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Abstract
Our recent work (Kang and Wang in J Sci Comput 82:1–33, 2020) performed a complete
asymptotic analysis and proposed a modified Filon-type method for a class of oscillatory
infinite Bessel transform with a general oscillator. In this paper, we present and analyze a
different method by converting the integration path to the complex plane for this class of
oscillatory infinite Bessel transform. In particular, we establish a series of new quadrature
rules for this transform and carry out rigorous analysis, including the cases that the oscillator
g(x) has either zeros or stationary points. The error analysis shows the advantages that this
approach exhibits high asymptotic order, and the accuracy improves significantly as either the
frequency ω or the number of nodes n increases. Furthermore, the constructed method shows
higher accuracy and error order by comparing with the existing modified Filon-type method
in our recent work (Kang and Wang 2020) at the same computational cost. Some numerical
experiments are provided to verify the theoretical results and demonstrate the efficiency of
the proposed method.
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1 Introduction

It is generally known that highly oscillatory Bessel transforms arise frequently in many
areas such as astronomy, electromagnetic acoustics, scattering problems, physical optics,
electrodynamics, seismology image processing and applied mathematics [3, 4, 6, 7, 13, 18].
In this work, we focus on the evaluation and analysis of the highly oscillatory infinite Bessel
transforms with general oscillators

I [ f ] =
∫ +∞

a
xα f (x)Jm(ωg(x))dx, (1.1)

where f and g are analytic in a simply connected and sufficiently (infinitely) large complex
domain D containing the interval [a,+∞], Jm(z) is the Bessel function of the first kind
and of order m with m ≥ 0, the frequency parameter ω is large, α < 0, and a > 0. These
highly oscillatory infinite integrals cannot be computed analytically and one has to resort
to numerical methods. When the integrand becomes highly oscillatory, it presents serious
difficulties in obtaining numerical convergence of the integration.

Here, we introduce some related articles for computing infinite oscillatory integrals. In
1976, Blakemore, Evans and Hyslop [5] made comparison of some numerical methods for
computing infinite oscillatory integrals. However, those methods presented in [5] converge
slowly, and have to use an extrapolation technique to accelerate convergence. The asymptotics
and fast computation of one-sided oscillatory infinite Hilbert transforms was studied in [28]
byWang, Zhang and Huybrechs. Xu, Xiang and He developed the fast computation of a class
of oscillatory infinite Bessel Hilbert transform in [37]. An asymptotic Filon-type method for
calculating the infinite oscillatory integral

∫ +∞
a f (x)eiωg(x)dx was established by Hascelik

in [16]. Based on the idea of [16], in [9, 10], Chen presented the efficient numerical methods
for approximating the integral

∫ +∞
a f (x)Jm(ωx)dx . Moreover, numerical methods for cal-

culating the oscillatory infinite integrals of the form
∫ +∞
1 xα f (x)K (ωx)dx were investigated

in [21, 22], where K (ωx) denote different oscillatory kernel functions, such as eiωx , Jm(ωx),
Ym(ωx), H (1)

m (ωx), H (2)
m (ωx), Ai(−ωx), respectively. Recently, Chen in [11] developed an

asymptotic rule for approximating the infinite Bessel transform
∫ +∞
0 f (x)Jm(ωx)dx . Addi-

tionally, there has been tremendous interest in constructing numerical methods for finite
oscillatory Bessel transforms (including singular or nonsingular cases) in articles [8, 19, 20,
24, 25, 27, 29, 33–36, 38]. Recently, newLevinmethodswere presented for calculating a class
of the Fourier-type integral with algebraic and/or logarithmic singularities in [30]. Moreover,
the numerical steepest descent method for the Fourier-type integral

∫ b
a f (x)eiωg(x)dx pro-

posed by Huybrechs and Vandewalle [17] in 2006 restricts that f is analytic in a sufficiently
large complex region that contains [a, b]. Thanks to analytic continuation, the problem can
be solved by using the Gauss–Laguerre quadrature rule. It is noteworthy that Kang andWang
in [23] provided asymptotic analysis and gave a modified Filon-type method for computing
the considered integral (1.1). It can achieve the higher accuracy by either adding derivatives
at the critical points (including zeros, end points and stationary points) or increasing the
number of interpolation nodes. However, its derivatives are sometimes difficult to obtain for
the complicated function f (x). Moreover, only increasing the number of interpolation points
cannot improve the error order. This motivates us to explore a more efficient methods such
that the obtained error order can be improved greatly by adding the node points.
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The aim of this paper is to construct a numerical approach with higher error order for
calculating the infinite integrals (1.1) with general oscillators. We propose a complex inte-
gration method for the Bessel transform (1.1) by converting the original integration path to
the complex plane. The proposed numerical scheme shows the advantages that the obtained
error order can be improved by increasing the number of node points n. Thanks to the rela-
tion between Bessel function and Hankel function, the computation of (1.1) can be changed
into the problem of calculating the Hankel transform. In particular, we remedy the problem
that the corresponding Hankel functions of the first kind H (1)

m (ωg(x)) and the second kind
H (2)
m (ωg(x)) have singularities as g(x) → 0 when the oscillator g(x) has zeros on the inte-

gral interval. Moreover, the stationary points of g(x) play a crucial role in our theoretical
analysis. Therefore, for the case of g(x) without stationary points, we consider the following
two types:

Type I : g(x) has no zero points, i,e., g(x) �= 0 on [a,+∞);
Type II :g(x) has zeros, i,e., ∃ ξ ∈ [a,+∞), s.t. g(ξ) = 0.
The case that g(x) has stationary points, can be also classified into the following two

types:
Type I : g(x) has stationary points, which are also zeros, i,e., ∃ ζ ∈ [a,+∞), s.t. g(ζ ) =

g′(ζ ) = · · · = g(r)(ζ ) = 0 and g(r+1)(ζ ) �= 0 , r ≥ 1;
Type II :g(x) has stationary points, which are not zeros, i,e., ∃ ζ ∈ [a,+∞), s.t. g′(ζ ) =

g′′(ζ ) = · · · = g(r)(ζ ) = 0, g(r+1)(ζ ) �= 0 and g(ζ ) �= 0 , r ≥ 1.
For the above four cases, we derive the corresponding efficient quadrature formulae and

perform the rigorous error analysis.
The structure of this paper is as follows. In Sect. 2, we analyze in detail the above two

cases that g(x) has no stationary point. We explore the quadrature rules and error analysis for
the case that g(x) has stationary points in Sect. 3. Additionally, some numerical experiments
are illustrated to verify the established method in Sect. 4. The comparison results between
the established method and the modified Filon-type method [23] is also shown in this section.
Section 5 exhibits some summaries of this paper.

2 The CaseWithout Stationary Points

In this section, let us focus on the case that g(x) has no stationary points on the integration
interval [a,+∞), i.e., g′(x) �= 0 for x ∈ [a,+∞) and limx→+∞ g′(x) �= 0. This case
includes two types that

Type I: g(x) has no zero points, i,e., g(x) �= 0 on [a,+∞);
Type II: g(x) has zeros, i,e., ∃ ξ ∈ [a,+∞), s.t. g(ξ) = 0.
We first introduce some preliminaries which will be used in the later sections. From [2,

p. 358], the relation formulae between the Hankel functions and the Bessel functions are as
follows,

H (1)
m (x) = Jm(x) + iYm(x), (2.1)

H (2)
m (x) = Jm(x) − iYm(x), (2.2)

where H (1)
m (x) and H (2)

m (x) denote the Hankel functions of the first and second kinds of
order m, respectively, and Ym(x) denotes the Bessel function of the second kind of order m.
Moreover, whenm is fixed and |x | → ∞, theHankel functions have the following asymptotic
properties [2, p. 364],
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H (1)
m (x) ∼

√
2

πx
ei(x−

1
2mπ− π

4 ), (2.3)

H (2)
m (x) ∼

√
2

πx
e−i(x− 1

2mπ− π
4 ). (2.4)

The definition of the notation “ ∼ ” is as follows. If f (x)/ϕ(x) tends to unity as x → x0, we
write f (x) ∼ ϕ(x) (x → x0). In words, f is asymptotic to ϕ.

In the sequel, we commence our analysis for the case of the type I.

2.1 Type I: g(x)Without Zero Points

We begin this subsection with an useful theorem concerning the reconstruction of the inte-
gration path.

Theorem 2.1 Assume that both g and f are analytic in D, and g(x) �= 0, g′(x) �= 0 for
x ∈ [a,+∞). And, limx→+∞ g′(x) �= 0. Denote that Γ2(p) = g−1(g(a) + i p),Λ2(p) =
g−1(g(a) − i p). Suppose that |Γ2(p)|, |Λ2(p)|, |g′(Γ2(p))|, |g′(Λ2(p))| ≥ ε0, p ∈
[0,+∞), where ε0 is a positive constant. For ω > (α + ν + 1)ω1 and α < 0, if the
following conditions hold in D:

(1) ∃v ∈ R, s.t. | f ( j)(z)| = O(|z|v− j ), j = 0, 1, 2, . . . , as |z| → ∞, (2.5)

(2) |
(g(z))| → +∞, as |z| → ∞, (2.6)

(3) for k = 0, 1, 2, . . . , ∃ω1 ∈ R, s.t. |[g−1(z)](k)| = O(eω1|
(z)|), as |z| → ∞,

(2.7)

where the zero order derivative of the function is the function itself, then it is true that

I [ f ] = 1

2

{
eiωg(a)

∫ +∞

0
Γ α
2 (p) f [Γ2(p)]H (1)

m [ω(g(a) + i p)]e−iω(g(a)+i p)Γ ′
2(p)e

−ωpdp

+e−iωg(a)

∫ +∞

0
Λα

2 (p) f [Λ2(p)]H (2)
m [ω(g(a) − i p)]eiω(g(a)−i p)Λ′

2(p)e
−ωpdp

}
.

(2.8)

Proof Based on the important relations (2.1) and (2.2), the integral I [ f ] can be rewritten as

I [ f ] = 1

2

[∫ +∞

a
xα f (x)H (1)

m (ωg(x))dx +
∫ +∞

a
xα f (x)H (2)

m (ωg(x))dx

]
. (2.9)

Here we give a notation as

I1[ f ] =
∫ +∞

a
xα f (x)H (1)

m (ωg(x))dx, (2.10)

I2[ f ] =
∫ +∞

a
xα f (x)H (2)

m (ωg(x))dx . (2.11)

Therefore, the key point is to construct the quadrature rules for the integrals I1[ f ] and I2[ f ],
respectively.

By using (2.3) and (2.4), as |ωg(x)| → ∞, we can get
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Fig. 1 The integration paths for the oscillator g(x) in eiωg(x) (left figure) and the oscillator g(x) in e−iωg(x)

(right figure)

H (1)
m (ωg(x)) ∼

√
2

πωg(x)
eiω(g(x)− 1

2mπ− π
4 ), (2.12)

H (2)
m (ωg(x)) ∼

√
2

πωg(x)
e−iω(g(x)− 1

2mπ− π
4 ). (2.13)

Then, the integrals I1[ f ] and I2[ f ] can be rewritten as

I1[ f ] =
∫ +∞

a
xα f (x)H (1)

m (ωg(x))e−iωg(x)eiωg(x)dx, (2.14)

I2[ f ] =
∫ +∞

a
xα f (x)H (2)

m (ωg(x))eiωg(x)e−iωg(x)dx, (2.15)

where it can be seen from the two asymptotic formulae (2.12) and (2.13) that H (1)
m (ωg(x))

e−iωg(x) and H (2)
m (ωg(x))eiωg(x) are not oscillatory as |ωg(x)| → ∞.

We shall construct the quadrature rules for I1[ f ] and I2[ f ] by the careful selection of the
integration paths in the complex region, which are drawn in Fig. 1.

On the left panel of Fig. 1, Γ2(p) = g−1(g(a) + i p), p ∈ [0,+∞). Here, Γ2(p) has one
intersection Γ2(pA) with the circle a + (A − a)eiθ , θ ∈ [0, 2π). The parametric form of Γ3

is written as Γ3(θ) = a + (A − a)esgn(θA)iθ , θ ∈ [0, |θA|], where θA = argΓ2(pA).
Then, by Cauchy’s integral theorem [1, 15] in Fig. 1 (left figure), we have

∫ A

a
xα f (x)H (1)

m (ωg(x))e−iωg(x)eiωg(x)dx =
∫

Γ2

zα f (z)H (1)
m (ωg(z))e−iωg(z)eiωg(z)dz

+
∫

Γ3

zα f (z)H (1)
m (ωg(z))e−iωg(z)eiωg(z)dz.

(2.16)

From the asymptotic formula (2.3) of the Hankel function, we have
∣∣∣∣H (1)

m (x)e−i x
∣∣∣∣ ≤ M

1√|x | , for |x | → +∞, (2.17)

where M is some positive constant.
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Furthermore, for α < 0, from (2.5), (2.6) and (2.17), it exists some positive number M1,
such that it follows that

∣∣∣∣
∫

Γ3

zα f (z)H (1)
m (ωg(z))e−iωg(z)eiωg(z)dz

∣∣∣∣
=

∣∣∣∣
∫ 0

|θA|
(A − a)θsgn(θA)esgn(θA)iθ

(a + (A − a)esgn(θA)iθ )α f (a + (A − a)esgn(θA)iθ )H (1)
m (ωg(a + Aesgn(θA)iθ ))

e−iωg(a+(A−a)esgn(θA)iθ )eiωg(a+(A−a)esgn(θA)iθ )dθ

∣∣∣∣
≤

∣∣∣∣θA
∣∣∣∣ max
θ∈[0,|θA|]

∣∣∣∣(A − a)θ(a + (A − a)esgn(θA)iθ )α

f (a + (A − a)esgn(θA)iθ )H (1)
m (ωg(a + (A − a)esgn(θA)iθ ))

e−iωg(a+(A−a)esgn(θA)iθ )eiωg(a+(A−a)esgn(θA)iθ )

∣∣∣∣
≤

∣∣∣∣θAM1(A − a)θ |A − 2a| α
2 (A − a)v

M√
ω|g(a + (A − a)esgn(θA)iθ )|e

−(ω|
(g(z))|)
∣∣∣∣
z=a+(A−a)esgn(θA)iθ

→ 0,

as A → +∞. Here, when A → +∞, it follows from (2.6) that |
(g(a + (A −
a)esgn(θA)iθ ))| → +∞ and |g(a + (A − a)esgn(θA)iθ )| → +∞.

Therefore, letting A → +∞ in (2.16), we have

I1[ f ] = eiωg(a)

∫ +∞

0
Γ α
2 (p) f [Γ2(p)]H (1)

m [ω(g(a) + i p)]e−iω(g(a)+i p)Γ ′
2(p)e

−ωpdp.

(2.18)

Similarly, by using the new path shown on the right panel of Fig. 1 withΛ2(p) = g−1(g(a)−
i p), p ∈ [0,+∞), we have that

I2[ f ] = e−iωg(a)

∫ +∞

0
Λα

2 (p) f [Λ2(p)]H (2)
m [ω(g(a) − i p)]eiω(g(a)−i p)Λ′

2(p)e
−ωpdp.

(2.19)

The Eqs. (2.9), (2.18) and (2.19) yield the desired result (2.8). Thus, we complete this proof.

�

Letting q = ωp in (2.18) and (2.19), we have that

I1[ f ] = eiωg(a)

ω

∫ +∞

0
Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
H (1)
m

[
ω

(
g(a) + i

q

ω

)]

×e−iω(g(a)+i q
ω )Γ ′

2

( q

ω

)
e−qdq, (2.20)

and
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I2[ f ] = e−iωg(a)

ω

∫ +∞

0
Λα

2

( q

ω

)
f
[
Λ2

( q

ω

)]
H (2)
m

[
ω

(
g(a) − i

q

ω

)]

×eiω(g(a)−i q
ω )Λ′

2

( q

ω

)
e−qdq. (2.21)

Then, by using theGauss–Laguerre quadrature rule with the nodes xk and theweights ak, k =
1, 2, . . . , n, we have the respective n-point quadrature formulae for I1[ f ] and I2[ f ], as
follows,

Qn,1[ f ] = eiωg(a)

ω

n∑
k=1

akΓ
α
2

( xk
ω

)
f
[
Γ2

( xk
ω

)]
H (1)
m

[
ω

(
g(a) + i

xk
ω

)]

×e
−iω

(
g(a)+i

xk
ω

)
Γ ′
2

( xk
ω

)
, (2.22)

and

Qn,2[ f ] = e−iωg(a)

ω

n∑
k=1

akΛ
α
2

( xk
ω

)
f
[
Λ2

( xk
ω

)]
H (2)
m

[
ω

(
g(a) − i

xk
ω

)]

×e
iω

(
g(a)−i

xk
ω

)
Λ′

2

( xk
ω

)
. (2.23)

Then the considered integral (1.1) can be approximated by the quadrature formula

Qn[ f ] = 1

2
(Qn,1[ f ] + Qn,2[ f ]). (2.24)

Now, we show the error analysis of the above presented numerical method.

Theorem 2.2 Under the assumption conditions of Theorem 2.1, the error of the quadrature
formula (2.24) behaves asymptotically as

I [ f ] − Qn[ f ] = O
(
ω−2n− 3

2

)
, ω → +∞. (2.25)

Proof From [31], for large |z|, it follows that

H (1)
m (z)e−i z =

√
2

π z
e−i(mπ

2 + π
4 )

2n+1∑
j=0

( 12 + m) j (
1
2 − m) j

j !(2i z) j + O(|z|−2n− 5
2 ), (2.26)

where (x) j is defined by

(x) j = Γ (x + j)

Γ (x)
=

{
1, j = 0,

x(x + 1)(x + 2) · · · (x + j − 1), j ≥ 1.

Denote that Fω(u) = Γ α
2 (u) f [Γ2(u)]Γ ′

2(u), u = q
ω
andGω(q)=

2n+1∑
j=0

( 12+m) j (
1
2−m) j

j !(2i) j (ωg(a)+iq)
j+ 1

2
.

Using Hermite interpolation for the function Fω

( q
ω

)
Gω(q), we construct the interpolation

polynomial P2n−1(
q
ω
), which satisfies that

P2n−1

( xk
ω

)
= Fω

( xk
ω

)
Gω(xk),

P ′
2n−1

( xk
ω

)
=

[
Fω

( q

ω

)
Gω(q)

]′ |q=xk ,
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where xk, k = 1, 2, . . . , n are Gauss–Laguerre nodes. Then, we have the following n-point
Gauss–Laguerre quadrature formula

∫ +∞

0
P2n−1

( q

ω

)
e−qdq =

n∑
k=1

ak P2n−1

( xk
ω

)
=

n∑
k=1

ak Fω

( xk
ω

)
Gω(xk).

The error formula is written as

E =
∫ +∞

0
Fω

( q

ω

)
Gω

( q

ω

)
e−qdq −

n∑
k=1

ak Fω

( xk
ω

)
Gω(xk).

Thus, using the remainder formula of Hermite interpolation, we can obtain that

E =
∫ +∞

0

[
Fω

( q

ω

)
Gω(q) − P2n−1

( q

ω

)]
e−qdq

=
∫ +∞

0

[Fω(
q
ω
)Gω(q)](2n)|q=γ

(2n)! Ln2(q)e−qdq, (2.27)

where Ln(x) = ∏n
j=1(x − x j ), γ ∈ (0,max(q, xn)). Therefore, based on (2.26) and (2.27),

the error can be expressed as

I1[ f ] − Qn,1[ f ]
= eiωg(a)

ω

∫ +∞

0
Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
H (1)
m

[
ω

(
g(a) + i

q

ω

)]
e−iω(g(a)+i q

ω )Γ ′
2

( q

ω

)
e−qdq

−eiωg(a)

ω

n∑
k=1

akΓ
α
2

( xk
ω

)
f
[
Γ2

( xk
ω

)]
H (1)
m

[
ω

(
g(a) + i

xk
ω

)]
e
−iω

(
g(a)+i

xk
ω

)
Γ ′
2

( xk
ω

)

= eiωg(a)

ω

∫ +∞

0
Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]√
2

π
e−i(mπ

2 + π
4 )

×
2n+1∑
j=0

( 12 + m) j (
1
2 − m) j

j !(2i) j (ωg(a) + iq) j+ 1
2

Γ ′
2

( q

ω

)
e−qdq

+eiωg(a)

ω

∫ ∞

0
Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)
e−q O(|ωg(a) + iq|−2n− 5

2 )dq

−eiωg(a)

ω

n∑
k=1

akΓ
α
2

( xk
ω

)
f
[
Γ2

( xk
ω

)]
Γ ′
2

( xk
ω

) √
2

π
e−i(mπ

2 + π
4 )

×
2n+1∑
j=0

( 12 + m) j (
1
2 − m) j

j !(2i) j (ωg(a) + i xk) j+
1
2

+ eiωg(a)

ω
O

(
|ωg(a) + i xk |−2n− 5

2

)

= eiωg(a)

ω

√
2

π
e−i(mπ

2 + π
4 )

∫ +∞

0

[
Fω(

q
ω
)Gω(q)

](2n) |q=γ

(2n)! Ln2(q)e−qdq

+eiωg(a)

ω

∫ +∞

0
Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)
e−q O(|ωg(a) + iq|−2n− 5

2 )dq

+eiωg(a)

ω
O(|ωg(a) + i xk |−2n− 5

2 ), (2.28)

where γ ∈ (0,max(q, xn)).
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Here, for the integral in the last line of (2.28), we have that
∫ +∞

0
Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)
e−q O

(
|ωg(a) + iq|−2n− 5

2

)
dq

≤
∫ +∞

0

∣∣∣Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)
e−q

∣∣∣ O
(
ω−2n− 5

2

) [
g2(a) +

( q

ω

)2]−n− 5
4

dq

≤ ω−2n− 5
2 M2

∫ ∞

0

∣∣∣Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)∣∣∣ e−q
[
g2(a) +

( q

ω

)2]−n− 5
4

dq

= ω−2n− 5
2 M2

{∫ 1

0

∣∣∣Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)∣∣∣ e−q
[
g2(a) +

( q

ω

)2]−n− 5
4

dq

+
∫ +∞

1

∣∣∣Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)∣∣∣ e−q
[
g2(a) +

( q

ω

)2]−n− 5
4

dq

}
, (2.29)

where M2 is some positive constant. The integral in the fourth line of (2.29) is a definite
integral, which must be convergent. In the following, it can be shown that the infinite integral
in the last line of (2.29) is also convergent. Based on (2.5) and (2.7), we know that

∣∣∣Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)∣∣∣ = O
(
e

(α+ν+1)ω1q
ω

)
, as q → +∞.

If (α+ν+1)ω1
ω

− 1 < 0, i.e. ω > (α + ν + 1)ω1, |Γ2(
q
ω
)| ≥ ε0 > 0 and |g′(Γ2(

q
ω
))| ≥ ε0 > 0,

there exists β > 1 such that it follows from (2.5) and (2.7) that

lim
q→+∞ qβ ·

∣∣∣Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)∣∣∣ e−q
[
g2(a) +

( q

ω

)2]−n− 5
4

= lim
q→+∞ qβ · O

(
e[ (α+ν+1)ω1

ω
−1]q) [

g2(a) +
( q

ω

)2]−n− 5
4

= 0.

Based on Cauchy’s test, the integral in the last line of (2.29) is also convergent. Therefore,
for the integral in the last line of (2.28), we can deduce that

∫ +∞

0
Γ α
2

( q

ω

)
f
[
Γ2

( q

ω

)]
Γ ′
2

( q

ω

)
e−q O

(
|ωg(a) + iq|−2n− 5

2

)
dq

= O
(
ω−2n− 5

2

)
, ω → +∞. (2.30)

Moreover, as ω → +∞, it can be derived that

d

dq
Gω(q) = −i

2n+1∑
j=0

( j + 1
2 )(

1
2 + m) j (

1
2 − m) j

j !(2i) j (ωg(a) + iq) j+ 3
2

= O(ω− 3
2 ).

Similarly, we can obtain

dk

dqk
Gω(q) = O(ω−k− 1

2 ), as ω → +∞. (2.31)
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Letting u = q
ω
in Fω(

q
ω
), combining (2.5) and (2.7), we have that

Fω(u) = Γ α
2 (u) f [Γ2(u)]Γ ′

2(u) = O(e
(α+ν+1)ω1q

ω ), as q → +∞,

F ′
ω(u) = αΓ α−1

2 (u)[Γ ′
2(u)]2 f (Γ2(u)) + Γ α

2 (u)[Γ ′
2(u)]2 f ′(Γ2(u))

+Γ α
2 (u)Γ ′′

2 (u) f (Γ2(u))

= O(e
(α+ν+1)ω1q

ω ), as q → +∞,

F ′′
ω(u) = α(α − 1)Γ α−2

2 (u)[Γ ′
2(u)]3 f (Γ2(u)) + 2αΓ α−1

2 (u)Γ ′
2(u)Γ ′′

2 (u) f (Γ2(u))

+2αΓ α−1
2 (u)[Γ ′

2(u)]3 f ′(Γ2(u))

+Γ α
2 (u)[Γ ′

2(u)]3 f ′′(Γ2(u)) + 2Γ α
2 (u)Γ ′

2(u)Γ ′′
2 (u) f ′(Γ2(u))

+αΓ α−1
2 (u)Γ ′

2(u)Γ ′′
2 (u) f (Γ2(u))

+Γ α
2 (u)Γ ′

2(u)Γ ′′
2 (u) f ′(Γ2(u)) + Γ α

2 (u)Γ ′′′
2 (u) f (Γ2(u))

= O(e
(α+ν+1)ω1q

ω ), as q → +∞,

...

F (k)
ω (u) = O(e

(α+ν+1)ω1q
ω ), as q → +∞, k = 0, 1, 2, . . . . (2.32)

Based on (2.31) and (2.32), using Leibniz’s Theorem [2, p. 12], the integral in the seventh
line of (2.28) can be written as

∫ +∞

0

[Fω(
q
ω
)Gω(q)](2n)|q=γ

(2n)! Ln2(q)e−qdq = 1

ω2n+ 1
2

∫ +∞

0

R(γ )

(2n)! Ln
2(q)e−qdq,

where [Fω(
q
ω
)Gω(q)](2n)|q=γ = 1

ω
2n+ 1

2
R(γ ) and R(γ ) is a very long function expression of

γ and is omitted. Using a similar proof of (2.30) and by Cauchy’s test, under these conditions
that |Γ2(

q
ω
)| ≥ ε0 > 0 and |g′(Γ2(

q
ω
))| ≥ ε0 > 0, for ω > (α + ν + 1)ω1, it can be verified

from (2.32) that the infinite integral
∫ +∞
0

R(γ )
(2n)! Ln

2(q)e−qdq is also convergent. Hence, it
follows that∫ +∞

0

[Fω(
q
ω
)Gω(q)](2n)|q=γ

(2n)! Ln2(q)e−qdq = O

(
1

ω2n+ 1
2

)
, as ω → +∞. (2.33)

Therefore, from (2.28), (2.30) and (2.33), we have

I1[ f ] − Qn,1[ f ] = O
(
ω−2n− 3

2

)
, as ω → +∞. (2.34)

In a similar way, we obtain

I2[ f ] − Qn,2[ f ] = O
(
ω−2n− 3

2

)
, as ω → +∞. (2.35)

Hence, we have the desired results that

I [ f ] − Qn[ f ] = 1

2

(
I1[ f ] − Qn,1[ f ] + I2[ f ] − Qn,2[ f ]

)

= O
(
ω−2n− 3

2

)
, as ω → +∞.

This completes the proof of (2.25). 
�
In the following, we will devise a new method and perform its rigorous error analysis for

the case that g(x) has zero points.
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2.2 Type II: g(x)with Zero Points

In this subsection we are concerned with the case that g(x) has zeros on the integration
interval [a,+∞). For convenience, we consider that g(x) has a single zero point on the
interval [a,+∞), e.g., g(ξ) = 0 where ξ ∈ [a,+∞). If g has a finite number of zeros on the
interval [a,+∞), we can divide the whole interval into subintervals, such that the function g
contains only a single zero point on each subinterval. The resulting subintervals may include
the finite interval, and the integral on the finite interval can be computed in the similar way.
Before proceeding, let us explain why the quadrature formula presented in the Sect. 2.1 fails
when g has a zero point on [a,+∞). We see clearly that a simple pole at x = ξ is introduced
in the terms H (1)

m (ωg(x)) and H (2)
m (ωg(x)), and thus the complex integration methods in the

Sect. 2.1 is no longer valid. To remedy this, we may make a series of transformations such
that the resulting integrand has a removable singularity at x = ξ .

Here we only consider the case that the single zero point ξ = a, i.e., g(a) = 0. If ξ �= a,
we divided the interval into [a, ξ ] and [ξ,+∞) to ensure the zero point being the endpoint.
Since g(x) has no stationary points on [a,+∞), g(x) is a monotonous function on [a,+∞).
Thus, t = g(x) is a bijection and then has an inverse function x = g−1(t). Assume that
g(x) → +∞ as x → +∞. Setting g(x) = t , we rewrite I [ f ] as

I [ f ] =
∫ +∞

0
G1(t)Jm(ωt)dt, (2.36)

where G1(t) = [g−1(t)]α f [g−1(t)][g−1(t)]′.
Furthermore, the function G1(t) can be expressed as

G1(t) = G1(t) −
R1∑
j=0

G( j)
1 (0)

j ! t j +
R1∑
j=0

G( j)
1 (0)

j ! t j , (2.37)

where

R1 =
{

[m] + 2n − 1, m > 0,

2n, m = 0,

and [m] denotes the smallest integer not less than m.
Combining (2.36) with (2.37), we have

I [ f ] =
∫ +∞

0
L1(t)Jm(ωt)dt +

R1∑
j=0

G( j)
1 (0)

j !
∫ +∞

0
t j Jm(ωt)dt, (2.38)

where L1(t) = G1(t) − ∑R1
j=0

G( j)
1 (0)
j ! t j . And, suppose that IR1 = ∑R1

j=0
G( j)
1 (0)
j !

∫ +∞
0 t j Jm

(ωt)dt .
The integral IR1 can be exactly calculated by the explicit formula

∫ +∞

0
t j Jm(ωt)dt

=
∫ 1

0
t j Jm(ωt)dt +

∫ +∞

1
t j Jm(ωt)dt

= G(ω,m, j) + 1

2
G3,0

2,4

(
− j

2 ,− j−1
2

− j+1
2 ,− j

2 , 1
2m,− 1

2m

∣∣∣∣14ω2

)
, (2.39)
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where G(ω,m, j) can be expressed by the following formulae (see [14, p. 676], [26, p. 44]
and [2, p. 480]), for �( j + m) > −1, ω > 0,

∫ 1

0
x j Jm(ωx)dx = 2 jΓ (

m+ j+1
2 )

ω j+1Γ (
m − j + 1

2
) + 1

ω j
[( j + m + 1)Jm(ω)S j−1,m−1(ω) − Jm−1(ω)S j,m(ω)]

(2.40)

= ωm

2m( j + m + 1)(Γ (m + 1)
1F2

(
j + m + 1

2
; j + m + 3

2
,m + 1;−ω2

4

)
(2.41)

= Γ (
m+ j+1

2 )

ωΓ (
m− j+1

2 )

∞∑
k=0

(m + 2k + 1)Γ (
m− j+1

2 + j)

Γ (
m+ j+3

2 + k)
Jm+2k+1(ω). (2.42)

Here, Sμ,ν(z), Γ (z), 1F2(μ; ν, λ; z),Gm,n
p,q denote the Lommel function of the second kind,

the Gamma function, a class of generalized hypergeometric function, and the Meijer G-
function, respectively. Moreover, 1F2(μ; ν, λ; z) converges for all |z|. From [32, p. 346],
Sμ,ν(z) can be expressed in terms of 1F2(μ; ν, λ; z), namely,

Sμ,ν(z) = zμ+1

(μ + ν + 1)(μ − ν + 1)
1F2(1; μ − ν + 3

2
,
μ + ν + 3

2
;− z2

4
)

−2μ−1Γ (
μ+ν+1

2 )

πΓ (
ν−μ
2 )

(Jν(z) − cos(π(μ − ν)/2)Yν(z)), (2.43)

where Yν(z) is a Bessel function of the second kind of order ν. The efficient imple-
mentation of the moments is based on the fast computation of the above-mentioned
special functions. Obviously, when programming the proposed algorithm in a lan-
guage like Matlab, we can calculate the values of Γ (z), Jm(z), Ym(z), 1F2(μ; ν, λ; z)
and Gm,n

p,q by invoking the built-in functions ‘gamma(z)’, ‘besselj(m, z)’,‘bessely(m, z)’,
‘hypergeom(μ, [ν, λ], z)’,‘meijerG([a1, ..., an], [an+1, ..., ap], [b1, ..., bm], [bm+1, ...,

bq ], z)’, respectively.
In the following, we develop the numerical scheme for approximating the integral IL1 =∫ +∞

0 L1(t)Jm(ωt)dt . We first give a key result, as follows.

Theorem 2.3 Assume that both g and f are analytic in D. Moreover, g and f satisfy those
conditions (2.5)–(2.7). And, g has a single zero point at x = a and g′(x) �= 0 on [a,+∞).
Also, limx→+∞ g′(x) �= 0. Then it is true that

IL1 = 1

2

[
i
∫ +∞

0
L1(i p)H

(1)
m (ω(i p))e−iω(i p)e−ωpdp

−i
∫ +∞

0
L(−i p)H (2)

m (iω(−i p))eiω(−i p)e−ωpdp

]
. (2.44)

Proof It follows immediately from (2.1) and (2.2) that

IL1 = 1

2

[∫ +∞

0
L1(t)H

(1)
m (ωt)dt +

∫ +∞

0
L1(t)H

(2)
m (ωt)dt

]
. (2.45)

Here, assume that IL1,1 = ∫ +∞
0 L1(t)H

(1)
m (ωt)dt and IL1,2 = ∫ +∞

0 L1(t)H
(2)
m (ωt)dt .
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Fig. 2 The integration paths for the oscillator g(t) = t in eiωt (left figure) and the oscillator g(t) = −t in
e−iωt (right figure) on the interval [0,+∞)

Moreover, the integral IL1,1 can be expressed as

IL1,1 =
∫ +∞

0
L1(t)H

(1)
m (ωt)e−iωt eiωt dt . (2.46)

For computing the integral in (2.46), we choose the new path in the complex plane, which
is drawn on the left panel of Fig. 2.

In Fig. 2, the integration paths are expressed by parametric forms: in the left figure:
Γ2(p) = i p, Γ3(θ) = Aeiθ , p ∈ [0, A], θ : π

2 → 0; in the right figure: Λ2(p) = −i p,
Λ3(θ) = Aeiθ , p ∈ [0, A], θ : −π

2 → 0.
First, we consider the integral IL1,1. By the Cauchy residue theorem (see Fig. 2 (left

figure)), we obtain that

∫ A

0
L1(t)H

(1)
m (ωt)e−iωt eiωt dt =

∫
Γ2

L1(z)H
(1)
m (ωz)e−iωzeiωzdz

+
∫

Γ3

L1(z)H
(1)
m (ωz)e−iωzeiωzdz. (2.47)

And, by the method which is similar to the proof of Theorem 2.1, we have that
∣∣∣∣
∫

Γ3

L1(z)H
(1)
m (ωz)e−iωzeiωzdz

∣∣∣∣
=

∣∣∣∣
∫ 0

π
2

i Aeiθ L1(Ae
iθ )H (1)

m (ω(Aeiθ ))e−iω(Aeiθ ))eiω(Aeiθ ))dθ

∣∣∣∣

≤ M
∫ π

2

0

∣∣
√

A

ω
L1(Ae

iθ )e−ωA sin θ
∣∣dθ

→ 0, as A → +∞.

Therefore, by letting A → +∞ in (2.47), we have

IL1,1 = i
∫ +∞

0
L1(i p)H

(1)
m (ω(i p))e−iω(i p)e−ωpdp. (2.48)
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Similarly, from Fig. 2 (right figure), we can obtain

IL1,2 = −i
∫ +∞

0
L1(−i p)H (2)

m (iω(−i p))eiω(−i p)e−ωpdp. (2.49)

Combining (2.45), (2.48) and (2.49), we can get the result (2.44). So we complete this proof.

�

Letting q = ωp in (2.48) and (2.49), we can get

IL1,1 = i

ω

∫ +∞

0
L1

(
i
q

ω

)
H (1)
m

(
ω

(
i
q

ω

))
e−iω(i qω )e−qdq, (2.50)

and

IL1,2 = − i

ω

∫ +∞

0
L1

(
−i

q

ω

)
H (2)
m

(
iω

(
−i

q

ω

))
eiω(−i q

ω )e−qdq. (2.51)

By using n-point Gauss–Laguerre quadrature rules for (2.50) and (2.51), together with the
Eq. (2.45), the integral IL1 can be calculated by the following formula

QL1,n = 1

2

[
i

ω

n∑
k=1

ak L
(
i
xk
ω

)
H (1)
m

(
ω

(
i
xk
ω

))
e
−iω

(
i
xk
ω

)

− i

ω

n∑
k=1

ak L1

(
−i

xk
ω

)
H (2)
m

(
iω

(
−i

xk
ω

))
e
iω

(
−i

xk
ω

)]
. (2.52)

Thus, the integral (1.1) can be approximately evaluated by

Qn[ f ] = QL1,n + IR1 . (2.53)

We shall give its error analysis as follows.

Theorem 2.4 Under the assumption conditions of Theorem 2.3, the error of the quadrature
formula (2.53) behaves asymptotically as

I [ f ] − Qn[ f ] = O
(
ω−2n− 3

2

)
, ω → +∞. (2.54)

Proof It follows that∣∣∣∣I [ f ] − Qn[ f ]
∣∣∣∣

=
∣∣∣∣IL1,1 − QL1,n

∣∣∣∣
=

∣∣∣∣12
[
i

ω

∫ +∞

0
L1(i

q

ω
)H (1)

m (ω(i
q

ω
))e−iω(i q

ω
)e−qdq

− i

ω

∫ +∞

0
L1(−i

q

ω
)H (2)

m (iω(−i
q

ω
))eiω(−i q

ω
)e−qdq

]

−1

2

[
i

ω

n∑
k=1

ak L1(i
xk
ω

)H (1)
m (ω(i

xk
ω

))e−iω(i
xk
ω

)

− i

ω

n∑
k=1

ak L1(−i
xk
ω

)H (2)
m (iω(−i

xk
ω

))eiω(−i
xk
ω

)

] ∣∣∣∣.
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It follows from [2, p. 360] that

H (1)
m (z) ∼

{
z−m, m > 0,

ln(z) m = 0,
(2.55)

H (2)
m (z) ∼

{
z−m, m > 0,

ln(z) m = 0,
(2.56)

as |z| → 0.
Since L1(t) = O(t R1+1), based on (2.55), (2.56), by using Leibniz’s Theorem [2, p. 12]

and the similar proof of Theorem 2.2, we have
∣∣∣∣I [ f ] − Qn[ f ]

∣∣∣∣ = O
(
ω−2n− 3

2

)
,

as ω → +∞. Hence, the desired results (2.54) can be obtained. 
�

3 Numerical Evaluation for the Case of Stationary Points

When g′(ζ ) = 0, ζ ∈ [a,+∞), we call x = ζ as a stationary point. Further, we consider
x = ζ as a stationary point of order r if g( j)(ζ ) = 0, j = 1, 2, . . . , r and g(r+1)(ζ ) �=
0, where r ≥ 1. In this section, we put our attention to the case that g(x) has only one
stationary point of order r at x = ζ ∈ [a,+∞), i.e., g′(x) �= 0 for x ∈ [a,+∞)\{ζ }, and
limx→+∞ g′(x) �= 0. We also assume that g(x) �= 0 for x ∈ [a,+∞)\{ζ }. The stationary
point can be classified into the following two types:

Type I : g(ζ ) = 0.

Type II : g(ζ ) �= 0.

3.1 Type I : g(�) = 0

Here we commence our analysis for the former case, i.e., x = ζ is a stationary point of
Type I. If ζ ∈ (a,+∞), we shall divide the integral interval into two subintervals [a, ζ ] and
[ζ,+∞) to ensure that the inverse function of g exists uniquely in any subinterval. And the
integral on [a, ζ ] can be computed in a similar way. To simplify this procedure, without loss
of generality, we assume that ζ = a.

Assume that g(x) → +∞ as x → +∞. With the help of a diffeomorphic transformation
g(x) = (t − a)r+1, we rewrite (1.1) as

I [ f ] =
∫ +∞

a
G2(t)Jm(ω(t − a)r+1)dt, (3.1)

where G2(t) = [g−1((t −a)r+1)]α f [g−1((t −a)r+1)][g−1((t −a)r+1)]′. And, the function
(t − a)r+1 is well-defined on [a,+∞).

Set

L2(t) = G2(t) −
R2∑
j=0

G( j)
1 (a)

j ! (t − a) j ,
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where

R2 =
{

[m(r + 1)] + 2n − 1, m > 0,

2n, m = 0,

and [m(r+1)] denotes the smallest integer not less thanm(r+1). Furthermore, the expression
(3.1) can be rewritten as

I [ f ] =
∫ +∞

a
L2(t)Jm(ω(t − a)r+1)dt

+
R2∑
j=0

G( j)
2 (a)

j !
∫ +∞

a
(t − a) j Jm(ω(t − a)r+1)dt . (3.2)

Suppose that IR2 = ∑R2
j=0

G( j)
2 (a)

j !
∫ +∞
a (t − a) j Jm(ω(t − a)r+1)dt . And the generalized

moments
∫ +∞
a (t − a) j Jm(ω(t − a)r+1)dt can be transformed into the following form
∫ +∞

a
(t − a) j Jm(ω(t − a)r+1)dt

=
∫ +∞

0
y j Jm(ωyr+1)dy

= 1

r + 1

∫ +∞

0
z

j−r
r+1 Jm(ωz)dz

= 1

r + 1

[∫ 1

0
z

j−r
r+1 Jm(ωz)dz +

∫ +∞

1
z

j−r
r+1 Jm(ωz)dz

]
,

which can be exactly computed by (2.39)–(2.42).
Now we begin to develop the quadrature rule for the integral IL2 = ∫ +∞

a L2(t)Jm(ω(t −
a)r+1)dt . We first give an useful result, as follows.

Theorem 3.1 Suppose that both g and f are analytic in D, g and f satisfy those conditions
(2.5)–(2.7), and g has a stationary point of Type I and of order r at x = a. Moreover, if we
assume that g(x) �= 0, g′(x) �= 0 for x ∈ (a,+∞), and limx→+∞ g′(x) �= 0, then it is true
that

IL2 = 1

2

[∫ +∞

0
L2[Γ (p)]H (1)

m [ω(i p)]e−iω(i p)Γ ′(p)e−ωpdp

+
∫ +∞

0
L2[Λ(p)]H (2)

m [ω(−i p)]eiω(−i p)Λ′(p)e−ωpdp

]
, (3.3)

where Γ (p) = a + r+1
√
i p and Λ(p) = a + r+1

√−i p, p ∈ [0,+∞).

Proof From (2.1) and (2.2), we have

IL2 = 1

2

[∫ +∞

a
L2(t)H

(1)
m (ω(t − a)r+1)dt +

∫ +∞

a
L2(t)H

(2)
m (ω(t − a)r+1)dt

]
,

(3.4)

wherewedenote IL2,1 = ∫ +∞
a L2(t)H

(1)
m (ω(t−a)r+1)dt and IL2,2 = ∫ +∞

a L2(t)H
(2)
m (ω(t−

a)r+1)dt . Then we apply the method in Theorem 2.1 to IL2,1 and IL2,2, respectively.
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For the computation of IL2,1, we choose the optimal integral path that

Γ (p) = a + r+1
√
i p, p ∈ [0, P].

From Theorem 2.1 and by letting P → ∞, similarly, we have that

IL2,1 =
∫ +∞

0
L2[Γ (p)]H (1)

m [ω(i p)]e−iω(i p)Γ ′(p)e−ωpdp. (3.5)

For the computation of IL2,2, we choose the optimal integral path that

Λ(p) = a + r+1
√−i p, p ∈ [0, P].

Following Theorem 2.1 and by letting P → +∞, similarly, we obtain that

IL2,2 =
∫ +∞

0
L2[Λ(p)]H (2)

m [ω(−i p)]eiω(−i p)Λ′(p)e−ωpdp. (3.6)

Combining the Eqs. (3.4), (3.5) and (3.6), the desired result (3.3) can be obtained. Thus, we
complete the proof. 
�

By setting q = ωp in (3.5), it is not difficult to get

IL2,1 = 1

ω

∫ +∞

0
L2[Γ (

q

ω
)]H (1)

m [ω(i
q

ω
)]e−iω(i q

ω
)Γ ′( q

ω
)e−qdq. (3.7)

In (3.7), Γ ′( q
ω
) has a singularity of the form qβ as q → 0, where β = 1

r+1 − 1, since
Γ (p) = a+ r+1

√
i p. Fortunately, these types of singularities can be handled efficiently by the

generalized Gauss–Laguerre quadrature. Generalized Laguerre polynomials are orthogonal
with respect to the weight function xβe−x , β > −1 [12]. Then the integral (3.7) can be
rewritten as

IL2,1 = 1

ω

∫ +∞

0
L2[Γ (

q

ω
)]H (1)

m [ω(i
q

ω
)]e−iω(i q

ω
)Γ ′( q

ω
)q−βqβe−qdq. (3.8)

Therefore, we can use the generalized Gauss–Laguerre quadrature rule with n points tk and
weights ck, k = 1, 2, . . . , n, for computing the integral (3.8). Then the desired quadrature
formula of IL2,1 is as follows,

QL2,n,1 = 1

ω

n∑
k=1

ck L2[Γ (
tk
ω

)]H (1)
m [ω(i

tk
ω

)]e−iω(i
tk
ω

)Γ ′( tk
ω

)t−β
k . (3.9)

By setting q = ωp in (3.6), it follows immediately that

IL2,2 = 1

ω

∫ +∞

0
L2[Λ(

q

ω
)]H (2)

m [ω(−i
q

ω
)]eiω(−i q

ω
)Λ′( q

ω
)e−qdq. (3.10)

By the similar process with the derivation of (3.8) and (3.9), we can get the quadrature
formula for IL2,2,

QL2,n,2 = 1

ω

n∑
k=1

ck L2[Λ(
tk
ω

)]H (2)
m [ω(−i

tk
ω

)]eiω(−i
tk
ω

)Λ′( tk
ω

)t−β
k . (3.11)

Combining (3.2) and (3.4), we finally obtain the n-point quadrature formula for the integral
(1.1),

Qn[ f ] = 1

2
(QL2,n,1 + QL2,n,2) + IR2 . (3.12)
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In the following portion, we will show the error analysis for the quadrature formula (3.12).

Theorem 3.2 Under the assumption conditions of Theorem 3.1, the error of the quadrature
formula (3.12) behaves asymptotically as

I [ f ] − Qn[ f ] = O
(
ω−2n− 3

2−β
)

, ω → +∞, (3.13)

where β = 1
r+1 − 1.

Proof It follows that

IL2,1 − QL2,n,1

= 1

ω

∫ +∞

0
L2[Γ (

q

ω
)]H (1)

m [ω(i
q

ω
)]e−iω(i q

ω
)Γ ′( q

ω
)q−βqβe−qdq

− 1

ω

n∑
k=1

ck L2[Γ (
tk
ω

)]H (1)
m [ω(i

tk
ω

)]e−iω(i
tk
ω

)Γ ′( tk
ω

)t−β
k . (3.14)

Since L2(t) = O(t R2+1), by using theLeibniz’sTheorem [2, p. 12] and the similar proof of

Theorem 2.2, it follows from (2.55), (2.56) and (3.14) that IL2,1−QL2,n,1 = O(ω−2n− 3
2−β).

We can also easily obtain that IL2,2−QL2,n,2 = O(ω−2n− 3
2−β) by using the same procedure.

So we have

I [ f ] − Qn[ f ] = 1

2
(IL2,1 − QL2,n,1 + IL2,2 − QL2,n,2)

= O
(
ω−2n− 3

2−β
)

.

Hence, the error is asymptotically of the order O
(
ω−2n− 3

2−β
)
. We complete this proof. 
�

In the following, we shall present and analyze the numerical integration method of Type
II, i.e., g(ζ ) �= 0.

3.2 TypeII : g(�) �= 0

Similarly, if ζ ∈ (a,+∞), we shall divide the integral interval into two subintervals [a, ζ ]
and [ζ,+∞) to ensure that the inverse of g exists uniquely in any subinterval. In order
to simplify our analysis process, without loss of generality, we assume that ζ = a. Since
g(ζ ) �= 0, i.e., g has no zero in [a,+∞), the function H (1)

m (ωg(x)) and H (2)
m (ωg(x)) always

satisfy the conditions (2.12) and (2.13) on [a,+∞), respectively.
Based on (2.1) and (2.2), we have

I [ f ] = 1

2

[∫ +∞

a
f (x)H (1)

m (ωg(x))dx +
∫ +∞

a
f (x)H (2)

m (ωg(x))dx

]
. (3.15)

Here we give the notation that I1[ f ] = ∫ +∞
a f (x)H (1)

m (ωg(x))dx and I2[ f ] = ∫ +∞
a

f (x)H (2)
m (ωg(x))dx . By analogy with (2.20), we obtain that

I1[ f ] = eiωg(a)

ω

∫ +∞

0
Γ α
2 (

q

ω
) f

[
Γ2(

q

ω
)
]
H (1)
m

[
ω(g(a) + i

q

ω
)
]

× e−iω(g(a)+i q
ω

)Γ ′
2(

q

ω
)e−qdq. (3.16)
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We now rewrite the Taylor series of g as

g(x) = g(a) + g(r+1)(a)
(x − a)r+1

(r + 1)! + O((x − a)r+2),

since g( j)(a) = 0, j = 1, 2, . . . , r . The path Γ2(p) = g−1(g(a) + i p) solves g(Γ2(p)) =
g(a) + i p, and thus it leads to the fact that

Γ2(p) ∼ a + r+1

√
i p(r + 1)!
g(r+1)(a)

. (3.17)

This suggests immediately that

Γ ′
2(p) = O(pβ), β = 1

r + 1
− 1, p → 0. (3.18)

In (3.16),Γ ′
2(

q
ω
) = O(qβ), identical to (3.8). Similarly, we can obtain the quadrature formula

for the integral I1[ f ], as follows,

Qn,1[ f ] = eiωg(a)

ω

n∑
k=1

ckΓ
α
2 (

tk
ω

) f [Γ2(
tk
ω

)]

H (1)
m

[
ω

(
g(a) + i

tk
ω

)]
e
−iω

(
g(a)+i

tk
ω

)
Γ ′
2

(
tk
ω

)
t−β
k . (3.19)

By the same process, we can derive the approximation of I2[ f ],

Qn,2[ f ] = e−iωg(a)

ω

n∑
k=1

ckΛ
α
2 f [Λ2(

tk
ω

)]H (2)
m [ω(g(a) − i

tk
ω

)]

× eiω(g(a)−i
tk
ω

)Λ′
2(
tk
ω

)x−β
k . (3.20)

Therefore, we get the n-point quadrature rule for the considered integral I [ f ] that
Qn[ f ] = 1

2
(Qn,1[ f ] + Qn,2[ f ]). (3.21)

The error estimate of (3.21) will be given as follows.

Theorem 3.3 Suppose that both g and f are analytic in D, and g has a stationary point of
Type II and of order r at x = a. Also, g and f satisfy those conditions (2.5)–(2.7). Moreover,
if we suppose that g′(x) �= 0 for x ∈ (a,+∞), limx→+∞ g′(x) �= 0 and g(x) �= 0 on
[a,+∞), then the error of the quadrature formula (3.21) behaves asymptotically as

I [ f ] − Qn[ f ] = O
(
ω−2n− 3

2−β
)

, ω → +∞, (3.22)

where β = 1
r+1 − 1.

The proof is similar to that of Theorem 3.2 and hence it is omitted here.

4 Numerical Experiments

In this section, we test some numerical examples to demonstrate the quality of the evaluations
obtained by the proposed quadrature rules. In the following figures, “ E ” denotes the absolute
error produced by the numerical methods.
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Fig. 3 The base-10 logarithm of the absolute error (left figure) and absolute error scaled by ω
2n+ 3

2 (right
figure) of the integral

∫ +∞
1 x−4 sin 1

x J2(ωx)dx with n = 2, 3, 4, respectively

Fig. 4 The base-10 logarithm of the absolute error (left figure) and absolute error scaled by ω
2n+ 3

2 (right
figure) of the integral

∫ +∞
1 x−2e−x J1(ωx

2)dx with n = 2, 3, 4, respectively

4.1 The CaseWithout Stationary Points: Type I: g(x) �= 0 for x ∈ [a,+∞)

Example 1 Let us consider the evaluation of
∫ +∞
1 x−4 sin 1

x J2(ωx)dx by Qn[ f ] derived in
(2.24) and numerical results are shown in Fig. 3.

Example 2 We focus on the computation of
∫ +∞
1 x−2e−x J1(ωx2)dx by Qn[ f ] derived in

(2.24) and numerical results are shown in Fig. 4.

The numerical results of the quadrature rule (2.24) are illustrated in Figs. 3 and 4. On
the left panel of the two figures, we can see that the presented method has the advantageous

123



Journal of Scientific Computing (2023) 94 :29 Page 21 of 27 29

Fig. 5 The base-10 logarithm of the absolute error (left figure) and absolute error scaled by ω
2n+ 3

2 (right
figure) of the integral

∫ +∞
1 x−1 sin 1

x J1(ω(x − 1))dx with R1 = 2n + [m] − 1, n = 2, 3, 4, respectively

property that its accuracy improves when the frequency ω increases for fixed nodes n. At the
same time, it is obvious that the precision can improve significantly by adding more nodes
for fixed ω. Particularly, only using a few nodes, such as n = 2, 3, 4, the desired accuracy
level can be achieved. On the right panel of the two figures, we illustrate the absolute error

scaled by ω2n+ 3
2 , which can verify the asymptotic error order shown in Theorem 2.2.

4.2 The CaseWithout Stationary Points: Type II: g(x)Having Zeros on x ∈ [a,+∞)

Example 3 Weconsider the computation of
∫ +∞
1 x−1 sin 1

x J1(ω(x−1))dx by Qn[ f ] derived
in (2.53) and numerical results are shown in Fig. 5.

Example 4 Let us focus on the approximation of
∫ +∞
1 x− 1

2 1
1+x J 1

3
(ω(2x2−2x))dx by Qn[ f ]

derived in (2.53) and numerical results are shown in Fig. 6.

It is clear from Examples 3 and 4 that the presented method exhibits the fast convergence
as shown on the left panel of Figs. 5 and 6. On one hand, the accuracy improves greatly as
ω increases for fixed n. On the other hand, the accuracy improves as the number of nodes n

increases for fixed ω. Furthermore, the decay rate of the absolute error satisfies O(ω−2n− 3
2 )

while letting R1 = 2n + [m] − 1, which can confirm our error analysis shown in Theorem
2.4. As expected, for fixed nodes n, the precision of Qn[ f ] improves as ω increases.

4.3 The Case with Stationary Points: Type I: g(�) = 0

Example 5 We consider the calculation of
∫ +∞
1 x−3 1

1+x3
J5(ω(x−1)2)dx by Qn[ f ] derived

in (3.12) and numerical results are shown in Fig. 7.

Example 6 We focus on the computation of
∫ +∞
1 x−2 sin 1

x Jπ (ω(x − 1)3)dx by Qn[ f ]
derived in (3.12) and numerical results are shown in Fig. 8.
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Fig. 6 The base-10 logarithm of the absolute error (left figure) and absolute error scaled by ω
2n+ 3

2 (right

figure) of the integral
∫ +∞
1 x− 1

2 1
1+x J 1

3
(ω(2x2 −2x))dx with R1 = 2n+[m]−1, n = 2, 3, 4, respectively

The left figures of Figs. 7 and 8 show that the accuracy of the proposed method improves
greatly by adding more node points for fixed frequency ω. Meanwhile, the proposed
method for the oscillatory integral of the case that g has zeros can lead to more accurate
approximations for increasing ω with fixed n. Meanwhile, the decay rates of the absolute
error shown in Figs. 7 and 8 are consistent with the error analysis in Theorem 3.2 when
R2 = 2n + [m(r + 1)] − 1.

4.4 The Case with Stationary Points: Type II: g(�) �= 0

Example 7 Let us consider the evaluation of
∫ +∞
1 x−1x J3(ω((x − 1)2 + 1))dx by Qn[ f ]

derived in (3.21) and numerical results are shown in Fig. 9.

Obviously, we can see from Fig. 9 that the absolute error improves greatly by either adding
more nodes for fixed ω or increasing ω for fixed n. Moreover, the error order shown in the

right figure of Fig. 9 is ω2n+ 3
2+β , which is perfectly consistent with the error analysis in

Theorem 3.3.

4.5 Comparison with theModified Filon-TypeMethod

Wemake a comparison between the established method and the modified Filon-type method
developed in [23] by three tables.

We can see that from Tables 1, 2 and 3 that the accuracy level of the proposed method is
far higher than that of the modified Filon-type method while using the same computational
cost. However, the function f in the proposed method is required to be analytic in a simply
connected complex region that contains the interval [a,+∞). The Filon-type method can
relax the analytic condition and only requires the function f to be continuous on [a,+∞).
Thus, the two different methods have their own advantages and disadvantages, and we can
choose the appropriate approach in different situation.
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Fig. 8 The base-10 logarithm of the absolute error (left figure) and absolute error scaled by ω
2n+ 3

2+β (right
figure) of the integral

∫ +∞
1 x−2 sin 1

x Jπ (ω(x−1)3)dx with n = 1, 2, 3, r = 2, R2 = 2n+[m(r+1)]−1, β =
− 2

3

Fig. 9 The base-10 logarithm of the absolute error (left figure) and absolute error scaled by ω
2n+ 3

2+β (right
figure) of the integral

∫ +∞
1 x−1x J3(ω((x − 1)2 + 1))dx with n = 2, 3, 4, respectively and β = − 1

2

Table 1 Absolute errors of computing the integral
∫ +∞
1 x−1 sin 1

x4
J3(ωx)dx by the proposed quadrature

formula (2.24) with n = 3, and the modified Filon-type method with the nodes {−2/3,−1/3, 0, 1/3, 2/3, 1}
and multiplicities {1, 1, 1, 1, 1, 1} for ω = 20, 40, 80, 160

ω 20 40 80 160

The proposed method 3.97 × 10−6 4.53 × 10−8 2.49 × 10−10 7.16 × 10−14

Modified Filon-type method 4.58 × 10−5 5.06 × 10−6 3.29 × 10−7 3.64 × 10−7
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Table 2 Absolute errors of evaluation the integral
∫ +∞
1 x− 1

2 1
1+x3

J1(ω ln x)dx by the proposed quadra-

ture formula (2.53) with n = 2, R1 = [m] + 2n − 1, and the modified Filon-type method with the nodes
{−1/3, 0, 1/3, 1} and multiplicities {1, 1, 1, 1} for ω = 20, 40, 80, 160

ω 20 40 80 160

The proposed method 1.10 × 10−7 1.42 × 10−9 2.13 × 10−11 3.30 × 10−13

Modified Filon-type method 1.99 × 10−4 5.11 × 10−5 1.29 × 10−5 3.22 × 10−6

Table 3 Absolute errors of evaluation the integral
∫ +∞
1 x−2e−x2 J2(ω(x−1)2)dx by the proposed quadrature

formula (3.12) with n = 3, r = 2, R1 = [m(r + 1)] + 2n − 1, and the modified Filon-type method with the
nodes {−7/8,−1/2, 0, 1/2, 7/8, 1} and multiplicities {1, 1, 1, 1, 1, 1} for ω = 20, 40, 80, 160

ω 20 40 80 160

The proposed method 1.60 × 10−8 3.97 × 10−10 9.07 × 10−12 1.99 × 10−13

Modified Filon-type method 2.73 × 10−5 1.40 × 10−4 8.02 × 10−5 2.89 × 10−5

5 Conclusion

In this work, we propose and analyze an efficient numerical approximation method for the
oscillatory infinite Bessel transforms with general oscillators. Thanks to the relations (2.1)
and (2.2) between Bessel functions and Hankel functions, the asymptotic formulae (2.3) and
(2.4) of the Hankel functions, and the Taylor expansions, the considered integral (1.1) can
be transformed into the tractable transforms. Then the two integrals on the interval [0,+∞)

can be obtained by converting the original integration path to the complex plane. Finally,
the regular or generalized Gauss–Laguerre quadrature rules can be used for calculating the
two resulting integrals. In particular, we establish a series of new quadrature rules for this
transform and carry out rigorous analysis, including the cases that the oscillator g(x) has
zeros and stationary points. Furthermore, compared with the modified Filon-type method,
the established method can achieve the higher accuracy and the decay rate of the error is
faster under the given conditions.

Acknowledgements The first author was supported by Zhejiang Provincial Natural Science Foundation
of China under Grant Nos. LY22A010002, LY18A010009, National Natural Science Foundation of China
(Grant Nos. 11301125, 11971138) and Research Foundation of Hangzhou Dianzi University (Grant No.
KYS075613017). The second author was supported by Graduate Students’ Excellent Dissertation Cultivation
Foundation of Hangzhou Dianzi University (Grant No. GK208802299013-110). The authors would like to
express their most sincere thanks to the referees and editors for their very helpful comments and suggestions,
which greatly improved the quality of this paper.

Data Availability All data generated or analyzed during this study are included in this article. The codes
required during the algorithm implementation are available from the corresponding author on reasonable
request.

Declarations

Competing Interests The authors have not disclosed any competing interests.

123



29 Page 26 of 27 Journal of Scientific Computing (2023) 94 :29

References

1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University
Press, Cambridge (1997)

2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards,
Washington (1970)

3. Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, Orlando (1985)
4. Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci.

Comput. 27, 553–574 (2005)
5. Blakemore, M., Evans, G.A., Hyslop, J.: Comparison of some methods for evaluating infinite range

oscillatory integrals. J. Comput. Phys. 22, 352–376 (1976)
6. Brunner, H.: Open problems in the computational solution of Volterra functional equations with highly

oscillatory kernels. Effective Computational Methods for Highly Oscillatory Solutions, Isaac Newton
Institute, HOP (2007)

7. Brunner, H.: On the numerical solution of first-kind Volterra integral equations with highly oscillatory
kernels, Isaac Newton Institute. HOP: Highly Oscillatory Problems: FromTheory to Applications, 13–17,
Sept 2010

8. Chen, R.: Numerical approximations to integrals with a highly oscillatory Bessel kernel. Appl. Numer.
Math. 62, 636–648 (2012)

9. Chen, R.:On the implementation of the asymptotic Filon-typemethod for infinite integralswith oscillatory
Bessel kernels. Appl. Math. Comput. 228, 477–488 (2014)

10. Chen, R., An, C.: On the evaluation of infinite integrals involving Bessel functions. Appl. Math. Comput.
235, 212–220 (2014)

11. Chen, R., Xiang, S., Kuang, X.: On evaluation of oscillatory transforms from position to momentum
space. Appl. Math. Comput. 344, 183–190 (2019)

12. Davies, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, San Diego
(1984)

13. Davies, P.J.,Duncan,D.B.: Stability and convergence of collocation schemes for retarded potential integral
equations. SIAM J. Numer. Anal. 42, 1167–1188 (2004)

14. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New
York (2007)

15. Henrici, P.: Applied and Computational Complex Analysis, vol. I. Wiley and Sons, New York (1974)
16. Hascelik, A.: An asymptotic Filon-type method for infinite range highly oscillatory integrals with expo-

nential kernel. Appl. Numer. Math. 63, 1–13 (2013)
17. Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation.

SIAM J. Numer. Anal. 44, 1026–1048 (2006)
18. Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high fre-

quency scattering problems. SIAM J. Sci. Comput. 29, 2305–2328 (2007)
19. Kang, H., Ling, C.: Computation of integrals with oscillatory singular factors of algebraic and logarithmic

type. J. Comput. Appl. Math. 285, 72–85 (2015)
20. Kang, H., Ma, J.: Quadrature rules and asymptotic expansions for two classes of oscillatory Bessel

integrals with singularities of algebraic or logarithmic type. Appl. Numer. Math. 118, 277–291 (2017)
21. Kang, H.: Numerical integration of oscillatory Airy integrals with singularities on an infinite interval. J.

Comput. Appl. Math. 333, 314–326 (2018)
22. Kang, H.: Efficient calculation and asymptotic expansions of many different oscillatory infinite integrals.

Appl. Math. Comput. 346, 305–318 (2019)
23. Kang, H., Wang, H.: Asymptotic analysis and numerical methods for oscillatory infinite generalized

Bessel transforms with an irregular oscillator. J. Sci. Comput. 82, 1–33 (2020)
24. Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67, 95–101 (1996)
25. Lewanowicz, S.: Evaluation of Bessel function integrals with algebraic singularities. J. Comput. Appl.

Math. 37, 101–112 (1991)
26. Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York (1962)
27. Piessens, R., Branders, M.: Modified Clenshaw–Curtis method for the computation of Bessel function

integrals. BIT Numer. Math. 23, 370–381 (1983)
28. Wang, H., Zhang, L., Huybrechs, D.: Asymptotic expansions and fast computation of oscillatory Hilbert

transforms. Numer. Math. 123, 709–743 (2013)
29. Wang, H.: A unified framework for asymptotic analysis and computation of finite Hankel transform. J.

Math. Anal. Appl. 483, 123640 (2020)
30. Wang, Y.K., Xiang, S.H.: Levin methods for highly oscillatory integrals with singularities. Sci. China

Math. 63, 603–622 (2022)

123



Journal of Scientific Computing (2023) 94 :29 Page 27 of 27 29

31. Wang, Z.X., Guo, D.R.: Introduction to Special Functions. Peking University Press, Beijing (2000)
32. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge

(1952)
33. Xiang, S.: On quadrature of Bessel transformations. J. Comput. Appl. Math. 177, 231–239 (2005)
34. Xiang, S.: Numerical analysis of a fast integration method for highly oscillatory functions. BIT Numer.

Math. 47, 469–482 (2007)
35. Xiang, S.,Wang, H.: Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comput.

79, 829–844 (2010)
36. Xiang, S., Cho, Y., Wang, H., Brunner, H.: Clenshaw–Curtis–Filon-type methods for highly oscillatory

Bessel transforms and applications. IMA J. Numer. Anal. 31, 1281–1314 (2011)
37. Xu, Z., Xiang, S., He, G.: Efficient evaluation of oscillatory Bessel Hilbert transforms. J. Comput. Appl.

Math. 258, 57–66 (2014)
38. Xu, Z., Milovanovic, G.: Efficient method for the computation of oscillatory Bessel transform and Bessel

Hilbert transform. J. Comput. Appl. Math. 308, 117–137 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	An Efficient Quadrature Rule for the Oscillatory Infinite Generalized Bessel Transform with a General Oscillator and Its Error Analysis
	Abstract
	1 Introduction
	2 The Case Without Stationary Points
	2.1 Type I: g(x) Without Zero Points
	2.2 Type II: g(x) with Zero Points

	3 Numerical Evaluation for the Case of Stationary Points
	3.1 Type I: g(ζ) = 0
	3.2 Type II: g(ζ) = 0

	4 Numerical Experiments
	4.1 The Case Without Stationary Points: Type I: g(x)neq0 for xin[a,+infty)
	4.2 The Case Without Stationary Points: Type II: g(x) Having Zeros on xin[a,+infty)
	4.3 The Case with Stationary Points: Type I: g(ζ)=0
	4.4 The Case with Stationary Points: Type II: g(ζ)=0
	4.5 Comparison with the Modified Filon-Type Method

	5 Conclusion
	Acknowledgements
	References




