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Abstract
In this work the development of a machine learning-based Reduced Order Model (ROM)
for the investigation of hemodynamics in a patient-specific configuration of Coronary Artery
Bypass Graft (CABG) is proposed. The computational domain is referred to left branches
of coronary arteries when a stenosis of the Left Main Coronary Artery (LMCA) occurs.
The method extracts a reduced basis space from a collection of high-fidelity solutions via a
Proper Orthogonal Decomposition (POD) algorithm and employs Artificial Neural Networks
(ANNs) for the computation of the modal coefficients. The Full Order Model (FOM) is
represented by the incompressible Navier-Stokes equations discretized using a Finite Volume
(FV) technique. Both physical and geometrical parametrization are taken into account, the
former one related to the inlet flow rate and the latter one related to the stenosis severity.
With respect to the previous works focused on the development of a ROM framework for
the evaluation of coronary artery disease, the novelties of our study include the use of the
FV method in a patient-specific configuration, the use of a data-driven ROM technique and
the mesh deformation strategy based on a Free Form Deformation (FFD) technique. The
performance of our ROM approach is analyzed in terms of the error between full order and
reduced order solutions as well as the speed-up achieved at the online stage.
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1 Introduction andMotivation

Coronary artery diseases is one of the main causes of death worldwide. When they occur,
one or more coronary arteries are occluded causing a poor perfusion of oxygen-rich blood to
the heart, leading to clinical complications such as heart attack and heart failure. Coronary
Artery Bypass Grafts (CABGs) surgery is still one of the most used procedures worldwide,
although after some years blood supply often fails again, causing the need for reintervention.
Many papers [1–6] study different CABG configurations in order to establish a good clinical
treatment, especially in term of mid-long survival. However an isolated stenosis of the main
trunk is rare, and there is not a sample of consolidated studies which allow to establish the
most appropriate procedure to perform in this case.

Computational Fluid Dynamics (CFD) applied to the cardiovascular system [7] represents
a research area of significant importance and in recent times it had a strong impulse due
to the increasing demand from the medical community for quantitative investigations of
cardiovascular diseases. For the problem at hand, a better understanding of the blood flow
behaviour in grafts and graft junctions could aid in surgical planning of grafting and improve
the lifetime of grafts.

High-fidelity numerical methods, among which Finite Element (FE) and Finite Volume
(FV) methods, often referred to as Full Order Models (FOMs), are commonly used for
the solution of parameterized Navier-Stokes equations governing the blood flow dynamics,
where the parameters are geometric features, boundary conditions and/or physical properties.
However, for applicationswhich require repeatedmodel evaluations over a range of parameter
values, FOMs are very expensive in terms of computational time and memory demand due to
the large amount of degrees of freedom to be considered for a proper description of the flow
system. In such a framework, Reduced Order Models (ROMs) [8–15] are applied to enable
fast computations varying the parameters, as often required in the clinical context [16–24].

A further step forward in this scenario has been given by the development and diffusion of
intelligent technologies. Many recent works use machine learning as an alternative to CFD
simulations in order to reproduce hemodynamic parameters [25–29]. In all theseworks, CFD,
that is used to compute the data set for training and testing, is seen as a black box whilst
the machine learning algorithms are used to detect a nonlinear manifold that maps CFD
inputs to their corresponding outputs of interest. Neural networks can in theory represent
any functional relationship between inputs and outputs. However, many applications remain
unexplored and this reinforces the need to carry out further studies in this area.

The main goal of this work is to propose a partnership between neural networks, ROM
and CFD with the aim to lower the computational cost of the numerical simulations and
at the same time to provide accurate predictions of the blood flow behaviour. In particular,
the Proper Orthogonal Decomposition-Artificial Neural Network (POD-ANN) method [30,
31], where the POD is employed for the computation of the reduced basis and feedforward
ANNs are adopted for the evaluation of the modal coefficients, is used to reconstruct in a
fast and reliable way both primal variables (pressure and velocity) and derived quantities (the
Wall Shear Stress (WSS)). The method is applied to the investigation of hemodynamics in
a CABG patient-specific configuration when an isolated stenosis of the Left Main Coronary
Artery (LMCA) occurs at varying of the inlet boundary conditions and of the severity of the
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stenosis. So we extend what has been done in [32] for the time reconstruction to a physical
and geometrical parametric setting. The POD-ANN method has been successfully used in
several application fields ranging between automotive [33], casting [34] and combustion [31].

With respect to the previous investigations focused on the development of a ROM frame-
work for the evaluation of coronary artery disease, the novelties of our investigation include:

• The use of the FVmethod in a patient-specific framework indeed, although the FVmethod
is also adopted in [35], the geometric database used consists of idealized geometries, i.e.
obtained from the deformation of a three-dimensional straight pipe bymeans of a discrete
empirical interpolation method (DEIM). Other recent works, e.g. [36, 37], employ the
FVmethod for the development of ROMs for hemodynamic applications but its adoption
in this environment is still rather unexplored, so this work contributes to fill this gap.
In addition many commercial codes widely used from bioengineering community are
based on FV schemes, therefore the combination of ROM and FVmethods is particularly
appealing in this field.

• The use of a data-driven ROM technique in all the previous works [16, 18, 23, 35], a
standard POD-Galerkin method is adopted. Data-driven approaches are based only on
data and do not require knowledge about the governing equations that describe the system.
They are also non-intrusive, i.e. no modification of the simulation software is carried out.
Typically data-driven methods are able to provide a computational speed-up larger than
classic projection-based methods [36–41], so they are to be preferred by allowing real
time simulations to be accessed in hospitals and operating rooms in a more efficient way.

• The mesh deformation strategy in [16, 18], a centerlines-based parametrization is intro-
duced to efficiently handle geometrical variations for a wide range of patient-specific
configurations of CABGs in a FE environment. This method allows an efficient varia-
tion of geometrical quantities of interest, such as stenosis severity. However it is hardly
compatible with the FV formulation of the governing equations that is not written in
a reference domain setting. Conversely, the Free Form Deformation (FFD) allows to
act directly on the mesh. Another mesh deformation strategy consistent with the FV
approximation is introduced in [42]: while our approach uses a Non-Uniform Rational
Basis Spline (NURBS) parameterization, [42] is based on a Radial Basis Function (RBF)
approach. However, while RBF approach deforms the grid as a whole and therefore it
does not preserve the original geometry, in the NURBS strategy all the vertices remains
on the initial surface.

The rest of the paper is structured as follows. In Sect. 2, the computational domain as well
as Navier-Stokes equations, representing our FOM, are introduced. Section 3 presents our
ROM approach. Then the numerical results are reported in Sect. 4. Finally, in Sect. 5 we draw
conclusions and discuss future perspectives of the current study.

2 The Full Order Model

2.1 The Computational Domain

Thevirtual geometry related to theCABGconfiguration at hand is shown inFig. 1a.Themodel
includes, beyond the LMCA, the Left Internal Thoracic Artery (LITA), the Left Anterior
Descending Artery (LAD) and the Left Circumflex artery (LCx).

The patient-specificComputedTomography (CT)–scan data, fromwhich the virtual geom-
etry has been obtained by using the procedure explained in [16], have been provided by
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Fig. 1 Three-dimensional reconstruction of the CABG (a) and view of the mesh on an internal section (b)

Table 1 Features of the mesh

Number of cells Min/max mesh size [m] Average non-orthogonality [◦] Max skewness

986.278 3.0e−5–4.3e−4 12.9 2.95

Ospedale Luigi Sacco in Milan. The mesh, displayed in Fig. 1b, has been built by using the
mesh generation utility snappyHexMesh available in OpenFOAM® (www.openfoam.org). Its
features are shown in Table 1.

To introduce different severity of stenosis in the LMCA in a way that is compatible with
the data-driven reduced order model which will be introduced next it is important to warp
directly the mesh and not just the geometry, so that the same number of cells is present
in all the deformed configurations. At this aim, FFD is performed by means of a NURBS
volumetric parameterization [43]. The procedure consists of three main steps [44, 45]:

– (i) A parametric lattice of control points is constructed by means of a structured mesh
placed around the region of the LMCA to be deformed. Then the control points are used
to define a NURBS volume which contains the LMCA portion to be warped.

– (ii) The octree algorithm [44] can be used to find a matching between the control points
of the lattice and the points of the computational domain:

1. The parametric lattice is divided in eight subvolumes;
2. The coordinates of the vertices of each subvolume are compared against the coor-

dinates of the portion of LMCA under consideration. This allows to identify the
subvolume in which the computational domain is embedded;
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Fig. 2 Introduction of the stenosis in the LMCA using FFD technique

3. The subvolumes are again divided and the procedure is repeated until a desirable
accuracy is achieved.

– (iii) The coordinates of the control points are modified, so that the parametric volume
and consequently the LMCA portion are deformed.

In Fig. 2a the lattice and the LMCA region where the stenosis is introduced are illustrated
in their initial configurations, whilst in Fig. 2b and c the deformed lattice and a 50% stenosis
are displayed, respectively.

Finally we highlight that the introduction of the stenosis in the LMCA does not signifi-
cantly affect the mesh quality.

2.2 The Navier–Stokes Equations

Let us consider the dynamics of the blood flow in a patient-specific domain
�(μ) ⊂ R

3 over a cardiac cycle (0, T ], when the transient effects are passed:{
ρ∂tu(x, t;μ) + ρ∇ · (u(x, t;μ) ⊗ u(x, t;μ)) − ∇ · T(x, t;μ) = 0,

∇ · u(x, t;μ) = 0,
(1)

in �(μ) × (0, T ], where ρ is the density, u is the velocity, ∂t denotes the time derivative and
T is the Cauchy stress tensor. The vector μ ∈ P ⊂ R

d represents a parameter vector in a
d-dimensional parameter space P containing both physical and geometrical parameters of
the problem. For the sake of simplicity, from now on the dependance of the variables on x,
t , and μ will be omitted.

In this work, we model the blood as a Newtonian fluid, so the constitutive relation for T
is given by

T = −pI + 2μD(u), (2)

where p is the pressure, μ is the dynamic viscosity and D(u) = ∇u+∇uT
2 is the strain rate

tensor. By using equation (2), the system (1) can be rewritten as{
∂tu + ∇ · (u ⊗ u) + ∇P − ν�u = 0,

∇ · u = 0,
(3)
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in�×(0, T ], where P = p
ρ
is the kinematic pressure, i.e. the pressure divided by the density,

and ν = μ
ρ
is the kinematic viscosity.

We also introduce the WSS defined as follows:

WSS = τ(u) · nw (4)

on ∂�, where τ = ν(∇u+∇uT ) is the stress tensor and nw is the unit normal outward vector
to ∂�.

Finally, in order to characterize the flow regime under consideration, we define the
Reynolds number as

Re = UL

ν
, (5)

where U and L are characteristic macroscopic velocity and length, respectively. For a blood
flow in a cylindrical vessel, U is the mean sectional velocity and L is the diameter.

2.3 Boundary Conditions

The boundary ∂� of our computational domain consists of:

– two inflow, the LMCA and the LITA sections. We consider a realistic flow rate waveform
[46, 47]:

qi (t) = f i q̄i (t), i = LMCA,LITA, (6)

where f i ∈ [ 2
3 ,

4
3

]
(see [46–48]). The functions q̄i (t) are represented in Fig. 3.Moreover,

since the stenosis severity influences the inlet flow, in order to enforce more realistic
inflow conditions, it is relevant to scale flow rates as follows:

Q̄healthy
LMCA = Q̄stenosis

LMCA + Q̄stenosis
LITA = GQ̄healthy

LMCA + C Q̄healthy
LITA , (7)

where Q̄healthy
i = 1

T

∫ T
0 f i q̄i (t) dt , G scales as the square of the stenosis severity diam-

eter, and C is consequently computed. Then, the inflow boundary conditions are given
by:

qLMCA(t) = G f LMCAq̄LMCA(t), qLITA(t) = C f LITAq̄LITA(t); (8)

– the vessel wall, on which we enforce a no slip condition;
– two outflow, the LAD and LCx sections, on which we enforce homogeneous Neumann

boundary conditions. We highlight that it would be necessary to set outlet boundary
conditions able to capture as much as possible the physiology of vascular networks
outside of the domain of the model (see, e.g., [23, 24, 36, 37]. However such treatment
is out of scope of this work and will be taken into account in a future contribution.

2.4 Time and Space Discretization

To discretize in time the problem (3), let us consider a time step�t ∈ R
+ such that tn = n�t ,

n = 0, 1, . . . , Nt and T = Nt�t . Let (un, Pn) be the approximations of the velocity and the
pressure at time tn . We adopt a Backward Differentiation Formula of order 2 (BDF2):⎧⎨

⎩
3

2�t
un+1 + ∇ · (un ⊗ un+1) + ∇Pn+1 − ν�un+1 = bn+1,

∇ · un+1 = 0,
(9)
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Fig. 3 Time evolution over the cardiac cycle of q̄LMCA and q̄LITA [46, 47]

where bn+1 = 4un−un−1

2�t .
Concerning the space discretization of the problem (9), we adopt a FV method within

the C++ library OpenFOAM®. The computational domain � is discretized into Nh non-
overlapping control volumes �i with i = 1, . . . , Nh . Let A j be the surface vector of each
face j of the control volume �i . Then the fully discretized form of problem (3) is given by

3

2�t
un+1
i +

∑
j

φ ju
n+1
i, j − ν

∑
j

(∇un+1
i ) j · A j +

∑
j

Pn+1
i, j A j = bn+1

i , (10)

∑
j

(∇Pn+1) j · A j =
∑
j

(
−

∑
j

φ ju
n+1
j + ν

∑
j

(∇un+1) j · A j + bn+1
)
j
· A j , (11)

where φ j = unj · A j is the convective flux associated to un through face j of the control

volume �i , u
n+1
i, j and Pn+1

i, j indicate the velocity and pressure associated to the centroid of

face j normalized with respect to �i , and un+1
i and bn+1

i are the average velocity and the
source term in the control volume �i .

For more details, we refer the reader to [32, 49–51].

3 The Reduced Order Model

In this work we use the POD-ANN method consisting of the following stages:

• Offline: a reduced basis space is built by applying POD to a database of high-fidelity
solutions obtained by solving the FOM for different values of physical and/or geomet-
rical parameters. Once the reduced basis space is computed, we project the original
snapshots onto such a space by obtaining the corresponding parameter dependent modal
coefficients. Then the training of the neural networks to approximate the map between
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parameters andmodal coefficients is carried out. This stage is computationally expensive,
however it only needs to be performed once.

• Online: for any new parameter value, we approximate the new coefficients by using the
trained neural network and the reduced solution is obtained as a linear combination of
the POD basis functions multiplied by modal coefficients. During this stage, it is possible
to explore the parameter space at a significantly reduced cost.

The following flowchart demonstrates the process of the proposed machine learning-based
ROM.

Offline / Training phase

Online / Evaluation phase
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3.1 The Proper Orthogonal Decomposition

The POD is one of the most widely-used techniques to compress data and extract an optimal
set of orthonormal basis in the least-squares sense. There are two main strategies for the
construction of the reduced basis: greedy algorithms [30, 52] and the POD method. The
former allows to minimize the number of snapshots to be computed. However, a major
drawback of greedy algorithms is that they are based on an a posteriori estimate of the
projection error, which is often difficult to compute in practical applications. For this reason,
in this paper, we opt for the POD method, which although often requires a larger number of
snapshots, is in turn more general.

Let K = {μ1, . . . ,μNk
} be a finite dimensional training set of samples chosen inside the

parameter space P and for each time instance tr ∈ {t1, . . . , tNt } ⊂ (0, T ]. We solve the
FOM for each μk ∈ K ⊂ P . The total number of snapshots Ns is given by Ns = Nk · Nt .
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After computing the full order solutions, they are stored into a matrix S	h ∈ R
Nh×Ns in a

column-wise sense, i.e.:

S	h =
⎡
⎢⎣

	1(t1,μ1) · · · 	1(tNt ,μ1) 	1(t1,μ2) · · · 	1(tNt ,μNk
)

...
...

...
...

...

	Nh (t1,μ1) · · · 	Nh (tNt ,μ1) 	Nh (t1,μ2) · · · 	Nh (tNt ,μNk
)

⎤
⎥⎦ ,

for 	h = {u, P,WSS}. Commonly snapshot matrices are not square and denoting by R ≤
min(Nh, Ns) the rank of S	h , the Singular Value Decomposition (SVD) allows to factorise
S	h as:

S	h = WDZT , (12)

where W = {w1| . . . |wNh } ∈ R
Nh×Nh and Z = {z1| . . . |zNs } ∈ R

Ns×Ns are two orthogonal
matrices composed of left singular vectors and right singular vectors respectively in columns,
andD ∈ R

Nh×Ns is a diagonal matrix with R non-zero real singular values σ1 ≥ σ2 ≥ · · · ≥
σR > 0.

Our goal is to approximate the columns of S	h by means of L < R orthonormal vectors.
The Schmidt-Eckart-Young theorem states that the POD basis of rank L consists of the first
L left singular vectors of S	h , also named modes [53]. So we can introduce the matrix with
the extrapolated modes as columns:

V = {w1| . . . |wL } ∈ R
Nh×L . (13)

It is well known [54] that the POD basis of size L is the solution to the minimization problem
[55]:

min
V

‖S	h − VVTS	h‖ s.t . VTV = I, (14)

where ‖ • ‖ is the Frobenius norm. Therefore, the reduced basis is the set of vectors that
minimize the distance between the snapshots and their projection onto the space spanned
by the basis. In addition, the error committed by approximating the columns of S	h via the
vectors of V is equal to the sum of the squares of the neglected singular values [55]:

min(Nh ,Ns )∑
i=L+1

σ 2
i . (15)

So by controlling the size L , we can approximate the snapshot matrix S	h with arbitrary
accuracy. Since the error is strictly related to the magnitude of the singular values, a common
choice is to set L equal to the smallest integer L such that:∑L

i=1 σi∑R
i=1 σi

≥ 1 − ε2, (16)

where ε is a user-provided tolerance and the left hand side of (16) is the relative information
content of the POD basis, namely the percentage of energy of the snapshots (or cumulative
energy of the eigenvalues) retained by the first L modes.

Once the POD basis is available, the reduced solution 	rb(tr ,μk) that approximates the
full order solution 	h(tr ,μk) is:

	h(tr ,μk) ≈ 	rb(tr ,μk) =
L∑
j=1

(VT	h(tr ,μk)) jw j , (17)
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where (VT	h(tr ,μk)) j is the modal coefficient associated to the j-th mode.

3.2 Artificial Neural Network

An ANN is a computational model able to learn from observational data. It consists of
neurons and a set of directed weighted synaptic connections among the neurons. It is an
oriented graph, with the neurons as nodes and the synapses as oriented edges, whose weights
are adjusted by means of a training process to configure the network for a specific application
(see [56–58]).

Let us consider the neuron j . Three functions characterize completely the neuron j :

• The propagation function u j . It is used to transport values through the neurons of the
ANN. We use the weighted sum:

u j =
m∑

k=1

wsk , j ysk + b j ,

where b j is the bias, ysk is the output related to the sending neuron k, wsk , j are proper
weights andm is the number of sending neurons linked with the neuron j . Other choices
are possible for u [30].

• The activation function a j . It quantifies to which degree neuron j is active. It is a function
of the input u j and the bias b j chosen during the training process:

a j = fact

(
m∑

k=1

wsk , j ysk + b j

)
.

Commonly the activation functions are nonlinear. The activation function is an hyperpa-
rameter to be tuned in order to optimize the performance of the neural network. More
details can be found in [59]. In this work we consider sigmoid function, hyperbolic
tangent, RELU, SoftMax, SoftPlus and Gaussian function.

• The output function y j . It is related to the activation function a j . Often it is the identity
function, so that a j and y j coincide:

y j = fout(a j ) = a j .

In this work, we will use a specific type of ANNs, the feedforward neural networks.

3.2.1 The feedforward neural network

In a feedforward neural network (Fig. 4), neurons are arranged into layers, so input nodes
define one input layer and the same holds for the output layer and for the hidden layers.
Neurons in a layer can only be linked with neurons in the next layer, towards the output layer
(see [60–62]). We use fully connected neural networks, so each node in layer l is connected
to all nodes in layer l+1 for all l. We highlight that the input layer of our network consists of
the set of time/parameter instances {(t1,μ1), . . . , (tNt ,μNk

)}, whilst the output one is given
by the corresponding modal coefficients {[VT	h(t1,μ1)]Lj=1, . . . , [VT	h(tNt ,μNk

)]Lj=1}.
On the other hand, the number of hidden layers and of their neurons are hyperparameters of
the network to be properly tuned to optimize the performance of the network.

Layered feedforward networks have become very popular firstly because they have been
found in practice to generalize well. Secondly, a training algorithm based on the so-called

123



Journal of Scientific Computing (2023) 94 :38 Page 11 of 30 38

Fig. 4 Topology of the feedforward neural network

backpropagation can often find a good set of weights (and biases) in a reasonable amount
of iterations (or, equivalently, epochs, that represent an hyperparameter of the network).
During the training procedure the weights of the connections in the network are repeatedly
changed in order to minimize the difference between the actual output vector of the net
π̃(tr ,μk) and the required output vector π(tr ,μk). The key to backpropagation is a method
for computing the gradient of the error with respect to the weights for a given input by
propagating error backwards through the network [63, 64]. A loss function is introduced to
optimize the parameter values in a neural network model. This class of functions maps a set
of parameter values for the network onto a scalar value that shows howwell those parameters
achieve the purpose the network is intended to do.

The loss function L = L(π̃(tr ,μk),π(tr ,μk)) used in this work is the Mean Squared
Error (MSE), that is the most common choice for regression problems:

L =
Nk∑
k=1

Nt∑
r=1

Lr ,k =
Nk∑
k=1

Nt∑
r=1

1

L

L∑
j=1

(π j (tr ,μk) − π̃ j (tr ,μk))
2. (18)

To effectively compute the gradient of the loss function, the chain rule is used. Then the
gradient of the loss function for a single weight wl

sk , j
and for the biases blj can be expressed

as:

∂L
∂wl

sk , j

= ∂L
∂alj

∂alj
∂ulj

∂ulj
∂wl

sk , j

,

∂L
∂blj

= ∂L
∂alj

∂alj
∂ulj

∂ulj
∂blj

.

(19)

Operatively, in the forward pass the values of the output layers from the inputs data are
computed and the loss function is calculated. After each forward pass, backpropagation
performs a backward pass to compute the gradient of the loss function while adjusting the
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parameters of the model as follow:

wnew = wold − η
∂L
∂w

∣∣∣∣
old

,

bnew = bold − η
∂L
∂b

∣∣∣∣
old

,

(20)

where w and b are matrix representations of the weights and biases, η is an hyperparameter
tuned to minimize the loss, named learning rate, the suffix old denotes the current values of
weights and biases, while the suffix new is associated to the corresponding updated values.

The tuning of the hyperparamaters of the network reads as follows: given an activation
function and a number of hidden layers, we increase the values of the learning rate and the
hidden neurons until the overfitting phenomenon occurs [56]. It should be noted that, through
such a process, we obtain several trained neural networks. We adopt the one providing the
higher accuracy. The accuracy of the trained model is measured by the number of predic-
tions within a certain tolerance δ (i.e., the “correct" predictions) over the total number of
predictions.

For the creation and training of the neural networks, we employed the Python library
PyTorch.

3.2.2 Evaluation of the Modal Coefficients

As already reported in the previous subsection, the neural network employed provides a
reliable approximation of the following input-output relationship:

(tr ,μk) �→ [VT	h(tr ,μk)
]L
j=1 ∈ R

L . (21)

Then during the online stage the solution for any new time instant tnew and new parameter
μnew can be simply computed as follows [30, 32, 34, 38, 65]:

	rb(tnew,μnew) =
L∑
j=1

π̃ j (tnew,μnew)w j . (22)

4 Numerical Results

In this section, we test the performance of our ROM approach. Two parametric cases are
investigated:

• Case 1 we verify the functionality of the ROM method in a physical parametric setting
by considering fi (see equation (6)) as parameters.

• Case 2we verify the functionality of the ROMmethod in a geometrical parametric setting
by considering the stenosis severity as parameter.

Table3 reports the hyperparameters of the neural networks. We highlight that the hyperpa-
rameters are tuned for Case 2, however they show a good functionality also for Case 1. The
tolerance is set to δ = 10−3 and the accuracy is 93% in all the cases.

First of all, a brief mesh convergence analysis for the primal variables, u and P , is reported
in order to ensure that the FOM solution converges. Beyond the mesh whose features are
reported in Table 1 (here referred as Mesh 2), we consider other two meshes, respectively
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Fig. 5 Time evolution over three cardiac cycles of the volume averaged pressure (left) and of the volume
averaged velocity (right) for the three meshes under consideration

Fig. 6 Spatial distribution of the pressure drop across the anastomosis for the threemeshes under consideration
at t/T = 1.25

coarser, with 518.299 cells (Mesh 1), and finer than Mesh 2, with 1.829.291 cells (Mesh 3),
having non-orthogonality and skewness features similar to theMesh 2.We set fLMCA = 1.12
and fLITA = 0.82 adapted from [46–48].

In Fig. 5 the time evolution of the volume averaged pressure P/Pmax and of the volume
averagedvelocityu are shown for the threemeshes under consideration.We let the simulations
run till transient effects have passed and we refer to three cardiac cycles. In addition, in
Figs. 6 and 7 an illustrative comparison for pressure and velocity are shown in the region of
the anastomosis for t/T = 1.25.

From a qualitative viewpoint, it is clear that the results obtained are very close each to
other but, in order to provide a more quantitative comparison, we compute the relative error
of the Meshes 1 and 2 with respect to the Mesh 3:

εx = 100

Nt

Nt∑
i=1

|xi j − xi3|
x̂i3

, with j = 1, 2, (23)

where x = {u, P/Pmax}, the subscript 3 denotes the quantities related to the Mesh 3, j
denotes the quantities related to the Meshes 1 and 2, and x̂3 is the time averaged quantity
related to the Mesh 3. Table2 reports the values of the relative errors (23). Based on these
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Fig. 7 Spatial distribution of the velocity (m/s) on a slice downstream the anastomosis for the three meshes
under consideration at t/T = 1.25

Table 2 Values of the relative
errors (Eq. (23))

Mesh 1 Mesh 2

P/Pmax 0.73% 0.15%

ū 0.23% 0.05%

Table 3 Optimized hyperparameters of the feedforward neural networks

Neurons per layer Activation function Number of epochs Learning rate Hidden layers

P 1300 Tanh 50.000 8.25e−6

u 1300 Sigmoid 50.000 5.00e−5 3

WSS 1300 Tanh 50.000 8.50e−6

results, for all the simulations showed hereinafter, we will use theMesh 2 that ensures a good
compromise between accuracy and offline cost.

4.1 Case 1

We consider a 70% stenosis. The following finite-dimensional set is used to train the ROM:

fi = {0.66, 0.7, 0.8, 0.9, 1.1, 1.2, 1.33}, i = LITA,LMCA,

whilst we set fi = 1 as test point. Note that when μ = fLITA, fLMCA = 1 and viceversa.
The average Reynolds number characterizing the dynamics of the problem can be evalu-

ated taking into account both the fluid properties and geometrical features as:

Re = Uidi
ν

=
{

 87, if i = LMCA,

 161, if i = LITA,

where Ui is the mean velocity at the inlet of the LMCA and of the LITA (with fi = 1), di
is the diameter of the LMCA and of the LITA and ν = 3.7 · 10−6 m2/s. This result supports
the employment of a laminar model.

100 full-order equally spaced time-dependent snapshots, one every 0.008s, are collected
for each fi value, over a cardiac cycle T = 0.8s. They are enough to generate a reliable
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Fig. 8 Cumulative eigenvalues for pressure, velocity and WSS

reduced space as proved in [32]. Then we get 700 snapshots both for μ = fLITA and μ =
fLMCA.
Cumulative eigenvalues for pressure, velocity andWSSbased on the first 50most energetic

POD modes are shown in Fig. 8a and b. In both cases, they exhibit a very similar trend for
velocity and WSS whilst the pressure one grows faster. These results are expected because
typically in hemodynamics applications the spatial variability in pressure is not that much
compared to velocity (and WSS that is directly linked to the velocity): see, e.g., [32, 36, 37].
In addition, for each variable, one obtains similar trends for μ = fLITA and μ = fLMCA.
Even this result is not surprising by considering that fLITA and fLMCA play a very similar
role and it is reasonable that they affect in the same way the dynamics of the system.

In Figs. 9 and 10 the temporal evolution of the modal coefficients shows that the neural
network is able to provide a prediction consistent with the FOM simulation, also in presence
of strong nonlinearities (see Figs. 9b, 10b and c).

Next, we carry out a convergence test with respect to the number of the modes. In Figs. 11
and 12, all the variables show a monotonic convergence for the relative error εi :

εi =
∥∥	h,i − 	rb,i

∥∥
‖	i‖ , (24)
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Fig. 9 Case 1: time evolution of some reduced coefficients including the prediction provided by ANN (red
line) and the FOM simulation (blue points) for μ = fLITA

with i = P,u,WSS, as the number of the modes is increased. Both for μ = fLITA and
μ = fLMCA, L = 3 pressure modes (more than 99% of the cumulative energy) are enough
to obtain a time-averaged error of about 2%. On the other hand, for the velocity and WSS,
we obtain an error of about 3% using L = 10 modes (more than 96% of the cumulative
energy). It should be noted that for the pressure we show only two cases (L = 1, 3) because
with more than 3 modes we obtain that the error is on average the same. We highlight that
the similarity of cumulative eigenvalues between velocity andWSS observed in Fig.8 is also
reflected on the trend of the corresponding relative errors (see Figs.11b, c, 12b and c).

Qualitative comparisons between FOM and ROM at t/T = 0.8 are displayed in Figs. 13,
15, 17 and 19.Moreover, in Figs. 14, 16, 18 and 20 we report some further full order solutions
at the aim to provide some physical insights. We display the stenosis and the anastomosis
region, which are those of major interest, because they are modifications with respect to the
healthy configuration. In Fig. 13 a good ROM prediction for the pressure drop P∗ = P/Pmax

is found across the anastomosis. It is an important quantity because is related to the intimal
thickening of the blood vessels and therefore it represents a significant indicator for heart
diseases [66]. As expected, if an higher flow is imposed on the LITA, the pressure increases
across the anastomosis (Fig. 14).

In Figs. 15 and 17,we can appreciate a good performance of our ROM in the reconstruction
ofWSS.We also observe that a region of locally highWSS is found across the stenosis and the
anastomosis. It can represent a significant indication for the restenosis process. In addition,
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Fig. 10 Case 1: time evolution of some reduced coefficients including the prediction provided by ANN (red
line) and the FOM simulation (blue points) for μ = fLMCA

Fig. 16 shows that as the inlet flow rate of the LMCA is increased, also the WSS magnitude
in the stenosis rises. In addition, as consequence of increased LITA inlet flow, in Fig. 18 a
significant growth of the WSS magnitude in the region of the anastomosis can be observed.

Figure19 shows the functionality of the ROM framework for the velocity. Furthermore,
we can observe that the high velocity regions coincide with the high WSS ones. In addition,
as LITA inlet flow is increased (Fig. 20), the velocity is higher both on the LITA and the
LAD, which indicate on the whole a good functionality of the bypass.

4.2 Case 2

We set fLMCA = 1.12 and fLITA = 0.82 adapted from [46–48]. To train the ROM, we
consider a uniform sample distribution of the stenosis severity ranging between 50% to 75%
with step 5%, except 70% which is considered as test point. This results in 500 snapshots.

Cumulative eigenvalues based on the first 120 most energetic POD modes are shown in
Fig. 8c. It can be seen that, with respect toCase 1 (Fig. 8a and b), they increase slightly slower.

The time evolution of some reduced coefficients are displayed in Fig. 21. Even in this
case, we can observe that there is consistency between the neural newtork prediction and the
FOM solution.
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Fig. 11 Case 1 time evolution of the relative error for pressure, velocity and WSS at varying of the number of
modes L for μ = fLITA

A convergence test at varying of the number of the modes is reported in Fig. 22. We use
the same number of modes employed for Case 1. Even in this case all the variables show
a monotonic convergence for the relative error εi (Eq. (24)) as the number of the modes is
increased. A time-averaged error of about 3.2% is obtained for the pressure with L = 3
modes (corresponding to the 99% of the cumulative energy) and of about 3.8% and 4.9% for
the velocity and WSS, respectively, using L = 10 modes (more than 96% of the cumulative
energy).

We conclude by showing a qualitative comparison between FOM and ROM simulations
at t/T = 0.8 and giving some physical insights on the patterns showed by the variables at
hand. As one can see from Fig. 23, our ROM is able to provide a good reconstruction of the
normalized pressure drop across the stenosis. As expected, the pressure drop decreases with
the stenosis severity (Fig. 24).

From Figs. 25 and 27 we can observe that FOM and ROM solutions are very similar for
WSS. Furthermore, we observe that the WSS magnitude rises as the severity of the stenosis
increases both in the stenosis (Fig. 26) and the anastomosis (Fig. 28) regions. This could be
due to the higher flow rate enforced on the LITA to compensate the lack of blood in the
LMCA.

In Fig. 29 the FOM and ROM streamlines for the velocity field are depicted. We can
appreciate a good matching between the two solutions. In Fig. 30 we observe that, as for the
WSS, the velocity increases with the stenosis. The velocity is higher in the LITA because
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Fig. 12 Case 1 time evolution of the relative error for pressure, velocity and wall shear stress at varying of the
number of modes L for μ = fLMCA

Fig. 13 Case 1 comparison between normalized pressure drop P∗ = P/Pmax in the anastomosis region
computed by the FOM and by the ROM at t/T = 0.8 for the test point fLMCA = fLITA = 1
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Fig. 14 Case 1 comparison between normalized pressure drop P∗ = P/Pmax in the anastomosis region at
t/T = 0.8 related to two different values of fLITA. We set fLMCA = 1

Fig. 15 Case 1 comparison between WSS (Pa) in the stenosis region computed by the FOM and by the ROM
at t/T = 0.8 for the test point fLITA = fLMCA = 1

it supplies blood to the entire vessels network, oxygenating LAD and, going up this vessel,
LCx too.

4.3 Computational Cost

We ran the FOM simulations in parallel using 20 processor cores. The simulations are run
on the SISSA HPC cluster Ulysses (200 TFLOPS, 2TB RAM, 7000 cores). Each FOM
simulation takes roughly 41 h in terms of wall time, or 820 h in terms of total CPU time (i.e.,
wall time multiplied by the number of cores). On the other hand, the ROM has been run on an
Intel(R) Core(TM) i5-8265U CPU@ 1.60GHz 8GB RAM by using one processor core only.
Our ROM approach takes less then 10 s for the computation of the reduced coefficients for
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Fig. 16 Case 1 comparison between WSS (Pa) in the stenosis region at t/T = 0.8 related to two different
values of fLMCA. We set fLITA = 1

Fig. 17 Case 1 comparison between WSS (Pa) in the anastomosis region computed by the FOM and by the
ROM at t/T = 0.8 for the test point fLMCA = fLITA = 1

Fig. 18 Case 1 comparison between WSS (Pa) in the anastomosis region at t/T = 0.8 related to two different
values of fLITA. We set fLMCA = 1
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Fig. 19 Case 1 comparison between velocity (m/s) streamlines in the anastomosis region computed by the
FOM and by the ROM at t/T = 0.8 for the test point fLMCA = fLITA = 1

Fig. 20 Case 1 comparison between velocity (m/s) streamlines in the anastomosis region at t/T = 0.8 for the
test case fLMCA = fLITA = 1 related to two different values of fLITA. We set fLMCA = 1

Table 4 Time required for
offline/online stages

tonline[s] tSVD[s] ttraining[s] speed-up tFOM[s]
P 5.43 2371.64 13182.88 5.42e5

u 9.42 2827.82 24545.71 3.12e5 147048 × 20

WSS 1.69 10.74 25118.62 1.73e6

each variable. So we obtain a speed-up of at least 105. In Table4 we can find a more detailed
description of the estimation of the time required for the online phase, for the SVD analysis
and for the training of the ANNs for each variable. Notice that for the WSS we obtain the
highest speed-up because it is related to only the boundary of the domain.

5 Conclusions and Perspectives

In this work a non-intrusive data-driven ROM is employed in order to investigate the hemo-
dynamics in a CABG patient-specific configuration when an isolated stenosis of the LMCA
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Fig. 21 Case 2 time evolution of some reduced coefficients including the prediction provided by ANN (red
line) and the FOM simulation (blue points)

occurs. The method extracts a reduced basis space from a collection of FOM solutions via a
POD algorithm and employs ANNs for the computation of the reduced coefficients.

The use of artificial intelligence as a fast and accurate method for the development of
ROM for CFD simulations in cardiovascular applications is a fast-growing research area, so
we retain that this work can represent a further step forward in this direction. Furthermore, the
choice of the FVmethod for the space discretization reveals awide applicability andflexibility
by considering that in the bioengineering community the use of FV-based commercial codes
is pretty common.

After a computationally intensive offline stage, POD-ANN method has allowed to obtain
accurate hemodynamic simulations of the problem at hand at a significantly reduced com-
putational cost. This demonstrates that such technique would be able in perspective to allow
real time simulations to be accessed in hospitals and operating rooms in a very efficient way.

However, several improvements are still feasible. It could be introduced a coupling with
0Dmodels [36, 37] at the aim to enforcemore realistic boundary conditions, which represents
a crucial step to obtainmeaningful outcomes. In addition, it could be interesting to investigate
the performance of other frameworks based on different deep learning approaches with the
aim to develop amore robust and versatile ROM, especially forwhat concerns the geometrical
parametrization. In this context, one can act on a better prediction of the reduced coefficients
by using, for example, physics-informed neural network [30, 65]. Another follow-up could
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Fig. 22 Case 2 time evolution of the relative error for pressure, velocity and wall shear stress at varying of the
number of modes L

Fig. 23 Case 2 comparison between normalized pressure drop P∗ = P/Pmax in the stenosis region computed
by the FOM and by the ROM at t/T = 0.8 for the test point (70% stenosis)

be represented by the introduction of the autoencoders [67] providing a nonlinear alternative
to POD: they may capture, more efficiently, features or patterns in the high-fidelity model
results.
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Fig. 24 Case 2 comparison between normalized pressure drop P∗ = P/Pmax in the stenosis region at
t/T = 0.8 related to three different values of stenosis degree

Fig. 25 Case 2 comparison between WSS (Pa) distribution in the stenosis region computed by the FOM and
by the ROM at t/T = 0.8 for the test point (70% stenosis)

Fig. 26 Case 2 comparison between WSS (Pa) distribution in the stenosis region at t/T = 0.8 related to three
different values of stenosis degree
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Fig. 27 Case 2 comparison between WSS (Pa) distribution in the anastomosis region computed by the FOM
and by the ROM at t/T = 0.8 for the test point (70% stenosis)

Fig. 28 Case 2 comparison between WSS (Pa) distribution in the anastomosis region at t/T = 0.8 related to
three different values of stenosis degree

Fig. 29 Case 2 comparison between velocity (m/s) streamlines in the anastomosis region computed by the
FOM and by the ROM at t/T = 0.8 for the test point (70% stenosis)
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Fig. 30 Case 2 comparison between velocity (m/s) streamlines in the anastomosis region at t/T = 0.8 related
to three different values of stenosis degree
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