — uh)|*ldx
n=1 2

m—1
SCEP P +h* +T)+CT Y Eoft 1 oM. (7.21)

n=1

By applying the standard discrete version of Gronwall’s lemma for the inequality (7.21), the
proof is thus complete. O

Finally, we will give an error estimate for the discrete L?(L?) norm of p(pp).

Theorem 7.7 Suppose that the condition of Theorem 7.6 holds. Let the families (py,, up) and
(Br’ u.) be defined as in (3.16)—(3.17) and (7.3), respectively. Then there exists

C=C(T. 2, Mo, Eo. Py Py P10, 00D

L min’Emax

130, 30, VP, 3:Vp, V2u) || Lo 0.1)x2)) > 0,

such that for any 1 <m < N, we have

m .
min{e, 1}
T Ipo) = P2y = CEWR 1 P +h* + 1), A= — . (122)

n=1

Proof Taking t = t, in (7.17), multiplying this identity by v, € V, and integral over £2, we
conclude that

M/ Vu" : Vupdx + (A + u)/ divu" div v,dx
Q Q
—/ p(p™) divvydx = 0. (7.23)
o E
Subtracting (7.23) from (3.8), we can get the error equation
/,L/Q V(uy —u"): Vopdx + A+ p) /;2 div(u} — u") div v,dx

— /Q (p(py) — p(p") divopdx =0, Vv, eV, (7.24)
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Let rj; == (p(py) — p(p})) — |}7|f9 (p(py) — p(pj))dx for 1 < n < N. Taking v, =
I7,/B[r2] in (7.24), we can show

Ip(oR) = PEDIT 20y = 1217 1P} = PPN 1 (o) + 1t /ﬂ V(uj —u") : VII,B[r}1dx

+(h+ u)f div(u — u") div IT,B[r} 1dx —/ (p(p}) = p(p™) div T, Br}1dx.
2 2 - -
By applying the Cauchy—Schwarz inequality, the estimates (3.3) and (3.12), we obtain
I pCop) — p(gZ)lliz(Q) =CE)lpey) — peDli@lirter) — P(eD 2 @)
+ CEDNV @y —uMll20)lploy) — P22
+ C2)lpp)) — PPl IP(oy) — PP L2 (02)
which implies that
1pGo) = P20y <CENP() = P10, + CENV @, — w72 o)
2
+C@)lpe)) = PEII2a)- (7.25)

Summing (7.25) from n = 1 to n = m and multiplying the resulting inequality by 7, we
conclude that

m 10
T 1) = P72 = CED Y L,
n=1 i=8

where the terms £; (8 <i < 10) are defined by

m m
L=t ) 1pe) = POy Loi=7 Y IV@) = w7
n=1 n=l1

m
Lio:=t Y 1p(el) = P22y

n=1
Bound on Lg. By applying the estimate (3.1), the mean value theorem and p", BZ €
[Bmm, Bmax]’ we can show
Ip(ep) = P12y <IP(™) = POl 2y + 112" (2™ (0h — Pl L1 (2
+ IpGop) = P ("o — P = PPl (2
=C(£2, |P/|cl([£mm,£max]), IVellLeo,myx2)h
+CUPIerqp, o IPK = P"L1i2) + CEWD] | p™).

Let 2} | := {% <pp <2p"}and 2, := §2\ §£4,1,,. By applying the estimate (7.2) and
(7.20), we obtain

n __n <C9 n __ . n n CQ n __ . n
lon = P Iy =CED NPy — " ll22p ) + C(E2) oy glng(%)

1 5
<C(2,p, .. P, IEX ORI +C(2,p . p  IE(py | p").

Using the estimate (7.4), we get that

1
lop — P L@y = C(2, Eo,p, . o P, |P/|cl([Bmm.&nax]))52 (o 1 7).
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Combining the error estimate of Theorem 7.6, which implies that
|L5] < CE(oy | %) + h* + ).
By a similar argument, we can show
Lol <C(E(op | p%) + 1™ + 1),
110l <C@2.T 1P lcrqp,p - IVPIIL2(0.1)x2))h’.

Combining the above analysis, the proof is thus complete. O
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A Appendix
A.1 The Proof of Theorem 3.3
Our goal is to show the existence of numerical solutions for the scheme (3.7)—(3.8) by
applying Schaeffer’s fixed point theorem. For this purpose, we define the mapping
L:Vy, >V, Llul— U,

in the following way.

e Given u € Vj, we will prove the unique solution p € @, of the linear system

—1
0= Py _
/ ——gpdx — ) Uplp. ul — h*"'[pl[enldsS
0 T
Fe}_/z,int

+h7t Y | [ellenlds =0, (A1)
Fej:h.im

for any ¢, € Q. In order to prove the linear problem (A.1) has a unique solution p(u),
we need prove that the associated homogenous problem

[ poax—c 3 [ vptouitoas +1 e Y [ [olionlds = 0s2)
2 FE]'-h,int F FE]'-h,int

admits a unique solution p = 0. By the same proof of [14, Section 4.3], we can show the
homogenous problem (A.2) of renormalized equation

/S;B’(p)pq)hdx—‘r Z /;_UP[B(P),H][[%MS

FE]:h,im

#0 e Y [ Beolelas+n e Y [ 5@ i
FeFnim T FEFhint

+2 03 f onB" (1)l - mldS = 7 f on(B(p) — B (p)p) divudx, (A3)
2 Fefh,inr §2

for any ¢, € Qy, where B € CZ(R+), M, Mp € co{p, p+} on each face F' € Fj. Any
non negative C 2(R) convex approximations function S, such that S.(p) — S(p) and
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SL(p) — S'(p) forall p # 0, where S(p) = max{—p, 0}. Taking (@5, B) = (1, S) in
(A.3), we have

fg S(p)dx <1 /ﬂ on(Sc(p) — S.(0)p) div udx + /Q (Sc(p) — S (p)p)dx. (Ad)

Combining the inequality (A.4) and S(p)—S'(p)p = Oforall p # 0, we obtain S(p) = 0
and p > 0. Let ¢, = 1 in (A.2), we obtain

/ pdx = 0. (A5)
2

According to p > 0 and (A.5), we have p = 0, then the problem (A.1) has a unique
solution p(u). By applying the Lemma 3.3, we have p(u) > 0.

e For given p € Q, and u € V), we can show the unique solution U € V), of the algebraic
system

/ [uVU : Vo, + (A + ) divU div vy ldx = / p(p)divv,dx, (A.6)
Q Q

for any v, € Vj, where p = p(u) is determined by (A.1). Similarly, by applying the
Lax-Milgram Lemma for the linear system (A.6), we have a unique solution U € V.

Clearly, any fixed point of the mapping L is a solution of the scheme (3.7)—(3.8). Next,
we need show that the set

{(zeV,:z2=AL~>Z), Ac]0,]1]}

satisfies the conditions of Lemma 3.5. In other words, we need to verify that the set is non
empty and bounded. It is obvious show that the set is non empty (0 belongs to the set).

Finally, for all A € (0, 1], we need to prove the solution u of the equation u = AL[u] can

be bounded in terms of the local data (pZ_l, uZ_l) uniformly with respect to A. Setting

pp = p(u), uy =uin (3.7)~(3.8), where u is a solution of u = AL[u], we have

| wioas— 3> [ Uolop ] onlas

FEJ:h,inr

+h N / [onllen]dS =0,
FE]:h.im‘

A7 / [uVu) = Vv, + (0 + w) div ], div v, |dx —/ p(pp) divvydx = 0.
2 2

By recalling the steps in the proof of discrete energy estimate (3.10), we can show

1 . _
/ H(pdx + Z/ [|Val? + (o + )l divad [*1dx 5/ H(pp Hdx. (A7)
2 2 Q
Combining (A.7) and 0 < A < 1, there exists a constant C independent of A such that
Iy, = nlVugljz o) < C.

Combining the above conclusions and Lemma 3.5, we can show the schemes (3.7)—(3.8) has
at least one solution. By applying the Lemma 3.3, we obtain the density p;; > 0. The proof
is thus complete.
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A.2 The Proof of Theorem 6.1

Taking the zero extension of vy, for R \ §£2. We show the proof of this Theorem in two steps.
Step 1. If ¢ = 2, for any x € RY, it is easy to check that

1
vp(x) —vp(x — ) = /0 Vo (x — s&) - &ds. (A.83)

For the identity (A.8), by applying Cauchy—Schwarz inequality, we conclude that

1
4 () — v (x — £)2 < |s|2/0 Von(x — s&)1%ds.

Therefor, by employing Fubini theorem and Vv, vanishes outside §2, we have

/ on () — vy (x — £)2dx < |EP / Vo, () 2dx. (A9)
R4 2

Step 2. For the case of 2 < g < 6, by applying Gagliardo-Nirenberg interpolation inequality
and (A.9), we obtain

194 ) = w4 = &)l zaguey <N = 04 C = O g 194 6) = w3 = Dol

<IEI* 1V ORI ) 198 C) = v = E) - (A.10)

According to the embedding H (1) <> L5 and the Poincaré inequality, we get

lon() = va( = &)l Loay < ClIVURIIL2(g0)- (A.11)
Inserting (A.11) into (A.10), which implies that
103 () = va (- — )l aray < CLELIVVL 2 (0)- (A.12)

Combining the inequalities (A.9) and (A.12), the proof is thus complete.

A.3 Some Functional Analysis Results

For the convenience of readers, we list some functional analysis results that need to be used
in this article. We first recall the following weak convergence and monotonicity properties
(see, e.g., [16, Theorem 10.19]):

LemmaA.1 Let I C R be an interval, Q C RN a domain, and (P, G) € C(I) x C(I) a
couple of non-decreasing functions. Assume that p, € L'(Q: I) is a sequence such that
P(pn)—P(p),
G(pn)—=G(p), in L'(Q).
P(pn)G(pn)—P(p)G(p),
(i) Then P(p) G(p) < P(p)G(p). (ii) If, in addition, G € C(R), G(R) = R, G is strictly

increasing, P € C(R), P is non-decreasing, and P(p) G(p) = P(p)G(p), then P(p) =
P o G (G(p)). (iii) In particular, if G(z) = z, then P(p) = P(p).

Secondly, the convex function have the lower semi-continuous with respect to the weak
topology on L' (0) (see, e.g., [11, Theorem 2.117).
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LemmaA.2 Let O C RY be a measurable set and {va}i2, a sequence of functions in
L'(O0; RM) such that

v,—v, in L'(0;RM).

Let @ : RM — (—o0, 00] be a lower semi-continuous convex function such that @ (v,) €
L'(0) for any n, and

@ (v,)—@(v), in L'(0).
Then

®(v) < ®(v) a.a. on O.
If. moreover, @ is strictly on an open convex set U C RM | and

®(v) =P () a.a. on O,
then

v,(y) > v(y) for a.a. ye{ye€ O :v(y) € U}

extracting subsequence as the case may be.
Next, we introduce the following sequential compactness (see, e.g., [15, Lemma 3]).

LemmaA.3 Let Q C RM, suppose that p,—p in L*(Q) and plog(p) = plog(p) are
satisfied. Then

pn — p in L'(Q).

Finally, we recall the following discrete version of the Aubin-Lions compactness Lemma
for the Bochner spaces, which is useful in the convergence analysis. (see, e.g., [7, Theorem

1D.

LemmaAd4 Let Eg, E and E| be Banach spaces such that the embedding By — E is
compact and E — E; is continuous. Given T > 0 and a small number T > 0, write
0, T]= UII<M=1 (tx—1, tx] with ty = kt and Mt = T. Let {v; };=0 be a sequence such that

e The mapping t — v (t, -) is constant on each interval (ty_1,tx), k =1,2,..., M.
o Let Div(t,-) = (v (t, ) — v (t — 7, ) /T be the discrete time derivative of v, (t, -). The
sequence {v };~0 satisfies the following estimates:
lvellLro©,7:80) + 1DV llLo1 2,138y < C,

forany 1 < po, p1 < 0o, where Cy is a constant which is independent of T.

Then {v;};0 is relatively compact in LP°(0, T; E).
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