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Abstract
The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rank-one
tensors. The corresponding rank is called orthogonal rank. We present several properties of
orthogonal rank, which are different from those of tensor rank in many aspects. For instance,
a subtensor may have a larger orthogonal rank than the whole tensor. To fit the orthogonal
decomposition, we propose an algorithm based on the augmented Lagrangian method. The
gradient of the objective function has a nice structure, inspiring us to use gradient-based
optimizationmethods to solve it.We guarantee the orthogonality by a novel orthogonalization
process. Numerical experiments show that the proposed method has a great advantage over
the existing methods for strongly orthogonal decompositions in terms of the approximation
error.

Keywords Orthogonal tensor decomposition · Orthogonal rank · Augmented Lagrangian
method · L-BFGS · Orthogonalization

Mathematics Subject Classification 15A69 · 49M27 · 90C26 · 90C30

1 Introduction

Given a tensor A ∈ R
I1×···×IN , the CANDECOMP/PARAFAC (CP) decomposition factor-

izes it into a sum of rank-one tensors:

A =
K∑

k=1

v(1)
k ⊗ · · · ⊗ v(N )

k ,

where v(n)
k ∈ R

In , k = 1, . . . , K , n = 1, . . . , N . Usually, it is difficult to determine the num-
ber K for expressingA exactly [15, 16]. Hence, the following approximate CP decomposition
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is more meaningful in practical applications:

min
v(n)

r ∈RIn

∥∥∥∥∥A −
R∑

r=1

v(1)
r ⊗ · · · ⊗ v(N )

r

∥∥∥∥∥ ,

where ‖ · ‖ is the Frobenius norm and R is a prescribed number. This problem is just to find
a best rank-R approximation toA. Unfortunately, this problem has no solution in general [9,
20].

As mentioned in Ref. [9], the major open question in tensor approximation is how to
overcome the ill-posedness of the low rank approximation problem. One natural strategy
is to impose orthogonality constraints, because the orthogonality is an inherent property of
second-order tensor rank decompositions, i.e., matrix singular value decompositions (SVD).
The orthogonal tensor decomposition can be traced back to [6] for the symmetric case, and
then is studied in [17] for the general case:

A =
R∑

r=1

Tr , where rank(Tr ) = 1 and 〈Ts, Tt 〉 = 0 for all 1 ≤ s �= t ≤ R, (1)

where 〈·, ·〉 is the inner product that induces the Frobenius norm; see Sect. 2.1 for details. In
[23], the orthogonality constraint is extended to general angular constraints, where several
properties including the existence, uniqueness and exact recoverability are discussed. As a
special case of decompositionswith angular constraints, the orthogonal tensor decomposition
also has these properties.

The greedy approach presented in Ref. [17] is the earliest method for computing a low
orthogonal rank approximation to a given tensor, where one rank-one component is updated
in one iteration. Specifically, suppose we have obtained k rank-one components. The (k+1)st
rank-one component is updated by

min
U

∥∥∥∥∥A −
k∑

r=1

Tr − U

∥∥∥∥∥

s.t. rank(U) = 1 and 〈Tr ,U〉 = 0, r = 1, . . . , k.

This method is reasonable only if the Eckart-Young theorem [11] can be extended to the
orthogonal decomposition, i.e., the best low orthogonal rank approximation can be obtained
by truncating the orthogonal rank decomposition (see Sect. 3 for the definition). Refer to [17,
Section 5] for details. However, a counterexample presented in Ref. [18] shows that such an
extension is not possible. Suppose Tr = ⊗N

n=1v
(n)
r in (1). The orthogonality constraint has

the following form

N∏

n=1

〈
v(n)

s , v(n)
t

〉
= 0 for all s �= t .

This means that there exists at least onem ∈ {1, . . . , N } such that
〈
v(m)

s , v(m)
t

〉
= 0. However,

we cannot determine the number m for different pairs of s, t . This is the main difficulty in
fitting orthogonal decompositions. Practical existing algorithms are proposed by fixing the
numberm; see [5, 13, 31, 34, 35]. Actually, these algorithms are aimed at strongly orthogonal
decompositions, whose one or more factor matrices are orthogonal. All these algorithms
follow a similar framework, by combining the alternating minimization method and the polar
decomposition. For factor matrices with general angular constraints, a proximal gradient
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algorithm is proposed in Ref. [26]. In [24], the Jacobi SVD algorithm is extended to reduce a
tensor to a formwith the �2 norm of the diagonal vector being maximized. The resulting form
is not diagonal and hence this is not an algorithm for orthogonal decompositions discussed
in this work.

In this paper, we first study orthogonal rank. We find that there are many differences
between orthogonal rank and tensor rank. Orthogonal rankmay be variant under the invertible
n-mode product, a subtensor may have a larger orthogonal rank than the whole tensor, and
orthogonal rank is lower semicontinuous. A refined upper bound of orthogonal rank [22] is
presented. As for the algorithm, we employ the augmented Lagrangian method to convert (1)
into an unconstrained problem. We find that the gradient of the objective function has a good
structure. Therefore, we use gradient-based optimization methods to solve each subproblem.
To guarantee the orthogonality of the final result, we develop an orthogonalization process.
Numerical experiments show that ourmethod has a great advantage over the existingmethods
for strongly orthogonal decompositions in terms of the approximation error.

The rest of this paper is organized as follows. Section 2 recalls some preliminarymaterials.
In Sect. 3, we present several properties of orthogonal rank. The algorithm is proposed in
Sect. 4. Experimental results are given in Sect. 5. Conclusions are presented in Sect. 6.

Notation

We use bold-face lowercase letters (a,b, . . .) to denote vectors, bold-face capitals (A,B, . . .)
to denote matrices and calligraphic letters (A,B, . . .) to denote tensors. The notations I and
0 denote the identity matrix and the zero matrix of suitable dimensions, respectively. The
(i1, i2, · · · , iN )th element ofA is denoted by ai1i2···iN . The n-mode product of a tensorA by
a matrixM is denoted byM ·n A. Following [9], we writeM1 ·1 · · ·MN ·N Amore concisely
as (M1, · · · ,MN ) ·A. The mode-n unfolding matrix is denoted by A(n), whose columns are
all mode-n fibers of A, n = 1, . . . , N .

2 Preliminaries

2.1 Inner Product, Angle and Orthogonality

Let A,B ∈ R
I1×···×IN . The inner product of A,B is defined by

〈A,B〉 :=
I1∑

i1=1

· · ·
IN∑

iN =1

ai1,··· ,iN bi1,··· ,iN ,

and the Frobenius norm of A induced by this inner product is ‖A‖ = √〈A,A〉. Let U =
u(1) ⊗ · · · ⊗ u(N ) and V = v(1) ⊗ · · · ⊗ v(N ). Then

〈U,V〉 =
N∏

n=1

〈u(n), v(n)〉 and ‖U‖ =
N∏

n=1

‖u(n)‖. (2)

We say that A is a unit tensor if ‖A‖ = 1.
The angle between A,B is defined by

∠(A,B) := arccos

〈
A

‖A‖ ,
B

‖B‖
〉
. (3)
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Two tensorsA,B are orthogonal (A⊥B) if 〈A,B〉 = 0, i.e.,∠(A,B) = π
2 . In (2),U andV are

orthogonal if
∏N

n=1〈u(n), v(n)〉 = 0. This leads to other options for defining orthogonality of
two rank-one tensors. Given 1 ≤ i1 < · · · < iM ≤ N , we say that U and V are (i1, · · · , iM )-
orthogonal if

〈
u(im ), v(im )

〉
= 0 ∀1 ≤ m ≤ M .

If M = N , we say that U and V are completely orthogonal.
A list of tensors T1, · · · , Tm is said to be orthogonal if 〈Ti , T j 〉 = 0 for all distinct

i, j ∈ {1, . . . , m}. An orthogonal list of tensors is an orthonormal list if each of its elements
is a unit tensor. Similarly, we can define an (i1, · · · , iM )-orthogonal list of rank-one tensors.

2.2 CP Decompositions and Tensor Rank

The CP decomposition factorizes a tensor into a sum of rank-one tensors:

A =
R∑

r=1

v(1)
r ⊗ · · · ⊗ v(N )

r := [[V(1), · · · ,V(N )]], (4)

where the nth factor matrix is

V(n) =
[
v(n)
1 · · · v(n)

R

]
.

An interesting property of tensors is that their CP decompositions are often unique. Refer
to [19, Section 3.2] for detailed introductions. The most famous results [21, 30] on the
uniqueness condition depend on the concept of k-rank. The k-rank of a matrix M, denoted
by kM, is the largest integer such that every set containing kM columns of M is linearly
independent. For the CP decomposition (4), its uniqueness condition presented in [30] is

N∑

n=1

kV(n) ≥ 2R + N − 1. (5)

Clearly, if (4) is unique, we must have R = rank(A).

The rank of A is defined by rank(A) := min
{

R : A =∑R
r=1 v

(1)
r ⊗ · · · ⊗ v(N )

r

}
. Given

R > 0, the following problem
min

rank(B)≤R
‖A − B‖ (6)

aims to find the best rank-R approximation of A. However, (6) has no solution in general
[9, 20]. This is due to the following feature of tensor rank.

Proposition 2.1 ( [9]) Let R ≥ 2. The set {A ∈ R
I1×···×IN : rank(A) ≤ R} is not closed in

the normed space R
I1×···×IN . That is, the function rank(A) is not lower semicontinuous.

2.3 Orthogonal Decompositions

The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rank-one
tensors:

A =
R∑

r=1

Tr , where rank(Tr ) = 1 and Ts⊥Tt for all 1 ≤ s �= t ≤ R. (7)
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The following lemma can be obtained by a direct calculation based on (2).

Lemma 2.2 The decomposition (4) is an orthogonal decomposition if and only ifV(1)
V(1)�
· · · � V(N )
V(N ) is diagonal, where “�” is the Hadamard product.

The (i1, · · · , iM )-orthogonal decomposition factorizes a tensor into a sum of an
(i1, · · · , iM )-orthogonal list of rank-one tensors. Any type of (i1, · · · , iM )-orthogonal
decomposition is called strongly orthogonal decomposition 1. Clearly, a strongly orthog-
onal decomposition is also an orthogonal decomposition. However, we are not in general
guaranteed that a strongly orthogonal decomposition exists. Simple examples include the
tensors with rank(A) > max{I1, . . . , IN } 2. This is because an (i1, · · · , iM )-orthogonal list
consists of at most min{Ii1 , . . . , IiM } elements. Related discussions can be found in Ref. [5,
17].

There is a lot of research on strongly orthogonal decompositions. The (1, · · · , N )-
orthogonal decomposition, also called the completely orthogonal decomposition, is discussed
in Ref. [5]. The (n)-orthogonality, where 1 ≤ n ≤ N , is considered in Ref. [31, 34]. General
strongly orthogonal decompositions are considered in Ref. [13, 35].

3 Properties of Orthogonal Rank

The orthogonal rank of A is defined by

rank⊥(A) := min

{
R ∈ N : A =

R∑

r=1

Tr , rank(Tr ) = 1, Ts⊥Tt for all 1 ≤ s �= t ≤ R

}
.

If R = rank⊥(A) in (7), then (7) is called an orthogonal rank decomposition.
Clearly, rank⊥(A) ≥ rank(A). The following lemma gives a necessary and sufficient

condition for rank⊥(A) = rank(A) under some assumptions.

Lemma 3.1 Let R ≥ 2,V(n) ∈ R
In×R for n = 1, . . . N andA = [[V(1), · · · ,V(N )]]. Suppose

rank(V(n)) = R for all n = 1, . . . N. Then rank(A) = rank⊥(A) = R if and only if
V(1)
V(1) � · · · � V(N )
V(N ) is diagonal.

Proof Since rank(V(n)) = R and R ≥ 2, we have

N∑

n=1

kV(n) = N R ≥ 2R + N − 1.

By (5), this decomposition is unique and rank(A) = R.
By Lemma 2.2, if V(1)
V(1) � · · · � V(N )
V(N ) is diagonal, then this decomposition is

an orthogonal decomposition. Hence,

rank(A) ≤ rank⊥(A) ≤ R = rank(A) ⇒ rank(A) = rank⊥(A) = R.

Also by Lemma 2.2, if V(1)
V(1) � · · · � V(N )
V(N ) is not diagonal, then this decom-
position is not an orthogonal decomposition. Due to the uniqueness, there does not exist an
orthogonal decomposition with R terms, i.e., rank⊥(A) > R. ��
1 Strongly orthogonal decomposition has a different definition in Ref. [17].
2 Such tensors exist. See [9, Lemma 4.7] for an example.
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Suppose A is a subtensor of B, then rank(A) ≤ rank(B). It comes as a surprise that the
analog does not hold for orthogonal rank. See the next proposition.

Proposition 3.2 Let R ≥ 2,V(n) ∈ R
In×R for n = 1, . . . N and A = [[V(1), · · · ,V(N )]].

Suppose rank(V(n)) = R for all n = 1, . . . N. IfV(1)
V(1)�· · ·�V(N )
V(N ) is not diagonal,
then there exists a tensor B such that

A is a subtensor of B and rank⊥(B) < rank⊥(A).

Proof We can find a sufficiently large t such that tI − V(1)
V(1) is positive semidefinite.
Then there exists a matrix M with R columns such that

tI − V(1)
V(1) = M
M.

Define V =
[
V(1)

M

]
. Then B = [[V,V(2), · · · ,V(N )]] is an orthogonal decomposition. By

Lemma 3.1, we have rank⊥(B) = R < rank⊥(A). ��
Remark 3.3 If we regard a matrix as a two-dimensional dataset, the value of rank represents
the real quantity of information that thematrix embodies. That is, a low-rankmatrix embodies
a lot of redundant information. Therefore, itmakes sense that the rank of a submatrix is smaller
than that of the whole matrix. There are various ways to decompose a tensor into a sum of
rank-one tensors, and each of these decompositions leads naturally to a concept of tensor
rank. Proposition 3.2 shows the flaw of orthogonal rank in representing the real quantity of
information that a tensor embodies.

A basic property of tensor rank is its invariance under the invertible n-mode product. If
Mn is invertible for n = 1, . . . , N , [9, Lemma 2.3] tells us that

rank((M1, · · · ,MN ) · A) = rank(A).

However, the analog does not hold for orthogonal rank. Counterexamples can be constructed
based on Lemma 3.1. Due to the fact that rank(V(1)) = R, there exists an invertible matrix

M ∈ R
I1×I1 satisfying M(:, 1 : R) = V(1). Then M−1V(1) =

[
I
0

]
and M−1 ·1 A =

[[M−1V(1),V(2), · · · ,V(N )]] is an orthogonal decomposition. Therefore,

rank⊥(M−1 ·1 A) = rank(M−1 ·1 A) = rank(A) < rank⊥(A).

If the n-mode product is orthogonal, we have the following lemma.

Lemma 3.4 Let A ∈ R
I1×···×IN and Mn ∈ R

In×In be orthogonal for n = 1, . . . , N. Then

rank⊥((M1, · · · ,MN ) · A) = rank⊥(A).

Proof SupposeA = [[V(1), · · · ,V(N )]] is anorthogonal decomposition.Then (M1, · · · ,MN )·
A = [[M1V(1), · · · ,MNV(N )]] and (M1V(1))
M1V(1) � · · · � (MNV(N ))
MNV(N ) =
V(1)
V(1) � · · · �V(N )
V(N ) is diagonal. Hence, rank⊥((M1, · · · ,MN ) ·A) ≤ rank⊥(A).

On the other hand, we have

A =
(
M


1 , · · · ,M

N

)
· [(M1, · · · ,MN ) · A)]

and hence rank⊥(A) ≤ rank⊥((M1, · · · ,MN ) · A). Combining these two parts yields the
result. ��
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In [22, (2.8)], an upper bound of rank⊥(A) is given as

rank⊥(A) ≤ min
m=1,...,N

∏

n �=m

In .

We refine this result in terms of themultilinear rank. The n-rank ofA, denoted by rankn(A), is
the dimension of the vector space spanned by all n-mode fibers, i.e., rankn(A) = rank(A(n)).
The N -tuple (rank1(A), . . . , rankN (A)) is called the multilinear rank of A.

Proposition 3.5 Let A ∈ R
I1×···×IN . Then

rank⊥(A) ≤ min
m=1,...,N

∏

n �=m

rankn(A).

Proof Suppose A has the following higher-order singular value decomposition (HOSVD)
[8]:

A = (U1, · · · ,UN ) · S,

where Un ∈ R
In×In is orthogonal and si1i2···iN = 0 if there exists at least one n ∈ {1, . . . , N }

such that in > rankn(A). It follows from Lemma 3.4 that rank⊥(A) = rank⊥(S). Note that

S =
∑

ik ,k �=m

ei1 ⊗ · · · ⊗ eim−1 ⊗ S(i1, . . . , im−1, :, im+1, . . . , iN ) ⊗ eim+1 ⊗ · · · ⊗ eiN ,

is an orthogonal decomposition, where eik ∈ R
Ik is the standard basis vector and

S(i1, . . . , im−1, :, im+1, . . . , iN ) is a mode-m fiber. Hence rank⊥(S) is less than the number
of non-zero mode-m fibers, which is at most

∏
n �=m rankn(A). ��

In contrast to Proposition 2.1, we have the following proposition for orthogonal rank.

Proposition 3.6 For any R > 0, the set {A ∈ R
I1×···×IN : rank⊥(A) ≤ R} is closed in the

normed space R
I1×···×IN . That is, the function rank⊥(A) is lower semicontinuous.

Proof Suppose limm→∞ Am = A, where rank⊥(Am) ≤ R. It suffices to prove that
rank⊥(A) ≤ R. Since rank⊥(Am) ≤ R, we can write

Am =
R∑

r=1

σm,rUm,r , Um,r = u(1)
m,r ⊗ · · · ⊗ u(N )

m,r ,

where
〈
Um,s,Um,t

〉 = 0 for all s �= t and ‖u(n)
m,r‖ = 1 for all n = 1, . . . , N and r = 1, . . . , R.

(If rank⊥(Am) < R, we just need to set σm,r = 0 for r = rank⊥(Am) + 1, . . . , R.) Then

R∑

r=1

σ 2
m,r = ‖Am‖2.

Since limm→∞ ‖Am‖ = ‖A‖, σm,r are uniformly bounded. Thus we can find a subsequence
with convergence limk→∞ σmk ,r = σr , limk→∞ u(n)

mk ,r = u(n)
r for all r and n. Note that

limk→∞ Amk = A, i.e.,

A =
R∑

r=1

σr u(1)
r ⊗ · · · ⊗ u(N )

r . (8)
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Moreover,
〈
u(1)

s ⊗ · · · ⊗ u(N )
s ,u(1)

t ⊗ · · · ⊗ u(N )
t

〉
= lim

k→∞
〈
Umk ,s,Umk ,t

〉 = 0 for all s �= t .

Then (8) is an orthogonal decomposition and hence rank⊥(A) ≤ R. ��

Given R > 0, finding the best orthogonal rank-R approximation of A is

min
rank⊥(B)≤R

‖A − B‖ . (9)

By Proposition 3.6, we know that the solution of (9) always exists.

4 Algorithms for LowOrthogonal Rank Approximation

Problem (9) can be formulated as

min
v∈RP

F (v) := 1

2

∥∥∥∥∥A −
R∑

r=1

⊗N
n=1v

(n)
r

∥∥∥∥∥

2

s.t.
N∏

n=1

〈
v(n)

s , v(n)
t

〉
= 0 for all s �= t,

(10)

where v :=
[
v(1)

1 · · · v(1)


R · · · v(N )

1 · · · v(N )


R

]

and P = R

∑N
n=1 In . Define Tr =

⊗N
n=1v

(n)
r , r = 1, . . . , R. Then (10) can be rewritten as

min
v∈RP

F (v) := 1

2

∥∥∥∥∥A −
R∑

r=1

Tr

∥∥∥∥∥

2

s.t. 〈Ts, Tt 〉 = 0 for all s �= t . (11)

Themain difficulty in solving (10) is how to handle the 2N -degree polynomial constraints.
The augmented Lagrangian method is a powerful method for solving constrained problems.
This method is suitable for (10), because the subproblems can be solved easily by gradient-
based optimization methods, which will be shown later. Using the augmented Lagrangian
method means that the orthogonality constraint is not met exactly in each step. Our target is
to make ∠(Ts, Tt ) close to π/2. By (3), we have

|〈Ts, Tt 〉| = ‖Ts‖‖Tt‖ |cos∠(Ts, Tt )| .
To avoid the influence of the norms ‖Tr‖, an ideal strategy is to consider the following
augmented Lagrangian function:

L̃ (v,λ; c) =F (v) + 1

2

R∑

s=1

R∑

t=1,t �=s

λst

N∏

n=1

〈
v(n)

s

‖v(n)
s ‖

,
v(n)

t

‖v(n)
t ‖

〉

+ μ

4

R∑

s=1

R∑

t=1,t �=s

N∏

n=1

〈
v(n)

s

‖v(n)
s ‖

,
v(n)

t

‖v(n)
t ‖

〉2
.

(12)
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However, this would make the subproblem rather difficult to solve. We can realize this idea
by setting different penalty parameters for the augmented Lagrangian function:

L (v,λ; c) :=F (v) + 1

2

R∑

s=1

R∑

t=1,t �=s

λst

N∏

n=1

〈
v(n)

s , v(n)
t

〉

+ 1

4

R∑

s=1

R∑

t=1,t �=s

cst

N∏

n=1

〈
v(n)

s , v(n)
t

〉2
,

(13)

where λst = λts are Lagrange multipliers, cst = cts > 0 are penalty parameters and
λ = {λst }, c = {cst }. How to set penalty parameters will be elaborated in Sect. 4.1. Using
different penalty parameters can reflect different features of different constraints, and is very
common for the augmented Lagrangian method; see [3, p. 124], [33, Chapter 10.4] and [7,
(1.5)].

For each iteration of the augmented Lagrangian method, we need to solve the following
problem

min
v∈RP

L (v,λ; c) (14)

with λ, c given. If λ = {0}, c = {0}, (14) is just (6). Since (6) has no solution in general, the
first issue that we need to make sure is whether (14) has a solution. We have the following
proposition.

Proposition 4.1 If cst > 0 for all s �= t , then (14) always has a solution.

Proof For convenience, define E (v) = L (v,λ; c). It follows from (11) and (13) that

E (v) = 1

2

∥∥∥∥∥A −
R∑

r=1

Tr

∥∥∥∥∥

2

+ 1

4

R∑

s=1

R∑

t=1,t �=s

cst

(
〈Ts, Tt 〉 + λst

cst

)2
− 1

4

R∑

s=1

R∑

t=1,t �=s

λ2st

cst
.

Note that

⊗N
n=1 v

(n)
r = ⊗N

n=1bnv(n)
r when

N∏

n=1

bn = 1. (15)

We can scale each v(n)
r such that ‖v(n)

r ‖ = ‖Tr‖1/N , n = 1, . . . , N . Define the following set

W = {v ∈ R
P : ‖v(m)

r ‖ = ‖v(n)
r ‖, 1 ≤ m, n ≤ N , 1 ≤ r ≤ R}.

The continuity of ‖ · ‖ implies that W is closed. We have

{E (v) : v ∈ R
P } = {E (v) : v ∈ W }.

Hence, it suffices to show that (14) has a solution on W .
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Define α = 1
4

∑R
s=1
∑R

t=1,t �=s
λ2st
cst

, β = min{cst }, γ = ∑R
s=1
∑R

t=1,t �=s
|λst |
cst

. For any

ξ ≥ inf E ≥ 0, if E ≤ ξ , then
∥∥∥A −∑R

r=1 Tr

∥∥∥ ≤ √
2(ξ + α) and

R∑

s=1

R∑

t=1,t �=s

|〈Ts, Tt 〉| − γ ≤
R∑

s=1

R∑

t=1,t �=s

∣∣∣∣〈Ts, Tt 〉 + λst

cst

∣∣∣∣

≤
√√√√R(R − 1)

R∑

s=1

R∑

t=1,t �=s

(
〈Ts, Tt 〉 + λst

cst

)2
≤
√
4R(R − 1)(ξ + α)

β

�⇒
R∑

s=1

R∑

t=1,t �=s

|〈Ts, Tt 〉| ≤ γ +
√
4R(R − 1)(ξ + α)

β
.

Hence ‖∑R
r=1 Tr‖ ≤ ‖A −∑R

r=1 Tr‖ + ‖A‖ ≤ √
2(ξ + α) + ‖A‖. For any v ∈ W , it

follows that

(
√
2(ξ + α) + ‖A‖)2 ≥

∥∥∥∥∥

R∑

r=1

Tr

∥∥∥∥∥

2

=
R∑

r=1

‖Tr‖2 +
R∑

s=1

R∑

t=1,t �=s

〈Ts, Tt 〉

≥
R∑

r=1

‖Tr‖2 −
R∑

s=1

R∑

t=1,t �=s

|〈Ts, Tt 〉| ≥
R∑

r=1

‖Tr‖2 −
√
4R(R − 1)(ξ + α)

β
− γ

�⇒ ‖vn
r ‖2 = ‖Tr‖2/N ≤

(
(
√
2(ξ + α) + ‖A‖)2 +

√
4R(R − 1)(ξ + α)

β
+ γ

)1/N

.

That is, the level set {v ∈ W : E (v) ≤ ξ, ξ ≥ inf E } is bounded. Combining with the fact
that E (v) is continuous and W is closed, it follows from [28, Theorem 1.9] that E can attain
its minimum on W . ��

Wewill employ gradient-based optimizationmethods to solve each subproblem.Gradient-
based optimization methods have been used in fitting CP decompositions; see [1, 12]. To use
such methods, we need to compute the gradient of the objective function. Define

V(−n) := V(N ) � · · · � V(n+1) � V(n−1) � · · · � V(1), (16)

where “�” is the Khatri-Rao product. With the relationship introduced in [19, Section 2.6],
we have

�(n) := V(−n)
V(−n) =
(
�n−1

m=1

(
V(m)
V(m)

))
�
(
�N

m=n+1

(
V(m)
V(m)

))
. (17)

The gradient of the first term of L , i.e., F (v) in (10), can be found in [1, 12]. Here we
provide a calculation based on unfolding matrices as follows.

Lemma 4.2 The gradient of F (v) in (10) is given by

∂F

∂V(n)
=
[

∂F

∂v(n)
1

· · · ∂F

∂v(n)
R

]
= −A(n)V(−n) + V(n)�(n)

for n = 1, . . . , N, where V(−n) and �(n) are defined in (16) and (17), respectively.
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Proof Let B =∑R
r=1 ⊗N

n=1v
(n)
r . Then we have B(n) = V(n)V(−n)
 (see [19, Sect. 3]) and

F (v) = 1

2
‖A − B‖2 = 1

2

∥∥∥−A(n) + V(n)V(−n)

∥∥∥
2
.

Then,

∂F

∂V(n)
=
(
−A(n) + V(n)V(−n)


)
V(−n) = −A(n)V(−n) + V(n)�(n).

��
Denote the sum of the last two terms of L by G , i.e.,

G = 1

2

R∑

s=1

R∑

t=1,t �=s

λst

N∏

n=1

〈
v(n)

s , v(n)
t

〉
+ 1

4

R∑

s=1

R∑

t=1,t �=s

cst

N∏

n=1

〈
v(n)

s , v(n)
t

〉2
,

and define γ
(n)
sr =∏N

m=1,m �=n

〈
v(m)

s , v(m)
r

〉
. Direct calculation gives that

∂G

∂v(n)
r

=
R∑

s=1,s �=r

(
λsrγ

(n)
sr + csrγ

(n)2

sr

〈
v(n)

s , v(n)
r

〉)
v(n)

s . (18)

Note that γ (n)
st = �(n)(s, t), where �(n) is defined in (17). Define matrices �,C ∈ R

R×R by

�(i, j) =
{

λi j , if i �= j

0, otherwise,
C(i, j) =

{
ci j , if i �= j

0, otherwise.
(19)

Combining Lemma 4.2 and (18), we can write the gradient of L in matrix form, as the
following corollary shows.

Corollary 4.3 The gradient of the objective function L in (13) is given by

∂L

∂V(n)
= −A(n)V(−n) + V(n)

(
�(n) + �(n) � � + �(n) � �(n) � V(n)
V(n) � C

)

for n = 1, . . . , N, where related matrices are defined in (16), (17) and (19).

4.1 Algorithm: OD-ALM

Suppose we have obtained the solution v[k] for the kth iteration. We introduce how to solve
v[k+1] for the (k + 1)st iteration.

We use v[k] as the initialization of the (k+1)st iteration. By (15), we scale the initialization

such that‖v(m)
r ,[k]‖ =

(∏N
n=1 ‖v(n)

r ,[k]‖
)1/N

, m = 1, . . . , N . This scaling can avoid the situation

that some ‖v(n1)
r ,[k]‖ is too big and some ‖v(n2)

r ,[k]‖ is too small, where 1 ≤ n1, n2 ≤ N . The idea
of (12) can be realized by setting different penalty parameters for (13):

cst,[k] = μ[k]
∏N

n=1 ‖v(n)
s,[k]‖2

∏N
n=1 ‖v(n)

t,[k]‖2
, (20)

where μ[k] > 0. In the matrix form (19), the non-diagonal entries of C[k] are the same as
those of μ[k]h
[k]h[k], where

h[k] =
[ 1∏N

n=1 ‖v(n)
1,[k]‖2

· · · 1∏N
n=1 ‖v(n)

R,[k]‖2
]

∈ R
1×R .
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Then v[k+1] can be obtained by solving minv∈RP L (v,λ[k]; c[k]). At last, the Lagrange mul-

tiplier λst,[k+1] is updated by λst,[k+1] = λst,[k] + cst,[k]
∏N

n=1

〈
v(n)

s,[k+1], v
(n)
t,[k+1]

〉
, whose

matrix form is
�[k+1] = �[k] + C[k] �

(
�N

n=1V
(n)

[k+1]V

(n)
[k+1]

)
. (21)

Now we introduce how to develop a systematic scheme for the augmented Lagrangian
method. The standard procedure of the augmented Lagrangian method tells us that we need
to increase the penalty parameters gradually to a sufficiently large value. This procedure is
rather important for (14), becauseL is nonconvex. The later subproblems corresponding to
larger penalty parameters can be solved relatively efficiently by warm starting point from the
previous solutions. By (20),we need to setμ[k+1] sufficiently large such that cst,[k+1] > cst,[k]
for all s �= t . We set

μ[k+1] = max

{
β,max

s �=t

{
N∏

n=1

‖v(n)
s,[k+1]‖2‖v(n)

t,[k+1]‖2
‖v(n)

s,[k]‖2‖v(n)
t,[k]‖2

}}
μ[k], (22)

where β > 1. Usually, we can simply set a sufficiently large β, for instance β = 10, and the
condition cst,[k+1] > cst,[k] will be satisfied naturally. The whole procedure of the augmented
Lagrangian method is presented in Algorithm 1.

Algorithm 1: Orthogonal Decomposition by Augmented Lagrangian Method (OD-
ALM)
Input: Tensor A, number of components R, initialization v[0]; �[0] = 0, μ[0] = 1; k = 0
Output: Approximate solution v[k] of the orthogonal rank-R approximation to A

1 repeat
2 for r = 1, . . . , R do

3 δr ←∏N
n=1 ‖v(n)

r ,[k]‖ � Compute the norm of ⊗N
n=1v

(n)
r ,[k]

4 end
5 for r = 1, . . . , R do
6 for n = 1, . . . , N do

7 v(n)
r ,[k] ← δ

1/N
r

‖v(n)
r ,[k]‖

v(n)
r ,[k] � scale the initialization

8 end
9 end

10 h ← [
1/δ21 · · · 1/δ2R

]

11 C[k] ← μ[k] h
h
12 C[k](i, i) ← 0 ∀i = 1, . . . , R
13 v[k+1] ← argminL (v, λ[k]; c[k]) by gradient-based optimization methods with starting point

v[k], where the gradient is computed by Corollary 4.3
14 Update �[k+1] by (21)
15 Update μ[k+1] by (22)
16 k ← k + 1
17 until termination criteria met

The convergence analysis of augmented Lagrangian methods can be found in many text-
books. See [3, 27, 33] for reference. Here we extend [33, Theorem 10.4.2], which is useful
for designing the termination criteria.

123



Journal of Scientific Computing (2023) 94 :6 Page 13 of 24 6

Proposition 4.4 For Algorithm 1, we have

lim
k→∞

N∏

n=1

〈
v(n)

s,[k+1]
‖v(n)

s,[k]‖
,
v(n)

t,[k+1]
‖v(n)

t,[k]‖

〉
= 0 for all 1 ≤ s �= t ≤ R.

Proof We have

∑

s �=t

λ2st,[k+1]
cst,[k+1]

≤
∑

s �=t

λ2st,[k+1]
cst,[k]

=
∑

s �=t

(
λst,[k] + cst,[k]

∏
n

〈
v(n)

s,[k+1], v
(n)
t,[k+1]

〉)2

cst,[k]

=
∑

s �=t

λ2st,[k]
cst,[k]

+ 4
(
L (v[k+1],λ[k]; c[k]) − F (v[k+1])

)

≤
∑

s �=t

λ2st,[k]
cst,[k]

+ 4L (v[k+1],λ[k]; c[k]).

For any feasible point v̄ of (10), by noting that L (v[k+1],λ[k]; c[k]) ≤ L (v̄,λ[k]; c[k]) =
F (v̄), we have

∑

s �=t

λ2st,[k+1]
cst,[k+1]

≤
∑

s �=t

λ2st,[k]
cst,[k]

+ 4L (v[k+1],λ[k]; c[k]) ≤
∑

s �=t

λ2st,[k]
cst,[k]

+ 4F (v̄).

This suggests that there exists δ > 0 such that
∑

s �=t
λ2st,[k]
cst,[k] ≤ δk. Define

dst,[k] := λst,[k]
∏

n

‖v(n)
s,[k]‖

∏

n

‖v(n)
t,[k]‖.

It follows from (20) that
∑

s �=t
d2

st,[k]
μ[k] = ∑

s �=t
λ2st,[k]
cst,[k] ≤ δk. By the algorithm, μ[k] ≥ βk ,

where β > 1. Hence, dst,[k]
μ[k] = o(1).

For any feasible point v̄ of (10), we have

F (v̄) = L (v̄,λ[k]; c[k]) ≥ L (v[k+1],λ[k]; c[k])

= F (v[k+1]) + 1

2

∑

s �=t

dst,[k]
N∏

n=1

〈
v(n)

s,[k+1]
‖v(n)

s,[k]‖
,
v(n)

t,[k+1]
‖v(n)

t,[k]‖

〉

+ 1

4

∑

s �=t

μ[k]
N∏

n=1

〈
v(n)

s,[k+1]
‖v(n)

s,[k]‖
,
v(n)

t,[k+1]
‖v(n)

t,[k]‖

〉2

= F (v[k+1]) + 1

4

∑

s �=t

μ[k]

⎡

⎣
(

N∏

n=1

〈
v(n)

s,[k+1]
‖v(n)

s,[k]‖
,
v(n)

t,[k+1]
‖v(n)

t,[k]‖

〉
+ dst,[k]

μ[k]

)2

−
(

dst,[k]
μ[k]

)2
⎤

⎦

≥ 1

4

∑

s �=t

μ[k]

⎡

⎣
(

N∏

n=1

〈
v(n)

s,[k+1]
‖v(n)

s,[k]‖
,
v(n)

t,[k+1]
‖v(n)

t,[k]‖

〉
+ o(1)

)2

− o(1)

⎤

⎦ .

By noting that limk→∞ μ[k] = ∞ and F (v̄) is bounded, we obtain the result. ��
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Corollary 4.5 For Algorithm 1, suppose
∏N

n=1
‖v(n)

r,[k]‖
‖v(n)

r,[k+1]‖
is bounded for all r and k. Then we

have

lim
k→∞

N∏

n=1

〈
v(n)

s,[k]
‖v(n)

s,[k]‖
,

v(n)
t,[k]

‖v(n)
t,[k]‖

〉
= 0 for all 1 ≤ s �= t ≤ R.

4.2 Orthogonalization of Rank-One Tensors

OD-ALM can only obtain an approximate solution of (10). We need to develop an orthogo-
nalization process to make the orthogonality constraint exact for the final result.

Suppose we have obtained a decomposition by OD-ALM:

A ≈
R∑

r=1

⊗N
n=1v

(n)
r .

First, we normalize each v(n)
r to u(n)

r , i.e., u(n)
r = v(n)

r /‖v(n)
r ‖. Assume that we have orthog-

onalizated the first � − 1 rank-one components:
〈
⊗N

n=1u
(n)
s ,⊗N

n=1u
(n)
t

〉
= 0, 1 ≤ s �= t ≤ � − 1.

We start to handle the �th rank-one component. Define

Û(n) :=
[
u(n)
1 · · · u(n)

�−1

]
, n = 1, . . . , N .

Compute the absolute value of the inner product
∣∣∣
〈
u(n)

r ,u(n)
�

〉∣∣∣ for n = 1, . . . , N and r =
1 . . . , � − 1, and stack the results as a matrix:

P =

∣∣∣∣∣∣∣∣

⎡

⎢⎢⎣

u(1)

� Û(1)

...

u(N )

� Û(N )

⎤

⎥⎥⎦

∣∣∣∣∣∣∣∣
∈ R

N×(�−1),

where | · | denotes the entrywise absolute value. Let P(mr , r) = min{P(1, r), . . . ,P(N , r)}.
Then for each r ∈ {1, . . . , � − 1},

{
u(mr )

r ,u(mr )
�

}
is a pair of vectors that is the closest

to orthogonality among all pairs
{
u(n)

r ,u(n)
�

}
, n = 1, . . . , N . Suppose {r : mr = n} =

{r1 . . . , rρ(n)}. For each n ∈ {1, . . . , N }, We will modify u(n)
� to u(n)

� −∑ρ(n)
j=1 x ju

(n)
r j such

that
〈
u(n)

� −
ρ(n)∑

j=1

x ju(n)
r j

,u(n)
s

〉
= 0, s = r1, . . . , rρ(n),

whose matrix form is

[
u(n)

r1 · · · u(n)
rρ(n)

]
 [
u(n)

r1 · · · u(n)
rρ(n)

]
⎡

⎢⎣
x1
...

xρ(n)

⎤

⎥⎦ =
[
u(n)

r1 · · · u(n)
rρ(n)

]

u(n)

� .

We present the whole process of the orthogonalization in Algorithm 2. This process can also
be used for generating general orthonormal lists of rank-one tensors.
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Algorithm 2: Orthogonalization of rank-one tensors

Input: A list of rank-one tensors {v(n)
r }n,r

Output: An orthonormal list rank-one tensors {u(n)
r }n,r

1 for r = 1, . . . , R do
2 for n = 1, . . . , N do

3 η ← ‖v(n)
r ‖

4 u(n)
r ← v(n)

r /η

5 end
6 end
7 for � = 2, . . . , R do
8 for n = 1, . . . , N do

9 U ←
[
u(n)
1 · · · u(n)

�−1

]

10 P(n, :) ←
∣∣∣∣u

(n)

�

U

∣∣∣∣
11 end
12 for r = 1, . . . , � − 1 do
13 Find P(mr , r) = min{P(1, r), . . . ,P(N , r)}
14 end
15 for n = 1, . . . , N do
16 {r1 . . . , rρ(n)} ← all indices satisfying mr j = n, j = 1, . . . , ρ(n)

17 if ρ(n) = 0 then

18 u(n)
�

← u(n)
�

19 else

20 B ←
[
u(n)

r1 · · · u(n)
rρ(n)

]

21 Solve B
Bx = B
u(n)
�

for x

22 u(n)
�

← u(n)
�

− Bx

23 η ← ‖u(n)
r ‖

24 u(n)
r ← u(n)

r /η

25 end
26 end
27 end

The final orthogonal rank-R approximation is the orthogonal projection of A onto the
space spanned by the orthonormal list {⊗N

n=1u
(n)
1 , . . . ,⊗N

n=1u
(n)
R }:

R∑

r=1

σr ⊗N
n=1 u

(n)
r ,

where the coefficient σr =
〈
A,⊗N

n=1u
(n)
r

〉
.

5 Numerical Experiments

We will show the performance of OD-ALM combined with the orthogonalization process
in this section. All experiments are performed on MATLAB R2016a with Tensor Toolbox,
version 3.0 [2] on a laptop (Intel Core i5-6300HQ CPU@ 2.30GHz, 8.00G RAM). The test
data include both synthetic and real-world tensors. The synthetic tensors are generated from
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Table 1 The test tensors. The value R is the number of components for all methods

Tensor Size R Note

A1 20 × 16 × 10 × 32 5 random tensor

A2 20 × 16 × 10 × 32 5 rank-5 tensor

A3 20 × 16 × 10 × 32 5 A3(i1, i2, i3, i4) = 1/(i1 + i2 + i3 + i4 − 3)

A4 20 × 16 × 10 × 32 5 orthogonal rank-5 tensor with Gaussian noise

A5 95 × 95 × 156 5 hyperspectral image – Samson

A6 100 × 100 × 224 5 hyperspectral image – Jasper Ridge

A7 144 × 176 × 3 × 300 2 video data – Akiyo

A8 144 × 176 × 3 × 300 2 video data – Hall Monitor

known ground truth and thus make the evaluation reliable. Choosing real-world tensors is to
assess the approximation ability of orthogonal decompositions in practice.

The experiments are designed based on those of [5, 13]. The test tensors are shown in
Table 1, whereA1, . . . ,A4 are synthetic tensors andA5, . . . ,A8 are real-world tensors. The
tensorA1 is a randomly generated tensor,A2 is a randomly generated rank-5 tensor, andA3

is a Hilbert tensor also used in [13]. For A4, we generate an orthonormal list of rank-one
tensors by Algorithm 2 and then use this list to generate an orthogonal rank-5 tensor B1. The
final tensor A4 is

A4 = B1 + ρB2,

where B2 is a noise tensor with entries drawn from a standard normal distribution, and
ρ = 0.1‖B1‖/‖B2‖. The tensors A5,A6 are hyperspectral images 3, and A7,A8 are video
tensors 4.Wewill factorize each tensor into R terms by differentmethods.Different R’swould
result in different approximation errors and running time. We concern the approximation
abilities of different methods. For simplicity, we fix R for each test tensor, prescribed in
Table 1. Using other R’s would show the same comparison results.

Suppose B is an approximation of A obtained by any method. We use the relative error
(RErr) to evaluate the result:

RErr = ‖A − B‖
‖A‖ .

5.1 Implementation Details of OD-ALM

The initialization is crucial for OD-ALM.We adopt the result of the alternating least squares
algorithm (CP-ALS) [4, 14, 19] for (6) as the initialization, because this result is just the
numerical solution of (14) with Lagrange multipliers and penalty parameters equal to zero,
which is relatively near to the solution of the first subproblem of OD-ALM. The CP-ALS is
with the truncated HOSVD initialization, and terminates if the relative change in the function
value is less than 10−6 or the number of iterations exceeds 500. As for (22), we set β = 10
for all tests.

Commonly used gradient-based optimization methods include the steepest descent
method, the conjugate gradient method, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

3 The hyperspectral image data have been used in [36] and available at https://rslab.ut.ac.ir/data.
4 The video data are from the video trace library [29] and available at http://trace.eas.asu.edu/yuv/.
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method and the limited-memory BFGS (L-BFGS) method. We have tried all these meth-
ods to solve the subproblems (14) and find that the L-BFGS method outperforms the other
three ones. Hence, we use the L-BFGSmethod with m = 20 levels of memory in all tests. We
stop the procedure of the L-BFGS method if the relative change between successive iterates
is less than 10−8, or the �2 norm of the gradient divided by the number of entries is less than
εinner, which will be specified later. The maximum number of inner iterations is set to be 500.
We adopt the Moré-Thuente line search [25] from MINPACK 5. For all experiments, Moré-
Thuente line search parameters used are as follows: 10−4 for the function value tolerance,
10−2 for the gradient norm tolerance, a starting search step length of 1 and a maximum of
20 iterations.

For the solution v[k] of the kth subproblem, define

θ[k] := max
s �=t

min
n

∣∣∣∣∣

〈
v(n)

s,[k]
‖v(n)

s,[k]‖
,

v(n)
t,[k]

‖v(n)
t,[k]‖

〉∣∣∣∣∣ . (23)

By Corollary 4.5, we can terminate the outer iteration when θ[k] < εouter, which will be
specified later. The maximum number of outer iterations is set to be 25.

5.2 Influence of Stopping Tolerances

Wetest different settings of tolerances: εinner = 10−3, 10−4, 10−5 and εouter = 10−3, 10−4, 10−5.
The results are shown in Table 2, which are averaged over 10 trials for each case.

From Table 2, we can find that OD-ALM has a good performance on convergence: the
outer iteration numbers are at most 12 on average for all cases. The running time would
increase if we choose a smaller tolerance, but there is no improvement on the relative error
for almost all cases. Therefore, we do not recommend using a too small tolerance in practical
applications. We will use εinner = 10−4, εouter = 10−4 for synthetic tensors and εinner =
10−3, εouter = 10−3 for real-world tensors in all remaining tests.

5.3 Convergence Behaviour

We show the value of θ[k] defined in (23), the relative change between successive outer
iterates ‖v[k] − v[k−1]‖/‖v[k−1]‖ and the number of inner iterations corresponding to each
outer iteration in Figure 1 and Figure 2.

The value of θ[k] is decreasing as k increases, but the situations differ greatly for different
tensors. For example, θ[k] of A7 is almost unchanged for the first five outer iterations, while
θ[k] of A6 decreases from more than 0.6 to less than 0.1 in the first five outer iterations.
Usually, a big number of inner iterations brings a relatively big change of θ[k]. For example,
for A3, the number of inner iterations corresponding to k = 2 is more than 250, resulting in
the difference between θ[1] and θ[2] being more than 0.4.

The relative change between successive outer iterates can be relatively big for some
tensors even when k is big, e.g., A6 and A7. For all cases, the relative change is relatively
small between the last two outer iterates. The number of inner iterations reflects the relative
change: A big number of inner iterations often results in a big relative change between
successive outer iterates.

5 A Matlab implementation, adapted by Dianne P. O’Leary, is available at http://www.cs.umd.edu/users/
oleary/software/.
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Table 2 Results of OD-ALM under different stopping tolerances. Here “iter” is the number of outer iterations;
the running time includes the time for Algorithms 1 and 2 and is measured in seconds

εouter εinner A1 A2 A3 A4 A5 A6 A7 A8

Iter. 10−3 10−3 10 10 9 11 8 8 9 6

10−4 10 10 6 10 8 8 9 6

10−5 10 10 6 8 8 8 9 6

10−4 10−3 11 11 10 12 9 9 9 7

10−4 11 11 7 11 8 9 9 7

10−5 11 11 6 9 8 9 9 7

10−5 10−3 11 11 11 12 9 11 9 7

10−4 12 11 7 11 9 9 9 7

10−5 11 11 9 11 9 9 9 7

Time 10−3 10−3 1.1 1.0 1.3 0.6 4.8 13.2 15.8 15.3

10−4 2.6 1.3 3.2 0.5 13.9 24.4 19.6 21.8

10−5 4.7 1.8 4.6 0.4 24.5 34.6 22.9 30.0

10−4 10−3 1.2 1.1 1.4 0.7 5.4 15.0 15.8 16.2

10−4 2.7 1.6 3.3 0.5 14.9 25.3 19.6 23.7

10−5 4.9 2.6 4.6 0.5 24.3 43.1 22.9 33.7

10−5 10−3 1.2 1.1 1.6 0.7 4.9 15.7 15.6 16.2

10−4 2.7 1.6 2.9 0.6 15.3 26.1 19.6 23.8

10−5 4.9 3.9 5.8 0.9 24.5 41.9 23.3 33.6

RErr 10−3 10−3 0.9954 0.0559 0.0640 0.0994 0.1831 0.2379 0.2931 0.2278

10−4 0.9954 0.0559 0.0267 0.0994 0.1831 0.2378 0.2931 0.2278

10−5 0.9954 0.0559 0.0245 0.0993 0.1831 0.2378 0.2931 0.2278

10−4 10−3 0.9954 0.0559 0.0640 0.0994 0.1831 0.2379 0.2931 0.2278

10−4 0.9954 0.0559 0.0227 0.0994 0.1831 0.2378 0.2931 0.2278

10−5 0.9954 0.0559 0.0245 0.0993 0.1831 0.2378 0.2931 0.2278

10−5 10−3 0.9954 0.0559 0.0640 0.0994 0.1831 0.2379 0.2931 0.2278

10−4 0.9954 0.0559 0.0227 0.0994 0.1831 0.2378 0.2931 0.2278

10−5 0.9954 0.0559 0.0245 0.0993 0.1831 0.2378 0.2931 0.2278

5.4 Comparison with Other Methods

We compare our method with CP-ALS, the low rank orthogonal approximation of tensors
(LROAT) [5] and the high-order power method for orthogonal low rank decomposition
(OLRD-HOP) [34]. The method CP-ALS fits a CP decomposition (6). The method LROAT
fits an (1, · · · , N )-orthogonal decomposition, and OLRD-HOP fits an (N )-orthogonal
decomposition. CP-ALS, LROAT and OLRD-HOP are all with the truncated HOSVD ini-
tialization. CP-ALS terminates if the relative change in the function value is less than 10−8.
LROAT and OLRD-HOP terminate if the relative change between successive iterates is less
than 10−8. The maximum number of iterations is set to be 500 for all these three methods.
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Fig. 1 The convergence behaviour of OD-ALM on A1, . . . ,A4. The first column is about θ[k], the second
column is about ‖v[k] − v[k−1]‖/‖v[k−1]‖, and the last column is about the number of inner iterations. All
values are shown as functions of the number of outer iterations

The results of the running time and the relative error are shown in Table 3, which are averaged
over 10 trials for each case.

We can see that our method is much slower than the other methods. As discussed in [1],
the time cost of one outer iteration of OD-ALM is of the same order of magnitude with
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Fig. 2 The convergence behaviour of OD-ALM on A5, . . . ,A8. The three columns have the same meaning
as in Figure 1

CP-ALS. OD-ALM needs several outer iterations, resulting in a much longer time cost than
CP-ALS. The running time of LROAT and OLRD-HOP is close to that of CP-ALS.

As for the relative error, CP-ALS is the best, OD-ALM is the second best, and OLRD-
HOP outperforms LROAT. This is not surprising because of the relationships among the
decompositions fitted by different methods. For A4 whose ground truth is an orthogonal
rank-5 tensor, the OD-ALM RErr is less than the noise level 0.1, which demonstrates the
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Table 3 Comparison results of different methods, where OD-ALM has been combined with Algorithm 2. The
running time is measured in seconds

Method A1 A2 A3 A4 A5 A6 A7 A8

Time CP-ALS 0.3 0.1 0.8 0.1 1.3 1.6 1.7 5.1

OD-ALM 2.7 1.6 3.3 0.5 4.8 13.2 15.8 15.3

LROAT 2.2 0.07 0.06 0.06 0.7 1.3 3.8 8.4

OLRD-HOP 0.6 0.07 1.3 1.3 2.1 2.5 1.2 2.9

RErr CP-ALS 0.9953 0 0.0070 0.0993 0.1822 0.2363 0.2857 0.2278

OD-ALM 0.9954 0.0559 0.0227 0.0994 0.1831 0.2379 0.2931 0.2278

LROAT 0.9957 0.2890 0.1728 0.1640 0.3504 0.3263 0.4513 0.2530

OLRD-HOP 0.9954 0.1604 0.1117 0.1478 0.3333 0.3174 0.4510 0.2525

effectiveness of our method. In addition, we can find that the difference between the CP-ALS
RErr and the OD-ALM RErr is very small for real-world tensors. ForA8, the results of these
two methods are even the same. This suggests the potential of orthogonal decompositions in
fitting real-world tensors. The small gap between the CP-ALS RErr and the OD-ALM RErr
also indicates the effectiveness of our method in some sense.

Suppose U(n)
j is the nth normalized factor matrix corresponding to the final result for A j

obtained by our method. We record the results of U(n)

j U(n)

j for j = 3, 5 in one running:

U(1)

3 U(1)

3 = U(2)

3 U(2)

3 =
⎡

⎢⎢⎢⎢⎣

1 0.6089 0.6264 −0.3196 0
0.6089 1 0.9814 0.5454 0.7771
0.6264 0.9814 1 0.4745 0.7039

−0.3196 0.5454 0.4745 1 0.9472
0 0.7771 0.7039 0.9472 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 0 −0.1713 −0.9277 −0.8513
0 1 0.9685 0.3720 0.5199

−0.1713 0.9685 1 0.5136 0.6367
−0.9277 0.3720 0.5136 1 0.9853
−0.8513 0.5199 0.6367 0.9853 1

⎤

⎥⎥⎥⎥⎦

U(3)

3 U(3)

3 = U(4)

3 U(4)

3 =
⎡

⎢⎢⎢⎢⎣

1 0.2055 −0.5054 −0.9921 −0.9775
0.2055 1 0.7289 −0.0832 0

−0.5054 0.7289 1 0.6030 0.6618
−0.9921 −0.0832 0.6030 1 0.9962
−0.9775 0 0.6618 0.9962 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 −1 0 0 −0.9996
−1 1 0 0 0.9996
0 0 1 0 0
0 0 0 1 0

−0.9996 0.9996 0 0 1

⎤

⎥⎥⎥⎥⎦
;

U(1)

5 U(1)

5 = U(2)

5 U(2)

5 =
⎡

⎢⎢⎢⎢⎣

1 0 0.7831 −0.4958 0
0 1 0.0954 0.0805 −0.3413

0.7831 0.0954 1 0 0
−0.4958 0.0805 0 1 −0.2793

0 −0.3413 0 −0.2793 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1 0.7868 0 0 −0.1452
0.7868 1 0 0 0

0 0 1 −0.6186 −0.0751
0 0 −0.6186 1 0

−0.1452 0 −0.0751 0 1

⎤

⎥⎥⎥⎥⎦

U(3)

5 U(3)

5 =
⎡

⎢⎢⎢⎢⎣

1 0.9091 0.9243 0.9867 −0.9640
0.9091 1 0.9992 0.9629 −0.9864
0.9243 0.9992 1 0.9720 −0.9920
0.9867 0.9629 0.9720 1 −0.9933

−0.9640 −0.9864 −0.9920 −0.9933 1

⎤

⎥⎥⎥⎥⎦
.
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We also compute U(n)

j U(n)

j for other tensors and find that the appearance of zeros in

U(n)

j U(n)

j is not regular. Therefore, strongly orthogonal decompositions cannot replace
orthogonal decompositions in practical

6 Conclusion

We present several properties of orthogonal rank. Orthogonal rank is different from tensor
rank in many aspects. For example, a subtensor may have a larger orthogonal rank than the
whole tensor, and orthogonal rank is lower semicontinuous.

To tackle the complicated orthogonality constraints,we employ the augmentedLagrangian
method to convert the original problem into an unconstrained problem. The gradient of
the objective function has a good structure, inspiring us to use gradient-based optimization
methods to solve each subproblem. A novel orthogonalization process is developed to make
the final result satisfy the orthogonality condition exactly. Numerical experiments show that
the proposed method has a great advantage over the existing methods for strongly orthogonal
decompositions in terms of the approximation error.

The main drawback of our method is the time cost. This is because the time cost of one
outer iteration of OD-ALM is of the same order of magnitude with that of CP-ALS, which is
not very short, and we need several outer iterations to obtain the final result. Although the ill-
conditioning is not so severe for the augmented Lagrangian method compared to the penalty
method, preconditioning is a possible way to speed up. For preconditioning of optimization
methods for CP decompositions, one can refer to [10, 32]. Preconditioning for OD-ALM
can be studied as future work. A better strategy is to design an algorithm with a framework
different from the augmented Lagrangian method. This may need further exploration of
orthogonal decompositions.
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