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Abstract
Wepropose and analyze an unfittedfinite elementmethod of arbitrary order for solving elliptic
problems on domains with curved boundaries and interfaces. The approximation space on
the whole domain is obtained by the direct extension of the finite element space defined on
interior elements, in the sense that there is no degree of freedom locating in boundary/interface
elements. We apply a non-symmetric bilinear form and the boundary/jump conditions are
imposed in a weak sense in the scheme. The method is shown to be stable without any mesh
adjustment or any special stabilization. The optimal convergence rate under the energy norm
is derived, and O(h−2)-upper bounds of the condition numbers are shown for the final linear
systems. Numerical results in both two and three dimensions are presented to illustrate the
accuracy and the robustness of the method.

Keywords Elliptic problems · Curved boundary · Interface problems · Finite element
method · Nitsche’s method · Unfitted mesh

1 Introduction

In recent two decades, unfitted finite element methods have become widely used tools in the
numerical analysis of problems with interfaces and complex geometries [4, 6, 7, 18, 20, 26,
33, 36, 37, 39, 40, 45]. For such kinds of problems, the generation of the body-fitted meshes
is usually a very challenging and time-consuming task, especially in three dimensions. The
unfitted methods avoid the task to generate high quality meshes for representing the domain
geometries accurately, due to the use of meshes independent of the interfaces and domain
boundaries and the use of certain enrichment of finite element basis functions characterizing
the solution singularities or discontinuities.
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In [26], Hansbo and Hansbo proposed an unfitted finite element method for elliptic inter-
face problems. The numerical solution comes from two separate linear finite element spaces
and the jump conditions are weakly enforced by Nitsche’s method. This idea has been a pop-
ular discretization for interface problems and has also been applied to many other interface
problems, see [12, 13, 28] and the references therein for further advances. This method can
also be written into the framework of extended finite element method by a Heaviside enrich-
ment [2, 6, 18].We note that for penaltymethods, the small cuts of themesh have to be treated
carefully, which may adversely effect the conditioning of the method and even hamper the
convergence [10, 16]. In [30], Johansson and Larson proposed an unfitted high-order discon-
tinuous Galerkinmethod on structured grids, where they constructed large extended elements
to cure the issue of the small cuts and obtain the stability near the interface. Similar ideas of
merging elements for interface problems can also be found in [10, 29, 38]. Another popular
unfitted method is the cut finite element method [11], which is a variation of the extended
finite element method. This method involves the ghost penalty technique [9] to guarantee the
stability of the scheme. In addition, Massing and Gürkan developed a framework combining
the cut finite element method and the discontinuous Galerkin method [20]. We refer to [7, 11,
14, 22, 25, 42] and the references therein for some recent applications of the cut finite element
method. Badia et al. proposed an aggregated unfitted finite element method for elliptic prob-
lems [5, 43]. The main idea of this method is to construct the enhanced finite element spaces
based on a cell aggregation strategy to address the small cut problem. Kramer et al. [33]
presented a new extended finite element method with the algebraic constants on cut elements
to enforce the continuity condition. In [35], Lehrenfeld introduced a high order unfitted finite
element method based on isoparametric mappings, where the piecewise interface is mapped
approximately onto the zero level set of a high-order approximation of the level set function.
We refer to [36] for a detailed analysis of this method. Main and Scovazzi [41] and Li et al.
[37] proposed the shifted boundary/interface method. The main idea of this approach is to
shift the location of boundary/interface to the surrogate domain.

In this article, we propose a new unfitted finite element method for second order elliptic
problems on domains with curved boundaries and interfaces. The novelty of this method
lies in that the approximation space is obtained by the direct extension of a common finite
element space.We first define a standard finite element space on the set of all interior elements
which are not cut by the domain boundary/interface. Then an extension operator is introduced
for this space. This operator defines the polynomials on cut elements by directly extending
the polynomials defined on some interior neighbouring elements. Then the approximation
space is obtained from the extension operator. In the discrete schemes, a non-symmetric
interior penalty method is proposed, and the boundary/jump conditions on the interface are
satisfied in a weak sense. We derive optimal error estimates under the energy norm, and
we give upper bounds of the condition numbers of the final linear systems. The curved
boundary/interface is allowed to intersect the mesh arbitrarily in our method. We note that
the idea of constructing discrete extension operators can also be found in [5, 10]. This kind
of methods define conforming finite element spaces from interior nodal values with the help
of the extension operators. Different from [5, 10], in our method, the polynomials defined on
cut elements are just the same polynomials on the assigned interior neighbouring elements,
and there is no need to compute the nodal values and corresponding basis functions on
cut elements. The implementation of the proposed method is simple and straightforward. We
also note that although our approximation space is not conforming, the resultant scheme only
requires a parameter-friendly penalty term defined on the boundary/interface. We conduct a
series of numerical experiments in two and three dimensions to illustrate the convergence
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Fig. 1 The background mesh Th (left) / the mesh Th,0 (mid) /the mesh Th,1 (right)

behaviour. The numerical solution shows the optimal convergence rates for both the energy
norm and the L2 norm.

The rest of this article is organized as follows. In Sect. 2, we introduce notations and
prove some basic properties for the approximation space. We show the unfitted finite element
method for the elliptic problem on a curved domain and the elliptic interface problem in
Sects. 3 and 4, respectively, and we derive the error estimates, and give upper bounds of
the condition numbers of the discrete systems. In Sect. 5, we perform some numerical tests
to confirm the optimal convergence rates and show the robustness of the proposed method.
Finally, we make a conclusion in Sect. 6.

2 Preliminaries

Let Ω ⊂ R
d(d = 2, 3) be a convex polygonal (polyhedral) domain with boundary ∂Ω . Let

Ω0 � Ω be an open subdomain withC2-smooth or convex polygonal (polyhedral) boundary.
We denote by Γ := ∂Ω0 the topological boundary. We define Ω1 := Ω\Ω0, and clearly
there holds Ω0 ∪ Ω1 = Ω and Ω0 ∩ Ω1 = ∅. Let Th be a background mesh, which is a
quasi-uniform and regular triangulation of the domain Ω into open simplexes (see Fig. 1 for
the example that Γ is a circle). We denote by Eh the collection of all d − 1 dimensional faces
in Th , and Eh is further decomposed into Eh = E B

h ∪E I
h , where E

B
h and E I

h consist of boundary
faces and interior faces, respectively. For any element K ∈ Th and any face e ∈ Eh , we denote
by hK and he their diameters, respectively. The mesh size h is defined as h := maxK∈Th hK .
The quasi-uniformity of Th is in the sense of that there exists a constantC such that h ≤ CρK

for any element K ,there exists a constant ν such that h ≤ ν minK∈Th ρK , where ρK is the
radius of the largest ball inscribed in K .

Remark 1 The assumed quasi-uniformity of Th is mostly for the convenience of notations.
Most estimates in this paper only require the shape-regularity of the partition, except for the
estimate of the condition number.

For i = 0, 1, we set

Th,i := {K ∈ Th | K ∩ Ωi �= ∅}, T ◦
h,i := {K ∈ Th,0 | K ⊂ Ωi },

where Th,i is the minimal subset of Th that just covers the domain Ω i , and T ◦
h,i is the set

of elements which are inside the domain Ωi . We define the corresponding domains Ωh,i :=
Int(

⋃
K∈Th,i

K ) and Ω◦
h,i := Int(

⋃
K∈T ◦

h,i
K ). Clearly, there holds Ω◦

h,i ⊂ Ωi ⊂ Ωh,i . We

define Eh,i and E◦
h,i as the collections of d−1 dimensional faces for the partitionsTh,i and T ◦

h,i ,
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Fig. 2 Examples of cut elements in two and three dimensions

respectively. Further, Eh,i is decomposed into Eh,i = E I
h,i ∪ E B

h,i , where E
I
h,i and E B

h,i consist
of interior faces and boundary faces in Th,i , respectively. Similarly, E◦

h,i is decomposed into

E◦
h,i = E◦,I

h,i ∪ E◦,B
h,i , where E◦,I

h,i and E◦,B
h,i are sets of interior faces and boundary faces in

T ◦
h,i , respectively. We denote by T Γ

h and EΓ
h the sets of elements and faces that are cut by Γ ,

respectively:

T Γ
h := {K ∈ Th | K ∩ Γ �= ∅}, EΓ

h := {e ∈ Eh | e ∩ Γ �= ∅}.
Obviously, there holds T Γ

h = Th,i\T ◦
h,i (i = 0, 1) and EΓ

h = E I
h,i\E◦

h,i (i = 0, 1). For any

element K ∈ T Γ
h , we define

ΓK := K ∩ Γ , (∂K )0 := (∂K ∩ Ω0) ∪ ΓK , (∂K )1 := (∂K ∩ Ω1) ∪ ΓK . (1)

For any element K ∈ Th and any face e ∈ Eh , we define

K 0 := K ∩ Ω0, K 1 := K ∩ Ω1, e0 := e ∩ Ω0, e1 := e ∩ Ω1. (2)

We make following natural geometrical assumptions on the background mesh:

Assumption 1 For any cut face e ∈ EΓ
h , the intersection e ∩ Γ is simply connected; that is,

Γ does not cross a face multiple times (cf. Figure2).

Assumption 2 For any cut element K ∈ T Γ
h , Γ cross at least d faces of K .

Assumption 3 For any cut element K ∈ T Γ
h , there exist two elements K ◦

0 ∈ Δ(K ) ∩ T ◦
h,0,

K ◦
1 ∈ Δ(K ) ∩ T ◦

h,1, where Δ(K ) := {K ′ ∈ Th | K ′ ∩ K �= ∅} denotes the set of elements
that touch K .

Assumption 4 For any face e ∈ EΓ
h with e = ∂ K̂ ∩ ∂ K̃ , we assume that there exists a

constant L such that the assigned element (K̂ )◦0 ∈ T ◦
h,0 can be reached from the assigned

element (K̃ )◦0 ∈ T ◦
h,0 by crossing at most L interior elements; that is there exist a sequence

of elements K0, K1, . . . , KM (M ≤ L) such that K0 = (K̂ )◦0, KM = (K̃ )◦0, Ki ∈ T ◦
h,0 and

Ki is adjacent to Ki+1 for 1 ≤ i ≤ M − 1. We also assume that the element (K̂ )◦1 ∈ T ◦
h,1

can be reached from the element (K̃ )◦1 ∈ T ◦
h,1 by crossing at most L interior elements in the

same sense.

Remark 2 The above assumptions are widely used in interface problems [23, 27, 47], which
ensure the curved boundary Γ is well-resolved by the mesh. We note that if the mesh is fine
enough, Assumptions 1 - 4 can always be fulfilled.
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Here we give the method for selecting the elements K ◦
0 and K ◦

1 for any cut element K .
For any K ∈ T Γ

h , we define N (K ) := {K ′ ∈ Th | ∂K ′ ∩ ∂K = e ∈ Eh} as the set of all
face-neighbouring elements of K . We note that N (K ) ∩ T ◦

h,0 has at most one element from
the above assumptions. If N (K ) ∩ T ◦

h,0 is not empty, choose the element in N (K ) ∩ T ◦
h,0 as

K ◦
0 ; otherwise pick an arbitrary element in Δ(K ) ∩ T ◦

h,0 as K ◦
0 . Generally, we choose K ◦

0
sharing a face with K whenever possible in the computer implementation. The element K ◦

1
is selected in the same way.

From the quasi-uniformity of the mesh, there exists a constant CΔ independent of h such
that for any element K ∈ Th , there is a ball B(xK ,CΔhK ) satisfyingΔ(K ) ⊂ B(xK ,CΔhK ),
where xK is the barycenter of K and B(z, r) denotes the ball centered at z with radius r .
Moreover, let Ω∗ be an open bounded domain, independent of the mesh size h and Γ , which
includes the union of all balls B(xK ,CΔhK ) (∀K ∈ Th), that is, B(xK ,CΔhK ) ⊂ Ω∗ for
any K ∈ Th .

Next, we introduce the jump and average operators which are widely used in the discon-
tinuous Galerkin framework. Let e ∈ E I

h be any interior face shared by two neighbouring
elements K+ and K−, with the unit outward normal vectors n+ and n− along e, respectively.
For any piecewise smooth scalar-valued function v and piecewise smooth vector-valued
function q, the jump operator [[·]] is defined as

[[v]]|e := v+|en+ + v−|en−, [[q]]|e := q+|e · n+ + q−|e · n−,

where v+ := v|K+ , v− := v|K− , q+ := q|K+ , q− := q|K− , and the average operator {·} is
defined as

{v}|e := 1

2

(
v+|e + v−|e

)
, {q}|e := 1

2

(
q+|e + q−|e

)
.

On a boundary face e ∈ E B
h with the unit outward normal vector n, we define

{v}|e := v|e, [[v]]|e := v|en, {q}|e := q|e, [[q]]|e := q|e · n.

We will also employ the jump operator [[·]] and the average {·} on Γ , that is,

[[v]]|Γ , {v}|Γ , [[q]]|Γ , {q}|Γ , (3)

and their definitions will be given later for specific problems.
For a bounded domain D, we follow the standard notations of the Sobolev spaces L2(D),

Hr (D)(r ≥ 0) and their corresponding inner products, norms and semi-norms. For the
partition Th , the notations of broken Sobolev spaces L2(Th), Hr (Th) are also used as well as
their associated inner products and broken Sobolev norms.

Throughout this paper,we denote byC andC with subscripts the generic positive constants
that may vary between lines but are independent of the mesh size h and how Γ cuts the mesh
Th .

For i = 0, 1, we follow three steps to give the definition of the approximation space Vm
h,i

with respect to the partition Th,i .
Step 1. Let Vm,◦

h,i be the space of piecewise polynomials of degree m ≥ 1 on T ◦
h,i . Here

Vm,◦
h,i can be a standard C0 finite element space or a discontinuous finite element space, i.e.

Vm,◦
h,i = {vh ∈ C(Ω◦

h,i ) | vh |K ∈ Pm(K ), ∀K ∈ T ◦
h,i },

or

Vm,◦
h,i = {vh ∈ L2(Ω◦

h,i ) | vh |K ∈ Pm(K ), ∀K ∈ T ◦
h,i },
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where Pm(K ) denotes the set of polynomials of degree m defined on K .
Step 2. We extend the space Vm,◦

h,i to the mesh Th,i by introducing an extension operator
Eh,i . To this end, for every element K ∈ Th , we define a local extension operator

EK : Pm(K ) → Pm(B(xK ,CΔhK )),

v �→ EK v,
v|K = (EK v)|K . (4)

For any v ∈ Pm(K ), EK v is a polynomial defined on the ball B(xK ,CΔhK ) and has the same
expression as v. Then the operator Eh,i is defined in a piecewise manner: for any K ∈ Th,i

and vh ∈ Vm,◦
h,i ,

(Eh,ivh)|K :=
{

vh |K , ∀K ∈ T ◦
h,i ,

(EK ◦
i
vh)|K ◦

i
∀K ∈ T Γ

h ,
(5)

where K ◦
i is defined in Assumption 3. Note that for any cut element K ∈ T Γ

h , the operator
Eh,i extends polynomials of degree m from the assigned interior element K ◦

i to K .
Step 3. We define the approximation space Vm

h,i as the image space of the operator Eh,i ,

Vm
h,i := {Eh,ivh | ∀vh ∈ Vm,◦

h,i }.
From (5), it can be seen that Vm

h,i is a piecewise polynomial space and shares the same
degrees of freedom and corresponding basis functions as the space Vm,◦

h,i .
We present some properties of the space Vm

h,i , which are instrumental in the forthcoming
analysis.

Lemma 1 There exists a constant C such that for any K ∈ T Γ
h and i = 0, 1, there holds

‖Dqvh‖L2((∂K )i ) ≤ Ch−1/2
K ‖Dqvh‖L2(K ◦

i ), ∀vh ∈ Vm
h,i , q = 0, 1, (6)

‖Dqvh‖L2(Ki ) ≤ ‖Dqvh‖L2(K ◦
i ), vh ∈ Vm

h,i , q = 0, 1. (7)

Here we recall that (∂K )i and K i are respectively defined in (1) and (2), and that K ◦
i is the

assigned neighbouring interior element of K with respect to Ωi .

Proof From the mesh regularity, there exists a constant C0 such that CΔ ≤ (CΔhK ◦
i
)/ρK ◦

i
≤

C0. Considering the norm equivalence between ‖ · ‖L2(B(xK◦
i
,C0))

and ‖ · ‖L2(B(xK◦
i
,1)) for the

space Pm(·) and the affine mapping from B(xK ◦
i
, 1) to the B(xK ◦

i
, ρK ◦

i
), there holds

‖Dqwh‖L2(B(xK◦ ,CΔhK◦ )) ≤ C‖Dqwh‖L2(B(xK◦ ,ρK◦ )), ∀wh ∈ Pm(B(xK ◦ ,CΔhK ◦)).
(8)

By this estimate and the inverse estimate, we deduce that

‖Dqvh‖L2((∂K )i ) ≤ |(∂K )i |1/2‖Dqvh‖L∞(B(xK◦
i
,CΔhK◦

i
))

≤ |(∂K )i |1/2h−d/2
K ◦
i

‖Dqvh‖L2(B(xK◦
i
,CΔhK◦

i
))

≤ C |(∂K )i |1/2h−d/2
K ◦
i

‖Dqvh‖L2(B(xK◦
i
,ρK◦

i
))

≤ C |(∂K )i |1/2h−d/2
K ◦
i

‖Dqvh‖L2(K ◦
i ) ≤ Ch−1/2

K ‖Dqvh‖L2(K ◦
i ),

where the last inequality follows the mesh regularity C1hK ≤ hK ◦
i

≤ C2hK and the estimate

|(∂K )i | ≤ Chd−1
K [47] due to the fact that Γ is C2-smooth or polygonal. Similarly, we can

prove the estimate (7). This completes the proof. ��
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Lemma 2 There exists a constant C such that
∑

e∈E I
h,i

h−1
e ‖[[vh]]‖2L2(ei ) ≤ C

( ∑

K∈T ◦
h,i

‖∇vh‖2L2(K )
+

∑

e∈E◦,I
h,i

h−1
e ‖[[vh]]‖2L2(e)

)
, ∀vh ∈ Vm

h,i .

(9)

Proof The proof follows the idea in [23, Appendix B]. We first show that
∑

e∈EΓ
h

h−1
e ‖[[vh]]‖2L2(ei ) ≤ C

( ∑

K∈T ◦
h,i

‖∇vh‖2L2(K )
+

∑

e∈E◦,I
h,i

h−1
e ‖[[vh]]‖2L2(e)

)
. (10)

Here we verify it for the case i = 0. From Assumption 4, for any face e ∈ EΓ
h shared by

two adjacent elements K̂ and K̃ , there exists a sequence of elements K0, . . . , KM such that
K0 = (K̂ )◦0, K1 = (K̃ )◦0 and K j ∈ T ◦

h,0(1 ≤ j ≤ M), and we let e j = ∂K j ∩ ∂K j+1. From
the quasi-uniformity of Th , there exists a constant CM such that the ball B(xK0 ,CMhK0)

contains all K j . We define v
j
h as the extension of vh |K j from the element K j to the ball

B(xK0 ,CMhK0). As (8), there exists a constant C such that

‖∇qv‖L2(K j )
≤ C‖∇qv‖L2(Kl )

, ∀v ∈ Pm(B(xK0 ,CMhK0)), 1 ≤ j, l ≤ M, q = 0, 1.
(11)

From the trace estimate and Lemma 1, we have that

h−1/2
e ‖[[vh]]‖L2(e0) ≤ Ch−1

e ‖v0h − vM
h ‖L2(K̂ ) ≤ Ch−1

K0
‖v0h − vM

h ‖L2(K0)
.

By the norm equivalence over finite dimensional spaces [23], there holds

‖v j
h − v

j+1
h ‖L2(K j )

≤ C(h1/2e j ‖[[vh]]‖L2(e j ) + hK j ‖∇v
j
h − ∇v

j+1
h ‖L2(K j )

), 1 ≤ j ≤ M − 1.

Then, from the estimate (11), we conclude that

h−1
e ‖[[vh]]‖2L2(e0) ≤ Ch−2

K0
‖v0h − vM

h ‖2L2(K0)
≤ C

M−1∑

j=0

h−2
K j

‖v j
h − v

j+1
h ‖2L2(K j )

≤ C
M−1∑

j=0

(h−1
e j ‖[[vh]]‖2L2(e j )

+ ‖∇v
j
h − ∇v

j+1
h ‖2L2(K j )

)

≤ C
M−1∑

j=0

(h−1
e j ‖[[vh]]‖2L2(e j )

+ ‖∇vh‖2L2(K j )
+ ‖∇vh‖2L2(K j+1)

).

Summation over all cut faces gives us the estimate (10) with i = 0. From the method of
selecting K ◦

0 and the definition of Eh,0, there holds [[vh]]|e = 0 on any e ∈ E◦,B
h,0 , which

implies the estimate (9). The proof can be extended to the case i = 1 without any difficulty.
This completes the proof. ��

Let Ih,i be the corresponding Lagrange interpolation operator of the space V
m,◦
h,i and recall

thatΩ∗ is an open bounded domain including the union of all balls B(xK ,CΔhK ) (∀K ∈ Th).
Then the following lemma shows the approximation property of the space Vm

h,i .

Lemma 3 For any element K ∈ T ◦
h,i , there exists a constant C such that

‖u − Ih,i u‖Hq (K ) ≤ Chm+1−q
K ‖u‖Hm+1(K ), q = 0, 1, ∀u ∈ Hm+1(Ω∗), (12)
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and for any element K ∈ T Γ
h , there exists a constant C such that

‖u−Eh,i (Ih,i u)‖Hq (K ) ≤ Chm+1−q
K ‖u‖Hm+1(B(xK◦ ,CΔhK◦ )), q = 0, 1, ∀u ∈ Hm+1(Ω∗).

(13)

Proof It is sufficient to verify the estimate (13), since the estimate (12) is standard. For the
ball B(xK ◦

i
,CΔhK ◦

i
), there exists a polynomial vh ∈ Pm(B(xK ◦

i
,CΔhK ◦

i
)) such that [8][8,

Chapter 4]

‖u − vh‖Hq (B(xK◦
i
,CΔhK◦

i
)) ≤ Chm+1−q

K ◦
i

‖u‖Hm+1(B(xK◦
i
,CΔhK◦

i
)).

Thus, we have that

‖u − Eh,i (Ih,i u)‖Hq (K ) ≤ ‖u − vh‖Hq (K ) + ‖vh − Eh,i (Ih,i u)‖Hq (K ).

Combining hK ◦
i

≤ ChK and (8), the above result brings us that

‖vh − Eh,i (Ih,i u)‖Hq (K ) = ‖Eh,i (vh − Ih,i u)‖Hq (K ) ≤ ‖Eh,i (vh − Ih,i u)‖Hq (B(xK◦
i
,ChK◦

i
))

≤ C‖vh − Ih,i u‖Hq (B(xK◦
i
,ρK◦

i
)) ≤ C‖vh − Ih,i u‖Hq (K ◦

i )

≤ C
(
‖u − vh‖Hq (K ◦

i ) + ‖u − Ih,i u‖Hq (K ◦
i )

)

≤ Chm+1−q
K ‖u‖Hm+1(B(xK◦

i
,ChK◦

i
)),

which completes the proof. ��
We have shown the definition and corresponding properties of the approximation space.

The computer implementation is the extended space Vm
h,i (i = 0, 1) is the same as common

finite element spaces. We only need to implement the spaces Vm,◦
h,i on T ◦

h,i , and for cut
elements, we directly use the basis functions of specified interior elements to assemble the
stiffmatrix. We note that, for the space Vm

h,i , there is no need to calculate the nodal values
on outer degrees of freedom to obtain the approximation space, which is different from the
aggregated methods [5], and that the polynomials defined on the cut elements are just the
same polynomials on the assigned interior elements in our method. The implementation of
the space is very simple and does not need any strategy for adjusting the mesh to eliminate
the effects of the small cuts. As a result, the curve Γ is allowed to intersect the partition in
an arbitrary fashion. In next two sections, we will apply the spaces Vm

h,0 and V
m
h,1 to solve the

elliptic problem on a curved domain and the elliptic interface problem.
We close this section by giving two fundamental results in unfitted methods. The first is

the trace inequality on the curve Γ [27, 29, 47]:

Lemma 4 There exists a constant h0 independent of h such that if 0 < h ≤ h0, there exists
a constant C such that

‖w‖2L2(ΓK )
≤ C

(
h−1
K ‖w‖2L2(K )

+ hK ‖w‖2H1(K )

)
, ∀w ∈ H1(K ), ∀K ∈ T Γ

h . (14)

The second is the Sobolev extension theory [1]. For i = 0, 1, we assume there exists an
extension operator Ei : Hs(Ωi ) → Hs(Ω∗)(s ≥ 1) such that for any w ∈ Hs(Ωi ), there
holds

(Eiw)|Ωi = w, ‖Eiw‖Hq (Ω∗) ≤ C‖w‖Hq (Ωi ), 1 ≤ q ≤ s. (15)

Hereafter, the condition h ≤ h0 is assumed to be always fulfilled.
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3 Approximation to Elliptic Problem on Curved Domain

In this section, we are concerned with the model boundary problem defined on the curved
domain Ω0: seek u such that

−Δu = f , in Ω0,

u = g, on Γ .
(16)

We assume f ∈ L2(Ω0) and g ∈ H3/2(Γ ). Then the problem (16) admits a unique solution
u ∈ H2(Ω0) from the standard regularity result [19]. For this problem, the mesh Th can be
regarded as a background mesh and Th,0 is the computational mesh which is the minimal
subset of Th covering Ω0. The trace operators in (3) for this problem are specified as

{v}|ΓK := v|ΓK , [[v]]|ΓK := v|ΓK n, {q}|ΓK := q|ΓK , [[q]]|ΓK := q|ΓK · n,

for any K ∈ T Γ
h , where n denotes the unit outward normal vector on Γ .

We solve the problem (16) by the space Vm
h,0, and the numerical solution is sought by the

following discrete variational form: find uh ∈ Vm
h,0 such that

ah(uh, vh) = lh(vh), ∀vh ∈ Vm
h,0, (17)

where the bilinear form ah(·, ·) takes the form

ah(uh, vh) :=
∑

K∈Th,0

∫

K 0
∇uh · ∇vhdx

−
⎛

⎜
⎝

∑

e∈EΓ
h

∫

e0
+

∑

K∈T Γ
h

∫

ΓK

⎞

⎟
⎠ ({∇uh} · [[vh]] − {∇vh} · [[uh]])ds

+
∑

K∈T Γ
h

∫

ΓK

μh−1
K [[uh]] · [[vh]]ds + Jh(uh, vh),

Jh(uh, vh) := −
∑

e∈E◦
h,0

∫

e
({∇uh} · [[vh]] − {∇vh} · [[uh]])ds

+
∑

e∈E◦,I
h,0

∫

e
μh−1

e [[uh]] · [[vh]]ds, (18)

with μ the positive penalty parameter. The linear form lh(·) reads

lh(vh) :=
∑

K∈Th,0

∫

K 0
f vhdx +

∑

K∈T Γ
h

∫

ΓK

{∇vh} · ngds +
∑

K∈T Γ
h

∫

ΓK

μh−1
K [[vh]] · ngds.

(19)
The bilinear form (18) is suitable for both cases that Vm,◦

h,0 is the discontinuous piecewise

polynomial space or the C0 finite element space. If Vm,◦
h,0 is the continuous space, ah(·, ·) can

be further simplified by Jh(uh, vh) = 0. We note that even if Vm,◦
h,0 is the continuous space,

Vm
h,0 is not continuous over the domainΩ0, but we still only require the penalty terms defined

on the boundary Γ under this case.
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Next, we focus on the well-posedness of the discrete problem (17). For this goal, we
introduce an energy norm ‖ · ‖DG by

‖vh‖2DG :=
∑

K∈Th,0

‖∇vh‖2L2(K 0)
+

∑

e∈E I
h,0

he‖{∇vh}‖2L2(e0) +
∑

e∈E I
h,0

h−1
e ‖[[vh]]‖2L2(e0)

+
∑

K∈T Γ
h

hK ‖{∇vh}‖2L2(ΓK )
+

∑

K∈T Γ
h

h−1
K ‖[[vh]]‖2L2(ΓK )

,

for any vh ∈ Vh,0 := Vm
h,0 + H2(Ω0).

We show that the bilinear form ah(·, ·) is bounded and coercive under the energy norm
‖ · ‖DG.
Lemma 5 Let ah(·, ·) be defined as (18) with any μ > 0, there exist constants C such that

|ah(uh, vh)| ≤ C‖uh‖DG‖vh‖DG, ∀uh, vh ∈ Vh,0, (20)

ah(vh, vh) ≥ C‖vh‖2DG, ∀vh ∈ Vm
h,0. (21)

Proof The boundedness (20) directly follows the Cauchy-Schwarz inequality. The rest is to
prove the coercivity (21). We introduce a weaker norm ‖ · ‖∗, which is defined as

‖wh‖2∗ :=
∑

K∈Th,0

‖∇wh‖2L2(K 0)

+
∑

e∈E◦,I
h,0

h−1
e ‖[[wh]]‖2L2(e) +

∑

K∈T Γ
h

h−1
K ‖[[wh]]‖2L2(ΓK )

, ∀wh ∈ Vm
h,0.

From the definition of ah(·, ·), the coercivity (21) is equal to the equivalence between the
norms ‖ · ‖DG and ‖ · ‖∗ restricted on the approximation space Vm

h,0. Obviously, it suffices

to prove ‖wh‖DG ≤ C‖wh‖∗. From Lemma 2, we have that
∑

e∈E I
h,0

h−1
e ‖[[wh]]‖2L2(e0)

≤
C‖wh‖2∗. By the standard trace estimate and the estimate (7), we derive that

∑

e∈E I
h,0

he‖{∇wh}‖2L2(e0) ≤ C
∑

K∈Th,0

‖∇wh‖2L2(K )
≤ C

∑

K∈T ◦
h,0

‖∇wh‖2L2(K )
≤ C‖wh‖2∗,

and by the trace estimate (6), we obtain that
∑

K∈T Γ
h

hK ‖{∇wh}‖2L2(ΓK )
≤

∑

K∈T Γ
h

C‖∇wh‖2L2(K ◦
0 )

≤ C‖wh‖2∗.

Collecting the above estimates immediately indicates ‖wh‖DG ≤ C‖wh‖∗. Thus, there holds
ah(vh, vh) ≥ C‖vh‖2∗ ≥ C‖vh‖2DG, which completes the proof. ��

The Galerkin orthogonality holds for the bilinear form ah(·, ·) and linear form lh(·).
Lemma 6 Let u ∈ H2(Ω) be the exact solution to problem (16), and let uh ∈ Vm

h be the
numerical solution to problem (17), there holds

ah(u − uh, vh) = 0, ∀vh ∈ Vm
h,0. (22)

123



Journal of Scientific Computing (2022) 93 :75 Page 11 of 26 75

Proof From the regularity of u, we have [[u]]|e = 0 for any face e ∈ E I
h,0. We bring u into

the bilinear form ah(·, ·) and get

a(u, vh) − l(vh) =
∑

K∈Th,0

∫

K 0
(∇u · ∇vh − f vh)dx −

∑

e∈E I
h,0

∫

e0
∇u · [[vh]]ds

−
∑

K∈T Γ
h

∫

ΓK

∇u · [[vh]]ds.

Applying integration by parts leads to

∑

K∈T ◦
h,0

∫

K
(∇u · ∇vh − f vh)dx =

∑

e∈E◦
h,0

∫

e
∇u · [[vh]]ds,

∑

K∈T Γ
h

∫

K 0
(∇u · ∇vh − f vh)dx =

∑

e∈EΓ
h

∫

e0
∇u · [[vh]]ds +

∑

K∈T Γ
h

∫

ΓK

∇u · [[vh]]ds,

which indicate a(u, vh)− l(vh) = 0 and the Galerkin orthogonality (22). This completes the
proof. ��
Combining the approximation properties (12) and (13), the trace estimate (14), and the
Sobolev extension operator E0, we claim the following approximation estimate under the
error measurement ‖ · ‖DG:
Theorem 1 There exists a constant C such that

inf
vh∈Vm

h,0

‖u − vh‖DG ≤ Chm‖u‖Hm+1(Ω0)
, ∀u ∈ Hm+1(Ω0). (23)

Proof Let Ih,0(E0u) be the Lagrange interpolant of E0u into the space Vm,◦
h,0 and consider

vh = Eh,0(Ih,0u). From Lemma 3, we have that
∑

K∈Th,0

‖E0u − vh‖Hq (K ) ≤ Chm+1−q‖E0u‖Hm+1(Ω∗) ≤ Chm+1−q‖u‖Hm+1(Ω0)
,

with 0 ≤ q ≤ 2. From the standard trace estimate, we conclude that
∑

e∈E I
h,0

he‖{∇u − ∇vh}‖2L2(e0) ≤ C
∑

K∈Th,0

(‖E0u − vh‖2H1(K )
+ h2K ‖E0u − vh‖2H2(K )

)

≤ Ch2m‖E0u‖2Hm+1(Ω∗) ≤ Ch2m‖u‖2Hm+1(Ω0)
.

We apply the trace estimate (14) to see that
∑

K∈T Γ
h

hK ‖{∇u − ∇vh}‖2L2(ΓK )
≤ C

∑

K∈T Γ
h

(‖E0u − vh‖2H1(K )
+ h2K ‖E0u − vh‖2H2(K )

)

≤ Ch2m‖u‖2Hm+1(Ω0)
.

It is similar to bound other terms of ‖u−vh‖DG, which gives the estimate (23) and completes
the proof. ��

Now, we are ready to give an a priori error estimate for our method.
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Theorem 2 Let u ∈ Hm+1(Ω0) be the exact solution to (16) and uh ∈ Vm
h,0 be the numerical

solution to (17), and let ah(·, ·) be defined as (18)with anyμ > 0, then there exists a constant
C such that

‖u − uh‖DG ≤ Chm‖u‖Hm+1(Ω0)
. (24)

Proof The proof follows from the standard Lax-Milgram framework. For any vh ∈ Vm
h,0,

combining the boundedness (20), the coercivity (21), and the Galerkin orthogonality (22)
gives

‖uh − vh‖2DG ≤ Cah(uh − vh, uh − vh) = Cah(u − vh, uh − vh)

≤ C‖uh − vh‖DG‖u − vh‖DG.

Applying the triangle inequality and the approximation estimate (23) yields the error estimate
(24). This completes the proof. ��
Remark 3 From the estimate (25), we can further give the suboptimal convergence rate under
the L2 norm. The scheme (17) can be termed as a non-symmetric interior penalty method.
For the non-symmetric bilinear form, the odd/even situation usually can be numerically
detected for the L2 error, i.e. the numerical error under the L2 norm decreases to zero at
the optimal/suboptimal rate for the odd/even approximation accuracy, and the theoretical
verification is still an open problem [3, 17, 24, 34]. But for our method, the numerical results
reveal the optimal convergence for the L2 error for all m.

In the rest of this section, we give an upper bound of the condition number of the final
sparse linear system, which is still independent of how the boundary Γ cuts the mesh. The
main ingredient is to prove a Poincaré-type inequality.

Lemma 7 There exist constants C such that

‖vh‖L2(Ω) ≤ C‖vh‖DG, ∀vh ∈ Vh,0,

‖vh‖DG ≤ Ch−1‖vh‖L2(Ω), ∀vh ∈ Vm
h,0.

(25)

Proof For any vh ∈ Vh,0, we apply the duality argument to show ‖vh‖L2(Ω0)
≤ C‖vh‖DG.

Let φ ∈ H2(Ω0) be the solution of the problem

−Δφ = vh, in Ω0, φ = 0, on ∂Ω0,

with ‖φ‖H2(Ω0)
≤ C‖vh‖L2(Ω0)

. Applying integration by parts, we find that

‖vh‖2L2(Ω0)
= (−Δφ, vh)L2(Ω0)

=
∑

K∈Th,0

(∇φ,∇vh)L2(K 0) −
∑

e∈Eh,0

(∇φ, [[vh]])L2(e0) −
∑

K∈T Γ
h

(∇φ, [[vh]])L2(ΓK )

≤ C‖vh‖DG
(
|∇φ|2L2(Ω)

+
∑

e∈Eh,0

he|∇φ|2L2(e0) +
∑

K∈T Γ
h

hK |∇φ|2L2(ΓK )

)1/2
.

From Lemma 4 and the trace estimate, we deduce
∑

K∈T Γ
h

hK |∇φ|2L2(ΓK )
≤ C

∑

K∈T Γ
h

‖E0φ‖2H2(K )
≤ C‖φ‖2H2(Ω0)

,
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and
∑

e∈Eh,0

he|∇φ|2L2(e0) ≤
∑

e∈Eh,0

he|∇(E0φ)|2L2(e) ≤ C
∑

K∈Th,0

‖E0φ‖2H2(K )
≤ C‖φ‖2H2(Ω0)

.

These two inequalities, together with the regularity of φ, imply ‖vh‖L2(Ω0)
≤ C‖vh‖DG.

For any vh ∈ Vm
h,0, the inequality ‖vh‖DG ≤ Ch−1‖vh‖L2(Ω0)

directly follows the inverse
inequality and Lemma 1, which completes the proof. ��

Let {φi }(1 ≤ i ≤ n) be the Lagrange basis of the space Vm,◦
h,0 . Clearly, Vm

h,0 shares the
same degrees of freedom and corresponding basis functions as those of Vm,◦

h,0 . Let A =
(ah(φi , φ j ))n×n be the resulting stiff matrix. We further let S and N be the matrices with
respect to the following bilinear forms aSh (·, ·) and aNh (·, ·), which read

aSh (uh, vh) :=
∑

K∈Th,0

∫

K 0
∇uh · ∇vhdx +

∑

e∈E◦,I
h,0

∫

e
μh−1

e [[uh]] · [[vh]]ds

+
∑

K∈T Γ
h

∫

ΓK

μh−1
K [[uh]] · [[vh]]ds, ∀uh, vh ∈ Vm

h ,

aNh (uh, vh) :=
∑

e∈E I
h,0

∫

e0
({∇uh} · [[vh]] − {∇vh} · [[uh]])ds,

+
∑

K∈T Γ
h

∫

ΓK

({∇uh} · [[vh]] − {∇vh} · [[uh]])ds, ∀uh, vh ∈ Vm
h .

Clearly, we have that A = S − N , and aSh (·, ·) and aNh (·, ·) indeed represent the symmetric
and antisymmetric part of the bilinear form ah(·, ·).
Theorem 3 There exists a constant C such that

κ(A) ≤ Ch−2. (26)

Proof Since S is symmetric, all of eigenvalues of S are real and we can further show that

C ≤ h−dλmin(S) ≤ h−dλmax(S) ≤ Ch−2. (27)

For any vector v = (v1, v2, . . . , vn)
T ∈ R

n , we let vh = ∑n
i=1 viφi . To verify (27), we seek

the lower and upper bounds of (vT Sv)/(vT v)(v �= 0) by

vT Sv
vT v

= aSh (vh, vh)

‖vh‖2L2(Ω0)

‖vh‖2L2(Ω0)

vT v
.

Clearly, aSh (vh, vh) = ah(vh, vh), together with Lemma 5 and Lemma 7, we have that
‖vh‖2∗ ≤ CaSh (vh, vh) ≤ C‖vh‖2∗ and

C1‖vh‖2L2(Ω0)
≤ ah(vh, vh) ≤ C2h

−2‖vh‖2L2(Ω0)
.

Since v corresponds to the degrees of freedom of the standard finite element space Vm,◦
h,0 , we

can know that

C1‖vh‖2L2(T ◦
h,0)

≤ hd(vT v) ≤ C2‖vh‖2L2(T ◦
h,0)

.
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From Lemma 1, there holds ‖vh‖L2(Ω0)
≤ C‖vh‖L2(T ◦

h,0)
≤ C‖vh‖L2(Ω0)

. By the Raleigh
quotient formula, we can obtain the bound (27).

We note that N is antisymmetric and all eigenvalues of N are purely imaginary. We then
show the spectral radius of N satisfies that h−dρ(N ) ≤ Ch−2. Again from Lemma 5 and 7,
we find that

aNh (vh, wh) ≤ C‖vh‖DG‖wh‖DG ≤ Ch−2‖vh‖L2(Ω0)
‖wh‖L2(Ω0)

, ∀vh, wh ∈ Vm
h,0.

Hence, for any v,w ∈ R
n with vT v = wTw = 1, we obtain that h−d(vT Nw) ≤ Ch−2,

which gives h−dρ(N ) ≤ Ch−2. Togetherwith the bounds of eigenvalues of S and the spectral
radius of N , we can find κ(A) ≤ Ch−2, which completes the proof. ��

We have shown that the unfitted scheme (17) for the problem (16) is stable and can achieve
an arbitrarily high order accuracy without any mesh adjustment or any special stabilization
technique. In next section, we will extend this method to the elliptic interface problem.

4 Approximation to Elliptic Interface Problem

In this section, we are concerned with the following elliptic interface problem: seek u such
that

−∇ · (α∇u) = f , in Ω0 ∪ Ω1,

u = g, on ∂Ω,

[[u]] = an, on Γ ,

[[α∇u]] = b, on Γ .

(28)

Here the domain Ω can be regarded as being divided by the C2-smooth interface Γ into two
disjoint subdomains Ω0 and Ω1. The data functions are assumed to satisfy that f ∈ L2(Ω),
g ∈ H3/2(∂Ω), a ∈ H3/2(Γ ) and b ∈ H1/2(Γ ), which make (28) possess a unique solution
u ∈ H2(Ω0 ∪ Ω1). We refer to [31, 32] for more regularity results to such an interface
problem.

In this section, the trace operators (3) on the interface Γ are specified as

{v}|ΓK := 1

2
(v0|ΓK + v1|ΓK ), [[v]]|ΓK := (v0 − v1)n,

{q}|ΓK := 1

2
(q0|ΓK + q1|ΓK ), [[q]]|ΓK := (q0 − q1) · n,

for any K ∈ T Γ
h , where v0 = v|K 0 , v1 = v|K 1 , q0 = q|K 0 , q1 = q|K 1 and n denotes the

unit normal vector on ΓK pointing to Ω1.
For the interface problem (28), the approximation space Vm

h is a combination of the spaces
Vm
h,0 and Vm

h,1, which is defined as

Vm
h := Vm

h,0 · χ0 + Vm
h,1 · χ1,

where χi is the characteristic function corresponding to the subdomain Ωi . Clearly, any
function vh ∈ Vm

h admits the decomposition vh = vh,0 ·χ0+vh,1 ·χ1, where vh |Ω0 = vh,0|Ω0

and vh |Ω1 = vh,1|Ω1 . In addition, the degrees of freedom of Vm
h are formed by all degrees

of freedom of Vm,◦
h,0 and Vm,◦

h,1 , which are entirely located in Ω0 and Ω1, respectively.
The discrete variational problem for (28) reads: seek uh ∈ Vm

h such that

ah(uh, vh) = lh(vh), ∀vh ∈ Vm
h , (29)

123



Journal of Scientific Computing (2022) 93 :75 Page 15 of 26 75

where

ah(uh, vh) :=
∑

K∈Th

∫

K 0∪K 1
α∇uh · ∇vhdx

−
⎛

⎜
⎝

∑

e∈EΓ
h

∫

e0∪e1
+

∑

K∈T Γ
h

∫

ΓK

⎞

⎟
⎠ ({α∇uh} · [[vh]] − {α∇vh} · [[uh]])ds

+
∑

K∈T Γ
h

∫

ΓK

ηh−1
K [[uh]] · [[vh]]ds + Jh(uh, vh),

Jh(uh, vh) :=
∑

e∈E◦
h,0∪E◦

h,1

∫

e0∪e1
({α∇uh} · [[vh]] − {α∇vh} · [[uh]])ds

+
∑

e∈E◦,I
h,0∪E◦,I

h,1

∫

e0∪e1
ηh−1

e [[uh]] · [[vh]]ds, (30)

with η the positive penalty parameter, and

lh(vh) :=
∑

K∈Th

∫

K 0∪K 1
f vhdx +

∑

e∈EB
h

∫

e
{α∇vh} · ngds +

∑

e∈EB
h

∫

e
ηh−1

e gvhds

+
∑

K∈T Γ
h

∫

ΓK

b{vh}ds +
∑

K∈T Γ
h

∫

ΓK

{α∇vh} · nads +
∑

K∈T Γ
h

∫

ΓK

ηh−1
K [[vh]] · nads.

Similar as (18), Jh(uh, vh) = 0 if Vm,◦
h,0 and Vm,◦

h,1 are C0 finite element spaces.
Then we present the error estimation to the problem (29). We introduce the energy norm

||| · |||DG on Vh := Vm
h + H2(Ω0 ∪ Ω1):

|||vh |||2DG :=
∑

K∈Th

‖∇vh‖2L2(K 0∪K 1)
+

∑

e∈Eh
he‖{∇vh}‖2L2(e0∪e1) +

∑

e∈Eh
h−1
e ‖[[vh]]‖2L2(e0∪e1)

+
∑

K∈T Γ
h

hK ‖{∇vh}‖2L2(ΓK )
+

∑

K∈T Γ
h

h−1
K ‖[[vh]]‖2L2(ΓK )

,

for any vh ∈ Vh .
We claim that the bilinear form ah(·, ·) is bounded and coercive with respect to the energy

norm ||| · |||DG.

Lemma 8 Let ah(·, ·) be defined as (30) with any η > 0, then there exist constants C such
that

|ah(u, v)| ≤ C |||u|||DG|||v|||DG, ∀u, v ∈ Vh, (31)

ah(vh, vh) ≥ C |||vh |||2DG, ∀vh ∈ Vm
h . (32)

Proof The proof is analogous to the proof of Lemma 5. Applying the Cauchy-Schwarz
inequality and the definition of ||| · |||DG immediately gives the estimate (31).
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To obtain the coercivity (32), we also introduce a weaker norm ||| · |||∗,
|||wh |||2∗ :=

∑

K∈Th

‖∇wh‖2L2(K 0∪K 1)
+

∑

e∈Eh
h−1
e ‖[[wh]]‖2L2(e0∪e1) +

∑

K∈T Γ
h

h−1
K ‖[[wh]]‖2L2(ΓK )

,

for any wh ∈ Vm
h . The equivalence between ‖ · ‖DG and ‖ · ‖∗ in Lemma 5 can be easily

extended to ||| · |||DG and ||| · |||∗. Hence, there holds ah(vh, vh) ≥ C |||vh |||2∗ ≥ C |||vh |||2DG, which
completes the proof. ��
The proof of Lemma 6 also gives the Galerkin orthogonality for this problem.

Lemma 9 Let u ∈ H2(Ω0 ∪ Ω1) be the exact solution to the problem (28), and let uh ∈ Vm
h

be the numerical solution to the problem (29), then there holds

ah(u − uh, vh) = 0, ∀vh ∈ Vm
h .

Then we state the approximation property of the space Vm
h .

Theorem 4 There exists a constant C such that

inf
vh∈Vm

h

|||u − vh |||DG ≤ Chm‖u‖Hm+1(Ω0∪Ω1)
, ∀u ∈ Hm+1(Ω0 ∪ Ω1). (33)

Proof The estimate (33) is based on the extension operators Ei (i = 0, 1) and Lemma 4, and
the proof follows from the same line as in the proof of Theorem 1. ��
Let us give an a priori error estimate for the proposed method.

Theorem 5 Let u ∈ Hm+1(Ω0 ∪ Ω1) be the exact solution to (28) and uh ∈ Vm
h be the

numerical solution to (29), and let ah(·, ·) be defined as (30)with any η > 0, then there exists
a constant C such that

|||u − uh |||DG ≤ Chm‖u‖Hm+1(Ω0∪Ω1)
. (34)

Proof The estimate (34) can be obtained by following the same line as in the proof of (24)
under the Lax-Milgram framework based on Lemma 8, 9 and Theorem 4. ��
Remark 4 For the interface problem (28), we can only prove the suboptimal convergence
rate for the L2 error. The numerical results demonstrate that for all m, ‖ · ‖L2(Ω) converges
to zero at the optimal rates. For the proposed non-symmetric bilinear form (30), there is also
no odd/even situation for the L2 error; see Remark 3 for more details.

Ultimately, we present the estimate of the condition number for the discrete system (29).
The main step is to give the bound for the energy norm ||| · |||DG.
Lemma 10 There exist constants C such that

‖vh‖L2(Ω) ≤ C |||vh |||DG, ∀vh ∈ Vh,

|||vh |||DG ≤ Ch−1‖vh‖L2(Ω), ∀vh ∈ Vm
h .

(35)
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Proof We also apply the dualduality argument to show that ‖vh‖L2(Ω) ≤ C |||vh |||DG for any
vh ∈ Vh . Let φ ∈ H2(Ω0 ∪ Ω1) solve the interface problem

−∇ · ∇φ = vh, in Ω0 ∪ Ω1,

φ = 0, on ∂Ω,

[[φ]] = 0, on Γ ,

[[∇φ]] = 0, on Γ ,

with the regularity ‖φ‖H2(Ω) ≤ C‖vh‖L2(Ω). From the integration by parts, we find that

‖vh‖2L2(Ω)
= (−∇ · ∇φ, vh)L2(Ω)

=
∑

K∈Th

(∇φ,∇vh)L2(K 0∪K 1) −
∑

e∈Eh
(∇φ, [[vh]])L2(e0∪e1) −

∑

K∈T Γ
h

(∇φ, [[vh]])L2(ΓK )

≤ C |||vh |||DG

⎛

⎜
⎝

∑

K∈Th

‖∇φ‖2L2(K 0∪K 1)
+

∑

e∈Eh
he‖∇φ‖2L2(e) +

∑

K∈T Γ
h

hK ‖∇φ‖2L2(ΓK )

⎞

⎟
⎠

1/2

.

From the trace estimate, we have
∑

e∈Eh
he‖∇φ‖2L2(e) ≤ C‖φ‖2H2(Ω)

,
∑

K∈T Γ
h

hK ‖∇φ‖2L2(ΓK )
≤ C‖φ‖2H2(Ω)

,

which give ‖vh‖L2(Ω) ≤ C |||vh |||DG. Moreover, it is easy to verify |||vh |||DG ≤ h−1‖vh‖L2(Ω)

for any vh ∈ Vm
h by the inverse estimate. This completes the proof. ��

Theorem 6 There exists a constant C such that

κ(A) ≤ Ch−2, (36)

where A denotes the resulting stiff matrix of the discrete system (29).

Proof The estimate (36) is a consequence of Lemma 10; see the proof of Theorem 3. ��
The unfitted method in Sect. 3 has been extended to the interface problem. The used approx-
imation space Vm

h is easily implemented, since its basis functions come from two common
finite element spaces. This method neither requires any constraint on how the interface inter-
sects the mesh nor includes any special stabilization item.

5 Numerical Results

In this section, a series of numerical results are presented to illustrate the performance of the
methods proposed in Sects. 3 and 4. In all tests, the data functions g, f in (16), as well as the
functions g, f , a, b in (28), are taken suitably from the exact solution. The boundary or the
interface for each case is described by a level set function φ. We note that the scheme involves
the numerical integration on the intersections of the boundary/interface with elements. We
refer to [15, 44] for some methods to seek the quadrature rules on curved domains. In our
computation, the method in [15] is used (the codes are freely available online). For all tests,
we adopt the BiCGSTAB solver together with the ILU preconditioner to solve the resulting
linear algebraic system.
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Ω0

Fig. 3 The curved domain and the partition of Example 1

Table 1 Numerical errors of Example 1

m h 1/5 1/10 order 1/20 order 1/40 order

1 ‖u − uh‖L2(Ω0)
4.442e−1 1.329e−1 1.73 3.328e−2 2.00 7.272e−3 2.19

‖u − uh‖DG 6.587e−0 3.520e−0 0.90 1.908e−0 1.03 8.189e−1 1.06

2 ‖u − uh‖L2(Ω0)
7.192e−2 1.443e−2 2.32 1.212e−3 3.57 1.422e−4 3.11

‖u − uh‖DG 2.172e−0 7.416e−1 1.55 1.451e−1 2.35 3.292e−2 2.13

3 ‖u − uh‖L2(Ω0)
1.661e−2 1.453e−3 3.51 8.262e−5 4.13 5.222e−6 4.01

‖u − uh‖DG 7.032e−1 8.976e−2 2.96 9.809e−3 3.19 1.088e−3 3.17

5.1 Convergence Studies for Elliptic Problems

We present several numerical examples to demonstrate the convergence rates of the unfitted
method (17) for the problem (16). To obtain the approximation space Vm

h,0, the space V
m,◦
h,0 is

selected to be the standard C0 finite element space with the order 1 ≤ m ≤ 3. The parameter
μ is fixed as 10.

Example 1 In this test, we set the domain Ω0 := {(x, y) ∈ R
2 | φ(x, y) < 0} to be a disk

(see Fig. 3) with radius r = 0.7, that is, φ(x, y) = x2 + y2 − r2. We take the background
mesh Th that partitions the squared domain Ω = (−1, 1)2 into triangular elements with the
mesh size h = 1/5, . . . , 1/40; see Fig. 3. The exact solution is given as

u(x, y) = sin(2πx) sin(4π y).

The numerical errors under both the L2 norm and the energy norm are presented in Table 1.
From the results, the optimal convergence rate under ‖ · ‖DG is observed, which is in the
perfect agreement with the theoretical estimate (24) for the 2D case. We point out that the
optimal L2 convergence rates are also numerically detected for allm, even though the bilinear
form ah(·, ·) is non-symmetric (cf. Remark 3).

Example 2 The second test is to solve the 2D elliptic problem defined on the flower-like
domain [21] (see Fig. 4), where Ω0 is governed by the level set function φ < 0, where

φ(r , θ) = r − 0.6 − 0.2 cos(5θ),
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Ω0

Fig. 4 The curved domain and the partition of Example 2

Table 2 Numerical errors of Example 2

m h 1/6 1/12 order 1/24 order 1/48 order

1 ‖u − uh‖L2(Ω0)
2.555e−1 6.858e−2 1.89 1.792e−2 1.93 3.896e−3 2.22

‖u − uh‖DG 4.508e−0 2.100e−0 1.10 9.683e−1 1.11 4.403e−1 1.13

2 ‖u − uh‖L2(Ω0)
3.132e−2 2.592e−3 3.59 2.332e−4 3.48 2.902e−5 3.01

‖u − uh‖DG 9.998e−1 1.851e−1 2.43 3.646e−2 2.34 8.280e−3 2.13

3 ‖u − uh‖L2(Ω0)
2.933e−3 1.169e−4 4.64 6.649e−6 4.13 3.547e−7 4.22

‖u − uh‖DG 1.193e−1 1.055e−2 3.50 1.070e−3 3.30 1.100e−4 3.26

with the polar coordinates (r , θ). The exact solution [21] reads

u(x, y) = cos(2πx) cos(2π y) + sin(2πx) sin(2π y).

We solve (17) on a series of triangular meshes (h = 1/6, 1/12, 1/24, 1/48) on the domain
Ω = (−1, 1)2 (see Fig. 4). The errors under two error measurements are gathered in Table 2.
For such a curved domain, our method also demonstrates that the errors ‖u − uh‖L2(Ω) and
‖u−uh‖DG approach zero at the optimal rates O(hm+1) and O(hm), respectively, which are
well consistent with the results in Theorem 2.

Example 3 In this test, we solve a 3D elliptic problem defined in a spherical domain Ω0 (see
Fig. 5), whose corresponding level set function reads

φ(x, y, z) = (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2 − r2,

with the radius r = 0.35. The exact solution u is chosen as

u(x, y, z) = cos(πx) cos(π y) cos(π z).

We take a series of tetrahedral meshes, with the mesh size h = 1/8, 1/16, 1/32, 1/64, that
cover the domain Ω = (0, 1)3. The numerical results in Table 3 show that the proposed
method still has the optimal convergence rates for the errors ‖u−uh‖L2(Ω) and ‖u−uh‖DG.
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Fig. 5 The spherical domain and the tetrahedral mesh of Example 3

5.2 Convergence Studies for Elliptic Interface Problems

This subsection is devoted to verify the theoretical analysis of the interface-unfitted scheme
(29). The spaces Vm,◦

h,0 and Vm,◦
h,1 are taken as the C0 finite element spaces. The parameter η

is selected as 10.

Example 4 This test is a 2D benchmark problem on Ω = (−1, 1)2 that contains a circular
interface (see Fig. 6),

φ(x, y) = x2 + y2 − r2,

with radius r = 0.5. The piecewise coefficientα in (28) and the exact solution are respectively
taken to be

α =
{
b, φ(x, y) > 0,

1, φ(x, y) < 0,
u(x, y) =

{
− 1

b

(
(x2+y2)2

2 + x2 + y2
)

, φ(x, y) > 0,

sin(2πx) sin(π y), φ(x, y) < 0,

with b = 10. We adopt triangular meshes with h = 1/10, . . . , 1/80 and 1 ≤ m ≤ 3.
Numerical results are collected in Table 4. We can observe that the proposed unfitted method
yields O(hm+1)and O(hm) convergence rates for the errors ‖u−uh‖L2(Ω) and |||u−uh |||DG,
respectively. This is in accordance with the predicted results in Theorem 5.

Further, we also test the case, by choosing b = 1000, that the coefficient has a large jump.
The numerical results are shown in Table 5. By comparing the errors in Table 4 with those
in Table 5, the robustness of the proposed method is demonstrated for the problem involving
a big contrast on the interface.

Example 5 We consider an elliptic interface problem with a star interface [48] (see Fig. 7),
where Γ is parametrized with the polar coordinate (r , θ),

φ(r , θ) = r − 1

2
− sin(5θ)

7
.
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Table 3 Numerical errors of Example 3

m h 1/8 1/16 order 1/32 order 1/64 order

1 ‖u − uh‖L2(Ω0)
9.385e−3 3.119e−3 1.59 9.278e−4 1.93 2.076e−4 2.16

‖u − uh‖DG 2.390e−1 1.361e−1 0.81 6.516e−2 1.06 3.031e−2 1.10

2 ‖u − uh‖L2(Ω0)
1.459e−3 7.350e−5 4.31 7.536e−6 3.28 2.613e−5 3.06

‖u − uh‖DG 5.342e−2 7.891e−3 2.76 1.751e−3 2.17 4.130e−4 2.09

3 ‖u − uh‖L2(Ω0)
8.659e−5 3.891e−6 4.47 1.975e−7 4.30 1.067e−8 4.21

‖u − uh‖DG 3.286e−3 2.857e−4 3.52 2.928e−5 3.28 3.253e−6 3.17

Ω0

Ω1

Fig. 6 The interface and the partition of Example 4

Table 4 Numerical errors of Example 4: b = 10

m h 1/10 1/20 order 1/40 order 1/80 order

1 ‖u − uh‖L2(Ω0)
2.888e−2 7.250e−3 1.99 1.345e−3 2.43 3.407e−4 1.99

‖u − uh‖DG 7.817e−1 3.580e−1 1.12 1.636e−1 1.13 7.968e−2 1.03

2 ‖u − uh‖L2(Ω0)
7.379e−4 9.642e−5 2.93 9.308e−6 3.37 1.162e−6 3.00

‖u − uh‖DG 4.816e−2 1.178e−2 2.03 2.560e−3 2.20 6.235e−4 2.03

3 ‖u − uh‖L2(Ω0)
6.590e−5 3.633e−6 4.18 1.752e−7 4.37 1.025e−8 4.10

‖u − uh‖DG 4.511e−3 4.946e−4 3.19 4.666e−5 3.39 5.399e−6 3.11

Table 5 Numerical errors of Example 4 with a large jump: b = 1000

m h 1/8 1/16 order 1/32 order 1/64 order

1 ‖u − uh‖L2(Ω0)
3.080e−3 7.615e−3 2.01 1.279e−3 2.57 2.928e−4 2.13

‖u − uh‖DG 7.371e−1 3.248e−1 1.18 1.444e−1 1.17 6.981e−2 1.05

2 ‖u − uh‖L2(Ω0)
7.062e−4 8.515e−5 3.05 8.565e−6 3.31 1.027e−6 3.06

‖u − uh‖DG 4.765e−2 1.153e−2 2.05 2.531e−3 2.18 6.163e−4 2.03

3 ‖u − uh‖L2(Ω0)
5.942e−5 3.226e−6 4.20 1.461e−7 4.46 9.068e−9 4.01

‖u − uh‖DG 4.502e−3 4.947e−4 3.18 4.685e−5 3.40 5.460e−6 3.10
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Ω0

Ω1

Fig. 7 The interface and the partition of Example 5

Table 6 Numerical errors of Example 5

m h 1/8 1/16 order 1/32 order 1/64 order

1 ‖u − uh‖L2(Ω0)
1.958e−2 2.253e−3 3.12 4.607e−4 2.29 1.055e−4 2.12

‖u − uh‖DG 4.876e−1 1.029e−1 2.21 4.486e−2 1.13 2.216e−2 1.07

2 ‖u − uh‖L2(Ω0)
2.813e−3 1.399e−4 4.33 1.489e−5 3.23 1.583e−6 3.23

‖u − uh‖DG 3.137e−2 2.735e−2 3.52 5.205e−4 2.39 1.163e−4 2.16

3 ‖u − uh‖L2(Ω0)
2.501e−4 4.667e−6 5.72 7.156e−6 4.29 3.973e−8 4.17

‖u − uh‖DG 1.793e−2 9.166e−4 4.29 8.866e−5 3.37 9.000e−6 3.29

The domain is Ω = (−1, 1)2. The coefficient α and the exact solution are selected to be

α =
{
10, φ(r , θ) > 0,

1, φ(r , θ) < 0,
u(r , θ) =

{
0.1r2 − 0.01 ln(2r), φ(r , θ) > 0,

er
2
, φ(r , θ) < 0,

respectively. We display the numerical results in Table 6. Similar as the previous example,
the optimal convergence rates for the errors under the L2 norm and the energy norm can be
still observed.

Example 6 In the last example, we consider the elliptic interface problem (28) in three dimen-
sions with the coefficient α = 1. The domain is the unit cubeΩ = (0, 1)3 and the interface is
a smooth molecular surface of two atoms (see Fig. 8), which is given by the level set function
[38, 46],

φ(x, y, z) = (
(2.5(x − 0.5))2 + (4(y − 0.5))2 + (2.5(z − 0.5))2 + 0.6

)2

−3.5(4(y − 0.5))2 − 0.6.

The exact solution takes the form

u(x, y, z) =
{
e2(x+y+z), φ(x, y, z) > 0,

sin(2πx) sin(2π y) sin(2π z), φ(x, y, z) < 0.

The initial mesh Th is taken as a tetrahedral with h = 1/4, and we solve the interface
problem on a series of successively refined meshes (see Fig. 5). The convergence histories
with 1 ≤ m ≤ 3 are reported in Table 7, which show that both errors ‖u − uh‖L2(Ω) and
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Table 7 Numerical errors of the Example 6

m h 1/4 1/8 order 1/16 order 1/32 order

1 ‖u − uh‖L2(Ω0)
1.651e−0 6.115e−1 1.52 1.537e−1 1.99 3.501e−2 2.13

‖u − uh‖DG 3.779e+1 1.992e+1 1.08 7.688e−0 1.22 3.679e−0 1.06

2 ‖u − uh‖L2(Ω0)
2.278e−1 1.906e−2 3.57 2.223e−3 3.10 2.494e−4 3.15

‖u − uh‖DG 4.603e−0 8.356e−1 2.46 1.636e−1 2.37 3.817e−2 2.10

3 ‖u − uh‖L2(Ω0)
8.736e−2 5.624e−3 3.95 2.738e−4 4.36 1.419e−5 4.26

‖u − uh‖DG 1.022e−0 8.752e−2 3.09 8.406e−3 3.38 9.275e−4 3.17

Fig. 8 The interface of Example 6

|||u − uh |||DG decrease to zero at their optimal convergence rates. This observation again
validates the theoretical predictions in Theorem 5.

5.3 Condition Number Studies

We compute the condition numbers of the stiffness matrices coming from the elliptic problem
on the curved domain and the elliptic interface problem, respectively. Theorems 3 and 6
claim that for both problems, the condition numbers will grow at the speed O(h−2). In
Fig. 9, we show the condition numbers of the stiffness matrices corresponding to Example 1
and Example 4, respectively. The numerically detected results confirm our theoretical rates.
The condition number seems to be relatively large especially for the high-order accuracy.
There may be two underlying factors that affect the condition number. The first is the penalty
parameter μ. From the bilinear forms, the condition number is nearly linearly dependent on
μ. Hence, a small value of μ is recommended (we fix μ = 1 in the numerical tests), and
we note that our method is stable for any μ > 0. The second factor is the local extension
of the polynomial. The extension is similar to the extrapolation of polynomials. The value
of the extrapolation grows fast outside the data domain, which may lead to a large condition
number. To overcome this difficulty wemay require some stable projection techniques, which
is a future work for us.
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Fig. 9 Condition numbers of the final linear systems of Example 1 (left) and Example 4 (right)

6 Conclusion

We have developed an unfitted finite element method of arbitrary order for curved domain
elliptic problems and elliptic interface problems. The degrees of freedom of the used
approximation spaces are totally located in the elements that are not cut by the domain
boundary/interface. In the non-symmetric interior penalty schemes, the boundary/jump con-
ditions are weakly imposed by Nitsche’s method. The stability near the boundary or the
interface does not require any stabilization technique or any constraint on the mesh, which
means that our method allows the curved boundary/interface to intersect the mesh arbitrarily.
The method is of optimal convergence order under the energy norm. In addition, we have
given upper bounds of the condition numbers for final linear systems. A series of numerical
examples in two and three dimensions demonstrate the good performance of our method.
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