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Abstract
In the present paper, we solve the steady state diffusion equation in 3D domains by means
of a cell-centered finite volume method that uses a Multipoint Flux Approximation with a
Diamond Stencil and a Non-Linear defect correction strategy (MPFA-DNL) to guarantee
the Discrete Maximum Principle (DMP). Our formulation is based in the fact that the flux
of MPFA methods can be split into two different parts: a Two Point Flux Approximation
(TPFA) component and the Cross-Diffusion Terms (CDT). In the linear MPFA-D method,
this split is particularly simple since it lies at the core of the original method construction.
In this context, we introduce a non-linear defect correction, aiming to mitigate, whenever
necessary, the contributions from the CDT, avoiding, this way, spurious oscillations andDMP
violations. Our new MPFA-DNL scheme is locally conservative and capable of dealing with
arbitrary anisotropic diffusion tensors and unstructured meshes, without harming the second
order convergence rates of the original MPFA-D. To appraise the accuracy and robustness of
our formulation, we solve some benchmark problems found in literature. In this paper, we
restrict ourselves to tetrahedral meshes, even though, in principle, there is no restriction to
extend the method to other polyhedral control volumes.
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1 Introduction

Steady-state diffusion problems that arise in various engineering and physical fields, such as
fluid flow in porous media or heat conduction problems, are modeled by an elliptic partial
differential equation with diffusion coefficients that can be represented by heterogeneous,
possibly discontinuous, anisotropic full tensors. These problems can be challenging for tradi-
tional numerical methods, such as the classical Two Point Flux Approximation (TPFA) Finite
Volume Method (FVM), which is monotone [1], but it is not even convergent for general full
tensor diffusion coefficients or general non k-orthogonal meshes [2–4]; the Galerkin Finite
Element Method (GFEM) [5, 6], the Mixed-Finite Element Method (MFEM) [7, 8] or even
the more robust linear Multipoint Flux Approximation (MPFA) [2–4] methods which are,
in general, convergent, but can violate the Discrete Maximum Principle (DMP), giving birth
to spurious oscillations for the scalar variable and erroneous fluxes for more pathological
problems with strong anisotropy ratios or extremely distorted meshes [1, 9].

The efforts to overcome these limitations are not recent. The DMP compliance for finite
elements approximations was addressed by Ciarlet and Raviart [10], Korotov et al. [11] and
Burman and Ern [12]. Le Potier [13] presented a 2D non-linear FVM satisfying themaximum
principle and Cancès et al. [14] presented a non-linear technique to correct a general FVM
in order to respect the DMP. Pal and Edwards [15, 16] proposed flux-splitting strategies to
improve the monotonicity and impose DMP for FVM. Chen et al. [17] have proposed their
MPFA with enriched stencil (MPFA-E), in order to mitigate, but not necessarily eliminate,
spurious oscillations. Kuzmin et al. [18] presented a nonlinear constrained finite element
scheme, in which they perform an algebraic matrix splitting followed by a slope limiting to
impose DMP. Other finite volume formulations using two-steps strategies, as those presented
by Su et al. [19] and Zhao et al. [20] also presents good results in terms of honoring the DMP.

However, some of these methods do not have some desirable properties such as, for exam-
ple, the capability to reproduce exactly piecewise linear solutions (Linearity Preserving—LP)
or local conservation [21, 22]. One of the formulations that is locally conservative and LP is
the MPFA that uses the so called diamond stencil (MPFA-D) [23–26]. However, the MPFA-
D, in its original form, is not monotone and does not respect the DMP, since the weighting
of the vertices unknowns does not necessarily form a convex combination. The idea of the
present work is to modify the original MPFA-D to avoid spurious oscillations on solving
steady-state diffusion problems keeping it locally conservative and LP. It is possible to mod-
ify the weighting strategy in order to get a monotone scheme [27, 28], but it could unmake
the linearity preserving in this case. On the other hand, the way we perform the modification
stems from the fact that the MPFA-D flux expression can be naturally split into two parts: the
TFPA flux portion and the flux portion associated with the cross-diffusion terms (CDT). This
flux splitting [15, 16, 29], separating the TPFA part as the “spurious oscillations-free” part,
is followed by a CDT flux limiting [18]. Our method aims to limit the CDT flux whenever it
is necessary, in order to obtain monotone solutions, but keeping the modified MPFA-D as a
locally conservative method and still capable of reproducing piecewise linear solutions, han-
dling arbitrary (even discontinuous [30]) anisotropic diffusion tensors and achieving second
order of accuracy on the scalar field and first order on its gradient.

In Sect. 2, we present the mathematical formulation, in Sect. 3, we present the discrete
flux equations of the recently developed linear MPFA-D for 3D [26], followed by our new
non-linear method designed to satisfy the DMP, i.e.: theMultipoint Flux Approximation with
a Diamond Stencil and a Non-Linear Defect Correction (MPFA-DNL). In Sect. 4, aiming
to appraise the accuracy and robustness of our new MPFA-DNL, we present the solution
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of some 3D benchmark problems found in literature. In this paper, we restrict ourselves to
unstructured tetrahedral meshes, even though, in principle, there is no restriction to extend
our method to general polyhedral control volumes.

2 Mathematical formulation

The steady-state diffusion problem in 3D can be described by [26]:

�∇ · �F � Q(�x), with �F � −K(�x)∇u in �x � (x, y, z) ∈ � ⊂ R
3 (1)

in which �F represents the diffusive flux, u is the scalar or potential variable, Q(�x) is the
source term and K (�x) is the diffusion tensor that satisfies the ellipticity condition [31, 32]
and that can be written, in Cartesian coordinates, as:

K(�x) �
⎡
⎣

κxx κxy κxz

κyx κyy κyz

κzx κzy κzz

⎤
⎦ (2)

Moreover, appropriate boundary conditions can be defined by:
{
u � gD on �D
�F · �n � gN on �N

(3)

where the scalar functions gD (prescribed values for u) and gN (prescribed fluxes) are,
respectively, defined on �D (Dirichlet) and �N (Neumann) boundaries, with ∂� � �D ∩�N

and �D ∩ �N � ∅, and �n is the unitary outward normal vector.

3 Numerical Formulation

In this section, from de the recently developed MPFA-D in 3D, we present our new
MPFA-DNL, which includes a nonlinear defect correction strategy to the original MPFA-
D formulation in order to satisfy the Discrete Maximum Principle (DMP) for unstructured
tetrahedral meshes and general diffusion tensors.

Given a computational domain � with boundary �, we discretize it by a set of non-
overlapping control-volumes L̂ . By integrating Eq. (1) and applying the Gauss’s Divergence
Theorem over the control-volume L̂ (with boundary �L̂ and volume �L̂ ), we have:

∫

�L̂

�F · �n∂�L̂ �
∫

�L̂

Q∂�L̂ (4)

By using the mean value theorem, we can write:

(5)

where Q̄L̂ is the mean source term in L̂ and is a face belonging to the set �L̂ . In Eq. (5)

different approximations for the flux expression �F· �N produce different finite volume approx-
imations [2–4, 17, 23, 33].
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3.1 TheMultipoint Flux Approximation using the Diamond Stencil

We start from the formulation presented by Lira Filho et al. [26], which is applicable to
diffusion problems on 3D tetrahedral meshes, in which the unique flux expression through a
face, considering the configuration shown in Fig. 1, is given by:

�F · �N � −K
∣∣∣ �N
∣∣∣
[(
u R̂ − uL̂

)− 1

2
DJ K (uJ − uI ) +

1

2
DJ I (uJ − uK )

]
(6)

with:

K �
Kn

R̂
K n

L̂

h L̂ K
n
R̂
+ h R̂K

n
L̂

(7)

and:

Di,j � �τi,j,
−→̂
L R̂∣∣∣ �N
∣∣∣2

− 1∣∣∣ �N
∣∣∣

⎛
⎝hL̂

K t,i,j

L̂

K n
L̂

+ h R̂

K t,i,j

R̂

K n
R̂

⎞
⎠; i,j � I , J , K (8)

where:

�τi,j � �N × −−→
i,j; Kn

k � �NT Kk
�N∣∣∣ �N

∣∣∣2
; K t,i,j

k �
�NT Kk �τi,j∣∣∣ �N

∣∣∣2
;k � L, R; i,j � I , J , K (9)

In this formulation, the auxiliary vertex unknowns (uI , uJ , uK ) must be interpolated as a
weighting of the values of u at the cells sharing the respective node (I , J or K . We use the
linearity-preserving interpolation strategy presented by Lira Filho et al. [26].

It is clear, according to Eq. (6), that �F · �N . can be split in two parts:

�F · �N �
(�F · �N

)
T PFA

+
(�F · �N

)
CDT

(10)

with: (�F · �N
)
T PFA

� −K
∣∣∣ �N
∣∣∣(u R̂ − uL̂

)
(11)

Fig. 1 Face IJK shared by the tetrahedrons L̂ and R̂
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(�F · �N
)
CDT

� −K
∣∣∣ �N
∣∣∣
[
−1

2
DJ K (uJ − uI ) +

1

2
DJ I (uJ − uK )

]
(12)

where
(�F · �N

)
T PFA

is the TPFA flux contribution and
(�F · �N

)
CDT

is the flux contribution

from the CDT, provided by the nodal interpolation.
Computing Eq. (5) for all the n control-volumes in �, we obtain the global system of

equations Au � b. The solution of this systemcan be obtained iteratively by theGauss–Seidel
method:

ut+1 � (D + L)−1{b − Uut
}

(13)

where t is the iteration step and D is the diagonal matrix of A, U is the upper triangular part
of A, L is the lower triangular part of A, so that A � L + D + U. Naturally, A is a n × n

matrix, in which the L-th line corresponds to
∑

k∈�L̂

�F · �N
∣∣∣
k
. If we split the fluxes according

to Eq. (10), we can write the global system of equations as:

[AT PFA + ACDT ]u � [bT PFA + bCDT ] (14)

in which the L-th line of AT PFA corresponds to
∑

k∈�L̂

(�F · �N
)
T PFA

∣∣∣
k
and the L-th line of

ACDT corresponds to
∑

k∈�L̂

(�F · �N
)
CDT

∣∣∣
k
, according to Eqs. (11) and (12). The expression

shown in Eq. (14) is the regular MPFA-D global system under the described splitting. The
solution of Eq. (14) can still be obtained iteratively by the Gauss–Seidel method, but in the
following form:

ut+1

� (DT PFA + DCDT + LT PFA + LCDT )
−1 {bT PFA + bCDT − [UT PFA + UCDT ] u

t}

(15)

3.2 The Non-Linear Defect Correction

In this section, we present the Non-Linear Defect Correction strategy that we have devised
to avoid the spurious oscillations that can arise with the use of the original linear MPFA-D
method. After each iteration on Eq. (13), aiming to guarantee monotonicity through a local
DMP imposition, we need to verify the compliance of the following restriction [16]:

utmin − δ ≤ ut+1 ≤ utmax + δ (16)

with the above inequality being an entry-by-entry comparison, where utmax and utmin are
the vectors containing, respectively, the maximum and the minimum scalar values in the
extended stencil of each cell after the t-th iteration and δ is a pre-established tolerance. The
extended stencil of a cell includes the cell itself and all the neighboring cells sharing vertices
with it. Two important exceptions to the application of Eq. (16) are when the evaluated cell
has the maximum source term or the minimum sink term in the extended stencil or when it
has Neumann boundary faces in which gN �� 0. In these cases, the restriction in Eq. (16) is
simply skipped [16]. If the restriction shown in Eq. (16) is violated by the approximation, we
need to modify the system shown in Eq. (15) in order to impose the DMP. As the potential
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source of spurious oscillations in the MPFA-D are the fluxes associated to the CDT, we
modify it as follows:
ut+1 � (DT PFA + ϒDCDT + LT PFA + ϒLCDT )

−1 {bT PFA + ϒbCDT − [UT PFA + ϒUCDT ] ut
}

(17)

whereϒ is a diagonalmatrix,with entries 0 ≤ ϒi i ≤ 1, used toweight theCDTcontributions.
Note that with ϒ � I (the identity matrix), we get back to Eq. (15), i.e., the iterative version
of the original MPFA-D, on the other hand, if ϒ � 0, we get the iterative version of the
TPFA formulation. Rearranging the expression above, we get:

ut+1 � (DT PFA + LT PFA + ϒDCDT + ϒLCDT )
−1 [bT PFA − UT PFAut + ϒbCDT − ϒUCDT ut

]

(18)

Replacing Eq. (18) in Eq. (16) and disregarding the tolerance δ for now, we have the two
following inequalities sets:
{

(DT PFA + LT PFA + ϒDCDT + ϒLCDT )−1[bT PFA − UT PFAut + ϒbCDT − ϒUCDT ut
] ≤ ut

max

(DT PFA + LT PFA + ϒDCDT + ϒLCDT )−1[bT PFA − UT PFAut + ϒbCDT − ϒUCDT ut
] ≥ ut

min

(19)

Rearranging the system, we have:
{
ymax + ϒxmax ≥ 0
ymin + ϒxmin ≤ 0

(20)

where:

xmax � UCDT u
t + DCDT u

t
max + LCDT u

t
max − bCDT

ymax � UT PFAu
t + DT PFAu

t
max + LT PFAu

t
max − bT PFA

xmin � UCDT u
t + DCDT u

t
min + LCDT u

t
min − bCDT

ymin � UT PFAu
t + DT PFAu

t
min + LT PFAu

t
min − bT PFA

(21)

Therefore, we can determine valid intervals (Y i
max and Y

i
min) for the values ofϒi i . Possible

solutions to inequalities in Eq. (20) are given by:

Y i
max �

⎧⎪⎪⎨
⎪⎪⎩

i fxi
max > 0 →

[
−yi

max
yi

max
,∞

)

i fxi
max < 0 →

(
−∞,−yi

max
yi

max

]

i fxi
max � 0 → [0, 1]

(22)

and:

Y i
min �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i fxi
min > 0 →

(
−∞,−yi

min
xi

min

]

i fxi
min < 0 →

[
−yi

min
xi

min
,∞

)

i fxi
min � 0 → [0, 1]

(23)

Therefore, we can define Y i as:

Y i �

⎧⎪⎨
⎪⎩

i f ut+1i ≤ utmin,i → Y i
min ∩ [0, 1]

i f ut+1i ≥ utmax,i → Y i
max ∩ [0, 1]

else → Y i
max ∩ Y i

min ∩ [0, 1]

(24)
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If Y i � ∅, we just adopt Y i � [0, 1], but not before taking an additional step. Consider
thatV is the set of violating DMP cells, if the î ∈ V and Y i � ∅, we include inV all the cells
in the extended stencil of î , so we can try to fix it through modifying its neighbors.

Note that, multiplying ϒACDT , which means to multiply the i-th line of ACDT by ϒi i ,
would be the same thing that multiply each face flux of the cell î by ϒi i . This would violate
the mass conservation. Considering a face k shared by two cells R̂ and L̂ , as shown in Fig. 1,
then the CDT flux through k is present in both L-th and R-th lines of ACDT . This way,
through ϒACDT , the CDT flux through k would be multiplied by ϒLL in the flux balance
of L̂ and by ϒRR in the flux balance of R̂. This would obviously destroy the flux continuity
on k. Therefore, it is necessary to determine a unique value α as the weighting factor to the
cross-diffusion flux on each cell face as:

αk ∈ Fk � Y L ∩ Y R (25)

On the other hand, if Fk � ∅, we perform a different procedure, in which we
need to verify if there is any DMP violation at L̂ or R̂. If the DMP violation occurs
only at L̂ , then Fk � Y L . Analogously, if there is a DMP violation only at R̂, then
Fk � Y R . However, if there is a DMP violation at both L̂ and R̂, we simply use
Fk � {

0.5
[
min

(
Y i
)
+ min

(
Y j
)]

, 0.5
[
max

(
Y i
)
+ max

(
Y j
)]}

. For the case where there is
no DMP violation, Fk � [0, 1]. Then the unique value of αk is defined as:

αk �
{
i f max

(
Fk
)

< 1 → max
(
Fk
)

i f max
(
Fk
) � 1 → 0.5

[
min

(
Fk
)
+ max

(
Fk
)] (26)

Thus, we can see that as we have defined V as a set of cells violating DMP, we need to
define a set of faces F whose CDT flux will be modified to avoid spurious solutions. This
set will consist of all the faces comprising the cells in V. Then, to formally guarantee flux
continuity through a face k ∈ F, ACDT must be corrected as follows:

⎧⎪⎪⎨
⎪⎪⎩

AL̂
CDT � AL̂

CDT +
(
αk − 1

)[(�F · �N
)
CDT

∣∣∣
k∈F

]

AR̂
CDT � AR̂

CDT − (
αk − 1

)[(�F · �N
)
CDT

∣∣∣
k∈F

] (27)

Evidently, DCDT , UCDT , LCDT and bCDT will be modified accordingly, because of the
modification of ACDT . Since we compute αk explicitly, face by face inF, thesemodifications
may give rise to some undesirable side effects in other cells in terms of DMP violation.
Therefore, the process described by Eqs. (21)–(27) is repeated, as shown in the algorithm
in Fig. 2, until the condition in Eq. (16) is fulfilled. As it is well known that the classic
linear TPFA method is a monotone formulation [34], we note that such a condition will be
necessarily satisfied, at least in the extreme case in which ϒ � 0 and the CDT terms vanish.
Thus, since we ensure the DMP in each iteration, the converged solution will undoubtedly
satisfy the DMP. In the present paper we consider the solution converged when the iteration
residue at the t-th iteration is rt < 10−3r1, where r1 is the first iteration residue, calculated
from the initial guess u0. Beyond this, we adopted δ � 10−6.

4 Results

In this section, we show the effectiveness of our non-linear formulation (MPFA-DNL) for the
solution of some benchmark problems found in literature. Considering that the exact solution
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Fig. 2 The MPFA-DNL algorithm

is given by U and the approximate solution is represented by u, we can define the relative 
2

norm of error for the scalar unknown u [26, 35] as:


2u �
√∑n

i�1(Ui − ui )2�i∑n
i�1 U

2
i �i

(28)

and for its gradient ∇u as:


2∇u �
√∑n

i�1|∇Ui − ∇ui |2�i∑n
i�1|∇Ui |2�i

(29)

for which the numerical convergence rate is given by [35]:

qz � −3
log

(

2z,m


2z,m−1

)

log
(

nm
nm−1

) (30)

for two successive meshes1 (m − 1 and m), with m > 1 and z � u,∇u. Furthermore, n
is the total number of degrees of freedom of a mesh. We can also define the undershoot and
overshoot norm of the error as [36]:

εm �
√√√√

n∑
i�1

[
2

max(0, ui − Umax) +
2

max(0,Umin − ui )

]
�i (31)

whereUmax andUmin are, respectively, themaximumand theminimumvalues for the solution
defined by the boundary.

1 The meshes we used can be found at the following address: https://github.com/tuliocavalcante/mesh.
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4.1 Heterogeneous Diagonal-Anisotropic Media

We havemanufactured this example to show that theMPFA-DNL corrects the DMP violation
without degrading the numerical convergence rates of the MPFA-D. This problem has an
analytic solution over the domain � � [0, 1]3, that implies in a non-homogeneous Dirichlet
boundary condition on �D , defined as:

u(x, y, z) � x(1 − x)y(1 − y)z(1 − z) (32)

with an anisotropic diffusion tensor given by:

K �
⎡
⎣
x + 1 0 0
0 y + 1 0
0 0 10(z + 1)

⎤
⎦ (33)

and with a source term computed from using the definitions given by Eq. (32) and (33) in
Eq. (1). In Tables 1 and 2, we can see the comparison between some results obtained with
the MPFA-DNL and with the MPFA-D in its original (non-iterative) version. Table 1 shows
how the MPFA-DNL is successful at avoiding the undershoots observed when we use the
MPFA-D, what is reinforced by the norm εm .

Table 2 and Fig. 3, show that, despite the modifications performed by the non-linear defect
correction approach on the original MPFA-D matrix, aiming to avoid the DMP violation, the

Table 1 Results for the test 4.1—heterogeneous diagonal-anisotropic media

MPFA-D MPFA-DNL

n umin εm umin εm

215 3.72e−04 0 3.72e−04 0

2003 1.61e−05 0 1.62e−05 0

3898 − 6.43e−05 1.42e−6 7.63e−06 0

7711 − 3.99e−05 7.00e−7 2.26e−07 0

15,266 − 5.01e−05 4.55e−7 4.04e−07 0

30,480 − 3.36e−05 2.69e−7 1.29e−06 0

Table 2 Results for the test 4.1—heterogeneous diagonal-anisotropic media

MPFA-D MPFA-DNL

n 
2u qu 
2∇u q∇u 
2u qu 
2∇u q∇u

215 0.210 – 0.585 – 0.209 – 0.585 –

2,003 0.044 2.113 0.284 0.971 0.042 2.147 0.284 0.972

3,898 0.027 2.203 0.236 0.828 0.025 2.306 0.236 0.830

7,711 0.017 2.082 0.176 1.299 0.015 2.313 0.176 1.298

15,266 0.011 1.964 0.144 0.880 0.009 2.055 0.144 0.879

30,480 0.007 2.086 0.113 1.038 0.006 1.730 0.113 1.035
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Fig. 3 Themesh convergence graphs for the test 4.1–HeterogeneousDiagonal-AnisotropicMedia: on the scalar
variable (left) and on its gradient (right)

convergence rates of our theMPFA-DNLmethod are not degraded. In fact, for certainmeshes
the errors were slightly smaller for the MPFA-DNL when compared to the original linear
MPFA-D method.

4.2 Anisotropic Hollow Domain

Now, we consider the problem proposed by Danilov and Vassilevski [37]. In this problem,
we consider a cubic domain � � [0, 1]3 with a central cubic hole �h � [0.4, 0.6]3. At the
external boundary ∂�, the scalar variable is set as ue � 0 and, at the internal edge ∂�h , the
scalar variable is set as ui � 2.

The anisotropic diffusion tensor is defined as:

K � RT
z R

T
y R

T
x

⎡
⎣
100 0 0
0 10 0
0 0 1

⎤
⎦Rx Ry Rz (34)

where:

Rx �
⎡
⎣
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦; Ry �

⎡
⎣

cosβ 0 sin β

0 1 0
− sin β 0 cosβ

⎤
⎦; Rz �

⎡
⎣
cos δ − sin δ 0
sin δ cos δ 0
0 0 1

⎤
⎦ (35)

with θ � π/3, β � π/4 and δ � π/6. Results for both, the linear MPFA-D and the MPFA-
DNL are shown in Table 3. In this table, we can see that the MPFA-D violates the DMP for
all the tested meshes. On the other hand, the MPFA-DNL keeps the solution within the limits
defined by the boundary conditions. In Fig. 4, we can see the scalar variable field at y � 0.5.
As it can be seen, the MPFA-DNL clearly produces a smooth solution without spurious
oscillations even for this test case in which we have a highly anisotropic diffusion tensor
while the linear MPFA-D produces solutions with both, under and overshoots for almost all
meshes used.
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Table 3 Results for the test 4.2—anisotropic hollow domain

MPFA-D MPFA-DNL

n umin umax εm umin umax εm

760 − 0.779 1.750 0.086 1.30e−5 1.706 0

1,660 − 0.537 2.070 0.049 0 1.975 0

2,193 − 0.307 1.907 0.029 0 1.896 0

4,471 − 1.054 1.976 0.065 0 1.926 0

10,552 − 0.868 2.239 0.026 0 1.966 0

17,544 − 18.59 21.91 0.585 0 1.968 0

(a) (b)

Fig. 4 Scalar variable field on the mesh with 17,544 tetrahedra, at y � 0.5, for test 4.2–Anisotropic Hollow
Domain. a Solution with the linear MPFA-Dmethod. b Solution with the newMPFA-DNL. The black regions
within the domain indicate overshoots for the scalar variable and the white regions indicate undershoots for
the scalar variable

4.3 Two-Halves Anisotropic Hollow Domain

Finally, in the last example, we have devised a 3D example based on the 2D one fromQueiroz
et al. [36]. In this problem, we consider a cubic domain � � [0, 1]3 with a central cubic hole
�h � [0.4, 0.6]3. At the external boundary, ∂�, the scalar variable is set as ue � 0 and at
the internal edge, ∂�h , the scalar variable is set as ui � 2. The heterogeneous, discontinuous
and anisotropic diffusion tensors are defined as:

K1 � RT
z R

T
y R

T
x

⎡
⎣
100 0 0
0 10 0
0 0 1

⎤
⎦Rx Ry Rz ∀x ≤ 0.5 (36)
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where:

Rx �
⎡
⎣
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦; Ry �

⎡
⎣

cosβ 0 sin β

0 1 0
− sin β 0 cosβ

⎤
⎦; Rz �

⎡
⎣
cos δ − sin δ 0
sin δ cos δ 0
0 0 1

⎤
⎦ (37)

with θ � π/3, β � π/4 and δ � π/6 and:

K2 �

⎡
⎢⎢⎢⎣

ξX2 + Y
2 + Z

2 −(1 − ξ)XY −(1 − ξ)XZ

−(1 − ξ)XY X
2 + ξY2 + Z

2 −(1 − ξ)YZ

−(1 − ξ)XZ −(1 − ξ)YZ X
2 + Y

2 + ξZ2

⎤
⎥⎥⎥⎦ ∀x > 0.5 (38)

where ξ � 1000, X � x + ξ−1, Y � y + ξ−1, Z � z + ξ−1. In Table 4 we present the
under and overshoot norms of error for the linear MPFA-D and our new MPFA-DNL. In
this table, we can see that, again, the linear version of MPFA-D violates the DMP, returning
completely non-physical solutions with strong spurious oscillations for all tested meshes. On
the other hand, the MPFA-DNL, even for this highly anisotropic and discontinuous diffusion
tensor, keeps the solution between the maximum and the minimum physical bounds for all
tested meshes. In Fig. 5, we present the scalar variable field at y � 0.5 for the mesh with
15,376 control volumes and again we see that the MPFA-DNL produces a smooth solution

Table 4 Results for the test 4.3—two-halves anisotropic hollow domain

MPFA-D MPFA-DNL

n umin umax εm umin umax εm

604 − 5.239 6.034 0.607 5.60e−6 1.692 0

4,949 − 102.2 151.7 6.787 0 1.969 0

15,376 − 484.2 295.6 20.62 0 1.992 0

(a) (b)

Fig. 5 Scalar variable field on the mesh with 15,376 tetrahedra, at y � 0.5, for test 4.3—Two-Halves
Anisotropic Hollow Domain. a Solution with the linear MPFA-D method. b Solution with the new MPFA-
DNL. The black regions within the domain indicate overshoots for the scalar variable and the white regions
indicate undershoots for the scalar variable

123



Journal of Scientific Computing (2022) 93 :42 Page 13 of 15 42

without spurious oscillations even for this test case in which we have a highly anisotropic
and heterogeneous diffusion tensor while the linear MPFA-D produces solutions with both,
strong under and overshoots for all meshes used.

5 Conclusions

In this paper, we have presented the newMPFA-DNLmethod, which is a modified nonlinear
version of the original linear MPFA-D method of Lira Filho et al. [26]. Our new method was
designed to avoid the violation of the Discrete Maximum Principle (DMP) that may occur in
MPFA-D solutions, since it is not a monotone scheme, particularly for highly heterogeneous
and anisotropic diffusion tensors or distorted meshes. We have modified the original linear
MPFA-D through of a flux splitting strategy [15, 16] that splits the flux in a Two-Point Flux
Approximation (TPFA) flux contribution and the Cross Diffusion Terms (CDT). Since the
latter part is the potential source of spurious oscillations in the scalar field, we perform a flux
limiting [18] on the CDT part. These modifications gave us a method which is capable to
satisfy the Discrete Maximum Principle eliminating spurious oscillations for the scalar field,
even for highly heterogeneous and arbitrary anisotropic diffusion tensors, without harming
the convergence rates of the original MPFA-D. Thus, our method is still capable to achieve
second order of accuracy on the scalar field and first order on its gradient. In this paper, we
restrict ourselves to unstructured tetrahedral meshes, even though, in principle, there is no
restriction to extend the method to other polyhedral control volumes.
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