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Abstract
In this paper, we study a mixed discontinuous Galerkin-finite element method (DG-FEM) for
solving the semi-stationary compressible Stokes system in a bounded domain. The approx-
imation of continuity equation is obtained by a piecewise constant discontinuous Galerkin
method. The discretization of momentum equation is obtained by conforming Bernardi–
Raugel finite elements. The convergence of mixed DG-FEM for nonlinear, isentropic stokes
problem is rigorously established by compactness arguments and the existence analysis of
Lions on the discrete level. Employing the continuous relative energy functional method and
a detailed consistency analysis, we derive two error estimates for the numerical solution of
the semi-stationary isentropic stokes system. In particular, we establish the L2 error esti-
mates for the pressure. All convergence results do not require the boundedness of numerical
solutions.

Keywords Compressible Stokes system · Discontinuous Galerkin method ·
Bernardi–Raugel finite element · Convergence · Error estimates

1 Introduction

Let Ω ⊂ R
d , d = 2, 3 be a bounded domain, we consider the following semi-stationary

compressible Stokes problem:{
∂tρ + div(ρu) = 0, in (0, T ) × Ω,

− μΔu − (λ + μ)∇ div u + ∇ p(ρ) = 0, in (0, T ) × Ω,
(1.1)
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where ρ is the fluid density and u is the velocity. The parameters coefficients μ and λ are
assumed to be constant and satisfy μ > 0, dλ + 2μ > 0. The pressure p(ρ) is governed by
the isentropic equation (or Boyle’s law):

p(ρ) = aργ , a > 0, (1.2)

where γ > 1 is the adiabatic exponent. The internal energyH is given byH(ρ) = p(ρ)
γ−1 . The

system (1.1)–(1.2) is supplemented with initial conditions for the density

ρ(0, x) = ρ0, in Ω (1.3)

Together with the following no-slip boundary condition for the velocity

u = 0, on (0, t) × ∂Ω. (1.4)

In recent years, numerical methods for compressible Stokes equations have received some
attention. In the pioneering work of [20], the authors proposed a low order mixed finite
element-finite volume (FE-FV) scheme based on nonconforming P1 (also called Crouzeix–
Raviart) finite element for solving the stationary compressible isothermal Stokes problem
and analyzed its convergence to a weak solution of the continuous problem. After that,
the convergence of mixed FE-FV scheme to weak solution of the isentropic case under
the assumption of γ > 1 has been established by Eymard et al. [10]. Meanwhile, they
generalized the results to the well known Marker-and-Cell (MAC) scheme in [9]. Later,
the convergence of mixed FE-FV scheme to weak solution of the general compressible
Stokes problem (p = ϕ(ρ), where ϕ is a superlinear nondecreasing function from R to
R) under the hypothesis γ > 1 was proved by Fettah and Gallouët in [18]. The models
studied in the above mentioned literature are all steady state compressible stokes models.
The semi-steady compressible Stokes model is known as a reasonable approximation of
the isentropic Navier–Stokes equations when the convective effects can be neglected. The
convergence of mixed DG-FEM based on nonconforming P1 finite element for the semi-
steady compressible Stokes flow with a Navier boundary condition was shown by Karlsen
and Karper in [26]. Meanwhile, they proposed and analyzed the convergence of a new mixed
DG-FEM (here the velocity and vorticity were approximated by the div-conforming and
curl-conforming Nédélec finite element spaces) to the semi-stationary compressible Stokes
systems in [27]. We also mention that the convergence of the MAC scheme for the semi-
stationary compressible Stokes flow with Dirichlet boundary conditions was proved in [21].
Very recently, a mixed FE-FV scheme based on Bernardi–Raugel finite element scheme for
the stationary compressible isothermal Stokes system was proposed in [2]. The authors gave
a convergence proof for the isothermal Stokes equations and investigated the convergence of
numerical solutions to its incompressible limit. The convergence analysis is restricted to the
isothermal Stokes equations (the pressure of the form (1.2) with γ = 1) and the extension to
the case γ > 1 remains open.

The aim of this paper is to show the convergence and error estimates of a mixed DG-FEM
based on Bernardi–Raugel finite element for the semi-stationary (isentropic) compressible
Stokes equations. This work consists of two major parts. The first part of this paper is to
show the convergence of a mixed DG-FEM to a weak solution of the system (1.1) for any
γ > 1. The convergence result of this paper is nontrivial compared to the existing literature.
On the one hand, we see that the function vh = ΠV

h ∇Δ−1[ρh] is not a solution to the div-curl
problem

div vh = ρh, curl vh = 0,
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where ΠV

h is the reconstruction interpolation operator of Bernardi–Raugel finite element
space Vh . Therefore, it is more difficult to obtain the discrete version of the effective vis-
cous flux compared to [26], which will complicate the convergence analysis in this paper.
On the other hand, the convergence analysis of this paper is valid for the semi-stationary
(isentropic) compressible Stokes equations for any γ > 1. Of course, it is also valid for
the stationary compressible Stokes equations with a slight modification, which fills the gap
in the convergence analysis of [2] for the case γ > 1. We also want to remark that the
H1-conforming Bernardi–Raugel finite element has several advantages compared to the
nonconforming Crouzeix–Raviart element used in the references [10, 18, 20, 23, 26]. Firstly,
the conforming finite element method has less number of degrees of freedomwhich results in
a cheaper computational cost. Secondly, the Korn’s inequality is admissible for the conform-
ing method employed to approximate the velocity unknown. It is well known that the Korn’s
inequality does not hold for the nonconformingCrouzeix–Raviart finite element space. There-
fore, the conforming setting of this paper is easier to generalize to other viscous stress tensor
compared to the nonconforming method in the references. Third, the convergence proofs of
the conforming setting is less “structure dependent” than the nonconformingmethod. In other
words, the methodology of the convergence proofs in this paper can be easily generalized to
other numerical schemes.

The second part of this paper is to derive an error estimate between the mixed DG-
FEM solution of the semi-stationary compressible Stokes system and its strong solution.
By a detailed consistency analysis and the relative energy functional method introduced
in reference [13], two error estimates for the numerical solutions of problem (1.1) under
the hypothesis γ > 6

5 are proved in this paper. All the error results are unconditional in
the sense that we do not require the boundedness of numerical solutions and the CFL like
condition on the temporal mesh size. The relative energy method was originally designed to
analyze the weak-strong uniqueness property of the compressible Navier–Stokes equations.
Recently, this idea has been used to analyze the error estimate of numerical schemes of
compressible Navier–Stokes system under the hypothesis γ > 3

2 , such as the mixed DG-
FEM based on nonconforming Crouzeix–Raviart finite element [12, 23], the implicit MAC
scheme [24] and the finite differencemethod [31]. The error analysis of this paper uses similar
analytical techniques but with some modifications. Firstly, our analysis is based on a detailed
consistency analysis and the continuous relative energy functional method, rather than the
discrete version used in the above literatures. Secondly, our numerical scheme is different
from the above work and it requires to deal with some different technical estimates. Thirdly
and more importantly, we derive the unconditional L2 error estimate of pressure under the
assumption of γ > 6

5 . To the best of our knowledge, this is the first unconditional error
estimate of pressure for the compressible flows.

A brief overview of this work is provided as follows. In the next section, we introduce
some notations and preliminary knowledge for this paper. In Sect. 3, we consider a mixed
DG-FEM based on Bernardi–Raugel finite element for the semi-stationary compressible
Stokes equations. After that, we deduce the discrete energy law, a priori estimate of pressure,
the existence of numerical solutions and some uniform bounds. In Sect. 4, we establish the
consistency formulation for the continuity equations. In Sect. 5, we show the boundedness
of discrete time derivative and an important priori estimates for the density. The convergence
of mixed DG-FEM for the nonlinear, isentropic Stokes equations is proved by compactness
arguments and the existence analysis of Lions on the discrete level in Sect. 6. In Sect. 7,
an unconditional error estimate for mixed DG-FEM solution of the problem (1.1) under the
hypothesis γ > 6

5 is proved by the relative energy functional method.
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2 Notation and Preliminaries

In this section, we introduce some notations and preliminary results used in this paper. For any
1 ≤ q ≤ ∞, Lq(Ω) denotes the usual Lebesgue space on Ω . For all non-negative integers k
and r , Wk,r (Ω) stands for the standard Sobolev spaces. We write Hk(Ω) = Wk,2(Ω). We
define H1

0 (Ω) as the subspace of H1(Ω), which is zero on ∂Ω . The vector-valued quantities
will be denoted in boldface notations, such as u = (ui )di=1 and L2(Ω) = (L2(Ω))d .

Hypothesis 2.1 The initial data ρ0 satisfies the following properties:

ρ0 ∈ Lγ (Ω), ρ0 > 0.

Definition 2.1 We say that (ρ, u) is a weak solution of the problem (1.1) if it satisfies the
following properties:

(i) The solution (ρ, u) satisfied the regularity requirements

ρ ∈ L∞(0, T ; Lγ (Ω)) ∩ L2γ ((0, T ) × Ω), u ∈ L2(0, T ; H1
0(Ω)).

(ii) For any test fuctions (ϕ, v) ∈ C∞
0 ((0, T ) × Ω) × C∞

0 ((0, T ) × Ω) and tF ∈ [0, T ],
there holds the weak formulation∫ tF

0

∫
Ω

[ρ∂tϕ + ρu · ∇ϕ]dxdt =
[∫

Ω

ρϕdx

]t=tF

t=0
, (2.1)

∫ tF

0

∫
Ω

[μ∇u : ∇v + (μ + λ) div u div v − p(ρ) div v]dxdt = 0. (2.2)

(iii) The solution (ρ, u) satisfies the energy inequality[∫
Ω

H(ρ)dx

]t=tF

t=0
+

∫ tF

0

∫
Ω

[μ|∇u|2 + (λ + μ)| div u|2]dxdt ≤ 0. (2.3)

Next, we recall the following renormalized solution argument introduced by DiPerna and
Lions (see e.g., [6]).

Definition 2.2 Wesay that (ρ, u) ∈ L∞(0, T ; Lγ (Ω))×L2(0, T ; H1
0(Ω)) is a renormalized

solution of the continuity equation ∂tρ + div(ρu) = 0 if the identity

∂tΦ(ρ) + div(Φ(ρ)u) + Ψ (ρ) div u = 0,

in D′((0, T ) × Ω) holds for any Φ ∈ C[0,∞) ∩ C1(0,∞) with Φ(0) = 0, Ψ (ρ) =
Φ ′(ρ)ρ − Φ(ρ) and Φ(ρ), uΦ(ρ) ∈ L1((0, T ) × Ω).

Finally, we recall the following well-known lemma [30] which says that the weak solution
ρ is a renormalized solution.

Lemma 2.1 Suppose that couple (ρ, u) ∈ L2((0, T ) × Ω) × L2(0, T ; H1
0(Ω)) satisfies

the continuity equation in the weak sense (2.1). Then (ρ, u) is also renormalized solution
according to Definition 2.2.

3 Numerical Method

In this section, we consider a mixed DG-FEM based on Bernardi–Raugel finite element for
solving the compressible stokes problem (1.1).
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3.1 Finite Dimensional Function Spaces

In order to introduce the mixed DG-FEM scheme, the mesh and some discrete function
spaces are defined. Let Th be a quasi-uniform tetrahedral partition of Ω with Ω = ∪K∈Th K ,
Ki ∩ K j = ∅ for Ki , K j ∈ Th , i �= j . The mesh size is defined by h = maxK∈Th hK ,
where hK is the mesh size of K . We write Fh as the set of faces in Th , while F is the face.
Furthermore, Fh,ext is the set of faces F ∈ ∂Ω , while Fh,int = Fh \ Fh,ext .

In order to discretize the problem, we introduce two families of finite-dimensional spaces.
Before proceeding further, we write Pn(K ) as the space of polynomials of degree n, while
P
d
n(K ) = [Pn(K )]d . We define the space of piecewise constant functions

Qh := {v ∈ L2(Ω) : v|K ∈ P0(K ), ∀ K ∈ Th}
for the approximation of the density. In addition, we introduce the associated projection
operator

Π
Q

h : L2(Ω) → Qh, Π
Q

h [v]|K = 1

|K |
∫
K

vdx, ∀ K ∈ Th .

By recalling the standard Poincaré and Jensen’s inequalities, we have the following interpo-
lation error estimates{ ‖ΠQ

h [ϕ]‖Lq (K ) ≤‖ϕ‖Lq (K ), ‖ϕ − Π
Q

h [ϕ]‖Lq (K ) ≤ Ch‖∇ϕ‖Lq (K ),

‖ΠQ

h [ϕ]‖Lq (Ω) ≤‖ϕ‖Lq (Ω), ‖ϕ − Π
Q

h [ϕ]‖Lq (Ω) ≤ Ch‖∇ϕ‖Lq (Ω),
(3.1)

for any K ∈ Th and 1 ≤ q ≤ ∞. We define the trace

v+ := lim
δ→0+ v(x + δnF ), v− := lim

δ→0+ v(x − δnF ),

where nF is the outer normal vector to the face F . Moreover, we define the jumps �v� :=
v+ − v− for any F ∈ Fh,int . Finally, we introduce the semi-norm of the space Qh

‖v‖2
Qh

:=
∑

F∈Fh,int

∫
F

�v�2

h
dS, ∀ v ∈ Qh .

We employ the Bernardi–Raugel finite element space (see, e.g., [3, 25])

Vh := {v ∈ C0(Ω) : v|K ∈ BR(K ),∀ K ∈ Th} ∩ H1
0(Ω)

for the approximation of the velocity. The local Bernardi–Raugel finite element spaceBR(K )

is given by

BR(K ) := P
d
1(K ) ⊕ Span{ pi , 1 ≤ i ≤ d + 1}, pi :=

∏d+1

j=1, j �=i
λ jni ,

where λ j is the barycentric coordinate of K and ni is the unit outward normal to Fi ⊂ ∂K .
We introduce the reconstruction interpolation operator (see, e.g., [25, Chapter II])

ΠV

h : H1
0(Ω) → Vh,

∫
Ω

divΠV

h [v]ϕhdS =
∫

Ω

div vϕhdS, ∀ ϕh ∈ Qh .

The interpolation operator ΠV

h has the following error estimates (see, e.g., [25, Chapter II,
Lemma 2.2 and 2.8]):

|ΠV

h v − v|m,Ω ≤ Chk−m |v|k,Ω, ∀ v ∈ Hk(Ω), (3.2)
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where | · |m,Ω is the semi-norm of Hm(Ω) and m = 0, 1, k = 1, 2. Obviously, taking
k = m = 1 in (3.2), the interpolation operators ΠV

h have the following H1-stable

‖ΠV

h v‖H1(Ω) ≤ C‖v‖H1(Ω), ∀ v ∈ H1
0(Ω). (3.3)

Finally, we introduce some basic estimate for finite dimensional function spaces. By
recalling the following inverse estimate from [5, Theorem 4.5.11], there holds

‖v‖Wr,q1 (Ω) ≤ Ch
m−r+3min{ 1

q1
− 1

q2
,0}‖v‖Wm,q2 (Ω), (3.4)

for any polynomial functions v|K ∈ P
d
n(K ), K ∈ Th , where C > 0 is a generic constant

independent of the mesh-size h,m and r are two real numbers with 0 ≤ m ≤ r , q1 and q2 are
two integers with 1 ≤ q1, q2 ≤ ∞. By applying the scaling arguments and the trace theorem,
we obtain

‖v‖Lq (∂K ) ≤ Ch− 1
q (‖v‖Lq (K ) + h‖∇v‖Lq (K )), (3.5)

for any K ∈ Th and 1 ≤ q ≤ ∞ and v ∈ W1,p(K ); see, e.g., [1]. Moreover, we apply the
inverse estimate (3.4) and the trace inequality (3.5) to obtain

‖v‖Lq (∂K ) ≤ Ch− 1
q ‖v‖Lq (K ), (3.6)

for any K ∈ Th and 1 ≤ q ≤ ∞, v ∈ P
d
n(K ).

3.2 The Discretization of the Convection Term

Before introducing the scheme, we discuss the approximation of the convection operators in
the continuity equation. To this end, we define the standard upwind operator Up[rh, vh] on
a face F , which is described by

Up[rh, vh] = rh,+[vh,F · n]− + rh,−[vh,F · n]+, ∀ rh ∈ Qh, vh ∈ Vh,

where [vh,F · n]+ := max{0, vh,F · n} and [vh,F · n]− := min{0, vh,F · n}, vh,F :=
1

|F |
∫
F vhdS. By applying the following lemma, we can show the distributional error of

the convective term and its numerical analogue.

Lemma 3.1 For all rh ∈ Qh and vh ∈ Vh, ϕ ∈ H1
0 (Ω), we conclude that∫

Ω

rhvh · ∇ϕdx =
∑

F∈Fh,int

∫
F
Up[rh, vh]�ΠQ

h [ϕ]�dS +
∫

Ω

(Π
Q

h [ϕ] − ϕ)rh div vhdx

+
∑
K∈Th

∑
F⊂∂K

∫
F

(Π
Q

h [ϕ] − ϕ)�rh�[vh,F · n]−dS

+
∑
K∈Th

∫
∂K

rh(ϕ − ϕF )(vh − vh,F ) · ndS.

Proof By the same procedure as in [14, Section 2.3], we easily see that∫
Ω

rhvh · ∇ϕdx =
∑

F∈Fh,int

∫
F
Up[rh, vh]�gh�dS +

∫
Ω

(gh − ϕ)rh div vhdx

+
∑
K∈Th

∑
F⊂∂K

∫
F

(gh − ϕ)�rh�[vh,F · n]−dS +
∑
K∈Th

∫
∂K

rhϕ(vh − vh,F ) · ndS
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for any rh, gh ∈ Qh , uh ∈ Vh and ϕ ∈ H1
0 (Ω). It can easily be seen that∑

K∈Th

∫
∂K

rhϕ(vh − vh,F ) · ndS =
∑
K∈Th

∫
∂K

rh(ϕ − ϕF )(vh − vh,F ) · ndS.

Combining the above analysis, the proof is thus complete. ��

3.3 Numerical Scheme

For the time discretization, let N be a fixed integer and 0 = t0 < t1 < · · · < tN = T be a
uniformpartition of [0, T ]with time-step size τ = T /N .Moreover, let tn = nτ be the discrete
time points and vn is the approximation value of the function v at time tn for 0 ≤ n ≤ N .
For convenience, we introduce dtvn = (vn − vn−1)/τ and Dtv(t) = (v(t) − v(t − τ))/τ .

We initialize the scheme ρ0
h := Π

Q

h [ρ0]. For any 1 ≤ n ≤ N , we compute (ρn
h , unh) ∈

Qh × Vh by the following numerical scheme

Scheme 1 Given ρn−1
h ∈ Qh, for any (ϕh, vh) ∈ Qh × Vh, find (ρn

h , unh) ∈ Qh × Vh such
that ∫

Ω

dtρ
n
hϕhdx −

∑
F∈Fh,int

∫
F
Up[ρn

h , unh]�ϕh�dS

+hε−1
∑

F∈Fh,int

∫
F

�ρn
h ��ϕh�dx = 0, (3.7)

∫
Ω

[μ∇unh : ∇vh + (μ + λ) div unh div vh]dx −
∫

Ω

p(ρn
h ) div vhdx = 0. (3.8)

Remark 3.1 (i) Taking ϕh = 1 in the discrete continuity equation (3.7), we can show∫
Ω

ρn
h dx = ∫

Ω
ρn−1
h dx . In other words, we have immediately the scheme satisfying the

conservation of mass. (ii) The stabilization term in the discrete continuity equation is useful
in the convergence analysis.More specifically, it provides control over the discrete semi-norm
of ρh by some (negative) power of the mesh size h. We remark that the artificial stabilization
term in the convergence analysis of compressible flows is introduced by [10, 18, 20].

The renormalized continuity scheme can derived by the following lemma and the proof
can be referred to [14, Section 4.1] for more details.

Lemma 3.2 (Renormalized continuity scheme). For any 1 ≤ n ≤ N, let (ρn
h , unh) ∈ Qh ×Vh

satisfy the continuity scheme (3.7). Then (ρn
h , unh) also satisfies the following renormalized

continuity scheme∫
Ω

dtB(ρn
h )ϕhdx −

∑
F∈Fh,int

∫
F
Up[B(ρn

h ), unh]�ϕh�dS

+ hε−1
∑

F∈Fh,int

∫
F
B′(ρn

h,+)�ϕh��ρh�dS + hε−1
∑

F∈Fh,int

∫
F
B′′(ηnρ,h)�ρh�

2dS

+
∫

Ω

ϕh(B′(ρn
h )ρn

h − B(ρn
h )) div unhdx = − 1

2τ

∫
Ω

B′′(ξnρ,h)|ρn
h − ρn−1

h |2ϕhdx

− 1

2

∑
F∈Fh,int

∫
F

ϕhB′′(ηnρ,h)�ρ
n
h �2|unh,F · n|dS, (3.9)
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for any B ∈ C2(R+) and ϕh ∈ Qh, where ξnρ,h ∈ co{ρn−1
h , ρn

h } on each element K ∈ Th and
η̄nρ,h, η

n
ρ,h ∈ co{ρn

h , (ρn
h )+} on each face F ∈ Fh, where co{a, b} = [min{a, b},max{a, b}].

In the upcoming analysis, the discrete density solution ρh is necessary for positive. For
this purpose, we recall the following lemma (see, e.g., [22, 26, 28]).

Lemma 3.3 For any 1 ≤ n ≤ N, we assume that ρn−1
h > 0 in Ω and unh ∈ Vh holds. Then

the solution ρn
h ∈ Qh of the discontinuous Galerkin method (3.7) satisfies

ρn
h ≥ minx∈Ω ρn−1

h

1 + τ‖ div unh‖L∞(Ω)

> 0.

3.4 A Priori Estimates

In this subsection, we establish some a priori estimates for the discrete solutions of the scheme
(3.7)–(3.8), including the energy estimate and the uniformly boundedness of pressure in
L2((0, T ) × Ω).

Theorem 3.1 (Discrete energy law) For any 1 ≤ m ≤ N, the solution (ρn
h , unh) of the scheme

(3.7)–(3.8) satisfies the following discrete energy law

Jh(ρ
m
h ) + τ

3∑
i=1

m∑
n=1

Dn
i,h + τ

m∑
n=1

Dh(unh) = Jh(ρ
0
h ), (3.10)

where the discerte energy Jh and the discrete dissipation Dh are defined by

Jh(ρ
n
h ) :=

∫
Ω

H(ρn
h )dx, Dh(unh) := μ‖∇unh‖2L2(Ω)

+ (λ + μ)‖ div unh‖2L2(Ω)
,

and the numerical diffusion terms Dn
i,h are given by

Dn
1,h := 1

2τ

∫
Ω

H′′(ξnρ,h)

∣∣∣ρn
h − ρn−1

h

∣∣∣2dx,
Dn
2,h := hε−1

∑
F∈Fh,int

∫
F
H′′(ηnρ,h)�ρ

n
h �2dS,

Dn
3,h := 1

2

∑
F∈Fh,int

∫
F
H′′(ηnρ,h)

∣∣unh,F · n∣∣ �ρn
h �2dS.

Proof Taking (B, ϕh) = (H, 1) in the renormalized continuity scheme (3.9) and by applying
H′(ρ)ρ − H(ρ) = p(ρ), we can show∫

Ω

p(ρn
h ) div unhdx = − dt

∫
Ω

H(ρn
h )dx − τ

2

∫
Ω

H′′(ξnρ,h)(dtρ
n
h )2dx

− hε−1
∑

F∈Fh,int

∫
F
H′′(η̄nρ,h)�ρ

n
h �2dS

− 1

2

∑
F∈Fh,int

∫
F
H′′(ηnρ,h)�ρ

n
h �2

∣∣unh,F · n∣∣dS.

Let vh = uh in (3.8), we conclude that

μ‖∇unh‖2L2(Ω)
+ (λ + μ)‖∇unh‖2L2(Ω)

−
∫

Ω

p(ρn
h ) div unhdx = 0.
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Combining the above analysis implies

dt

∫
Ω

H(ρn
h )dx + Dh(unh) +

3∑
i=1

Dn
i,h = 0, (3.11)

for any 1 ≤ n ≤ N . Summing (3.11) with respect to n from n = 1 to n = m, we obtain
(3.10). The proof is thus complete. ��

In order to show the L2(Ω) estimate of pressure, we introduce an inverse of the divergence
operator B, which satisfies the following result (see [4] and [19, Chapter 3]).

Lemma 3.4 Let Ω ⊂ R
d , d = 2, 3 be a bounded domain. There exists a linear operator B

enjoying the properties

B[r ] ∈ W1,q
0 (Ω), divB[r ] = r ∀ r ∈ Lq(Ω),

∫
Ω

rdx = 0, ∀ 1 < q < ∞.

Moverever, the linear operator B satisfies the following estimate

‖B[r ]‖W1,q
0 (Ω)

≤ C‖r‖Lq (Ω), ∀ 1 < q < ∞. (3.12)

Next, we prove the stability estimate for the discrete pressure.

Theorem 3.2 Suppose that Hypothesis 2.1 is satisfied. For any 1 ≤ m ≤ N, then the pressure
p(ρh) satisfies the following estimate

τ

m∑
n=1

‖p(ρn
h )‖2L2(Ω)

≤ C . (3.13)

Proof Let rnh := p(ρn
h ) − 1

|Ω|
∫
Ω

p(ρn
h )dx for 1 ≤ n ≤ N . Taking vnh = ΠV

h B[rnh ] in (3.8)

and by the definition of ΠV

h and B, we can show

‖p(ρn
h )‖2L2(Ω)

= 1

|Ω| ‖p(ρ
n
h )‖2L1(Ω)

+ μ

∫
Ω

∇unh : ∇ΠV

h B[rnh ]dx

+ (λ + μ)

∫
Ω

div unh divΠV

h B[rnh ]dx .

By applying Hölder inequality, the estimates (3.3) and (3.12), we obtain∣∣∣∣
∫

Ω

∇unh : ∇ΠV

h B[rnh ]dx
∣∣∣∣ ≤‖∇unh‖L2(Ω)‖∇ΠV

h B[rnh ]‖L2(Ω)

≤C‖∇unh‖L2(Ω)‖p(ρn
h )‖L2(Ω),∣∣∣∣

∫
Ω

div unh divΠV

h B[rnh ]dx
∣∣∣∣ ≤‖ div unh‖L2(Ω)‖ divΠV

h B[rnh ]‖L2(Ω)

≤C‖ div unh‖L2(Ω)‖p(ρn
h )‖L2(Ω).

Combining the above analysis, by applying Young inequality, we have

‖p(ρn
h )‖2L2(Ω)

≤ 1

|Ω| ‖p(ρ
n
h )‖2L1(Ω)

+ C‖∇unh‖2L2(Ω)

+ C‖ div unh‖2L2(Ω)
+ 1

2
‖p(ρn

h )‖2L2(Ω)
, (3.14)
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for any 1 ≤ n ≤ N .
Summing (3.14) with respect to n from n = 1 to n = m and applying the discrete energy

estimate (3.10) implies

τ

m∑
n=1

‖p(ρn
h )‖2L2(Ω)

≤Cτ

m∑
n=1

‖p(ρn
h )‖2L1(Ω)

+ Cτ

m∑
n=1

‖∇unh‖2L2(Ω)
(3.15)

≤CJ 2
h (ρ0

h ) + CJh(ρ
0
h ) ≤ C‖ρ0‖2γLγ (Ω) + C‖ρ0‖γ

Lγ (Ω).

By applying Hypothesis 2.1 for the inequality (3.15), we have (3.13). The proof is thus
complete. ��

3.5 Existence of Numerical Solution

By applying Schaeffer’s fixed point theorem, we can show the existence of numerical solu-
tions for the scheme (3.7)–(3.8) in this subsection. Firstly, we recall Schaeffer’s fixed point
theory (see, e.g., [8, Theorem 9.2.4]):

Lemma 3.5 LetL : D → D be a continuousmapping defined on a finite dimensional normed
vector space D. Suppose that the set

{z ∈ D : z = ΛL(z), Λ ∈ [0, 1]}
is non empty and bounded. Then there exists z ∈ D such that z = L(z).

Then we can prove an existence result of numerical solutions for the scheme (3.7)–(3.8).

Theorem 3.3 For any 1 ≤ n ≤ N, let (ρn−1
h , un−1

h ) ∈ Qh × Vh and ρn−1
h > 0 be given.

Then, for each fixed h, τ > 0, the scheme (3.7)–(3.8) has at least one solution

(ρn
h , unh) ∈ Qh × Vh, ρn

h > 0.

The proof of Theorem 3.3 can be found in “Appendix A.1”.

3.6 Uniform Bounds

In this subsection, we deduce some priori estimates from the discrete energy law (3.10). To
this end, we need to extend the definition of discrete solution for any t ≤ T . We define the
piecewise constant interpolations of ρn

h by

ρh(t, ·) :=
{

ρ0
h , for t ∈ (−∞, 0],

ρn
h , for t ∈ (tn−1, tn], ∀ 1 ≤ n ≤ N ,

(3.16)

and the piecewise constant interpolations of unh by

uh(t, ·) := unh, for t ∈ (tn−1, tn], ∀ 1 ≤ n ≤ N . (3.17)

The following stable results are proved by the discrete energy law and the L2 estimate of
pressure, which is crucial in both error estimates and convergence analysis.
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Lemma 3.6 Suppose that Hypothesis 2.1 is satisfied. Then the family (ρh, uh) defined in
(3.16)–(3.17) satisfies the following estimates:

‖ρh‖L∞(0,T ;Lγ (Ω)) ≤C, ‖ρh‖L2γ ((0,T )×Ω) ≤ C,

‖p(ρh)‖L2((0,T )×Ω) ≤C, ‖uh‖L2(0,T ;L6(Ω)) ≤ C,

‖ div uh‖L2((0,T )×Ω) ≤C, ‖uh‖L2(0,T ;H1(Ω)) ≤ C .

Lemma 3.7 Suppose that Hypothesis 2.1 is satisfied. Then the family (ρh, uh) defined in
(3.16)–(3.17) satisfies the following estimates:∫ T

0

∫
Ω

H′′(ξρ,h)|ρh − ρ�
h |2dxdt ≤Cτ,

∫ T

0
hε−1

∑
F∈Fh,int

∫
F
H′′(ηρ,h)�ρh�

2dSdt ≤C,

∫ T

0

∑
F∈Fh,int

∫
F
H′′(ηρ,h)|uh,F · n|�ρh�2dSdt ≤C .

Lemma 3.8 Suppose that Hypothesis 2.1 and γ ≥ 2 are satisfied. Then the family (ρh, uh)
defined in (3.16)–(3.17) satisfies the following estimates:∫ T

0
hε−1

∑
F∈Fh,int

∫
F

�ρh�
2dSdt ≤C,

∫ T

0

∫
Ω

|ρh − ρ�
h |2dxdt ≤ Cτ,

∫ T

0

∑
F∈Fh,int

∫
F

|uh,F · n|�ρh�2dSdt ≤C .

Proof Taking (B(ρ), ϕh) = (ρ2, 1) in renormalized continuity scheme (3.9) and summing
this result with respect to n from n = 1 to n = N , we obtain

1

τ

∫ T

0

∫
Ω

|ρh − ρ�
h |2dxdt +

∫ T

0
hε−1

∑
F∈Fh,int

∫
F

�ρh�
2dSdt

+
∫ T

0

∑
F∈Fh,int

∫
F

|uh,F · n|�ρh�2dSdt

≤ −
∫ T

0

∫
Ω

ρ2
h div uhdxdt −

∫
Ω

ρh(T , ·)2dx +
∫

Ω

ρh(0, ·)2dx :=
3∑

i=1

Ui .

By applying Hölder inequality and the embedding L2γ ↪→ L4 and Lγ ↪→ L2 for γ ≥ 2, we
conclude that

|U1| ≤‖ρh‖2L4((0,T )×Ω)
‖ div uh‖L2((0,T )×Ω)

≤C‖ρh‖2L2γ ((0,T )×Ω)
‖ div uh‖L2((0,T )×Ω),

|U2| ≤C‖ρh‖2L∞(0,T ;Lγ (Ω)), |U3| ≤ C‖ρ0‖2Lγ (Ω).

Combining the above analysis with Hypothesis 2.1 and Lemma 3.6, we have the required
estimates, the proof is thus complete. ��
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4 Consistency Formulation of the Continuity Scheme

In this section, we establish the consistency formulation for the discrete solution of the
numerical scheme (3.7)–(3.8). In other words, the discrete solution asymptotically satisfies
the weak formulation of continuous problem.

Lemma 4.1 The family (ρh, uh) defined in (3.16)–(3.17) satisfies the following consistency
formulation ∫ T

0

∫
Ω

[Dtρhϕ − ρhuh · ∇ϕ]dxdt =
∫ T

0

∫
Ω

Rh · ∇ϕdxdt, (4.1)

for any ϕ ∈ L2(0, T ; H1(Ω)), where the remainder functional Rh is given by∫ T

0

∫
Ω

Rh · ∇ϕdxdt =
∫ T

0

∑
K∈Th

∫
∂K

(ϕ − Π
Q

h [ϕ])�ρh�[uh,F · n]−dSdt (4.2)

+
∫ T

0

∫
Ω

(ϕ − Π
Q

h [ϕ])ρh div uhdxdt + hε−1
∫ T

0

∑
F∈Fh,int

∫
F

�ρh��ϕ − Π
Q

h [ϕ]�dSdt

+
∫ T

0

∑
K∈Th

∫
∂K

ρh(ϕ − ϕF )(uh,F − uh) · ndSdt :=
4∑

i=1

Pi (ϕ).

Proof Taking ϕh = Π
Q

h [ϕ] in the continuity method (3.7) and summing this identity with
respect to n from n = 1 to n = N , we can show∫ T

0

∫
Ω

DtρhΠ
Q

h [ϕ]dxdt −
∫ T

0

∑
F∈Fh,int

∫
F
Up[ρh, uh]�ΠQ

h [ϕ]�dSdt

+ hε−1
∫ T

0

∑
F∈Fh,int

∫
F

�ρh��Π
Q

h [ϕ] − ϕ�dSdt = 0.

It is easy to check that∫ T

0

∫
Ω

DtρhΠ
Q

h [ϕ]dxdt =
∫ T

0

∫
Ω

Dtρhϕdxdt .

By taking (rh, vh) = (ρn
h , unh) in Lemma 3.1 and summing this idenity with respect to n from

n = 1 to n = N , we conclude that∫ T

0

∑
F∈Fh,int

∫
F
Up [ρh, uh] �Π

Q

h [ϕ]�dSdt =
∫ T

0

∫
Ω

(ϕ − Π
Q

h [ϕ])ρh div uhdxdt

+
∫ T

0

∫
Ω

ρhuh · ∇ϕdxdt +
∫ T

0

∑
K∈Th

∫
∂K

(ϕ − Π
Q

h [ϕ])�ρh�[uh,F · n]−dSdt

+
∫ T

0

∑
K∈Th

∫
∂K

ρh(ϕ − ϕF )(uh,F − uh) · ndSdt .

Combining the above analysis, we obtain (4.1). The proof is thus complete. ��
Next, the error estimate of the remainder termRh of Lemma 4.1 is proved in the following

lemma.

123



Journal of Scientific Computing (2023) 94 :47 Page 13 of 41 47

Lemma 4.2 Suppose that Hypothesis 2.1 is satisfied. There exists a constant C > 0 inde-
pendent of h and τ , such that the error functional Rh of Lemma 4.1 satisfies the following
estimates ∣∣∣∣

∫ T

0

∫
Ω

Rh · ∇ϕdxdt

∣∣∣∣ ≤ ChA‖∇ϕ‖L2m1 (0,T ;L6(Ω)), (4.3)

where the parameters A and m1 are given by

A := min{1, ε}
2

, m1 := 2γ

γ − 1
.

Proof We show the proof of this Lemma in four steps.
Bound on P1. We estimate this term for 1 < γ ≤ 2 and γ > 2 separately. If 1 < γ ≤ 2, by
applying Cauchy–Schwarz inequality, we can show

|P1(ϕ)| ≤ √
P1,1,1 × √

P1,1,2, (4.4)

where P1,1,1 and P1,1,2 are given by

P1,1,1 :=
∫ T

0

∑
F∈Fh,int

∫
F
H′′(ηρ,h)|uh,F · n|�ρh�2dSdt,

P1,1,2 :=
∫ T

0

∑
F∈Fh,int

∫
F

(H′′(ηρ,h))
−1|uh,F · n||ϕ − Π

Q

h [ϕ]|2dSdt .

It is easy to check that

(H′′(ηρ,h))
−1 ≤C(ρh,+ + ρh,−)2−γ

≤C(1 + ρh,+ + ρh,−), with 1 < γ ≤ 2. (4.5)

For the term P1,1,2, by applying the inequality (4.5), we obtain

P1,1,2 ≤ C(P1,1,2,1 + P1,1,2,2). (4.6)

where P1,1,2,1 and P1,1,2,2 are defined by

P1,1,2,1 :=
∫ T

0

∑
F∈Fh,int

∫
F

|uh,F · n||ρh,+ + ρh,−||ϕ − Π
Q

h [ϕ]|2dSdt,

P1,1,2,2 :=
∫ T

0

∑
F∈Fh,int

∫
F

|uh,F · n||ϕ − Π
Q

h [ϕ]|2dSdt .

Using the trace inequalities (3.5)–(3.6), we conclude that

P1,1,2,1 ≤
∫ T

0

∑
K∈Th

‖uh‖L6(∂K )‖ρh‖L2(∂K )‖ϕ − Π
Q

h [ϕ]‖2L6(∂K )
dt

≤Ch−1
∫ T

0

∑
K∈Th

‖uh‖L6(K )‖ρh‖L2(K )‖ϕ − Π
Q

h [ϕ]‖2L6(K )
dt

+ Ch
∫ T

0

∑
K∈Th

‖uh‖L6(K )‖ρh‖L2(K )‖∇ϕ‖2L6(K )
dt .
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Therefore, using the Hölder inequality and the interpolation error estimate (3.1), we get that

P1,1,2,1 ≤ Ch‖uh‖L2(0,T ;L6(Ω))‖ρh‖L2γ ((0,T )×Ω)‖∇ϕ‖2
L2m1 (0,T ;L6(Ω))

. (4.7)

By a similar proof to the error estimate of P1,1,2,2, we find

P1,1,2,2 ≤ Ch‖uh‖L2(0,T ;L6(Ω))‖∇ϕ‖2
L4(0,T ;L 12

5 (Ω))
. (4.8)

Inserting (4.7) and (4.8) into (4.6), using Lemma 3.6, we have arrived at

P1,1,2 ≤ Ch‖∇ϕ‖2
L2m1 (0,T ;L6(Ω))

. (4.9)

By applying Lemma 3.7 and (4.9) to (4.4) leads to the bound

|P1(ϕ)| ≤ Ch
1
2 ‖∇ϕ‖L2m1 (0,T ;L6(Ω)).

For the case γ > 2, by using Cauchy–Schwarz inequality, we obtain

|P1(ϕ)| ≤ √
P1,2,1 × √

P1,1,2,2,

where P1,2,1 is defined by

P1,2,1 :=
∫ T

0

∑
F∈Fh,int

∫
F

�ρh�
2|uh,F · n|dSdt .

By virtue of the inequality (4.8), Lemmas 3.6 and 3.8, we have

|P1(ϕ)| ≤ Ch
1
2 ‖∇ϕ‖

L4(0,T ;L 12
5 (Ω))

.

Bound on P2(ϕ). By applying the Hölder inequality, the inverse estimate (3.4) and the
embedding L2γ ↪→ L2 for γ > 1, we obtain

|P2(ϕ)| ≤‖ϕ − Π
Q

h [ϕ]‖Lm1 (0,T ;L6(Ω))‖ρh‖L2γ (0,T ;L3(Ω))‖ div uh‖L2(0,T ;L2(Ω))

≤Ch− 1
2 ‖ϕ − Π

Q

h [ϕ]‖Lm1 (0,T ;L6(Ω))‖ρh‖L2γ (0,T ;L2(Ω))‖ div uh‖L2(0,T ;L2(Ω))

≤Ch
1
2 ‖∇ϕ‖Lm1 (0,T ;L6(Ω))‖ρh‖L2γ ((0,T )×Ω)‖ div uh‖L2(0,T ;L2(Ω))

≤Ch
1
2 ‖∇ϕ‖Lm1 (0,T ;L6(Ω)).

Bound on P3(ϕ). We shall treat the case 1 < γ ≤ 2 and γ > 2 separately. If 1 < γ ≤ 2, by
applying the Cauchy Schwarz inequality, we have

|P3(ϕ)| ≤ √
P3,1,1 × √

P3,1,2, (4.10)

where P3,1 and P3,2 are defined by

P3,1,1 : =
∫ T

0
hε−1

∑
F∈Fh,int

∫
F
H′′(ηρ,h)�ρh�

2dSdt,

P3,1,2 : =
∫ T

0
hε−1

∑
F∈Fh,int

∫
F

(H′′(ηρ,h))
−1�Π

Q

h [ϕ] − ϕ�2dSdt .

By employing the inequality (4.5), we can show

P3,1,2 ≤ C(P3,1,2,1 + P3,1,2,2), (4.11)
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where P3,1,2,1 and P3,1,2,2 are given by

P3,1,2,1 :=hε−1
∫ T

0

∑
F∈Fh,int

∫
F

|ϕ − Π
Q

h [ϕ]|2dSdt,

P3,1,2,2 :=hε−1
∫ T

0

∑
F∈Fh,int

∫
F

|ρh,+ + ρh,−||ϕ − Π
Q

h [ϕ]|2dSdt .

By applying the trace estimate (3.5)–(3.6) and the Poincaré inequality (3.1), the embedding
L2γ ↪→ L2 for γ > 1, we get

P3,1,2,1 ≤Chε−2‖ΠQ

h [ϕ] − ϕ‖2L2((0,T )×Ω)
+ Chε‖∇ϕ‖2L2((0,T )×Ω)

≤Chε‖∇ϕ‖2L2((0,T )×Ω)
, (4.12)

P3,1,2,2 ≤Chε−2‖ρh‖L2((0,T )×Ω)‖ΠQ

h [ϕ] − ϕ‖2L4((0,T )×Ω)

+ Chε‖ρh‖L2((0,T )×Ω)‖∇ϕ‖2L4((0,T )×Ω)

≤Chε‖ρh‖L2γ ((0,T )×Ω)‖∇ϕ‖2L4((0,T )×Ω)
. (4.13)

Inserting (4.12) and (4.13) into (4.11), using Lemma 3.6, we conclude that

P3,1,2 ≤ Chε‖∇ϕ‖2L4((0,T )×Ω)
. (4.14)

For the inequality (4.10), by using (4.14) and Lemma 3.7, we easily see that

|P3(ϕ)| ≤ Ch
ε
2 ‖∇ϕ‖L4((0,T )×Ω).

For the case γ > 2, by applying the Cauchy Schwarz inequality, we obtain

|P3(ϕ)| ≤ √
P3,2,1 × √

P3,1,2,1,

where P3,2,1 is given by

P3,2,1 :=
∫ T

0
hε−1

∑
F∈Fh,int

∫
F

�ρh�
2dSdt .

According to Lemma 3.8 and the estimate (4.12), we have

|P3(ϕ)| ≤ Ch
ε
2 ‖∇ϕ‖L4((0,T )×Ω).

Bound on P4(ϕ). By employing the Hölder inequality, the trace estimates (3.5)–(3.6), the
Poincaré and inverse inequalities, the embedding L2γ ↪→ L2 for γ > 1, we easily establish
that

|P4(ϕ)| ≤Ch
1
2 ‖∇ϕ‖Lm1 (0,T ;L6(Ω))‖ρh‖L2γ ((0,T )×Ω)‖uh‖L2(0,T ;H1(Ω))

≤Ch
1
2 ‖∇ϕ‖Lm1 (0,T ;L6(Ω)).

Combining the above analysis, we have the required estimate (4.3). The proof is thus com-
plete. ��
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5 Basic Estimates

This section establishes the boundedness of discrete time derivative Dtρh and a priori estimate
of discrete density ρh in L2(0, T ;Qh).

Lemma 5.1 Suppose that the conditions of Lemma 4.2 are satisfied, then the discrete time
derivative Dtρh satisfies

‖Dtρh‖
Lm2 (0,T ;W−1, 65 (Ω))

≤ C, 1 < m2 := 4γ

3γ + 1
. (5.1)

Proof Let φ ∈ L2m1(0, T ;W 1,6(Ω)) such that ‖φ‖L2m1 (0,T ;W 1,6(Ω)) = 1. Taking ϕh =
Π

Q

h [φ] in (3.7) and summing this result with respect to n from n = 1 to n = N , applying
the same argument as Lemma 4.1, we infer that∫ T

0

∫
Ω

Dtρhφdxdt =
∫ T

0

∫
Ω

ρhuh · ∇φdxdt +
∫ T

0

∫
Ω

Rh · ∇φdxdt .

Using Hölder inequality, Lemmas 4.2 and 3.6, we conclude that

|
∫ T

0

∫
Ω

Dtρhφdxdt | ≤C‖ρh‖L2γ ((0,T )×Ω)‖uh‖L2(0,T ;L6(Ω))‖∇φ‖Lm1 (0,T ;L3(Ω))

+ C‖∇φ‖L2m1 (0,T ;L6(Ω)) ≤ C‖φ‖L2m1 (0,T ;W 1,6(Ω)).

This inequality immediately implies Lemma 5.1. The proof is thus complete. ��
Lemma 5.2 Suppose that Hypothesis 2.1 and the CFL condition τ ≈ h are satisfied, there
exists ε0 > 0 and 0 < δ < 1 such that for any 0 < ε < ε0,∫ T

0
‖ρh‖2Qh

dt ≤ Ch−2δ. (5.2)

Proof We divide our proof in two steps. Firstly, if 1 < γ ≤ 2, by applying Cauchy–Schwarz
inequality, we obtain ∫ T

0
‖ρh‖2Qh

dt ≤ √
P5 × √

P6, (5.3)

where P5 and P6 are given by

P5 :=hε−1
∫ T

0

∑
F∈Fh,int

∫
F
H′′(ηρ,h)�ρh�

2dSdt,

P6 :=h−(ε+1)
∫ T

0

∑
F∈Fh,int

∫
F

(H′′(ηρ,h))
−1�ρh�

2dSdt .

According to the trace estimate (3.6) and the inequality (4.5), we infer that

P6 ≤ Ch−(ε+2)‖ρh‖4−γ

L4−γ ((0,T )×Ω)
. (5.4)

On the one hand, for 1 < γ < 4
3 , it is easy check that 4 − γ > 2γ . Therefore, by applying

the inverse estimate (3.4) and the CFL condition τ ≈ h, we have

‖ρh‖4−γ

L4−γ ((0,T )×Ω)
≤ Ch6−

8
γ ‖ρh‖4−γ

L2γ ((0,T )×Ω)
. (5.5)
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On the other hand, for the case 4
3 ≤ γ < 2, by using the embedding result L2γ ↪→ L4−γ ,

we conclude that

‖ρh‖4−γ

L4−γ ((0,T )×Ω)
≤ C‖ρh‖4−γ

L2γ ((0,T )×Ω)
. (5.6)

Inserting (5.5) and (5.6) into (5.4), using Lemma 3.6, we obtain

P6 ≤

⎧⎪⎨
⎪⎩
Ch−4( ε

4+ 2
γ

−1)
, 1 < γ <

4

3
,

Ch−4( ε
4+ 1

2 ),
4

3
≤ γ ≤ 2.

(5.7)

By substituting (5.7) into (5.3), using Lemma 3.7, we get that

∫ T

0
‖ρh‖2Qh

dt ≤

⎧⎪⎨
⎪⎩
Ch−2( ε

4+ 2
γ

−1)
, 1 < γ <

4

3
,

Ch−2( ε
4+ 1

2 ),
4

3
≤ γ ≤ 2.

(5.8)

Secondly, for the case γ > 2, by using Lemma 3.8, we easily see that∫ T

0
‖ρh‖2Qh

dt = h−1
∫ T

0

∑
F∈Fh,int

∫
F

�ρh�
2dSdt ≤ Ch−ε . (5.9)

Combining the inequalities (5.8) and (5.9), we have the required estimate (5.2), where the
parameter α0 and δ are given by

ε0 :=

⎧⎪⎪⎨
⎪⎪⎩
8(1 − 1

γ
), 1 < γ <

4

3
,

2,
4

3
≤ γ.

, δ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε

4
+ 2

γ
− 1, 1 < γ <

4

3
,

ε

4
+ 1

2
,

4

3
≤ γ < 2,

ε

2
, γ ≥ 2.

It is easy check that δ < 1. The proof is thus complete. ��
Remark 5.1 (i) In fact, for the case of γ ≥ 4

3 , the CFL condition τ ≈ h is not required for the
estimate (5.2). (ii) Lemma 5.2 plays a key role in deriving the discrete version of the effective
viscous flux identity. See Lemma 6.7 and Theorem 6.2 for more on why it is needed.

6 Convergence Analysis

In this section, we will prove the family (ρh, uh, p(ρh)) defined in (3.16)–(3.17) converges
to weak solution ( see Definition 2.1). For that purpose, we first need to establish a spatial
compactness estimate for Bernardi–Raugel finite element space.

Theorem 6.1 Let q satisfies 2 ≤ q < 6 and 1
q = θ

2 + 1−θ
6 , θ ∈ [0, 1]. For any vh ∈ Vh,

there exists a constant C > 0 such that the following estimate holds

‖vh(·) − vh(· − ξ)‖Lq (Rd ) ≤ C |ξ |θ‖∇vh‖L2(Ω), ∀ ξ ∈ R
d .

The proof of Theorem 6.1 can been found in “Appendix A.2”.
According to Lemma 3.6 and Theorem 3.2, we can assert the existence of functions

ρ ∈ L∞(0, T ; Lγ (Ω)) ∩ L2γ ((0, T ) × Ω), u ∈ L2(0, T ; H1
0(Ω))
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such that the family (ρh, uh) defined in (3.16)–(3.17) exists suitable subsequences satisfy

⎧⎪⎪⎨
⎪⎪⎩

ρh⇀
∗ρ, in L∞(0, T ; Lγ (Ω)) ∩ L2γ ((0, T ) × Ω),

p(ρh)⇀p, in L2((0, T ) × Ω), uh⇀u, in L2((0, T ) × Ω),

div uh⇀ div u, in L2((0, T ) × Ω), uh⇀u, in L2(0, T ; H1(Ω)).

(6.1)

The following lemma can be found in [26, Lemma 2.3].

Lemma 6.1 Let { fh}∞h>1 and {gh}∞h>1 be two function sequences on (0, T ) × Ω such that

(i) fh and gh converge weakly to f and g respectively in L p1(0, T ; Lq1(Ω)) and
L p2(0, T ; Lq2(Ω)), where 1 ≤ p1, q1 ≤ ∞, 1

p1
+ 1

p2
= 1

q1
+ 1

q2
= 1.

(ii) Assume that gh(t,x)−gh(t−h,x)
h is bounded in L1(0, T ;W−m,1(Ω)), for some m ≥ 0

independent of h. And ‖ fh(t, x)− fh(t, x−ξ)‖L p1 (0,T ;L p2 (Ω)) → 0 as |ξ | → 0 uniformly
in h.

Then, fhgh converges to f g in the sense of distributions on (0, T ) × Ω .

Next, we present a weak convergent results for ρhuh .

Lemma 6.2 Suppose that the condition of Lemma 4.2 are satisfied, then the family (ρh, uh)
defined in (3.16)–(3.17) satisfies

ρhuh⇀ρu, in D′((0, T ) × Ω).

Proof From Lemma 5.1, we can show

Dtρh ∈ L1(0, T ;W−1,1(Ω)). (6.2)

By applying Theorem 6.1 and Lemma 3.6, we conclude that

‖uh(t, x) − uh(t, x − ξ)‖L2(0,T ;L2(Rd ))

|ξ |→0−→ 0. (6.3)

By substituting (6.1)–(6.3) into Lemma 6.1, the proof is thus complete. ��

6.1 Limit in the Compressible Stokes Equations

In this subsection, we can show the limit (ρ, u, p) constructed in (6.1) is a weak solution of
Definition 2.1. The remaining major difficulty is to prove the pressure p(ρh) → p(ρ).

Lemma 6.3 Suppose that the condition of Lemma 4.2 is satisfied, then the accumulation
point (ρ, u) constructed in (6.1) satisfies the weak formulation (2.1).

123



Journal of Scientific Computing (2023) 94 :47 Page 19 of 41 47

Proof We pass to the limit with h, τ → 0 in the consistency formulation (4.1). Firstly, we
rewrite the discrete time derivative term

∫ T

0

∫
Ω

Dtρhϕdxdt = −
∫ T

0

∫
Ω

ρh Dtϕ(t + τ, ·)dxdt + 1

τ

∫ T

T−τ

∫
Ω

ρh(t, ·)ϕ(t + τ, ·)dxdt

− 1

τ

∫ 0

−τ

∫
Ω

ρh(t, ·)ϕ(t + τ, ·)dxdt

= −
∫ T

0

∫
Ω

ρh Dtϕ(t + τ, ·)dxdt −
∫

Ω

ρ0
hϕ(0, ·)dx

−
∫ τ

0

∫
Ω

ρ0
h
ϕ(t, ·) − ϕ(0, ·)

τ
dxdt

= −
∫ T

0

∫
Ω

ρh(∂tϕ(t, ·) + τ

2
∂t tϕ(t†, ·))dxdt −

∫
Ω

ρ0
hϕ(0, ·)dx

−
∫ τ

0

∫
Ω

ρ0
h∂tϕ(t‡, ·)dxdt,

where t† ∈ (t, t+τ) and t‡ ∈ (0, τ ). By applying Lemma 3.6 and the embedding Lγ ↪→ L1,
we have

τ

2

∣∣∣∣
∫ T

0

∫
Ω

ρh∂t tϕ(t†, ·)dxdt
∣∣∣∣ ≤Cτ‖ρh‖L1((0,T )×Ω)‖∂t tϕ‖L∞((0,T )×Ω)

≤Cτ‖ρh‖L∞(0,T ;Lγ (Ω))‖∂t tϕ‖L∞((0,T )×Ω)
h,τ→0−→ 0,∣∣∣∣

∫ τ

0

∫
Ω

ρh∂tϕ(t‡, ·)dxdt
∣∣∣∣ ≤Cτ‖ρ0

h‖L1(Ω)‖∂tϕ‖L∞((0,T )×Ω)

≤Cτ‖ρ0‖Lγ (Ω)‖∂tϕ‖L∞((0,T )×Ω)
h,τ→0−→ 0.

According to (6.1) and Π
Q

h [ρ0]⇀ρ0 in Lγ (Ω), we obtain

−
∫ T

0

∫
Ω

ρh∂tϕ(t, ·)dxdt −
∫

Ω

ρ0
hϕ(0, ·)dx

h,τ→0−→ −
∫ T

0

∫
Ω

ρ∂tϕdxdt −
∫

Ω

ρ0ϕ(0, ·)dx .

Next, by applying Lemma 6.2, we can show

∫ T

0

∫
Ω

ρhuh · ∇ϕdxdt
h,τ→0−→

∫ T

0

∫
Ω

ρu · ∇ϕdxdt .

Finally, by employing the inequality (4.3) of Lemma 4.2, we conclude that

∫ T

0

∫
Ω

Rh · ∇ϕdxdt
h,τ→0−→ 0.

Combining the above analysis, the proof is thus complete. ��
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Lemma 6.4 Suppose that Hypothesis 2.1 is satisfied, the accumulation limit (ρ, u) con-
structed in (6.1) satisfies the following weak formulation:

μ

∫ T

0

∫
Ω

∇u : ∇vdxdt + (λ + μ)

∫ T

0

∫
Ω

div u div vdxdt (6.4)

−
∫ T

0

∫
Ω

p div vdxdt = 0, ∀ v ∈ C∞
0 ((0, T ) × Ω).

Proof We defineFVh as the L
2-orthogonal projection operator from L2(Ω) intoVh . For any

v ∈ C∞
0 ((0, T ) × Ω), we can choose vh = FVhv and vnh = 1

τ

∫ tn
tn−1

vhdt such that

vh(t, ·) h→0−→ v(t, ·), in H1
0(Ω), (6.5)

for any t ∈ (0, T ). Taking vnh in (3.8), multiplying by τ and summing the results with respect
to n from n = 1 to n = N , we conclude that∫ T

0

∫
Ω

[μ∇uh : ∇vh + (λ + μ) div uh div vh]dxdt

−
∫ T

0

∫
Ω

p(ρh) div vhdxdt = 0.

Obviously, by applying (6.1) and (6.5), we have the required weak formulation (6.4). The
proof is thus complete. ��

6.2 Strong Convergence of the Density

The strong convergence of the density is proved by the discrete version of the weak continuity
property of the effective viscous flux introduced on the continuous level in [30]. For this
purpose, we first introduce the following notation

curl v = ∂v2

∂x1
− ∂v1

∂x2
, if d = 2, curl v =

[
∂v3

∂x2
− ∂v2

∂x3
,

∂v1

∂x3
− ∂v3

∂x1
,

∂v2

∂x1
− ∂v1

∂x2

]
, if d = 3,

where v is a vector-valued function. Obviously, if v ∈ H1(Ω) and w ∈ H1
0(Ω), we can

show ∫
Ω

∇v : ∇wdx =
∫

Ω

div v divwdx +
∫

Ω

curl v curlwdx . (6.6)

Next, we report the following Lemma, which plays a key role in deriving the discrete version
of the effective viscous flux.

Lemma 6.5 Let Ω ⊂ R
d (d = 2, 3) be a bounded open set. For any 1 < r < ∞ and

q ∈ Lr (Ω), there exists w ∈ W1,r (Ω) such that

divw = q, curlw = 0, a. e. in Ω, ‖w‖W1,r (Ω) ≤ C‖q‖Lr (Ω),

where C only depends on Ω and r. Moreover, if q ∈ W 1,r (Ω) (or q ∈ W−1,r (Ω)), it is
possible to have w ∈ W2,r (Ω) (or w ∈ Lr (Ω)) such that

‖w‖W2,r (Ω) ≤ C‖q‖W 1,r (Ω), (or ‖w‖Lr (Ω) ≤ C‖q‖W−1,r (Ω)).
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Proof It is easy to check that ∇Δ−1[q] can be served as the desired solution, where Δ−1

is the inverse of the Laplacian on R
3, and here we applied to q extended by 0 outside

Ω . Obviously, ∇Δ−1 is a continuous linear operator from Lr (Ω) to W1,r (Ω) and from
W 1,r (Ω) to W2,r (Ω), from W−1,r (Ω) to Lr (Ω) (see e.g., [29, Lemma 8.3]). The proof is
thus complete. ��

In the next step, we introduce the operator ΠY

h : Qh �→ Yh which interpolates the
piecewise constant functions to the space of continuous finite element space Yh ,

∀ qh ∈ Qh, ΠY

h [qh](A) := 1

card(NA)

∑
K∈NA

qh |K ,

for any vertices A in the discretization, where NA is the set of elements K ∈ Th of which
takes A as its vertices. The operator ΠY

h satisfies the following results (see e.g., [10, Lemma
5.8]).

Lemma 6.6 For any qh ∈ Qh, there exists a constant C > 0, depending only on the shape-
regularity of Th such that

‖∇ΠY

h [qh]‖L2(Ω) ≤ C‖qh‖Qh , ‖qh − ΠY

h [qh]‖L2(Ω) ≤ Ch‖qh‖Qh .

Then we can prove the following estimates.

Lemma 6.7 Suppose that the condition of Lemma 5.2 is satisfied, there exists a constant
C > 0 such that the following estimates hold∫ T

0
‖ρh − ΠY

h [ρh]‖2L2(Ω)
dt ≤Ch2(1−δ),

∫ T

0
‖ΠY

h [ρh]‖2L2(Ω)
dt ≤ C,

∫ T

0
‖ΠY

h [ρh]‖2H1(Ω)
dt ≤Ch−2δ.

Proof By applying the inequality (5.2) and Lemma 6.6, we can show∫ T

0
‖ρh − ΠY

h [ρh]‖2L2(Ω)
dt ≤ Ch2(1−δ),

∫ T

0
‖∇ΠY

h [ρh]‖2L2(Ω)
dt ≤ Ch−2δ.

According to the embedding L2γ ↪→ L2 for γ > 1, we have∫ T

0
‖ΠY

h [ρh]‖2L2(Ω)
dt ≤2

∫ T

0
‖ρh − ΠY

h [ρh]‖2L2(Ω)
dt + 2

∫ T

0
‖ρh‖2L2(Ω)

dt

≤Ch2(1−δ) + C‖ρh‖2L2γ ((0,T )×Ω)
≤ C .

These inequalities immediately implies∫ T

0
‖ΠY

h [ρh]‖2H1(Ω)
dt ≤ Ch−2δ.

Combining the above analysis, the proof is thus complete. ��
Theorem 6.2 Suppose that the condition of Lemma5.2 is satisfied. The family (ρh, uh)defined
in (3.16)–(3.17) and the accumulation limit (ρ, u) constructed in (6.1) satisfy the following
convergence properties:

lim
h,τ→0

∫ T

0
ψ

∫
Ω

((λ + 2μ) div uh − p(ρh))ρhϕdxdt

=
∫ T

0
ψ

∫
Ω

((λ + 2μ) div u − p)ρϕdxdt . (6.7)
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for any ψ ∈ C∞
0 ((0, T )) and ϕ ∈ C∞

0 (Ω).

Proof According to Lemmas 6.5, 6.7 and 3.6, the inequality (5.1), and there exists wY,h ∈
L2(0, T ; H2(Ω)) and wh ∈ L2(0, T ; H1(Ω)) such that{

divwY,h = ΠY

h [ρh], in (0, T ) × Ω,

curlwY,h = 0, in (0, T ) × Ω,

{
divwh = ρh, in (0, T ) × Ω,

curlwh = 0, in (0, T ) × Ω,
(6.8)

and a generic constant C independent of h and τ such that

{ ‖wY,h‖L2(0,T ;H1(Ω)) ≤C,

‖wY,h‖L2(0,T ;H2(Ω)) ≤Ch−δ

⎧⎨
⎩

‖wh‖L2(0,T ;H1(Ω)) ≤C,

‖Dtwh‖
Lm2 (0,T ;L 6

5 (Ω))
≤C .

(6.9)

Subtracting the right side of (6.8) from its left side, we obtain

div(wY,h − wh) = ΠY

h [ρh] − ρh, curl(wY,h − wh) = 0, in (0, T ) × Ω.

By employing Lemmas 6.5 and 6.7, we can show

‖wY,h − wh‖L2(0,T ;H1(Ω)) ≤ C‖ρh − ΠY

h [ρh]‖L2((0,T )×Ω) ≤ Ch1−δ. (6.10)

Using the LemmaA.4 together with the estimates (6.9), we deduce for a suitable subsequence
that

wh → w, in L2((0, T ) × Ω). (6.11)

In addition, the accumulation limit w satisfies the following properties

divw = ρ, curlw = 0, in (0, T ) × Ω. (6.12)

Taking vh = ΠV

h [ϕwY,h] in (3.8), multiplying by ψ ∈ C∞
0 ((0, T )) and integrating from

t = 0 to T , we derive

μ

∫ T

0
ψ

∫
Ω

∇uh : ∇(ϕwY,h)dxdt + (λ + μ)

∫ T

0
ψ

∫
Ω

div uh div(ϕwY,h)dxdt

−
∫ T

0
ψ

∫
Ω

p(ρh) div(ϕwY,h)dxdt = R1,h, (6.13)

where R1,h is given by

R1,h :=μ

∫ T

0
ψ

∫
Ω

∇uh : ∇(ϕwY,h − ΠV

h [ϕwY,h])dxdt

+ (λ + μ)

∫ T

0
ψ

∫
Ω

div uh div(ϕwY,h − ΠV

h [ϕwY,h])dxdt .

By applying the inequalities (3.2) and (6.9), we can show

|R1,h | ≤C‖ψ‖L∞((0,T ))‖uh‖L2(0,T ;H1(Ω))‖ϕwY,h − ΠV

h [ϕwY,h]‖L2(0,T ;H1(Ω))

≤Ch‖ψ‖L∞((0,T ))‖uh‖L2(0,T ;H1(Ω))‖ϕwY,h‖L2(0,T ;H2(Ω))

≤Ch1−δ‖ψ‖L∞((0,T ))‖uh‖L2(0,T ;H1(Ω))‖ϕ‖W 2,∞(Ω). (6.14)
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Obviously, we have div(ϕwY,h) = ΠY

h [ρh]ϕ + wY,h · ∇ϕ and curl(ϕwY,h) = J (ϕ)wY,h ,
where J (ϕ) is a matrix with entries involving some first-order derivatives of ϕ. Combining
the identities (6.6) and (6.13), we obtain

∫ T

0
ψ

∫
Ω

((λ + 2μ) div uh − p(ρh))ρhϕdxdt

= −(λ + 2μ)

∫ T

0
ψ

∫
Ω

div uhwY,h · ∇ϕdxdt − μ

∫ T

0
ψ

∫
Ω

curl uh · J (ϕ)wY,hdxdt

+
∫ T

0
ψ

∫
Ω

p(ρh)wY,h · ∇ϕdxdt + R1,h + R2,h, (6.15)

where R2,h is defined by

R2,h :=
∫ T

0
ψ

∫
Ω

((λ + 2μ) div uh − p(ρh))(ρhϕ − ΠY

h [ρh]ϕ)dxdt .

Applying the Hölder inequality and Lemma 6.7 implies

|R2,h | ≤C‖ div uh‖L2((0,T )×Ω)‖ρh − ΠY

h [ρh]‖L2((0,T )×Ω)

+ C‖p(ρh)‖L2((0,T )×Ω)‖ρh − ΠY

h [ρh]‖L2((0,T )×Ω)

≤Ch1−δ‖uh‖L2(0,T ;H1(Ω)) + Ch1−δ‖p(ρh)‖L2((0,T )×Ω). (6.16)

The identity (6.15) can be rewritten as

∫ T

0
ψ

∫
Ω

((λ + 2μ) div uh − p(ρh))ρhϕdxdt

= −(λ + 2μ)

∫ T

0
ψ

∫
Ω

div uhwh · ∇ϕdxdt − μ

∫ T

0
ψ

∫
Ω

curl uh · J (ϕ)whdxdt

+
∫ T

0
ψ

∫
Ω

p(ρh)wh · ∇ϕdxdt + R1,h + R2,h + R3,h . (6.17)

where R3,h is given by

R3,h := − (λ + 2μ)

∫ T

0
ψ

∫
Ω

div uh(wY,h − wh) · ∇ϕdxdt

− μ

∫ T

0
ψ

∫
Ω

curl uh · J (ϕ)(wY,h − wh)dxdt

+
∫ T

0
ψ

∫
Ω

p(ρh)(wY,h − wh) · ∇ϕdxdt .

Using the Hölder inequality and the estimate (6.10), we conclude that

|R3,h | ≤Cψ,ϕ‖uh‖L2(0,T ;H1(Ω))‖wY,h − wh‖L2(0,T ;L2(Ω))

+ Cψ,ϕ‖p(ρh)‖L2(0,T ;L2(Ω))‖wY,h − wh‖L2(0,T ;L2(Ω))

≤Cψ,ϕh
1−δ‖uh‖L2(0,T ;H1(Ω)) + Cψ,ϕh

1−δ‖p(ρh)‖L2(0,T ;L2(Ω)). (6.18)
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Passing to the limit with h, τ → 0 in (6.17), using (6.1) and (6.11), we find

lim
h,τ→0

∫ T

0
ψ

∫
Ω

((λ + 2μ) div uh − p(ρh))ρhϕdxdt

= −(λ + 2μ)

∫ T

0
ψ

∫
Ω

div uw · ∇ϕdxdt − μ

∫ T

0
ψ

∫
Ω

curl u · J (ϕ)wdxdt

+
∫ T

0
ψ

∫
Ω

pw · ∇ϕdxdt + lim
h,τ→0

R1,h + lim
h,τ→0

R2,h + lim
h,τ→0

R3,h . (6.19)

By applying Lemma 3.6, the estimates (6.14), (6.16), (6.18) and δ < 1, we get that

lim
h,τ→0

R1,h + lim
h,τ→0

R2,h + lim
h,τ→0

R3,h = 0. (6.20)

Taking v = ψϕw in (6.4) and using the identity (6.12), imply∫ T

0
ψ

∫
Ω

((λ + 2μ) div u − p)ρϕdxdt = −(λ + 2μ)

∫ T

0
ψ

∫
Ω

div uw · ∇ϕdxdt

− μ

∫ T

0
ψ

∫
Ω

curl u · J (ϕ)wdxdt +
∫ T

0
ψ

∫
Ω

pw · ∇ϕdxdt . (6.21)

Combining the identities (6.19)–(6.21), we have the required discrete effective viscous flux
identity (6.7). The proof is thus complete. ��
Lemma 6.8 (Strong convergence of ρh) Suppose that the condition of Lemma 5.2 is satisfied,
then, passing to a subsequence if necessary

ρh → ρ in L1((0, T ) × Ω). (6.22)

Proof Firstly, we can show the sequences p(ρh)ρh , log(ρh)ρh and ρh div uh have the fol-
lowing convergent properties:

p(ρh)ρh⇀p(ρ)ρ, log(ρh)ρh⇀log(ρ)ρ, ρh div uh⇀ρ div u,

in a suitable Lq((0, T ) × Ω) space with q > 1, where the overbar is used to denote the
weak limit of a nonlinear function. According to the notation introduced above, we write
p = p(ρ), then it can be easily checked

lim
h→0

∫ T

0
ψ

∫
Ω

φ [(λ + 2μ) divh uh − p(ρh)] ρhdxdt

=
∫ T

0
ψ

∫
Ω

φ[(λ + 2μ)ρ div u − p(ρ)ρ]dxdt, (6.23)

for any ψ ∈ C∞
0 (0, T ) and φ ∈ C∞

0 (Ω). By applying the discrete effective viscous flux
identity (6.7) and the identity (6.23), we conclude that∫ T

0
ψ

∫
Ω

φ(ρ div u − ρ div u)dxdt =
∫ T

0
ψ

∫
Ω

φ
p(ρ)ρ − p(ρ)ρ

λ + 2μ
dxdt . (6.24)

Take the following functions sequence ψm ∈ C∞
0 ((0, T )) and φn ∈ C∞

0 (Ω) such that

ψm ≥ 0; ψm → 1; ψm = 1,
1

m
≤ t ≤ T − 1

m
,

φn ≥ 0; φn → 1; φn = 1, dist(x, ∂Ω) ≥ 1

n
.
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Let (ψ, φ) = (ψm, φn) in (6.24) and m, n → +∞, by applying Lebesgue’s dominated
convergence theorem, we obtain∫ T

0

∫
Ω

(ρ div u − ρ div u)dxdt =
∫ T

0

∫
Ω

p(ρ)ρ − p(ρ)ρ

λ + 2μ
dxdt . (6.25)

For the identity (6.25), by employing Lemma A.1, we get that∫ T

0

∫
Ω

(ρ div u − ρ div u)dxdt ≥ 0. (6.26)

According to Lemmas 2.1 and 6.3, we obtain (ρ, u) is a renormalized solution of the con-
tinuity equation (2.1). Therefore, taking Φ(ρ) = ρ log(ρ) in Definition 2.2 and integrating
over [0, tF ] × Ω for the results, we can show∫

Ω

ρ log(ρ)(tF , ·)dx +
∫ tF

0

∫
Ω

ρ div udxdt =
∫

Ω

ρ log(ρ)(0, ·)dx, (6.27)

for any tF ∈ [0, T ].
Taking (B(ρ), ϕh) = (ρ log(ρ), 1) in the discrete renormalized continuity scheme (3.9)

and passing to the limit with h, τ → 0, we have∫
Ω

ρ log(ρ)(tF , ·)dx +
∫ tF

0

∫
Ω

ρ div udxdt ≤
∫

Ω

ρ log(ρ)(0, ·)dx, (6.28)

for any tF ∈ [0, T ]. Subtracting the identity (6.27) from the inequality (6.28), we can show∫
Ω

(ρ log(ρ) − ρ log(ρ))(tF , ·)dx ≤
∫ tF

0

∫
Ω

(ρ div u − ρ div u)dxdt (6.29)

for any tF ∈ [0, T ]. Inserting (6.26) into (6.29), we obtain∫
Ω

(ρ log(ρ) − ρ log(ρ))(tF , ·)dx ≤ 0, (6.30)

On the other hand, according to Lemma A.2, we have

ρ log (ρ) ≥ ρ log (ρ) , a. e. in (0, T ) × Ω. (6.31)

Combining the inequalities (6.30) and (6.31) implies

ρ log(ρ) = ρ log(ρ), a. e. in (0, T ) × Ω.

By applying Lemma A.3, we have the required result (6.22). The proof is thus
complete. ��
Theorem 6.3 Suppose that the condition of Lemma 5.2 is satisfied. For any q1 ∈ [1, 2γ ) and
q2 ∈ [1, 2), then, passing to a subsequence if necessary

ρh → ρ in Lq1((0, T ) × Ω), p(ρh) → p(ρ) in Lq2((0, T ) × Ω).

Proof By applying (6.22) and Lemma 3.6, we have

ρh → ρ in Lq1((0, T ) × Ω), q1 ∈ [1, 2γ ). (6.32)

Noticing xγ and x
1
γ are increasing functions for x ∈ R+ and (x − y)ϑ ≤ xϑ − yϑ for

x ≥ y ≥ 0 and ϑ > 0, we obtain

Fh := (p(ρh) − p(ρ))(ρh − ρ) ≥ a|ργ

h − ργ | 1
γ

+1
, in (0, T ) × Ω. (6.33)
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By employing the Hölder inequality, (6.32) and Lemma 3.6, we can show∫ T

0

∫
Ω

Fhdxdt ≤‖p(ρh)‖L2((0,T )×Ω)‖ρh − ρ‖L2((0,T )×Ω)

+ C‖ρ‖γ

L2γ ((0,T )×Ω)
‖ρh − ρ‖L2((0,T )×Ω). (6.34)

Inserting (6.33) into (6.34), using (6.32), we can show

lim
h,τ→0

∫ T

0

∫
Ω

|ργ

h − ργ | 1
γ

+1dxdt ≤ 1

a
lim

h,τ→0

∫ T

0

∫
Ω

Fhdxdt = 0,

which implies that

p(ρh) → p(ρ), in L1((0, T ) × Ω). (6.35)

By applying (6.35) and Lemma 3.6, we conclude that

p(ρh) → p(ρ) in Lq2((0, T ) × Ω),

where q2 ∈ [1, 2). The proof is thus complete. ��

Combining Lemmas 6.3 and 6.4, and Theorem 6.3, we can obtain the main result of the
first part of this paper:

Theorem 6.4 Let Ω ⊂ R
d , d = 2, 3 be a bounded domain and assume that the viscosity

coefficients μ and λ satisfy μ > 0 and dλ + 2μ > 0. Suppose that the pressure p =
p(ρ) satisfies the assumption (1.2) with γ > 1. Furthermore, the initial values ρ0 satisfies
Hypothesis 2.1. The family (ρh, uh) defined in (3.16)–(3.17) satisfies ρh > 0 for any h, τ > 0
with τ ≈ h and 0 < ε < ε0. Then we have the following convergent properties:

uh⇀u in L2(0, T ; H1(Ω)), ρh⇀
∗ρ in L∞(0, T ; Lγ (Ω)),

ρh⇀ρ in L2γ ((0, T ) × Ω), p(ρh)⇀p(ρ) in L2((0, T ) × Ω),

ρh → ρ in Lq1((0, T ) × Ω), p(ρh) → p(ρ) in Lq2((0, T ) × Ω),

for any 1 ≤ q1 < 2γ and 1 ≤ q2 < 2, where (ρ, u) is a weak solution of the semi-stationary
compressible Stokes equations (1.1)–(1.4) in the sense of Definition 2.1.

Remark 6.1 (i) Theorem 6.4 provides an alternative proof of existence of weak solutions via
a mixed DG-FEM based on Bernardi–Raugel finite element for the problem (1.1) under the
hypothesis γ > 1. (ii) In the case γ > 4

3 , the CFL condition τ ≈ h is not required for
Theorem 6.4. It is worth noting that the values of adiabatic exponent γ in the convergence
result without the CFL condition includes the real fluid range of γ ∈ [ 43 , 5

3 ], such as the
monoatomic gas (γ ∼ 5

3 ) and the diatomic gas (γ ∼ 7
5 ). (iii) Theorem 6.4 is also true with

the external force f �= 0 ∈ L2((0, T ) × Ω) in the momentum equation.

7 Error Estimate

An unconditional error estimate for the semi-stationary compressible Stokes equations is
established in the section. Note that the existence of weak solution to this model under the
assumption of γ > 1 is proved by Theorem 6.4. Now we report the weak-strong uniqueness
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for this model. To this end, we introduce the following functional E : [0,∞)× (0,∞) → R,
which is given by

E(ρ | ρ) := H(ρ) − H′(ρ)(ρ − ρ) − H(ρ).

Noticing that the function H is strictly convex in (0,∞), we obtain

E(ρ | ρ) ≥ 0, and E(ρ | ρ) = 0 ⇔ ρ = ρ. (7.1)

Furthermore, the functional E(ρ | ρ) satisfies the following estimates (see, e.g., [13, 17] for
more details)

E(ρ | ρ) ≥ C(ρ)

⎧⎨
⎩ (ρ − ρ)2,

1

2
ρ < ρ < 2ρ,

(1 + ργ ), otherwise,
, (7.2)

where C(ρ) is uniformly bounded if ρ lies in some compact subset of (0,∞). Finally, we
introduce the relative energy functional of the problem (1.1), which is defined by

E(ρ | ρ) :=
∫

Ω

E(ρ | ρ)dx .

Theorem 7.1 Let Ω ⊂ R
3 be a bounded domain and assume that the viscosity coefficient

μ, λ satisfies μ > 0 and 3λ + 2μ > 0. Suppose that the pressure p = p(ρ) satisfies the
assumption (1.2) with γ > 1. Let (ρ, u) be a weak solution to the problem (1.1) emanating
from the initial data (ρ0, u0) with the finite energy E0 := ∫

Ω
H(ρ0)dx and finite mass

M0 := ∫
Ω

ρ0dx. Let (ρ, u) be a strong solution of the same problem belonging to the class⎧⎪⎨
⎪⎩

∇ρ ∈ L2(0, T ; Lq(Ω)), 0 < ρ
min

≤ ρ ≤ ρ
max

,

∇2u ∈ L2(0, T ; Lq(Ω)), u ∈ L2(0, T ; H1
0(Ω)), q > max{3, 6γ

5γ − 6
},

emanating from the same initial data. Then

ρ = ρ, u = u, in (0, T ) × Ω.

The proof of Theorem 7.1 can been found in [13, Theorem 4.1].
Next, we deduce the discrete version of the relative energy inequality from the scheme

(3.7)–(3.8), which will play a key role in the subsequent error estimate. To this end, we first
introduce the convenient notations{

ρn
h

:=Π
Q

h [ρn], ρn := ρ(tn, ·), ∀ 1 ≤ n ≤ N ,

unh :=ΠV

h [un], un := u(tn, ·), ∀ 1 ≤ n ≤ N ,

where (ρ, u) is a strong solution of the problem (1.1) belonging to the class of C2 functions
such that u|(0,T )×∂Ω = 0 and 0 < ρ

min
≤ ρ ≤ ρ

max
. Furthermore, we define the piecewise

constant temporal interpolations of (ρn
h
, unh, ρ

n, un), 1 ≤ n ≤ N , i.e., for any t ∈ [tn−1, tn]{
ρ
h
(t, ·) := ρn

h
, ρ�

h
(t, ·) := ρn−1

h
, uh(t, ·) := unh,

ρ
τ
(t, ·) := ρn, ρ�

τ
(t, ·) := ρn−1, uτ (t, ·) := un .

(7.3)
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Theorem 7.2 Suppose that Hypothesis 2.1 and γ > 1 are satisfied. The family (ρh, uh) and
(ρ

τ
, uτ ) are defined in (3.16)–(3.17) and (7.3), respectively. Then there exists a constant

C > 0 independent of h and τ such that

‖E(ρh | ρ
τ
)‖L∞(0,T ) ≤ C . (7.4)

Proof Using the identity H′(ρ)ρ − H(ρ) = p(ρ) and the Hölder inequality, we can show

E(ρn
h | ρn) ≤C‖ρh‖γ

L∞(0,T ;Lγ (Ω))
+ C‖ρ‖γ

L∞(0,T ;Lγ (Ω))

+ C‖ρ‖γ−1
L∞(0,T ;L2(γ−1)(Ω))

‖ρh‖L∞(0,T ;Lγ (Ω)), ∀ 1 ≤ n ≤ N .

By employing Lemma 3.6, we have the estimate (7.4). This proof is thus complete. ��

Now we establish the discrete version of the relative energy inequality.

Theorem 7.3 Let the families (ρh, uh) and (ρ
τ
, uτ ) be defined as in (3.16)–(3.17) and (7.3),

respectively. Then the discrete relative energy inequality holds, for any 1 ≤ m ≤ N,

E(ρm
h | ρm) + μ

∫ tm

0

∫
Ω

|∇(uh − uτ )|2dxdt

+ (λ + μ)

∫ tm

0

∫
Ω

| div(uh − uτ )|2dxdt ≤ E(ρ0
h | ρ0) +

6∑
i=1

Ri , (7.5)

where the remainder terms Ri (1 ≤ i ≤ 5) are defined by

R1 :=
∫ tm

0

∫
Ω

[μ∇uτ : ∇(uτ − uh) + (λ + μ) div uτ div(uτ − uh)]dxdt,

R2 :=
∫ tm

0

∫
Ω

[μ∇uh : ∇(uh − uτ ) + (λ + μ) div uτ div(uh − uτ )]dxdt,

R3 := −
∫ tm

0

∫
Ω

p(ρh) div uτdxdt, R4 :=
∫ tm

0

∫
Ω

(ρ
τ

− ρh)DtH′(ρ
τ
)dxdt,

R5 := −
∫ tm

0

∫
Ω

ρhuh · ∇H′(ρ�

τ
)dxdt, R6 := −

∫ tm

0

∫
Ω

Rh · ∇H′(ρ�

τ
)dxdt .

Proof First, taking vh = unh in the discrete momentum equation (3.8), and summing this
result with respect to n from n = 1 to n = m, we conclude that∫ tm

0

∫
Ω

[μ∇uh : ∇uτ + (λ + μ) div uh div uτ − p(ρh) div uτ ]dxdt (7.6)

+
∫ tm

0

∫
Ω

[μ∇uh : ∇(uh − uτ ) + (λ + μ) div uh div(uh − uτ )]dxdt = 0.

Next, using the same argument as Lemma 4.1 by taking ϕ = H′(ρ�
τ
) in Lemma 4.1, we

obtain

−
∫ tm

0

∫
Ω

DtρhH′(ρ�

τ
)dxdt = −

∫ tm

0

∫
Ω

ρhuh · ∇H′(ρ�

τ
)dxdt

−
∫ tm

0

∫
Ω

Rh · ∇H′(ρ�

τ
)dxdt . (7.7)

123



Journal of Scientific Computing (2023) 94 :47 Page 29 of 41 47

Note that the numerical diffusion terms Dn
i,h (1 ≤ i ≤ 3) in the discrete energy identity

(3.10) are all positive, we have∫ tm

0

∫
Ω

DtH(ρh)dxdt +
∫ tm

0

∫
Ω

[μ|∇uh |2 + (λ + μ)| div uh |2]dxdt ≤ 0. (7.8)

By applying the identity

ρhH′(ρ
τ
) − ρ�

hH
′(ρ�

τ
) = ρh(H′(ρ

τ
) − H′(ρ�

τ
)) + (ρh − ρ�

h)H
′(ρ�

τ
),

we rewrite∫ tm

0

∫
Ω

DtρhH′(ρ�

τ
)dxdt =

∫ tm

0

∫
Ω

Dt (ρhH′(ρ
τ
))dxdt −

∫ tm

0

∫
Ω

ρh DtH′(ρ
τ
)dxdt,

which implies that∫ tm

0

∫
Ω

DtH(ρh)dxdt −
∫ tm

0

∫
Ω

DtρhH′(ρ�

τ
)dxdt =

∫ tm

0

∫
Ω

DtE(ρh | ρ
τ
)dxdt

+
∫ tm

0

∫
Ω

ρh DtH′(ρ
τ
)dxdt −

∫ tm

0

∫
Ω

Dt (ρτ
H′(ρ

τ
) − H(ρ

τ
))dxdt . (7.9)

According to the convexity of the function H, we obtain

H(ρ
τ
) − H′(ρ�

τ
)(ρ

τ
− ρ�

τ
) − H(ρ�

τ
) ≥ 0. (7.10)

By using the inequality (7.10), we have∫ tm

0

∫
Ω

Dt (ρτ
H′(ρ

τ
) − H(ρ

τ
))dxdt =

∫ tm

0

∫
Ω

ρ
τ
DtH′(ρ

τ
)dxdt (7.11)

− 1

τ

∫ tm

0

∫
Ω

H(ρ
τ
) − H′(ρ�

τ
)(ρ

τ
− ρ�

τ
) − H(ρ�

τ
)dxdt ≤

∫ tm

0

∫
Ω

ρ
τ
DtH′(ρ

τ
)dxdt .

Combining the inequalities (7.6)–(7.9) and (7.11), we obtain the inequality (7.5). This proof
is thus complete. ��

In the next step, we deduce the approximate version of the relative energy inequality from
the estimate (7.5).

Theorem 7.4 Suppose that Hypothesis 2.1 is satisfied and the pressure p = p(ρ) satisfies
the hypothesis (1.2) with γ > 1. Let the internal energyH be given byH(ρ) = p(ρ)

γ−1 . Let the
families (ρh, uh) and (ρ

τ
, uτ ) be defined as in (3.16)–(3.17) and (7.3), respectively. Then

there exists

C :=C(T ,Ω, M0, E0, ρmin
, ρ

max
, |p′|C1([ρ

min
,ρ

max
]),

‖(∂tρ, ∂t tρ,∇ρ, ∂t∇ρ)‖L∞((0,T )×Ω), ‖u‖L∞(0,T ;H2(Ω))) > 0,

such that for any 1 ≤ m ≤ N, we have the approximate relative energy inequality holds,

E(ρm
h | ρm) +

∫ tm

0

∫
Ω

[μ|∇(uh − uτ )|2 + (λ + μ)| div(uh − uτ )|2]dxdt

≤E(ρ0
h | ρ0) + R1 + R3 +

3∑
i=1

L3, (7.12)
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where the remainder terms Li (1 ≤ i ≤ 3) are defined by

L1 :=
∫ tm

0

∫
Ω

(ρ
τ

− ρh)
p′(ρ

τ
)

ρ
τ

[∂tρ]τdxdt, L2 := −
∫ tm

0

∫
Ω

ρh

ρ
τ

p′(ρ
τ
)uh · ∇ρ

τ
dxdt,

|L3| ≤ C(hA + τ), A := min{ε, 1}
2

, [∂tρ]τ := ∂tρ(tn, ·), for [tn−1, tn].

Proof We start the proof from the discrete version of the relative energy inequality (7.5)
derived in the previous Theorem 7.3. The terms Ri (i = 2, 4, 5, 6) will be transformed to a
more convenient form, and the other terms Ri (i = 1, 3) will remain unchanged.

• The term R2. By applying the Cauchy–Schwarz inequality and the estimate (3.2), we
can show

|R2| ≤C‖uh‖L2(0,T ;H1(Ω))‖uh − uτ‖L2(0,T ;H1(Ω))

≤C(E0, ‖u‖L∞(0,T ;H2(Ω)))h.

• The term R4. Firstly, by applying the Taylor formula, we have

H′(ρn) − H′(ρn−1) = H′′(ρn)(ρn − ρn−1) − 1

2
H′′′(ξnρ )(ρn − ρn−1)2, (7.13)

where ξnρ ∈ co{ρn, ρn−1}. Let ξρ(t, ·) := ξnρ for t ∈ [tn−1, tn]. By applying the identity
(7.13), the term R4 can be rewritten as

R4 = L1 + L3,1 + L3,2,

where the remainder terms L3,i are given by

L3,1 :=
∫ tm

0

∫
Ω

(ρ
τ

− ρh)
p′(ρ

τ
)

ρ
τ

(Dtρτ
− [∂tρ]τ )dxdt,

L3,2 := 1

2τ

∫ tm

0

∫
Ω

(ρh − ρ
τ
)H′′′(ξρ)(ρ

τ
− ρ�

τ
)2dxdt .

Using the Taylor formula and the mass conservation (see, Remark 3.1), we obtain

|L3,1| ≤τC(ρ
min

, ρ
max

)|p′|C1([ρ
min

,ρ
max

])‖ρτ
− ρh‖L1((0,T )×Ω)‖∂t tρ‖L∞((0,T )×Ω)

≤τC(M0, ρmin
, ρ

max
, |p′|C1([ρ

min
,ρ

max
]), ‖∂t tρ‖L∞((0,T )×Ω)).

By a similar argument, we conclude that

|L3,2| ≤ τC(M0, ρmin
, ρ

max
, |p′|C1([ρ

min
,ρ

max
]), ‖∂tρ‖L∞((0,T )×Ω)).

• The term R5. We may write

R5 = −
∫ tm

0

∫
Ω

ρhuh · (H′′(ρ�

τ
)∇ρ�

τ
− H′′(ρ

τ
)∇ρ

τ
)dxdt

−
∫ tm

0

∫
Ω

ρhuh · H′′(ρ
τ
)∇ρ

τ
dxdt = L3,3 + L2.

By applying the first-order Taylor formula, we obtain

‖p′(ρ�

τ
) − p′(ρ

τ
)‖L∞((0,T )×Ω)

≤ C(|p′|C1([ρ
min

,ρ
max

]), ‖∂tρ‖L∞((0,T )×Ω))τ. (7.14)
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Using the estimate (7.14) and the Taylor formula, we have

‖H′′(ρ�

τ
) − H′′(ρ

τ
)‖L∞((0,T )×Ω)

≤ C(ρ
min

, ρ
max

)‖p′(ρ�

τ
) − p′(ρ

τ
)‖L∞((0,T )×Ω)

+ C(ρ
min

, ρ
max

, |p′|C1([ρ
min

,ρ
max

]))‖ρ�

τ
− ρ

τ
‖L∞((0,T )×Ω)

≤ C(ρ
min

, ρ
max

, |p′|C1([ρ
min

,ρ
max

]), ‖∂tρ‖L∞((0,T )×Ω))τ. (7.15)

Therefore, by using the Hölder inequality and the estimate (7.15), we obtain

|L3,3| ≤C(Ω, T )‖ρh‖L2γ ((0,T )×Ω)‖uh‖L2(0,T ;H1(Ω))

× ‖(H′′(ρ�

τ
) − H′′(ρ

τ
))∇ρ�

τ
‖L∞((0,T )×Ω)

≤C(Ω, T )‖ρh‖L2γ ((0,T )×Ω)‖uh‖L2(0,T ;H1(Ω))

× ‖H′′(ρ
τ
)∇(ρ�

τ
− ρ

τ
)‖L∞((0,T )×Ω)

≤C(Ω, T , E0, ρmin
, ρ

max
, |p′|C1([ρ

min
,ρ

max
]), ‖(∂tρ,∇ρ, ∂t∇ρ)‖L∞((0,T )×Ω))τ.

• The term R6. By applying the estimate (4.3) of Lemma 4.2, we get that

|R6| ≤C(Ω, T )‖∇H′(ρ�

τ
)‖L∞((0,T )×Ω)h

A

≤C(Ω, T , ρ
min

, ρ
max

, |p′|C1([ρ
min

,ρ
max

]), ‖∇ρ‖L∞((0,T )×Ω))h
A.

Combining the above analysis, we have
∑6

i=1 Ri = R1 + R3 + ∑3
i=1 Li . After setting

L3 := ∑3
i=1 L3,i + R2 + R6, we deduce the approximate relative energy inequality (7.12)

from the estimate (7.5). The proof is thus complete. ��

Next we derive a discrete identity for the strong solutions.

Theorem 7.5 Suppose that Hypothesis 2.1 is satisfied and the pressure p = p(ρ) satisfies
the hypothesis (1.2) with γ > 1. Let the internal energy H is given by H(ρ) = p(ρ)

γ−1 . Let
the family (ρ

τ
, uτ ) be defined as in (7.3). For any 1 ≤ m ≤ N, then the following identity

holds:

R1 +
5∑

i=4

Li = 0, (7.16)

where the remainder terms Li are defined by

L4 := −
∫ tm

0

∫
Ω

p′(ρ
τ
)uh · ∇ρ

τ
dxdt,

L5 := −
∫ tm

0

∫
Ω

p(ρ
τ
) div uτdxdt .

Proof Since (ρ, u) is a strong solution of the problem (1.1), the second equation of (1.1) can
be rewritten in the form

μΔu + (λ + μ)∇ div u = ∇ p(ρ). (7.17)
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Taking t = tn in (7.17), multiplying this identity by unh − un and integration over Ω . We get,
after summation from n = 1 to n = m,

0 = −
∫ tm

0

∫
Ω

(μΔuτ + (λ + μ)∇ div uτ ) · (uh − uτ )dxdt

+
∫ tm

0

∫
Ω

∇ p(ρ
τ
) · uhdxdt −

∫ tm

0

∫
Ω

∇ p(ρ
τ
) · uτdxdt .

which implies that R1 + ∑5
i=4 Li = 0. The proof is thus complete. ��

Now, we will derive the unconditional error estimate of the problem (1.1) based on the
approximate relative energy inequality (7.13) and the discrete identity (7.16).

Theorem 7.6 Let Ω ⊂ R
d , d = 2, 3 be a bounded domain and assume that the viscosity

coefficient μ, λ satisfies μ > 0 and dλ + 2μ > 0. Suppose that the pressure p = p(ρ)

satisfies the assumption (1.2) with γ > 6
5 . The initial values (ρ0, u0) satisfies Hypothesis 2.1

with the finite energy E0 := ∫
Ω
H(ρ0)dx and finite mass M0 := ∫

Ω
ρ0dx. Let (ρ, u) be a

strong solution of the problem (1.1) belonging to the class{
ρ ∈ C2([0, T ] × Ω), 0 < ρ

min
≤ ρ ≤ ρ

max
,

u ∈ C2([0, T ] × Ω), u|(0,T )×∂Ω = 0,

emanating from the initial data (ρ
0
, u0). Let the families (ρh, uh) and (ρ

τ
, uτ ) be defined

as in (3.16)–(3.17) and (7.3), respectively. Then there exists

C :=C(T ,Ω, M0, E0, ρmin
, ρ

max
, |p′|C1([ρ

min
,ρ

max
]),

‖(∂tρ, ∂t tρ,∇ρ, ∂t∇ρ,∇2u)‖L∞((0,T )×Ω)) > 0,

such that for any 1 ≤ m ≤ N, then we have

E(ρm
h | ρm) +

∫ tm

0

∫
Ω

[μ|∇(uh − uτ )|2 + (λ + μ)| div(uh − uτ )|2]dxdt

≤ C(E(ρ0
h | ρ0) + hA + τ), A := min{ε, 1}

2
. (7.18)

Proof Combining the approximate relative energy inequality (7.12) and the discrete identity
(7.16), we can show

E(ρm
h | ρm) +

∫ tm

0

∫
Ω

[μ|∇(uh − uτ )|2 + (λ + μ)| div(uh − uτ )|2]dxdt

≤ E(ρ0
h | ρ0) +

7∑
i=6

Li .

where the terms Li are defined by

L6 :=
∫ tm

0

∫
Ω

ρ
τ

− ρh

ρ
τ

p′(ρ
τ
)uh · ∇ρ

τ
dxdt +

∫ tm

0

∫
Ω

(ρ
τ

− ρh)
p′(ρ

τ
)

ρ
τ

[∂tρ]τdxdt,

+
∫ tm

0

∫
Ω

(p(ρ
τ
) − p(ρh)) div uτdxdt, |L7| ≤ C(hA + τ).
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We next bound the term L6. Since the pair (ρ, u) is a strong solution of the problem (1.1),
the first equation of (1.1) can be rewritten in the form

[∂tρ]τ = −uτ · ∇ρ
τ

− ρ
τ
div uτ . (7.19)

By the identity (7.19), we write

L6 = L6,1 + L6,2,

where

L6,1 := −
∫ tm

0

∫
Ω

(p(ρh) − p′(ρ
τ
)(ρh − ρ

τ
) − p(ρ

τ
)) div uτdxdt,

L6,2 :=
∫ tm

0

∫
Ω

ρ
τ

− ρh

ρ
τ

p′(ρ
τ
)(uh − uτ ) · ∇ρ

τ
dxdt .

It is easy to check that

|L6,1| ≤ C(T ,Ω, ‖ div u‖L∞((0,T )×Ω))

∫ tm

0
E(ρh | ρ

τ
)dt .

Let Ωh,1 := { ρ
τ

2 < ρh < 2ρ
τ
} and Ωh,2 := Ω \ Ωh,1. The term L6,2 can be rewritten as

L6,2 := L6,2,Ωh,1 + L6,2,Ωh,2 ,

where

L6,2,Ωh,i :=
∫ tm

0

∫
Ωh,i

ρ
τ

− ρh

ρ
τ

p′(ρ
τ
)(uh − uτ ) · ∇ρ

τ
dxdt, i = 1, 2.

By applying the Poincaré and Young inequalities, the estimate (7.2), ρ
τ

∈ (ρ
min

, ρ
max

), we
can show

|L6,2,Ωh,1 | ≤C(δ,Ω, ρ
min

, ρ
max

, |p′|C1([ρ
min

,ρ
max

]), ‖∇ρ‖L∞((0,T )×Ω))

∫ tm

0
E(ρh | ρ

τ
)dt

+ δ

∫ tm

0

∫
Ω

|∇(uh − uτ )|2dxdt .

By employing the estimate (7.2) and ρ
τ

∈ (ρ
min

, ρ
max

), γ > 6
5 , we have

E(ρh | ρ
τ
) ≥ C(ρ

min
, ρ

max
, γ )(1 + ρ

γ

h ) ≥ |ρh − ρ
τ
| 65 , in Ωh,2. (7.20)

Using the Poincaré andYoung inequalities, the estimates (7.20) and (7.4), ρ
τ

∈ (ρ
min

, ρ
max

),
we conclude that

|L6,2,Ωh,2 | ≤C(δ,Ω, ρ
min

, ρ
max

, |p′|C1([ρ
min

,ρ
max

]), ‖∇ρ‖L∞((0,T )×Ω))

∫ tm

0
E(ρh | ρ

τ
)dt

+ δ

∫ tm

0

∫
Ω

|∇(uh − uτ )|2dxdt .

Combining the above analysis with δ = μ
4 , we get that

E(ρm
h | ρm) +

∫ tm

0

∫
Ω

[μ|∇(uh − uτ )|2 + (λ + μ)| div(uh − uτ )|2]dxdt

≤ C(E(ρ0
h | ρ0) + hA + τ) + C

∫ tm

0
E(ρh | ρ

τ
)dt,
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where the constant C > 0 is given by

C :=C(T ,Ω, M0, E0, ρmin
, ρ

max
, |p′|C1([ρ

min
,ρ

max
]),

‖(∂tρ, ∂t tρ,∇ρ, ∂t∇ρ,∇2u)‖L∞((0,T )×Ω)).

Using the estimate (7.4), we can show

∫ tm

0
E(ρh | ρ

τ
)dt = τ

m∑
n=1

E(ρn
h | ρn) ≤ τ

m−1∑
n=1

E(ρn
h | ρn) + Cτ,

which implies that

E(ρm
h | ρm) +

m∑
n=1

τ

∫
Ω

[μ|∇(unh − unτ )|2 + (λ + μ)| div(unh − unτ )|2]dx

≤ C(E(ρ0
h | ρ0) + hA + τ) + Cτ

m−1∑
n=1

E(ρn
h | ρn). (7.21)

By applying the standard discrete version of Gronwall’s lemma for the inequality (7.21), the
proof is thus complete. ��

Finally, we will give an error estimate for the discrete L2(L2) norm of p(ρh).

Theorem 7.7 Suppose that the condition of Theorem 7.6 holds. Let the families (ρh, uh) and
(ρ

τ
, uτ ) be defined as in (3.16)–(3.17) and (7.3), respectively. Then there exists

C :=C(T ,Ω, M0, E0, ρmin
, ρ

max
, |p′|C1([ρ

min
,ρ

max
]),

‖(∂tρ, ∂t tρ,∇ρ, ∂t∇ρ,∇2u)‖L∞((0,T )×Ω)) > 0,

such that for any 1 ≤ m ≤ N, we have

τ

m∑
n=1

‖p(ρn
h ) − p(ρn)‖2L2(Ω)

≤ C(E(ρ0
h | ρ0) + hA + τ), A := min{ε, 1}

2
. (7.22)

Proof Taking t = tn in (7.17), multiplying this identity by vh ∈ Vh and integral over Ω , we
conclude that

μ

∫
Ω

∇un : ∇vhdx + (λ + μ)

∫
Ω

div un div vhdx

−
∫

Ω

p(ρn) div vhdx = 0. (7.23)

Subtracting (7.23) from (3.8), we can get the error equation

μ

∫
Ω

∇(unh − un) : ∇vhdx + (λ + μ)

∫
Ω

div(unh − un) div vhdx

−
∫

Ω

(p(ρn
h ) − p(ρn)) div vhdx = 0, ∀ vh ∈ Vh . (7.24)
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Let rnρ := (p(ρn
h ) − p(ρn

h
)) − 1

|Ω|
∫
Ω

(p(ρn
h ) − p(ρn

h
))dx for 1 ≤ n ≤ N . Taking vh =

ΠV

h B[rnρ ] in (7.24), we can show

‖p(ρn
h ) − p(ρn

h
)‖2L2(Ω)

= |Ω|−1‖p(ρn
h ) − p(ρn

h
)‖2L1(Ω)

+ μ

∫
Ω

∇(unh − un) : ∇ΠV

h B[rnρ ]dx

+ (λ + μ)

∫
Ω

div(unh − un) divΠV

h B[rnρ ]dx −
∫

Ω

(p(ρn
h
) − p(ρn)) divΠV

h B[rnρ ]dx .

By applying the Cauchy–Schwarz inequality, the estimates (3.3) and (3.12), we obtain

‖p(ρn
h ) − p(ρn

h
)‖2L2(Ω)

≤C(Ω)‖p(ρn
h ) − p(ρn

h
)‖L1(Ω)‖p(ρn

h ) − p(ρn
h
)‖L2(Ω)

+ C(Ω)‖∇(unh − un)‖L2(Ω)‖p(ρn
h ) − p(ρn

h
)‖L2(Ω)

+ C(Ω)‖p(ρn
h
) − p(ρn)‖L2(Ω)‖p(ρn

h ) − p(ρn
h
)‖L2(Ω),

which implies that

‖p(ρn
h ) − p(ρn

h
)‖2L2(Ω)

≤C(Ω)‖p(ρn
h ) − p(ρn

h
)‖2L1(Ω)

+ C(Ω)‖∇(unh − un)‖2
L2(Ω)

+ C(Ω)‖p(ρn
h
) − p(ρn)‖2L2(Ω)

. (7.25)

Summing (7.25) from n = 1 to n = m and multiplying the resulting inequality by τ , we
conclude that

τ

m∑
n=1

‖p(ρn
h ) − p(ρn

h
)‖2L2(Ω)

≤ C(Ω)

10∑
i=8

Li ,

where the terms Li (8 ≤ i ≤ 10) are defined by

L8 :=τ

m∑
n=1

‖p(ρn
h ) − p(ρn

h
)‖2L1(Ω)

, L9 := τ

m∑
n=1

‖∇(unh − un)‖2
L2(Ω)

,

L10 :=τ

m∑
n=1

‖p(ρn
h
) − p(ρn)‖2L2(Ω)

.

Bound on L9. By applying the estimate (3.1), the mean value theorem and ρn, ρn
h

∈
[ρ

min
, ρ

max
], we can show

‖p(ρn
h ) − p(ρn

h
)‖L1(Ω) ≤‖p(ρn) − p(ρn

h
)‖L1(Ω) + ‖p′(ρn)(ρn

h − ρn)‖L1(Ω)

+ ‖p(ρn
h ) − p′(ρn)(ρn

h − ρn) − p(ρn)‖L1(Ω)

≤C(Ω, |p′|C1([ρ
min

,ρ
max

]), ‖∇ρ‖L∞((0,T )×Ω))h

+ C(|p′|C1([ρ
min

,ρ
max

]))‖ρn
h − ρn‖L1(Ω) + CE(ρn

h | ρn).

Let Ωn
h,1 := { ρn

2 < ρn
h < 2ρn} and Ωn

h,2 := Ω \ Ωh,1,n . By applying the estimate (7.2) and
(7.20), we obtain

‖ρn
h − ρn‖L1(Ω) ≤C(Ω)‖ρn

h − ρn‖L2(Ωn
h,1)

+ C(Ω)‖ρn
h − ρn‖

L
6
5 (Ωn

h,2)

≤C(Ω, ρ
min

, ρ
max

)E
1
2 (ρn

h | ρn) + C(Ω, ρ
min

, ρ
max

)E
5
6 (ρn

h | ρn).

Using the estimate (7.4), we get that

‖ρn
h − ρn‖L1(Ω) ≤ C(Ω, E0, ρmin

, ρ
max

, |p′|C1([ρ
min

,ρ
max

]))E
1
2 (ρn

h | ρn).
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Combining the error estimate of Theorem 7.6, which implies that

|L8| ≤ C(E(ρ0
h | ρ0) + hA + τ).

By a similar argument, we can show

|L9| ≤C(E(ρ0
h | ρ0) + hA + τ),

|L10| ≤C(Ω, T , |p′|C1([ρ
min

,ρ
max

]), ‖∇ρ‖L∞((0,T )×Ω))h
2.

Combining the above analysis, the proof is thus complete. ��
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A Appendix

A.1 The Proof of Theorem 3.3

Our goal is to show the existence of numerical solutions for the scheme (3.7)–(3.8) by
applying Schaeffer’s fixed point theorem. For this purpose, we define the mapping

L : Vh → Vh, L[u] �→ U,

in the following way.

• Given u ∈ Vh , we will prove the unique solution ρ ∈ Qh of the linear system∫
Ω

ρ − ρn−1
h

τ
ϕhdx −

∑
F∈Fh,int

∫
F
Up[ρ, u] − hε−1�ρ��ϕh�dS

+ hε−1
∑

F∈Fh,int

∫
F

�ρ��ϕh�dS = 0, (A.1)

for any ϕh ∈ Qh . In order to prove the linear problem (A.1) has a unique solution ρ(u),
we need prove that the associated homogenous problem∫

Ω

ρϕhdx − τ
∑

F∈Fh,int

∫
F
Up [ρ, u] �ϕh�dS + hε−1τ

∑
F∈Fh,int

∫
F

�ρ��ϕh�dS = 0(A.2)

admits a unique solution ρ = 0. By the same proof of [14, Section 4.3], we can show the
homogenous problem (A.2) of renormalized equation∫

Ω

B′(ρ)ρϕhdx − τ
∑

F∈Fh,int

∫
F
Up[B(ρ), u]�ϕh�dS

+ hε−1τ
∑

F∈Fh,int

∫
F
B′(ρ+)�ρ��ϕh�dS + hε−1τ

∑
F∈Fh,int

∫
F
B′′(ηρ)�ρ�2dS

+ τ

2

∑
F∈Fh,int

∫
F

ϕhB′′(ηρ)�ρ�2|u · n|dS = τ

∫
Ω

ϕh(B(ρ) − B′(ρ)ρ) div udx, (A.3)

for any ϕh ∈ Qh , where B ∈ C2(R+), ηρ, ηρ ∈ co{ρ, ρ+} on each face F ∈ Fh . Any
non negative C2(R) convex approximations function Sε such that Sε(ρ) → S(ρ) and
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S ′
ε(ρ) → S ′(ρ) for all ρ �= 0, where S(ρ) = max{−ρ, 0}. Taking (ϕh,B) = (1,Sε) in

(A.3), we have∫
Ω

Sε(ρ)dx ≤ τ

∫
Ω

ϕh(Sε(ρ) − S ′
ε(ρ)ρ) div udx +

∫
Ω

(Sε(ρ) − S ′
ε(ρ)ρ)dx . (A.4)

Combining the inequality (A.4) andS(ρ)−S ′(ρ)ρ = 0 for allρ �= 0,we obtainS(ρ) = 0
and ρ ≥ 0. Let ϕh = 1 in (A.2), we obtain∫

Ω

ρdx = 0. (A.5)

According to ρ ≥ 0 and (A.5), we have ρ = 0, then the problem (A.1) has a unique
solution ρ(u). By applying the Lemma 3.3, we have ρ(u) > 0.

• For given ρ ∈ Qh and u ∈ Vh , we can show the unique solution U ∈ Vh of the algebraic
system ∫

Ω

[μ∇U : ∇vh + (λ + μ) divU div vh]dx =
∫

Ω

p(ρ) div vhdx, (A.6)

for any vh ∈ Vh , where ρ = ρ(u) is determined by (A.1). Similarly, by applying the
Lax-Milgram Lemma for the linear system (A.6), we have a unique solution U ∈ Vh .

Clearly, any fixed point of the mapping L is a solution of the scheme (3.7)–(3.8). Next,
we need show that the set

{z ∈ Vh : z = ΛL(z), Λ ∈ [0, 1]}
satisfies the conditions of Lemma 3.5. In other words, we need to verify that the set is non
empty and bounded. It is obvious show that the set is non empty (0 belongs to the set).
Finally, for all Λ ∈ (0, 1], we need to prove the solution u of the equation u = ΛL[u] can
be bounded in terms of the local data (ρn−1

h , un−1
h ) uniformly with respect to Λ. Setting

ρn
h = ρ(u), unh = u in (3.7)–(3.8), where u is a solution of u = ΛL[u], we have∫

Ω

dtρ
n
hϕhdx −

∑
F∈Fh,int

∫
F
Up

[
ρn
h , unh

]
�ϕh�dS

+hε−1
∑

F∈Fh,int

∫
F

�ρn
h ��ϕh�dS = 0,

Λ−1
∫

Ω

[
μ∇unh : ∇vh + (λ + μ) div unh div vh

]
dx −

∫
Ω

p(ρn
h ) div vhdx = 0.

By recalling the steps in the proof of discrete energy estimate (3.10), we can show∫
Ω

H(ρn
h )dx + 1

Λ

∫
Ω

[μ|∇unh |2 + (λ + μ)| div unh |2]dx ≤
∫

Ω

H(ρn−1
h )dx . (A.7)

Combining (A.7) and 0 < Λ ≤ 1, there exists a constant C independent of Λ such that

‖unh‖2Vh
:= μ‖∇unh‖2L2(Ω)

≤ C .

Combining the above conclusions and Lemma 3.5, we can show the schemes (3.7)–(3.8) has
at least one solution. By applying the Lemma 3.3, we obtain the density ρn

h > 0. The proof
is thus complete.
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A.2 The Proof of Theorem 6.1

Taking the zero extension of vh forRd \Ω . We show the proof of this Theorem in two steps.
Step 1. If q = 2, for any x ∈ R

d , it is easy to check that

vh(x) − vh(x − ξ) =
∫ 1

0
∇vh(x − sξ) · ξds. (A.8)

For the identity (A.8), by applying Cauchy–Schwarz inequality, we conclude that

|vh(x) − vh(x − ξ)|2 ≤ |ξ |2
∫ 1

0
|∇vh(x − sξ)|2ds.

Therefor, by employing Fubini theorem and ∇vh vanishes outside Ω , we have∫
Rd

|vh(x) − vh(x − ξ)|2dx ≤ |ξ |2
∫

Ω

|∇vh(x)|2dx . (A.9)

Step 2. For the case of 2 < q ≤ 6, by applying Gagliardo-Nirenberg interpolation inequality
and (A.9), we obtain

‖vh(·) − vh(· − ξ)‖Lq (Rd ) ≤‖vh(·) − vh(· − ξ)‖θ

L2(Rd )
‖vh(·) − vh(· − ξ)‖1−θ

L6(Rd )

≤|ξ |θ‖∇vh‖θ

L2(Ω)
‖vh(·) − vh(· − ξ)‖1−θ

L6(Rd )
. (A.10)

According to the embedding H1
0 ↪→ L6 and the Poincaré inequality, we get

‖vh(·) − vh(· − ξ)‖L6(Rd ) ≤ C‖∇vh‖L2(Ω). (A.11)

Inserting (A.11) into (A.10), which implies that

‖vh(·) − vh(· − ξ)‖Lq (Rd ) ≤ C |ξ |θ‖∇vh‖L2(Ω). (A.12)

Combining the inequalities (A.9) and (A.12), the proof is thus complete.

A.3 Some Functional Analysis Results

For the convenience of readers, we list some functional analysis results that need to be used
in this article. We first recall the following weak convergence and monotonicity properties
(see, e.g., [16, Theorem 10.19]):

Lemma A.1 Let I ⊂ R be an interval, Q ⊂ R
N a domain, and (P,G) ∈ C(I ) × C(I ) a

couple of non-decreasing functions. Assume that ρn ∈ L1(Q; I ) is a sequence such that⎧⎪⎪⎨
⎪⎪⎩

P(ρn)⇀P(ρ),

G(ρn)⇀G(ρ),

P(ρn)G(ρn)⇀P(ρ)G(ρ),

⎫⎪⎪⎬
⎪⎪⎭ in L1(Q).

(i) Then P(ρ) G(ρ) ≤ P(ρ)G(ρ). (ii) If, in addition, G ∈ C(R), G(R) = R, G is strictly
increasing, P ∈ C(R), P is non-decreasing, and P(ρ) G(ρ) = P(ρ)G(ρ), then P(ρ) =
P ◦ G−1(G(ρ)). (iii) In particular, if G(z) = z, then P(ρ) = P(ρ).

Secondly, the convex function have the lower semi-continuous with respect to the weak
topology on L1(O) (see, e.g., [11, Theorem 2.11]).
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Lemma A.2 Let O ⊂ R
N be a measurable set and {vn}∞n=1 a sequence of functions in

L1(O;RM ) such that

vn⇀v, in L1(O;RM ).

Let Φ : RM → (−∞,∞] be a lower semi-continuous convex function such that Φ(vn) ∈
L1(O) for any n, and

Φ(vn)⇀Φ(v), in L1(O).

Then

Φ(v) ≤ Φ(v) a. a. on O.

If, moreover, Φ is strictly on an open convex set U ⊂ R
M, and

Φ(v) = Φ(v) a. a. on O,

then

vn( y) → v( y) for a. a. y ∈ { y ∈ O : v( y) ∈ U }
extracting subsequence as the case may be.

Next, we introduce the following sequential compactness (see, e.g., [15, Lemma 3]).

Lemma A.3 Let Q ⊂ R
M, suppose that ρn⇀ρ in L2(Q) and ρ log(ρ) = ρ log(ρ) are

satisfied. Then

ρn → ρ in L1(Q).

Finally, we recall the following discrete version of the Aubin-Lions compactness Lemma
for the Bochner spaces, which is useful in the convergence analysis. (see, e.g., [7, Theorem
1]).

Lemma A.4 Let E0, E and E1 be Banach spaces such that the embedding E0 ↪→ E is
compact and E ↪→ E1 is continuous. Given T > 0 and a small number τ > 0, write
(0, T ] = ∪M

k=1(tk−1, tk] with tk = kτ and Mτ = T . Let {vτ }τ>0 be a sequence such that

• The mapping t �→ vτ (t, ·) is constant on each interval (tk−1, tk], k = 1, 2, . . . , M.
• Let Dtvτ (t, ·) = (vτ (t, ·)−vτ (t − τ, ·))/τ be the discrete time derivative of vτ (t, ·). The

sequence {vτ }τ>0 satisfies the following estimates:

‖vτ‖L p0 (0,T ;E0) + ‖Dtvτ‖L p1 (τ,T ;E1) ≤ C,

for any 1 < p0, p1 < ∞, where C0 is a constant which is independent of τ .

Then {vτ }τ>0 is relatively compact in L p0(0, T ;E).
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