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Abstract
In this paper, a new class of high-order fast multi-resolution essentially non-oscillatory
(FMRENO) schemes is proposedwith an emphasis on both the performance and the computa-
tional efficiency. First, a newcandidate stencil arrangement is developed for amulti-resolution
representation of the local flow scales. A set of candidate stencils ranging from high- to
low-order (from large to small stencils) is constructed in a hierarchical manner. Second, the
monotonicity-preserving (MP) limiter is introduced as the regularity criterion of the candidate
stencils. A candidate stencil, with which the reconstructed cell interface flux locates within
the MP lower and upper bounds, is regarded to be smooth. Third, a multi-resolution stencil
selection strategy, which prioritizes the stencils with better spectral property or higher-order
accuracy meanwhile satisfying the MP criterion, is proposed. If all the candidate stencils
are judged to be nonsmooth, the targeted stencil that violates the MP criterion the least is
deployed as the final reconstruction instead. With this new framework, the desirable high-
order accuracy is restored in the smooth regions while the sharp shock-capturing capability is
achieved by selecting the targeted stencil satisfying theMP criterionmost.Moreover, the new
FMRENO schemes feature low numerical dissipation for resolving the broadband physical
fluctuations by adaptively choosing the candidate stencil with better spectra or higher accu-
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racy order based on the local flow regularity. Compared to the standard weighted/targeted
essentially non-oscillatory (W/TENO) schemes, the computational efficiency is dramatically
enhanced by avoiding the expensive evaluations of the classical smoothness indicators. A set
of benchmark simulations demonstrate the performance of the new FMRENO schemes for
handling complex fluid problems with a wide range of length scales.

Keywords WENO · TENO · Multi-resolution · High-order schemes · Shockwaves ·
Compressible flow · Turbulence

1 Introduction

High-order and high-resolution shock-capturing schemes are essential numerical methods to
solve compressible fluid problems, which may involve discontinuities and broadband flow
scales [1–4]. The main objectives are to restore the high-order accuracy in smooth regions
with low numerical dissipation while capturing discontinuities sharply without generating
spurious oscillations. Among all the concepts proposed in the past decades to cope with this
issue [5–10], the family of essentially non-oscillatory (ENO) schemes belongs to one of the
most popular methods [2, 11, 12].

The development of the ENO-family schemes and the related variants are briefly reviewed
in the following. Harten et al. [7] first propose the high-order ENO scheme, which selects the
smoothest stencil from a set of predefined candidate stencils to avoid the Gibbs phenomenon
near discontinuities. Widely accepted discretization schemes, weighted essentially non-
oscillatory (WENO) schemes, first proposed by Liu et al. [8] and further improved by Jiang
and Shu [9], are developed from the ENO concept. Instead of selecting the smoothest can-
didate, WENO deploys a convex combination of all candidate stencils to achieve high-order
accuracy in smooth regions. The optimal linear weights are modulated based on the smooth-
ness indicators such that the desired accuracy order is restored in smooth regions and the
ENO property is preserved near discontinuities. The performance of the WENO schemes
can be further enhanced by improving the nonlinear weighting strategy, e.g., the WENO-M
[13] andWENO-Z [14, 15] schemes avoid the order degeneration near critical points through
correcting the nonlinear weights to be closer to the optimal linear ones. On the other hand,
the excessive numerical dissipation of WENO (as another typical flaw of WENO-family
schemes) can be remedied by freezing the nonlinear adaptation when the ratio between the
largest and the smallest calculated smoothness indicator is belowaproblem-dependent thresh-
old [16]. Alternatively, to reduce the numerical dissipation of the fifth-order WENO scheme,
an adaptive central-upwind sixth-orderWENO-CU6 [17] scheme is proposed by introducing
the contribution of an additional downwind stencil. Other recent work following this direction
includes the development of WENO-Z+ scheme [18]. To improve the numerical robustness
of the very-high-order WENO reconstructions, monotonicity-preserving WENO schemes
[19], positivity-preserving WENO schemes [20], and WENO schemes with recursive-order-
reduction [21] are proposed. More recently, Zhu and Shu [22] develop the finite-difference
and finite-volume multi-resolution WENO schemes based on a hierarchy of nested unequal-
sized central spatial stencils. Following the nonlinear weighting concept of central WENO
(CWENO) schemes [23, 24], arbitrary positive linear weights can be employed and the
resulting schemes have a gradual degrading of accuracy near discontinuities. However, the
aforementioned WENO schemes are rather expensive especially for the very-high-order
reconstructions since the calculations of smoothness indicators are inevitable.
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As the most recent innovation, the high-order TENO schemes improve the numerical
robustness and reduce the unnecessary numerical dissipation by a new candidate stencil
arrangement and a novel ENO-like stencil selection strategy [10, 25–33]. In contrast to the
WENO-like smooth convex combination of candidate stencils, the TENO scheme either
deploys a candidate stencil with its optimal linear weight or discards it completely when
crossed by a discontinuity. The TENO scheme has been extended to unstructured meshes
[34] and multi-resolution methods [35].

In this paper, a family of FMRENO schemes for both the odd- and even-order recon-
structions in a unified framework is proposed. With a set of predefined candidate stencils
as the multi-resolution representation of local flow scales, a novel stencil selection strategy
is proposed to form the final reconstruction. The selection criterion is provided by the MP
limiter [19], with which a candidate stencil is regarded to be smooth if the reconstructed
cell interface flux locates within the upper and lower bounds of the MP limiter. Then, the
optimal smooth stencil with higher-order accuracy or better spectral property will be adopted
as the final reconstruction scheme. As a result, the FMRENO scheme achieves the multi-
resolution property by adaptively selecting the targeted candidate stencil according to the
local flow regularity and degenerates from high- to low-order reconstruction when approach-
ing the discontinuities. Moreover, the computational efficiency is improved when compared
to W/TENO since the evaluations of the smoothness indicators are unnecessary.

The rest of this paper is organized as follows. In Sect. 2, the basic concepts of the WENO
and TENO schemes are briefly reviewed. In Sect. 3, a general framework to construct arbi-
trarily high-order FMRENO schemes is proposed. In Sect. 4, the explicit expressions of
FMRENO schemes ranging from fifth- to eighth-order are given. In Sect. 5, a set of bench-
mark cases is considered to assess the proposed schemes. The concluding remarks are given
in the last section.

2 Basic Concepts of W/TENO Schemes

To facilitate the presentation, we consider a one-dimensional scalar hyperbolic conservation
law

∂u

∂t
+ ∂

∂x
f (u) = 0, (1)

where u and f denote the conservative variable and the flux function, respectively. Without
losing the generality, the characteristic signal velocity is assumed to be positive ∂ f (u)

∂u > 0
in the entire computational domain hereafter.

For a uniform Cartesian mesh with cell centers xi = i�x and cell interfaces xi+1/2 =
xi + �x/2, the spatial discretization results in a set of ordinary differential equations

dui (t)

dt
= −∂ f

∂x

∣
∣x=xi , i = 0, . . . , n, (2)

where ui denotes the numerical approximation to the point value u(xi , t). Eq. (2) can be
further discretized by a conservative finite-difference scheme as

dui
dt

= − 1

�x
(hi+1/2 − hi−1/2), (3)
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where the primitive function h(x) is implicitly defined by

f (x) = 1

�x

∫ x+�x/2

x−�x/2
h(ξ)dξ, (4)

and hi±1/2 = h(xi ± �x/2). For the purpose of achieving global high-order accuracy of
spatial discretization, a high-order approximation of the function h(x) at the cell interface
has to be reconstructed from the cell-averaged values of f (x) at the cell centers. Eq. (3) can
be written as

dui
dt

≈ − 1

�x
( f̂i+1/2 − f̂i−1/2), (5)

where f̂i±1/2 denotes the approximate numerical fluxes and can be computed from different
stencils. For a K -point stencil, a K -th order polynomial interpolation of function h(x) can
be assumed as

h(x) ≈ f̂ (x) =
K−1
∑

l=0

al x
l . (6)

After substituting Eq. (6) into Eq. (4) and evaluating the integral functions at the stencil
nodes, the coefficients al are uniquely determined by solving the resulting system of linear
algebraic equations.

For solving hyperbolic conservation laws, discontinuities may occur in the computational
domain evenwhen the initial condition is smooth enough. The long-term numerical challenge
is to develop a reconstruction scheme that is high-order accurate in smooth regions and
captures discontinuities sharply and stably in nonsmooth regions. In the following, we recall
the essential elements of different strategies to ensure the above properties.

2.1 TheWENO-Z Scheme

With the WENO-family schemes [9, 14], a global (K = 2r − 1)-th order approximate
numerical flux can be computed from a convex combination of r candidate stencils with the
same width r as

f̂i+1/2 =
r−1
∑

k=0

wk f̂k,i+1/2, (7)

where ωk denotes the nonlinear weight for each candidate flux, and f̂k,i±1/2 denotes the r -th
order approximate numerical flux similar to the definition in Eq. (6). For WENO-Z schemes
[14], the nonlinear weight ωk of each stencil is renormalized from the optimal linear weight
dk as

ωk = αZ
k

∑r−1
k=0 αZ

k

, and αZ
k = dk

βZ
k

. (8)

In the WENO-Z scheme, the optimal linear weight dk is the corresponding coefficient for
each candidate stencil to achieve maximum accuracy order of the background linear scheme.

Following [36], the calculation of the βZ
k function is obtained by

1

βZ
k

=
(

1 + (
τ2r−1

βk,r + ε
)p

)

, and p = 1 or 2. (9)
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Following Jiang and Shu [9], the smoothness indicator βk,r for the k-th candidate stencil can
be given as

βk,r =
r−1
∑

j=1

�x2 j−1
∫ xi+1/2

xi−1/2

(
d j

dx j
f̂k(x)

)2

dx (10)

based on the L2 norm of the derivatives of the reconstructed candidate polynomials.
The global high-order smoothness indicator τ2r−1 is defined with a linear combination of

existing low-order smoothness indicators β0,r , . . . , βr−1,r as:

τ2r−1 =
{ |β0,r − βr−1,r |, if mod (r , 2) = 1,

|β0,r − β1,r − βr−2,r + βr−1,r |, if mod (r , 2) = 0.
(11)

2.2 TheWENO-S Scheme

In [37], a new smoothness indicator that can decrease the measured smoothness variances
on different candidate stencils in smooth regions is proposed. The resulting new schemes
based on the same candidate stencils of classical WENO schemes are called WENO-S. For
WENO-S schemes [37], the nonlinear weight ωS

k of each stencil is renormalized from the
optimal linear weight dk as

ωS
k = αS

k
∑r−1

k=0 αS
k

, and αS
k = dk

(

1 + (
τ S

βS
k + ε

)

)

, (12)

where the formula of the βS
k function is given by

βS
k = ( fi+k−3 − fi+k−2 − fi+k−1 + fi+k)

2+
|(− fi+k−3 − fi+k−2 + fi+k−1 + fi+k)(− fi+k−3 + 3 fi+k−2 − 3 fi+k−1 + fi+k)|.

(13)

For the seven-point WENO-S scheme, the global smoothness indicator τ S can be written as

τ S =(− fi−3 + 4 fi−2 − 5 fi−1 + 5 fi+1 − 4 fi+2 + fi+3)
2+

+ |( fi−3 − 2 fi−2 − fi−1 + 4 fi − fi+1 − 2 fi+2 + fi+3)

( fi−3 − 6 fi−2 + 15 fi−1 − 20 fi + 15 fi+1 − 6 fi+2 + fi+3)|.
(14)

2.3 The TENO Scheme

Different from WENO schemes, arbitrarily high-order TENO schemes can be constructed
from a set of candidate stencils with incremental width [10, 25], as shown in Fig. 1. The
sequence of stencil width r varying versus the global accuracy order K is as

{rk} =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{3, 3, 3, 4, . . . , K + 2

2
︸ ︷︷ ︸

0,...,K−3

}, if mod (K , 2) = 0,

{3, 3, 3, 4, . . . , K + 1

2
︸ ︷︷ ︸

0,...,K−3

}, if mod (K , 2) = 1.
(15)
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Fig. 1 Sketch of the candidate stencils with incremental width towards high-order TENO reconstructions. The
candidate stencils for the eight-point TENO reconstruction scheme are shown in this plot

AsWENO schemes, the K th-order reconstructed numerical flux by TENO at the cell face
i + 1/2 is given as

f̂i+1/2 =
K−3
∑

k=0

wk f̂k,i+1/2, (16)

where the nonlinear weight ωk of each stencil is renormalized from the optimal linear weight
dk as

wk = dkδk
∑K−3

k=0 dkδk
, (17)

and δk , given as

δk =
{

0, if χk < CT ,

1, otherwise,
(18)

is a sharp cut-off function with the parameter CT which controls the numerical dissipation
and can be determined by spectral analysis [10].

χk is a normalized function of the smoothness indicator γk , which can be defined as

χk = γk
∑K−3

k=0 γk
, (19)

and

γk =
(

C + τK

βk,r + ε

)q

, k = 0, . . . , K − 3. (20)

Here, τK is the high-order smoothness indicator which allows for good stability with a
reasonably large CFL number and can be constructed as [25]

τK =
∣
∣
∣
∣
βK − 1

6
(β1,3 + β2,3 + 4β0,3)

∣
∣
∣
∣
= O(�x6), K ≥ 5 (21)

where βK measures the global smoothness on the K -point full stencil, for any K th-order
TENO scheme (higher than fourth-order). ε = 10−40 is introduced to prevent the zero
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denominator. Moreover, the parameters C = 1 and q = 6 are adopted for strong scale
separation, which means that discontinuities can be isolated from smooth regions effectively.
Similarly to WENO schemes, βk,r can be defined following Eq. (10) [9].

3 Framework for Constructing the High-Order FMRENO Schemes

The previous work of TENO [26] demonstrates that the high-order accuracy and the ENO
property can be enforced by properly selecting the targeted stencil from a set of predefined
candidates and the linear/nonlinear convex combination is not necessary. The main flaw of
TENO schemes [26], which applies to the WENO-family schemes [9, 14] as well, is that
the evaluation of the smoothness indicators is expensive, particularly for very-high-order
reconstructions [29].

The objective of this work is to propose a new family of FMRENO schemes, which
is computationally cheap and also competitive in terms of performance. In this section,
the three main phases for constructing the high-order FMRENO schemes are elaborated in
detail, i.e. (1) prepare the hierarchically nested candidate stencils; (2) provide the regularity
criterion based on the MP concept; (3) form the final high-order reconstruction by a new
multi-resolution stencil selection strategy.

3.1 The Hierarchical Nested Candidate Stencil Arrangement

Motivated by the construction of TENO schemes [26], the candidate stencil arrangement of
a K -th order reconstruction should satisfy the following principles: (1) in order to achieve a
multi-resolution representation of the local flow scales, a set of candidate stencils with inter-
polation polynomials of order k = 3, . . . , K is constructed in a hierarchical nested manner;
(2) all candidate stencils contain at least one-point upwinding such that no pure downwind
stencil can be deployed for the final reconstruction. As shown in the standard TENO schemes
[10], this condition ensures the good numerical stability of even-order reconstructions in non-
smooth regions; (3) the candidate stencil arrangement allows that, in nonsmooth regions, at
least one candidate stencil is not crossed by discontinuities to ensure the ENO property.

Following the above principles, the candidate stencil arrangements for the five-, six-,
seven- and eight-point FMRENO schemes are given in Figs. 2, 3, 4 and 5, respectively. It is
worth noting that, such a candidate stencil arrangement is applicable for arbitrarily high-order
reconstructions, i.e., for both the odd- and even-order FMRENO schemes.

For each candidate stencil Sr ,m , a polynomial interpolation function (typically r -th order
with r stencil points) for h(x) can be constructed similar to the definition in Eq. (6) and
the resulting flux function evaluated at i + 1/2 is denoted as f̂ rm,i+1/2. Among all candidate
stencils with the same width r , a priority sequence (as indicated by the value m) to form the
final reconstruction is: the high-order central schemes, the optimized central schemes (if there
are), the downwind-biased schemes, and the upwind-biased schemes. Such an arrangement
ensures that the candidate stencil with higher accuracy order or better spectral property
features the priority to be selected for the final reconstruction.

3.2 MP-Based Regularity Criterion

Extensive numerical experiments demonstrate that the MP scheme proposed by Suresh and
Huynh [19] is able to distinguish smooth local extrema from genuine discontinuities and is
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Fig. 2 Hierarchically nested candidate stencils for five-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5. For candidate stencil Sr ,m , m denotes the sequence order among all the
r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction

Fig. 3 The hierarchically nested candidate stencils for six-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5, 6. For candidate stencil Sr ,m , m denotes the sequence order among all the
r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction.
Also included is the stencil S6,1 represented with the dashed line, which is generally an optimized six-point
scheme for a better spectral property by relaxing the accuracy-order constraint. Note that, for the odd-order
reconstruction, such an additional optimal scheme is not necessary

robust for shock-dominated flows [38–40]. Instead of deploying theMP limiter to modify the
reconstructed cell interface flux for suppressing numerical oscillations as in [19] and [40], in
this work, we propose to utilize the MP limiter as a local regularity criterion, which judges
the candidate stencil to be smooth or not. More specifically, one candidate stencil is judged
to be smooth only when the reconstructed cell interface flux locates within the MP upper and
lower bounds, which will be defined as follows.

As given in [19] and [40], the lower and upper bounds of the cell interface flux at i + 1/2
are given by

f̂ min
i+1/2 = max[min( fi , fi+1, f̂ MD

i+1/2),min( fi , f̂ ULi+1/2, f̂ LCi+1/2)],
f̂ max
i+1/2 = min[max( fi , fi+1, f̂ MD

i+1/2),max( fi , f̂ ULi+1/2, f̂ LCi+1/2)],
(22)

where f̂ ULi+1/2, f̂ MD
i+1/2 and f̂ LCi+1/2 denote the left-side upper limiter, the median value of the

solution, and the left-side value allowing for a large curvature in the solution, respectively.
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Fig. 4 Hierarchically nested candidate stencils for seven-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5, 6, 7. For candidate stencil Sr ,m , m denotes the sequence order among all the
r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction.

Fig. 5 Hierarchically nested candidate stencils for eight-point FMRENO scheme: admissible stencils with
stencil point number r = 3, 4, 5, 6, 7, 8. For candidate stencil Sr ,m , m denotes the sequence order among all
the r -point candidates and a smaller value indicates a higher priority to be selected for the final reconstruction.
Also included is the stencil S8,1 represented with the dashed line, which is generally an optimized eight-point
scheme for a better spectral property by relaxing the accuracy-order constraint.
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Specifically, the left-side upper limiter is given by

f̂ ULi+1/2 = fi + α( fi − fi−1), (23)

where α = 2.5 is employed to enable stability.
The median value of the solution at xi+1/2 is given by

f̂ MD
i+1/2 = 1

2
( fi + fi+1) − 1

2
dMD
i+1/2. (24)

The left-side value allowing for a large curvature in the solution at xi+1/2 can be given by

f̂ LCi+1/2 = fi + 1

2
( fi − fi−1) + β

3
dLCi−1/2, (25)

where it is recommended to set β = 4. Following [19] and [40], dMD
i+1/2 = dLCi+1/2 = dMi+1/2

is adopted, and the curvature measurement at the cell interface i + 1/2 can be defined as

dMi+1/2 = minmod(di , di+1), (26)

with di = fi+1 − 2 fi + fi−1, and di+1 = fi+2 − 2 fi+1 + fi .

3.3 AMulti-resolution Stencil Selection Strategy

In order to restore the optimal high-order accuracy in smooth regions and enforce the ENO
property near discontinuities, a multi-resolution stencil selection strategy is proposed based
on the new candidate stencil arrangement and the MP-based regularity criterion as described
in previous subsections. The detailed algorithms are summarized as in Algorithm 1.

Specifically, the regularity of each candidate stencil is examined by theMP-based criterion
in a one-by-one manner and the priority is given to the stencil with higher accuracy order
(typically with larger stencil width r ) or with better spectral property (e.g., with a smaller
value of m in Figs. 2, 3, 4 and 5). Once one candidate stencil satisfies the regularity crite-
rion, i.e. judged to be smooth by the MP criterion, it is assigned as the final reconstruction
scheme without further turning to candidate stencils with lower priorities. If all predefined
candidate stencils fail to enforce the MP criterion, then the smoothest candidate, with which
the predicted cell interface value departs from the MP upper and lower bounds the least, will
be adopted as the final reconstruction for numerical stability.

As a result, (i) in smooth regions, the first largest stencil will be adopted as the final
reconstruction scheme ensuring that the desired high-order accuracy is restored; (2) for
wave-like structures, the reconstruction tends to select the stencil assigned with a higher
priority, i.e. higher accuracy order or better spectral property, according to the local flow
regularity. This multi-resolution type stencil selection ensures low numerical dissipation for
resolving the broadband physical fluctuations; (3) near discontinuities, the reconstruction
gradually degenerates to a smaller stencil with lower priority until it is judged to be smooth
by the MP regularity criterion or the so-called smoothest candidate flux which minimizes
| f̂ rm,i+1/2 − 1

2 ( f̂
max
i+1/2 + f̂ min

i+1/2)| for all r and m.
When compared to the standard W/TENO schemes, the expensive evaluation of the

smoothness indicators is avoided and the linear combination of candidate stencils is not nec-
essary. Moreover, with increasing targeted reconstruction accuracy order, the cost increase of
the FMRENO scheme is negligible whilst that of W/TENO scheme is generally substantial.
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Algorithm 1 Pseudo-code for constructing the K th-order FMRENO scheme
1: Build the hierarchically nested candidate stencils according to the method described in

Sect. 3.1;
2: Compute the MP upper and lower bounds, i.e. f̂ max

i+1/2 and f̂ min
i+1/2, following Sect. 3.2 as

the stencil selection criterion;
3: function multi- resolution stencil selection
4: r = K , m = 0;
5: while r >= 3 do
6: Calculate the reconstructed cell interface flux f̂ rm,i+1/2 for the candidate stencil

Sr ,m ;
7: if f̂ min

i+1/2 − ε0 < f̂ rm,i+1/2 < f̂ max
i+1/2 + ε0 then � ε0 = 10−6 is a small number to

avoid the effects of the machine round-off;
8: f̂i+1/2 = f̂ rm,i+1/2;

9: return f̂i+1/2; � terminate the stencil selection;
10: else
11: while m ∈ [0,mmax − 1] for r -point stencils do
12: m ← m + 1 ;
13: go to line 6 ;
14: end while
15: r ← r − 1 ;
16: go to line 5 ;
17: end if
18: end while
19: for all r , m do � select the smoothest candidate f̂s ;
20: f̂s = f̂ rm,i+1/2, if | f̂ rm,i+1/2 − 1

2 ( f̂
max
i+1/2 + f̂ min

i+1/2)| is smaller;
21: end for
22: f̂i+1/2 = f̂s ;
23: return f̂i+1/2; � terminate the stencil selection;
24: end function

4 Explicit Expressions of FMRENO Schemes

In this section, the formulas for fifth- to eighth-order FMRENO schemes are explicitly given.
It is worth noting that the candidate schemesmay also be constructed as other non-polynomial
functions [41].

4.1 Five-Point FMRENO Scheme

All candidate stencils used to construct a five-point FMRENO scheme (referred to as
FMRENO5) are given as
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f̂ 50,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ).

(27)

4.2 Six-Point FMRENO Scheme

All candidate stencils used to construct a six-point FMRENO scheme (referred to as
FMRENO6) are given as

f̂ 60,i+1/2 = 1
60 ( fi−2 − 8 fi−1 + 37 fi + 37 fi+1 − 8 fi+2 + fi+3),

f̂ 61,i+1/2 = − 57
6000 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2)+

43
6000 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 50,i+1/2 = 1
60 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 51,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 (3 fi + 13 fi+1 − 5 fi+2 + fi+3),

f̂ 42,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ),

(28)

where f̂ 61,i+1/2 denotes a central scheme with optimized dispersion-dissipation relation [25].

4.3 Seven-Point FMRENO Scheme

All candidate stencils used to construct a seven-point FMRENO scheme (referred to as
FMRENO7) are given as

f̂ 70,i+1/2 = 1
420 (−3 fi−3 + 25 fi−2 − 101 fi−1 + 319 fi + 214 fi+1 − 38 fi+2 + 4 fi+3),

f̂ 60,i+1/2 = 1
60 ( fi−2 − 8 fi−1 + 37 fi + 37 fi+1 − 8 fi+2 + fi+3),

f̂ 61,i+1/2 = − 1
60 ( fi−3 − 7 fi−2 + 23 fi−1 − 57 fi − 22 fi+1 + 2 fi+2),

f̂ 50,i+1/2 = 1
60 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 51,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 52,i+1/2 = 1
60 (−3 fi−3 + 17 fi−2 − 43 fi−1 + 77 fi + 12 fi+1),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 (3 fi + 13 fi+1 − 5 fi+2 + fi+3),

f̂ 42,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 43,i+1/2 = 1
12 (−3 fi−3 + 13 fi−2 − 23 fi−1 + 25 fi ),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ).

(29)
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4.4 Eight-Point FMRENO Scheme

All candidate stencils used to construct an eight-point FMRENO scheme (referred to as
FMRENO8) are given as

f̂ 80,i+1/2 = − 1
840 (3 fi−3 − 29 fi−2 + 139 fi−1 − 533 fi − 533 fi+1 + 139 fi+2 − 29 fi+3 + 3 fi+4),

f̂ 81,i+1/2 = −0.007723837710877 fi−3 + 0.05728582585522101 fi−2

−0.2148478198727312 fi−1 + 0.6852858258552214 fi
+0.6152858258552207 fi+1 − 0.1728478198727316 fi+2

+0.04328582585522106 fi+3 − 0.005723831837710886 fi+4,

f̂ 70,i+1/2 = − 1
420 (−4 fi−2 + 38 fi−1 − 214 fi − 319 fi+1 + 101 fi+2 − 25 fi+3 + 3 fi+4),

f̂ 71,i+1/2 = 1
420 (−3 fi−3 + 25 fi−2 − 101 fi−1 + 319 fi + 214 fi+1 − 38 fi+2 + 4 fi+3),

f̂ 60,i+1/2 = 1
60 ( fi−2 − 8 fi−1 + 37 fi + 37 fi+1 − 8 fi+2 + fi+3),

f̂ 61,i+1/2 = − 1
60 (2 fi−1 − 22 fi − 57 fi+1 + 23 fi+2 − 7 fi+3 + fi+4),

f̂ 62,i+1/2 = − 1
60 ( fi−3 − 7 fi−2 + 23 fi−1 − 57 fi − 22 fi+1 + 2 fi+2),

f̂ 50,i+1/2 = − 1
60 (−12 fi − 77 fi+1 + 43 fi+2 − 17 fi+3 + 3 fi+4),

f̂ 51,i+1/2 = 1
60 (−3 fi−1 + 27 fi + 47 fi+1 − 13 fi+2 + 2 fi+3),

f̂ 52,i+1/2 = − 1
60 (−2 fi−2 + 13 fi−1 − 47 fi − 27 fi+1 + 3 fi+2),

f̂ 53,i+1/2 = 1
60 (−3 fi−3 + 17 fi−2 − 43 fi−1 + 77 fi + 12 fi+1),

f̂ 40,i+1/2 = − 1
12 ( fi−1 − 7 fi − 7 fi+1 + fi+2),

f̂ 41,i+1/2 = 1
12 (3 fi + 13 fi+1 − 5 fi+2 + fi+3),

f̂ 42,i+1/2 = 1
12 ( fi−2 − 5 fi−1 + 13 fi + 3 fi+1),

f̂ 43,i+1/2 = 1
12 (−3 fi−3 + 13 fi−2 − 23 fi−1 + 25 fi ),

f̂ 30,i+1/2 = 1
6 (2 fi + 5 fi+1 − fi+2),

f̂ 31,i+1/2 = 1
6 (− fi−1 + 5 fi + 2 fi+1),

f̂ 32,i+1/2 = 1
6 (2 fi−2 − 7 fi−1 + 11 fi ),

(30)

where f̂ 81,i+1/2 denotes a central scheme with optimized dispersion-dissipation relation [25].

5 Numerical Validations

In this section, a set of critical benchmark cases involving strong discontinuities and
broadband flow length scales is simulated. With the finite-difference framework, the
proposed FMRENO schemes are extended to multi-dimensional problems in a dimension-
by-dimension manner. For systems of hyperbolic conservation laws, the characteristic
decompositionmethod based on the Roe average [42] is employed for effectively suppressing
numerical oscillations. The Rusanov scheme [43] is adopted as the flux splittingmethod if not
mentioned otherwise. The third-order strong stability-preserving (SSP) Runge-Kutta method
[44] with a typical CFL number of 0.4 is adopted for the time advancement. Meanwhile, the
numerical results from WENO5-Z, WENO7-S [37], WENO-CU6 [45] and TENO8 [27] are
compared.

To facilitate the accurate measurement of the computational time with one CPU (avoiding
the effects of parallelization), the simulation resolution of some 2D cases, i.e., 2D Riemann
problems, will be decreased.

123



44 Page 14 of 39 Journal of Scientific Computing (2023) 94 :44

Table 1 Convergence statistics of
numerical error with L∞ norm
from five-point schemes for the
linear advection problem

N WENO5-Z FMRENO5
L∞ error Order L∞ error Order

25 1.04E−04 – 1.04E−04 –

50 3.27E−06 4.99 3.27E−06 4.99

75 4.32E−07 4.99 4.32E−07 4.99

100 1.02E−07 5.00 1.02E−07 5.00

150 1.35E−08 5.00 1.35E−08 5.00

Table 2 Convergence statistics of
numerical error with L∞ norm
from six-point schemes for the
linear advection problem

N WENO-CU6 FMRENO6
L∞ error Order L∞ error Order

25 1.11E−05 – 1.12E−05 –

50 1.76E−07 5.99 1.76E−07 5.99

75 1.55E−08 5.99 1.55E−08 5.99

100 2.76E−09 6.00 2.76E−09 6.00

150 2.43E−10 6.00 2.43E−10 6.00

5.1 Accuracy Verifications

5.1.1 Advection Problem

We first consider the one-dimensional Gaussian pulse advection problem [46]. The linear
advection equation

∂u

∂t
+ ∂u

∂x
= 0, (31)

with initial condition

u(x, 0) = sin(πx), (32)

is solved in a computational domain 0 ≤ x ≤ 2 and the final time is t = 2. Periodic boundary
conditions are imposed at x = 0 and x = 2.

As shown in Tables 1, 2, 3 and 4, the desired accuracy order is achieved for all the present
FMRENO schemes.

5.1.2 Burgers Problem

Further, we consider the 2D inviscid nonlinear Burgers equation [47]

∂u

∂t
+ ∂( u

2

2 )

∂x
+ ∂( u

2

2 )

∂ y
= 0. (33)

The equation with an initial condition u(x, y, 0) = sin(π(x + y)/2) is solved in a compu-
tational domain [0, 4] × [0, 4] and periodic boundary conditions are imposed at the left and
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Table 3 Convergence statistics of
numerical error with L∞ norm
from seven-point schemes for the
linear advection problem

N WENO7-S FMRENO7
L∞ error Order L∞ error Order

10 7.60E−04 – 7.60E−04 –

20 6.62E−06 6.84 6.62E−06 6.84

30 3.91E−07 6.98 3.91E−07 6.98

40 5.27E−08 6.97 5.27E−08 6.97

60 3.10E−09 6.98 3.10E−09 6.98

Table 4 Convergence statistics of
numerical error with L∞ norm
from eight-point schemes for the
linear advection problem

N TENO8 FMRENO8
L∞ error Order L∞ error Order

10 2.07E−04 – 2.07E−04 –

20 9.10E−07 7.83 9.10E−07 7.83

30 3.63E−08 7.95 3.63E−08 7.95

40 3.66E−09 7.97 3.66E−09 7.97

60 1.44E−10 7.98 1.44E−10 7.98

right boundaries. The simulation is conducted up to t = 0.5/π , when the solution is still
smooth.

Numerical error statistics and accuracy orders for theWENO5-Z,WENO-CU6,WENO7-
S, TENO8 and FMRENO schemes are shown in Tables 5, 6, 7 and 8, respectively. The
presented data shows that FMRENO schemes can achieve the desired accuracy order even
in nonlinear advection problems.

Figure 6 shows the L∞ numerical error versus the total CPU computational time from
the WENO5-Z, WENO-CU6, WENO7-S, TENO8, and FMRENO schemes. It is observed
that to achieve the same level of numerical error, the required computational cost from the
present scheme is lower than that from the corresponding classical W/TENO scheme of the
same accuracy order.

Note that, the order of convergencewithWENO7-S andTENO8schemes is not as expected
in Tables 7 and 8. This is consistent with the report by [13, 15] that the magnitude of ε may
change the order of convergence of the schemewhen themachine round-off error accumulates
in smooth regions of flowwith�x→ 0. In order to study the sensitivity based on the adopted
computer with double precision, in Tables 9 and 10, we show the convergence statistics of
WENO7-S and TENO8 schemes with ε = 10−8, ε = 10−10 and ε = 10−40 for the Burgers
problem, respectively. The expected accuracy order is restored for both schemes when a
proper value of ε is adopted. The default value of ε = 10−40 is applied in this work, simply
as recommended by the original reference papers [25, 37].
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Table 5 Convergence statistics of
numerical error with L∞ norm
from the five-point schemes for
the Burgers problem

Resolution WENO5-Z FMRENO5
L∞ error Order L∞ error Order

20 × 20 5.41E−03 – 6.91E−03 –

40 × 40 6.17E−04 3.13 6.35E−04 3.44

80 × 80 2.20E−05 4.81 2.21E−05 4.84

120 × 120 2.95E−06 4.96 2.95E−06 4.97

160 × 160 6.84E−07 5.08 6.83E−07 5.08

Table 6 Convergence statistics of
numerical error with L∞ norm
from the six-point schemes for
the Burgers problem

Resolution WENO-CU6 FMRENO6
L∞ error Order L∞ error Order

20 × 20 4.07E−03 – 4.32E−03 –

40 × 40 3.50E−04 3.54 3.50E−04 3.63

80 × 80 8.23E−06 5.41 8.23E−05 5.41

120 × 120 8.88E−07 5.49 8.88E−06 5.49

180 × 180 9.29E−08 5.57 8.17E−08 5.88

Table 7 Convergence statistics of
numerical error with L∞ norm
from the seven-point schemes for
the Burgers problem

Resolution WENO7-S FMRENO7
L∞ error Order L∞ error Order

20 × 20 2.31E−03 – 3.19E−03 –

40 × 40 2.25E−04 3.36 2.24E−04 3.83

80 × 80 3.39E−06 6.05 3.44E−06 6.02

120 × 120 3.27E−07 5.77 2.20E−07 6.79

180 × 180 4.30E−08 5.00 1.25E−08 7.08

Table 8 Convergence statistics of
numerical error with L∞ norm
from the eight-point schemes for
the Burgers problem

Resolution TENO8 FMRENO8
L∞ error Order L∞ error Order

20 × 20 2.23E−03 – 2.09E−03 –

40 × 40 1.38E−04 4.01 1.38E−04 3.92

80 × 80 7.25E−06 4.25 1.68E−06 6.37

120 × 120 2.49E−06 2.63 8.01E−08 7.50

180 × 180 7.81E−07 2.86 3.27E−09 7.89
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Fig. 6 Burgers equation: the L∞ numerical error versus the total CPU computational time from the WENO5-
Z, WENO-CU6, WENO7-S, TENO8, and FMRENO schemes. Discretization is on 20×20, 40×40, 80×80,
120 × 120, and 180 × 180 uniformly distributed grid points

Table 9 Convergence statistics of
numerical error with L∞ norm
from WENO7-S scheme for the
Burgers problem with various ε

Resolutionε = 10−8 ε = 10−10 ε = 10−40

L∞ error OrderL∞ error OrderL∞ error order

20 × 20 2.31E−3 – 2.31E−3 – 2.31E−3 –

40 × 40 2.25E−4 3.36 2.25E−4 3.36 2.25E−4 3.36

80 × 80 3.39E−6 6.05 3.39E−6 6.05 3.39E−6 6.05

120 × 120 2.20E−7 6.74 2.20E−7 6.74 3.27E−7 5.77

180 × 180 1.25E−8 7.08 1.25E−8 7.08 4.30E−8 5.00

Table 10 Convergence statistics
of numerical error with L∞ norm
from TENO8 scheme for the
Burgers problem with various ε

Resolutionε = 10−8 ε = 10−10 ε = 10−40

L∞ error OrderL∞ error OrderL∞ error order

20 × 20 2.23E−3 – 2.23E−3 – 2.23E−3 –

40 × 40 1.38E−4 4.01 1.38E−4 4.01 1.38E−4 4.01

80 × 80 1.68E−6 6.37 1.80E−6 6.26 7.25E−6 4.25

120 × 120 8.01E−8 7.50 8.01E−8 7.68 2.49E−6 2.63

180 × 180 3.63E−9 7.63 3.63E−9 7.63 7.81E−7 2.86

200 × 200 1.59E−9 7.86 1.59E−9 7.86 4.78E−7 5.27

5.2 Shock-Tube Problem

Lax’s problem [48] and Sod’s problem [49] are considered here. The initial condition for
Lax’s problem [48] is

(ρ, u, p) =
{

(0.445, 0.698, 3.528), if 0 ≤ x < 0.5,
(0.5, 0, 0.5710), if 0.5 ≤ x ≤ 1,

(34)

123



44 Page 18 of 39 Journal of Scientific Computing (2023) 94 :44

Fig. 7 Lax’s problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S, TENO8, and FMRENO
schemes. Discretization is on 100 uniformly distributed grid points and the final simulation time is t = 0.14

and the final simulation time is t = 0.14.
The initial condition for Sod’s problem [49] is

(ρ, u, p) =
{

(1, 0, 1), if 0 ≤ x < 0.5,
(0.125, 0, 0.1), if 0.5 ≤ x ≤ 1,

(35)

and the final simulation time is t = 0.2. Both computations are performed on 100 uniformly
distributed grid points.

As shown in Figs. 7 and 8, for both problems, the proposed FMRENO schemes show good
shock-capturing properties. In addition, the efficiency improvement based on the scheme
reconstruction time (referred to as Efficiency improvement 1) and that based on the total
CPU computation time (referred to as Efficiency improvement 2)with FMRENOschemes are
shown in Table 11. The results show that the computational time of FMRENO schemes only
varies slightly when the present framework is extended to very-high-order reconstructions,
whereas that of the standard high-order W/TENO schemes increases remarkably due to the
expensive evaluations of the smoothness indicators.
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Fig. 8 Sod’s problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S, TENO8, and FMRENO
schemes. Discretization is on 100 uniformly distributed grid points and the final simulation time is t = 0.2

5.3 Shock Density-Wave Interaction Problem

This case is proposed byShu andOsher [50].Aone-dimensionalMach-3 shockwave interacts
with a perturbed density field generating both small-scale structures and discontinuities. The
initial condition is

(ρ, u, p) =
{

(3.857, 2.629, 10.333), if 0 ≤ x < 1,
(1 + 0.2 sin(5(x − 5)), 0, 1), if 1 ≤ x ≤ 10.

(36)

The computational domain is [0,10] with N = 200 uniformly distributed mesh cells and
the final evolution time is t = 1.8. The inflow boundary condition and outflow boundary
condition are applied at x = 0 and x = 10, respectively. The “exact” solution for reference
is obtained by the fifth-order WENO5-JS scheme with N = 2000.

The computed density profiles from the WENO5-Z, WENO-CU6, WENO7-S, TENO8,
and FMRENO schemes are given by Fig. 9. For the five-point schemes, the FMRENO
schemes show obvious improvement with regard to resolving the high-wavenumber fluc-
tuations when compared to the corresponding WENO5-Z schemes. For the six-, seven-,
and eight-point schemes, compared with WENO-CU6, WENO7-S, and TENO8, the present
FMRENO schemes perform better in capturing the shocklets and maintaining the wave
amplitude, except in the vicinity of x = 6.
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Table 11 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computa-
tion time
(s)

Efficiency
improve-
ment 1
(%)

Efficiency
improve-
ment 2
(%)

Sod’s problem WENO5-Z 0.040 0.142 – –

FMRENO5 0.042 0.153 −4.91 −7.71

WENO-CU6 0.051 0.158 − −
N = 100 FMRENO6 0.041 0.148 18.15 6.74

WENO7-S 0.049 0.172 – –

FMRENO7 0.043 0.168 13.12 2.04

TENO8 0.092 0.214 – –

FMRENO8 0.041 0.156 55.10 26.93

Efficiency comparisons between various schemes are given in Table 12. All the proposed
schemes show an efficiency improvement when compared to the corresponding classical
W/TENO schemes of the same accuracy order.

5.4 Interacting BlastWaves

The two-blast-waves interaction problem taken from [51] is considered. The initial condition
is

(ρ, u, p) =
⎧

⎨

⎩

(1, 0, 1000), if 0 ≤ x < 0.1,
(1, 0, 0.01), if 0.1 ≤ x < 0.9,
(1, 0, 100), if 0.9 ≤ x ≤ 1.

(37)

The computational domain is [0,1], and symmetry boundary conditions are applied at x = 0
and x = 1, respectively. The simulation is performed on a uniform mesh with N = 400 and
the final simulation time is t = 0.038. The “exact” solution for reference is computed by the
fifth-order WENO5-JS scheme on a uniform mesh with N = 2000. For this case, the Roe
scheme with entropy-fix is employed for flux splitting.

As shown in Fig. 10, while WENO7-S fails this case as reported by [37] due to the lack
of numerical robustness, the results from all other considered schemes agree well with the
reference solution. Moreover, the FMRENO5 and FMRENO6 schemes perform better than
WENO5-Z and WENO-CU6 in resolving the density peak at x = 0.78, respectively.

Efficiency comparisons between various schemes are given in Table 13 and the efficiency
improvement from the present schemes is substantial.

123



Journal of Scientific Computing (2023) 94 :44 Page 21 of 39 44

Fig. 9 Shock density-wave interaction problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S,
TENO8, and FMRENO schemes. Discretization is on 200 uniformly distributed grid points and the final
simulation time is t = 1.8

5.5 Rayleigh–Taylor Instability

The inviscid Rayleigh-Taylor instability case proposed by Xu and Shu [52] is considered
here. The initial condition is

(ρ, u, v, p) =
{

(2, 0,−0.025c cos(8πx), 1 + 2y), if 0 ≤ y < 1/2,
(1, 0,−0.025c cos(8πx), y + 3/2), if 1/2 ≤ y ≤ 1,

(38)

where the sound speed c =
√

γ
p
ρ
with γ = 5

3 . The computational domain is [0, 0.25]×[0, 1].
Reflective boundary conditions are imposed at the left and right sides of the domain. Constant
primitive variables (ρ, u, v, p) = (2, 0, 0, 1) and (ρ, u, v, p) = (1, 0, 0, 2.5) are set for the
bottom and top boundaries, respectively.

The computed density contours with the FMRENO and various W/TENO schemes at
a resolution of 120 × 480 are shown in Fig. 11. It is observed that the newly proposed
FMRENO5 and FMRENO7 schemes resolve finer small-scale structures than WENO5-Z
and WENO7-S, respectively. On the other hand, the FMRENO6 and FMRENO8 schemes
perform similarly to WENO-CU6 and TENO8.
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Table 12 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Shock/
density
wave
interaction
N = 200

WENO5-Z 0.295 1.008 – –

FMRENO5 0.287 1.007 2.51 0.12

WENO-CU6 0.330 1.063 – –

FMRENO6 0.293 1.015 11.08 4.50

WENO7-S 0.335 1.182 – –

FMRENO7 0.302 1.165 9.80 1.43

TENO8 0.597 1.510 – –

FMRENO8 0.313 1.179 47.52 21.88

As shown in Table 14, a substantial efficiency improvement can be observed for all the
considered FMRENO schemes when compared to classical W/TENO schemes of the same
accuracy order.

5.6 Riemann Problem: Configuration 3

Two-dimensional Riemann (2D) problems, first proposed in [53], are classical benchmark
cases for verifying numerical methods by solving the Euler equations. Here, we consider the
2D Riemann problem of configuration 3. The computational domain is [0, 1] × [0, 1] and
the final simulation time is t = 0.3. The initial condition is given as

(ρ, p, u, v) =

⎧

⎪⎪⎨

⎪⎪⎩

(0.5323, 0.300, 1.206, 0.000), if 0.0 < x < 0.5, 0.5 < y < 1.0,
(1.5000, 1.500, 0.000, 0.000), if 0.5 < x < 1.0, 0.5 < y < 1.0,
(0.1380, 0.029, 1.206, 1.206), if 0.0 < x < 0.5, 0.0 < y < 0.5,
(0.5323, 0.300, 0.000, 1.206), if 0.5 < x < 1.0, 0.0 < y < 0.5.

(39)

As shown in Figs. 12 and 13, the FMRENO5, FMRENO6, and FMRENO7 schemes
capture the shockwave patterns, and the small-scale flow structures better than WENO5-
Z, WENO-CU6 and WENO7-S, respectively. For the eight-point schemes, the present
FMRENO8 scheme is a bit more dissipative and at the same time generates less spurious
numerical noise than the standard TENO8 scheme.

Efficiency comparisons between various schemes have been given in Table 15. Except for
the five-point schemes, the present schemes show a much better efficiency in terms of both
criteria.
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Fig. 10 Interacting blast waves problem: solutions from theWENO5-Z,WENO-CU6, TENO8, and FMRENO
schemes. Discretization is on 400 uniformly distributed grid points and the final simulation time is t = 0.038.
WENO7-S also fails due to the lack of numerical robustness as reported by [37]

5.7 Riemann Problem: Configuration 6

The 2D Riemann problem of configuration 6 is considered. The computational domain is
[0, 1] × [0, 1] and the final simulation time is t = 0.3. The initial condition is given as

(ρ, u, v, p) =

⎧

⎪⎪⎨

⎪⎪⎩

(2.0, 0.75, 0.5, 1.0), if 0.0 < x < 0.5, 0.5 < y < 1.0,
(1.0, 0.75,−0.5, 1.0), if 0.5 < x < 1.0, 0.5 < y < 1.0,
(1.0,−0.75, 0.5, 1.0), if 0.0 < x < 0.5, 0.0 < y < 0.5,

(3.0,−0.75,−0.5, 1.0), if 0.5 < x < 1.0, 0.0 < y < 0.5.

(40)

As shown in Figs. 14 and 15, the performance of the present FMRENO schemes is much
better than that of the corresponding W/TENO schemes in terms of capturing the interfacial
instabilities. It is worth noting that the solution of FMRENO8 is free from the numerical
noise generated by TENO8.

Efficiency comparisons between various schemes have been given in Table 16. Overall
speaking, the efficiency improvement from the present schemes increases remarkably as the
reconstruction order increases.
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Fig. 11 Rayleigh–Taylor instability problem: solutions from the WENO5-Z, WENO-CU6, WENO7-S,
TENO8, and FMRENO schemes. Resolution is 120 × 480, and the final simulation time is t = 1.95
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Table 13 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Interacting
blast
waves
N = 400

WENO5-Z 2.123 6.557 – –

FMRENO5 1.966 6.430 7.39 1.95

WENO-CU6 2.540 7.138 – –

FMRENO6 2.157 6.574 15.06 7.90

WENO7-S – – – –

FMRENO7 2.131 7.420 – –

TENO8 4.289 9.855 – –

FMRENO8 2.229 7.446 48.03 24.45

Table 14 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Rayleigh-
Taylor
instability
120 × 480

WENO5-Z 1593.90 3826.97 – –

FMRENO5 1398.24 3402.42 12.28 11.09

WENO-CU6 2350.64 4343.55 – –

FMRENO6 1600.40 3591.29 31.92 17.32

WENO7-S 2736.94 4859.31 – –

FMRENO7 1438.90 3527.78 47.43 27.40

TENO8 3733.35 5975.54 – –

FMRENO8 1732.64 3882.27 53.59 35.03

5.8 Double Mach Reflection of a Strong Shock

This 2D case is taken from Woodward and Colella [51] with the initial condition as

(ρ, u, v, p) =
{

(1.4, 0, 0, 1), if y < 1.732(x − 0.1667),
(8, 7.145,−4.125, 116.8333), otherwise.

(41)
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Fig. 12 2D Riemann problem of configuration 3: solutions from the WENO5-Z, WENO-CU6, FMRENO5,
and FMRENO6 schemes. The simulation time is t = 0.3 and the grid resolution is 1200 × 1200. This figure
is drawn with 30 density contours between 0.2 and 1.8

The computational domain is [0, 4]× [0, 1] and the final simulation time is t = 0.2. Initially,
a right-moving Mach 10 shock wave is placed at x = 0.1667 with an incident angle of 60◦
to the x-axis. The post-shock condition is imposed from x = 0 to x = 0.1667 whereas a
reflecting wall condition is enforced from x = 0.1667 to x = 4 at the bottom. For the top
boundary condition, the fluid variables are defined to exactly describe the evolution of the
Mach 10 shock wave. The inflow and outflow conditions are imposed for the left and right
sides of the computational domain. The computed density contours are shown in Figs. 16
and 17. For the five-, six- and eight-point reconstructions, the present FMRENO schemes
perform similarly to or slightly better than the correspondingW/TENO schemes. On the other
hand, the seven-point FMRENO7 scheme performs significantly better than WENO7-S in
resolving the small-scale vortical structures in the blow-up regions.
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Fig. 13 2D Riemann problem of configuration 3 (continued): solutions from the WENO7-S, TENO8,
FMRENO7, and FMRENO8 schemes. The simulation time is t = 0.3 and the grid resolution is 1200× 1200.
This figure is drawn with 30 density contours between 0.2 and 1.8

Moreover, it is worth noting that the effect of the MP limiter can be adjusted by tuning
the curvature measurement dM4

i+1/2 and the parameters α, β. In the following, we test the

dissipation property of FMRENO8 with a more restrictive curvature measurement d4Mi+1/2 at
the cell interface i + 1/2 which is defined as

dM4
i+1/2 = minmod(4di − di+1, 4di+1 − di , di , di+1). (42)

As shown in Figs. 17h and 18c, a more restrictive curvature measurement will tighten the
MP-based regularity criterion, which results in a more dissipative FMRENO8 scheme. In
Fig. 18a, d, the dissipation property changes with the parameter β, which determines the
amount of freedom allowing for large curvature. And Fig. 18b, d show that, a larger α results
in a less dissipative FMRENO8 scheme.

Efficiency comparisons between various schemes are given in Table 17. The efficiency
improvements from the present schemes of the same accuracy order are remarkable.
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Table 15 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements (the simulation resolution is 400 × 400)

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Riemann
problem 3
400 × 400

WENO5-Z 504.94 1308.76 – –

FMRENO5 621.39 1425.99 −23.06 −8.86

WENO-CU6 973.74 1786.28 – –

FMRENO6 653.82 1472.10 32.85 17.59

WENO7-S 821.50 1682.07 – –

FMRENO7 657.02 1550.46 20.02 7.82

TENO8 1580.06 2501.81 – −
FMRENO8 695.15 1585.24 56.01 36.64

Table 16 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements (the simulation resolution is 400 × 400)

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Riemann
problem 6
400 × 400

WENO5-Z 413.06 1058.35 – –

FMRENO5 493.69 1137.27 −19.51 −7.46

WENO-CU6 778.65 1440.18 – –

FMRENO6 531.74 1192.61 31.71 17.19

WENO7-S 668.77 1379.46 – –

FMRENO7 515.18 1217.01 22.97 11.78

TENO8 1248.04 1979.51 – –

FMRENO8 576.29 1302.32 53.82 34.21

5.9 Single-Material Triple Point Problem

A modified triple point problem with a single material rather than multiple materials is
presented [54]. The computational domain is [0, 7]×[0, 3] and the initial condition is shown
in Fig. 19. An outflow condition is applied to the right boundary while a slip-wall condition
for all other boundaries. A uniform mesh with the resolution of 1120× 480 is employed for
all computations.
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Fig. 14 2D Riemann problem of configuration 6: solutions from the WENO5-Z, WENO-CU6, FMRENO5,
and FMRENO6 schemes. The simulation time is t = 0.3 and the grid resolution is 1200 × 1200. This figure
is drawn with 30 density contours between 0.24 and 3.3

As shown in Fig. 20, the present FMRENO schemes generate finer small-scale structures
in the roll-up regions and along the contact discontinuities than the correspondingWENO5-Z,
WENO-CU6, and WENO7-S schemes, respectively. Also as shown by Fig. 21, FMRENO8
further improves the performance of the lower-order FMRENO schemes while the standard
TENO8 scheme fails this case in the high-resolution simulation with 1120× 480 because of
the positivity-preserving issue.

Efficiency comparisons between various schemes have been given in Table 18. For very-
high-order reconstructions, the efficiency improvements from the present schemes of the
same accuracy order are remarkable for both criteria.
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Fig. 15 2D Riemann problem of configuration 6 (continued): solutions from the WENO7-S, TENO8,
FMRENO7, and FMRENO8 schemes. The simulation time is t = 0.3 and the grid resolution is 1200× 1200.
This figure is drawn with 30 density contours between 0.24 and 3.3

5.10 Regular Shock Reflection

The regular shock reflection is a typical two-dimensional steady flow [55]. The computational
domain is [0, 4] × [0, 1]. Initially, an impinging shock with impinging angle θ of 29◦ and
upstream flow of Mach number 2.9 is imposed by the Rankine–Hugoniot relationship [56].
The evolution histories of the averaged residue for the various schemes are analyzed. Here,
the averaged residue is defined as

ResA =
N

∑

i=1

|Ri |
N

, (43)

where Ri is the local residue defined as

Ri = ρn+1
i − ρn

i

δt
, (44)

and N is the total number of grid points, and n denotes the time step.
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Fig. 16 Double Mach reflection of a strong shock: zoomed-in views of density contours from the WENO5-Z,
WENO-CU6, FMRENO5, and FMRENO6 schemes at the simulation time t = 0.2. The grid resolution is
1280 × 320. This figure is drawn with 42 density contours between 1.887 and 20.9

The computed density distributions are shown with 20 contours between 0.98 and 2.7 in
Fig. 22. The results show that the numerical oscillations ofWENO-CU6 andTENO8 aremore
severe than those ofWENO5-Z.This can be seenmore clearly in Fig. 23. The averaged residue
ofWENO5-Z settles down to the smallest value around 10−2.8, followed by that of WENO7-
S which settles down to a value around 10−2.0. The averaged residues of WENO-CU6 and
TENO8 decrease to a relatively larger value, which is around 10−1.7 and 10−0.9, respectively.
For the newly proposed five-, six-, seven-, and eight-point FMRENO schemes, the averaged
residue settles down to a value around 10−2.8, 10−2.2, 10−2.6 and 10−2.4, respectively. These
results clearly show that the FMRENO5 scheme has a comparable convergence behavior
with WENO5-Z. When comparing with the low-dissipation WENO-CU6, WENO7-S, and
TENO8 schemes, the present FMRENO6, FMRENO7, and FMRENO8 schemes show better
convergence behavior.
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Fig. 17 Double Mach reflection of a strong shock (continued): zoomed-in views of density contours from the
WENO7-S, TENO8, FMRENO7, and FMRENO8 schemes at the simulation time t = 0.2. The grid resolution
is 1280 × 320. This figure is drawn with 42 density contours between 1.887 and 20.9

6 Conclusions

In this work, a new family of high-order shock-capturing FMRENO schemes has been pro-
posed. The major contributions are summarized as follows:

• Based on the MP concept, the construction of the new FMRENO schemes con-
sists of three main phases, i.e., (1) preparing polynomial-based candidate stencils
from high- to low-orders in a hierarchical manner; (2) providing a local regular-
ity criterion by calculating the MP upper and lower bounds. A candidate stencil
is judged to be smooth only when the reconstructed cell interface flux locates
within the MP bounds; (3) formulating the final cell interface reconstruction scheme
by selecting the higher-order (or better spectra) candidate stencil, which is judged
to be smooth. If all candidate stencils are judged to be nonsmooth by the MP
criterion, the smoothest stencil, with which the reconstructed cell interface flux

123



Journal of Scientific Computing (2023) 94 :44 Page 33 of 39 44

Fig. 18 Double Mach reflection of a strong shock: zoomed-in views of density contours from FMRENO8
schemes with dM4 curvature measurement and various parameters at the simulation time t = 0.2. a α = 0.5
and β = 4.0; b α = 2.5 and β = 2.0; c α = 2.5 and β = 4.0; d α = 0.5 and β = 2.0. The grid resolution is
1280 × 320. This figure is drawn with 42 density contours between 1.887 and 20.9

Fig. 19 The sketch of the computational domain and the initial condition for the triple point problem
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Table 17 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Double
Mach
reflection
1280×320

WENO5-Z 4832.10 12181.80 – –

FMRENO5 4754.20 12052.50 1.61 1.06

WENO-CU6 8357.38 15218.60 – –

FMRENO6 4938.72 11896.80 40.91 21.83

WENO7-S 7515.97 15594.20 – –

FMRENO7 5171.17 13308.30 31.20 14.66

TENO8 13184.40 20866.50 – –

FMRENO8 5328.61 12853.10 59.59 38.40

Fig. 20 Single-material triple point problem: normalized density gradient contours from the WENO5-Z,
WENO-CU6, WENO7-S, and various FMRENO schemes at the simulation time t = 5. The grid resolution is
1120 × 480. This figure is drawn with 19 normalized density gradient contours between 0.05 and 1.95.
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Fig. 21 Single-material triple point problem (continued): normalized density gradient contour from the
FMRENO8 scheme. Note that the standard TENO8 scheme fails in this case

Table 18 Averaged computational time for various reconstruction schemes and the corresponding efficiency
improvements

Cases Schemes Reconstruction
time (s)

Total CPU
computation
time (s)

Efficiency
improve-
ment 1 (%)

Efficiency
improve-
ment 2 (%)

Single-
material
triple point
1120×480

WENO5-Z 10258.7 25363.6 – –

FMRENO5 10972.9 26337.6 −6.96 −3.84

WENO-CU6 18709.2 34147.4 – –

FMRENO6 12414.3 27341.7 33.65 19.93

WENO7-S 21341.8 38338.6 – –

FMRENO7 12271.1 29165.3 42.50 23.93

TENO8 – – – –

FMRENO8 13365.7 29745.9 – –

departs from the MP bounds the least, will be adopted as the final reconstruction
scheme.

• The new framework achieves the multi-resolution property by adaptively selecting the
targeted reconstruction scheme from the candidate stencils of different orders accord-
ing to the local flow regularities. Specifically, in smooth regions, the candidate stencil
with the largest stencil width will be adopted for restoring the desired high-order
accuracy. In the vicinity of discontinuities, the good non-oscillatory property will be
achieved by selecting the candidate reconstruction satisfying the MP criterion. For
the wave-like structures, the low-dissipation property can be approached by choosing
the smooth candidate stencils with higher accuracy order or better spectral proper-
ties.

• The present framework can be straightforwardly extended to arbitrarily very-high-
order reconstructions with a tiny complexity increase. Compared to the standard
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Fig. 22 Regular shock reflection: density contours from the WENO5-Z, WENO-CU6, WENO7-S, TENO8,
FMRENO5, FMRENO6, FMRENO7, and FMRENO8 schemes at the simulation time t = 50. The grid
resolution is 128 × 32. This figure is drawn with 20 density contours between 0.98 and 2.7

Fig. 23 Regular shock reflection: the evolution histories of the averaged residue with the WENO5-Z, WENO-
CU6, WENO7-S, TENO8, FMRENO5, FMRENO6, FMRENO7, and FMRENO8 schemes

W/TENO schemes, the computational efficiency of FMRENO schemes is substan-
tially higher by avoiding the expensive evaluations of the smoothness indicators.
Moreover, the efficiency improvement is more impressive with higher-order reconstruc-
tions.

• A set of critical benchmark cases is simulated to validate the performance of the proposed
FMRENO schemes. Numerical results demonstrate the capability of the new schemes in
terms of recovering the targeted high-order accuracy in smooth regions, preserving the
low numerical dissipation for resolving wave-like structures, and capturing the discon-
tinuities sharply. In all the considered cases, the present FMRENO schemes show either
a similar or an improved performance when compared to the corresponding W/TENO
schemes.
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Considering the high computational efficiency and the competitive performance of the
present FMRENO schemes, future workwill focus on the applications to complex geometries
and multi-physics problems.
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