
Journal of Scientific Computing (2022) 93:17
https://doi.org/10.1007/s10915-022-01961-1

A Non-Stiff Summation-By-Parts Finite Difference Method for
the Scalar Wave Equation in Second Order Form:
Characteristic Boundary Conditions and Nonlinear Interfaces

Brittany A. Erickson1 · Jeremy E. Kozdon2,4 · Tobias Harvey3

Received: 1 June 2021 / Revised: 1 July 2022 / Accepted: 5 July 2022 /
Published online: 30 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Curvilinear, multiblock summation-by-parts finite difference operators with the simultane-
ous approximation term method provide a stable and accurate framework for solving the
wave equation in second order form. That said, the standard method can become arbitrarily
stiff when characteristic boundary conditions and nonlinear interface conditions are used.
Here we propose a new technique that avoids this stiffness by using characteristic variables
to “upwind” the boundary and interface treatment. This is done through the introduction of
an additional block boundary displacement variable. Using a unified energy, which expresses
both the standard as well as characteristic boundary and interface treatment, we show that the
resulting scheme has semidiscrete energy stability for the scalar anisotropic wave equation.
The theoretical stability results are confirmed with numerical experiments that also demon-
strate the accuracy and robustness of the proposed scheme. The numerical results also show

B.A.E. was supported by National Science Foundation Awards EAR-1547603 and EAR-1916992
J.E.K. was supported by National Science Foundation Award EAR-1547596
T.H. was supported by National Science Foundation EAR-1916992
The views expressed in this document are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.
Approved for public release; distribution unlimited.

B Brittany A. Erickson
bae@uoregon.edu

Jeremy E. Kozdon
jeremy@kozdon.net

Tobias Harvey
tharvey2@uoregon.edu

1 Department of Computer and Information Science & Department of Earth Sciences, 1202
University of Oregon, 1477 E. 13th Ave., Eugene, OR 97403–1202, US

2 Department of Applied Mathematics, Naval Postgraduate School, 833 Dyer Road, Monterey, CA
93943–5216, US

3 Department of Computer and Information Science, 1202 University of Oregon, 1477 E. 13th Ave.,
Eugene, OR 97403–1202, US

4 Present Address: NextSilicon, Giv’atayim, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-01961-1&domain=pdf
http://orcid.org/0000-0001-9457-8572

17 Page 2 of 39 Journal of Scientific Computing (2022) 93 :17

that the characteristic scheme has a time step restriction based on standard wave propagation
considerations and not the boundary closure.

Keywords Summation-by-parts · Second-order wave equation · Non-stiff · Characteristic
variables

1 Introduction

Due to their superior dispersion properties, high-order methods are ideally suited for wave-
dominated partial differential equations (PDEs) [13]. That said, unless great care is taken in
the treatment of boundary conditions, interface couplings, and variable coefficients, high-
order methods are often less robust than their low-order counterparts. An important tool in
robust high-order methods is utilization of the summation-by-parts (SBP) property [14, 15].
SBP is the discrete analogue of integration by parts and allows the discrete stability analysis
to mimic the continuous well-posedness analysis [22].

When combined with multiblock domain decompositions and curvilinear coordinates,
SBP finite difference methods can be used to stably and accurately model complex geome-
tries and variable material parameters. SBP finite difference methods use standard central
difference stencils in the interior of a domain and transition to one-sided stencils at boundaries
and interfaces in amanner thatmaintains the SBP property. An important feature of SBPfinite
difference methods is the built-in norm matrix, which is similar to the mass matrix in finite
element methods. A variety of SBP finite difference operators have been developed with the
most relevant to this work being the first and second derivative operators on unstaggered grids
[14–16, 20, 26]. With SBP finite difference methods it is possible to either enforce boundary
conditions strongly [23, 24] or weakly [4, 6]; weak enforcement of boundary conditions
with SBP methods is often called the simultaneous approximation term (SAT) method and is
the approach taken here due to its ability to handle non-compatible boundary and interface
conditions.

We are primarily interested in the wave equation in second-order form, that is, a dis-
placement formulation of the wave equation as opposed to velocity-stress or velocity-strain.
Our motivation for this is to address our ultimate goal of advancing simulations of the
earthquake cycle, though our work is applicable to other coupling situations and whenever
characteristic-based boundary conditions are natural. In earthquake cyclemodels interseismic
loading (decade long tectonic loading) is coupled to dynamic rupture (earthquake rupture
taking place over seconds to minutes); the importance of this coupling has been recently
highlighted in, for example, Erickson et al. [8]. In the interseismic phase, a quasidynamic
formulation is often used that neglects inertial effects, e.g., acceleration, resulting in an elliptic
PDE for the displacement. During active fault slip, the coseismic rupture phase, the equations
have a hyperbolic character due to the inclusion of inertial effects.

In order to avoid having to transition between displacements and velocity-stress (or
velocity-strain) it is desirable to use a displacement-based formulation for the coseismic
phase. Virta and Mattsson [28], building on Mattsson et al. [18, 19], developed an SBP-SAT
finite difference scheme for the scalar second-order wave equation with variable coefficients
on curved geometries. Duru et al. [7] extended this scheme for use with nonlinear friction
laws which govern the sliding of fault interfaces in earthquake problems; nonlinear friction
laws relate the interface traction to the sliding velocity. However, as noted in Duru et al.
[7], the modified scheme that incorporates the nonlinear friction law results in a numerically

123

Journal of Scientific Computing (2022) 93 :17 Page 3 of 39 17

stiff system of ordinary differential equations (ODEs) that prevents the use of, for instance,
explicit Runge-Kutta time steppingmethods; inDuru et al. [7] a custom second-order accurate
time stepping method is used. Similar numerical stiffness is also seen in the velocity-stress
formulation of the wave equation for earthquake problems, though this can be circumvented
by rewriting the nonlinear friction law in terms of the characteristic variables, [11].

The main contribution of this work is the use of a characteristic formulation of boundary
and interface conditions within a displacement-based scheme, namely merging the ideas of
Duru et al. [7], Virta and Mattsson [28] with those of Kozdon et al. [11]. The key idea of the
work is to track the evolution of the boundary and interface displacements, which allows the
use of a non-stiff characteristic formulation.

The paper is structured as follows: Section 2 introduces our notation for SBP finite dif-
ference methods. Since the main contribution of the work can be seen in a simplified setup,
Sect. 3 presents the continuous and semidiscrete energy analysis for the one-dimensional
scalar wave equation. Here the characteristic method is formulated for both boundary and
nonlinear interface conditions and compared against the standard approach. Section 4 intro-
duces amulti-dimensional anisotropic, scalar wave equation alongwith its continuous energy
analysis. The semidiscretization of themulti-dimensional problem is given in Sect. 5, where a
unified energy analysis is presented that incorporates both the proposed characteristic method
and the previous approach. The paper concludes with multi-dimensional tests problems in
Sect. 6 and concluding remarks in Sect. 7.

The Julia programming language [3, v1.6.0] was used for all simulations with the codes
available at https://github.com/Thrase/sbp_waveprop_characteristic.

2 Summation-By-Parts Operators

In this work summation-by-parts (SBP) finite difference operators are used to approximate
spatial derivatives. In order to centralize the explanation of these operators, here we introduce
the one-dimensional operators and then generalize the operators tomultiple dimensions using
tensor products.

Throughout we refer to the SBP operators as 2p where p is the boundary accuracy and 2p
is the interior accuracy. SBP methods for the wave equation in second order form typically
see a global convergence rate of min(2p, p+ 2), i.e., two orders of accuracy greater than the
boundary accuracy except in the case of 2p = 2. For first derivatives we use the operators
from Strand [27]1 and for second derivatives the variable coefficient operators fromMattsson
[16].

2.1 One Dimensional SBP Operators

Let the domain 0 ≤ ξ ≤ 1 be discretized with an N + 1 equally spaced grid of points. The
grid of points are represented as ξ with spacing h = 1/N and points located at {ξ}k = kh
for k = 0, 1, . . . , N . Let u be the projection of u onto the computational grid. We define the
operator ek to be the grid basis functions, that is the vector which is 1 at grid point k and zero
at all other grid points. Importantly eTk selects the value of a grid function u at the point k,
namely eTk u = {u}k .

1 The free parameter x1 = 0.70127127127127 is used for 2p = 6.

123

https://github.com/Thrase/sbp_waveprop_characteristic

17 Page 4 of 39 Journal of Scientific Computing (2022) 93 :17

Let the first and C(ξ)-weighted second derivatives of u be approximated as

∂1u
∣
∣
ξ1=kh ≈ {D1u}k, (1a)

∂1C∂1u
∣
∣
ξ1=kh ≈

{

D(C)
11 u

}

k
. (1b)

The derivative approximations D1 and D(C)
11 are called SBP if they satisfy the following

definitions.

Definition 1 (SBP First Derivative) The operator D1 is called an SBP approximation if it
can be decomposed as H1D1 = Q1 with H1 being a symmetric positive definite matrix and

uT
(

Q1 + QT
1

)

v = uT eN eTNv − uT e0eT0 v = {u}N {v}N − {u}0{v}0, (2)

for all vectors u and v.

Definition 2 (SBP Second Derivative) The operator D(C)
11 is called an SBP approximation if

it can be decomposed as

H1D
(C)
11 = −A(C)

11 + {C}N eN bTN − {C}0e0bT0 , (3)

where A(C)
11 is a symmetric positive semidefinite matrix and bTNu and bT0 u are accurate

approximations of the first derivative of u at the boundary points {ξ}N and {ξ}0, respectively.
In addition the derivative approximations are assumed to be compatible, namely that H1

is the same for both the first and second derivative operators and the weighting matrix H1 is
diagonal.

Remark 1 It is not assumed that the boundary derivative operators bT0 and bTN are the first
and last rows of D1, namely bT0 �= e0D1 and bTN �= eN D1. That is, we do not assume that
the operators are fully-compatible SBP operators [21].

The reason operators satisfying Definitions 1 and 2 are called SBP is that the following
identities

uT HD1v = {u}N {v}N − {u}0{v}0 − uT DT
1 Hv, (4a)

uT HD(C)
11 v = {C}N {u}N bTNv − {C}0{u}0bT0 v − uT A(C)

11 v, (4b)

discretely mimic the continuous integration by parts identities
∫ 1

0
u∂1v = (uv)|10 −

∫ 1

0
(∂1u)v, (5a)

∫ 1

0
u∂1C∂1v = (Cu∂1v)|10 −

∫ 1

0
(∂1u)C∂1v. (5b)

It is useful to note that H1 and A(C)
11 lead to quadrature approximations of the following

integrals [9]:
∫ 1

0
uv ≈ uT H1v, (6a)

∫ 1

0
(∂1u)C∂1v ≈ uT A(C)

11 v. (6b)

123

Journal of Scientific Computing (2022) 93 :17 Page 5 of 39 17

2.2 Multidimensional SBP Operators

Multiple dimensional SBP operators can be constructed via tensor products. In particular the
one-dimensional operators are applied along the grid lines. Derivative approximations are
taken to be of the form

∂iC∂ j u ≈ D̃
(C)

i j ũ. (7)

The variable coefficients C present in the approximation make it cumbersome to define the

form of D̃
(C)

i j ũ, so here we outline some of the important discrete properties of the operator;
Appendix presents the tensor product construction of the operators in two spatial dimensions
from which the higher dimensional extensions can be generalized.

We define multidimensional SBP operators on the reference domain B̂ = [0, 1]d with d
being the number of spatial dimensions. A regular Cartesian grid is used to discretize the
reference domain with Ni + 1 grid points in each direction and grid spacing hi = 1/Ni .
A field is represented as a vector with the leading dimension being the fastest index, i.e.,
column-major order. So in two dimensions the grid function of u(ξ1, ξ2) is the vector

ũ =
[{

ũ
}

00

{

ũ
}

10 . . .
{

ũ
}

N1N2

]T
, (8)

where
{

ũ
}

i j ≈ u(ih1, jh2). On the reference domain the faces are numbered so that face 1
is ξ1 = 0, face 2 is ξ1 = 1, face 3 is ξ2 = 0, etc..

Let H̃ be the tensor product volume norm matrix,

H̃ = H1 ⊗ · · · ⊗ Hd , (9)

which can be thought of as an approximation of the inner product
∫

B̂
vu ≈ ṽ H̃ ũ. (10)

The tensor product derivative operators have the following SBP structure

H̃ D̃
(C)

i j = − Ã
(C)

i j +
2i
∑

f =2i−1

n̂ f
i

(

L̄
f
)T

H f C f B̄
f
j , (11)

where the two terms in themultidimensional SBP decomposition can be thought of as approx-
imations of the following volume and surface integrals:

∫

B̂
(∂iv)C(∂ j u) ≈ ṽT Ã

(C)

i j ũT , (12a)
∫

∂ B̂ f
vn̂ f

i C(∂ j u) ≈ n̂i ṽ
(

L̄
f
)T

H f C f B̄
f
j ũ. (12b)

If Ci j defines a symmetric positive definite, spatially varying coefficient matrix then the

matrix Ã
(Ci j)

i j (summation implied over i and j) is symmetric positive semidefinite; see
Appendix A.

The scalar n̂ f
i is component i of the outward pointing normal to the reference domain

along face f ; the Cartesian nature of the reference domain and the face numbering imply
that

n̂ f
i =

{

(−1) f , if i =
⌈

f
2

⌉

,

0, otherwise.
(13)

123

17 Page 6 of 39 Journal of Scientific Computing (2022) 93 :17

The matrix L̄
f
selects the points from the volume vector along face f . The matrix B̄

f
j

computes the derivative approximation in the direction ξ j and evaluates it along face f .When

i = j in (11) then f ∈ (2 j − 1, 2 j) and B̄
f
j is based on the boundary derivatives from the

one-dimensional second derivative SBP operator. When i �= j in (11) then f /∈ (2 j − 1, 2 j)

and B̄
f
j is based on the first derivative SBP operator. The diagonal matrix H f is the tensor

product surface norm matrix, which approximates
∫

∂ B̂ f
vu ≈ ṽ

(

L̄
f
)T

H f L̄
f
ũ, (14)

and the diagonal matrix C f is the variable coefficient evaluated at the points of face f . Since
n̂ f
i = 0 for f /∈ (2i − 1, 2i) the summation in SBP decomposition (11) can be extended to

be a summation over all faces,

H̃ D̃
(C)

i j = − Ã
(C)

i j +
2d
∑

f =1

n̂ f
i

(

L̄
f
)T

H f C f B̄
f
j ; (15)

this new form will be used to simplify the statement of the discretization.
As noted above, here we have only outlined our basic notation and more details about the

construction of the operators are given in Appendix A.

3 One-Dimensional Example

To highlight the key contributions of the work we begin with the one dimensional scalar wave
equation with linear boundary and nonlinear interface conditions. Even in these simplified
problem setups the stiffness of the standard non-characteristic approach can be seen as well
as the key ideas and benefits of the proposed characteristic method.

3.1 Boundary Treatment

3.1.1 Continuous Problem

On the domain Ω = [0, 1] we consider the scalar wave equation
ü = ∂21u, x ∈ Ω, t ∈ [0, T], (16a)

where u̇ and ü denote the first and second time derivatives of the displacement u. To scalar
wave Eq. (16a) we add the family of boundary conditions

τ = −αu̇, x ∈ {0, 1}, t ∈ [0, T], (16b)

for boundary traction τ given by
τ = n ∂1u, (17)

where n is the outward unit normal to the domain, namely n = −1 at x = 0 and n = 1 at x =
1. At each domain edge, the particular type of boundary condition imposed is controlled by
the parameter α ≥ 0. For example α = 0 corresponds to a Neumann boundary condition and
Dirichlet boundary conditions correspond to α → ∞, with the latter seen by rewriting (16b)
as

u̇ = − τ

α
. (18)

123

Journal of Scientific Computing (2022) 93 :17 Page 7 of 39 17

Defining the solution energy,

E = 1

2

∫ 1

0

(

u̇2 + (∂1u)2
)

, (19)

leads to the following energy estimate and thus well-posedness:

Lemma 1 Governing Eq. (16) with energy (19) satisfies Ė ≤ 0.

Proof Taking the time derivative of the energy (19), using the scalar wave Eq. (16a), and
simplifying with integration by parts yields

Ė =
∫ 1

0

(

u̇
(

∂21u
)+ (∂1u) (∂1u̇)

) = u̇ ∂1u
∣
∣1
0 = u̇ τ

∣
∣
1 + u̇ τ

∣
∣
0. (20)

Applying boundary conditions (16b) leads to

Ė = −αu̇2
∣
∣
1 − αu̇2

∣
∣
0 ≤ 0, (21)

since α ≥ 0.
�
For the numerical scheme that follows, it is useful to express the boundary conditions (16b)

in characteristic form:

u̇ + τ = R (u̇ − τ) , x ∈ {0, 1}, t ∈ [0, T]. (22)

Here R, known as the reflection coefficient, is related to α by the transformations

R = 1 − α

1 + α
and α = 1 − R

1 + R
, (23)

where if α ≥ 0 then −1 ≤ R ≤ 1 and vice versa. For example, the Neumann condition
(α = 0) corresponds to R = 1, and the Dirichlet condition (α → ∞) corresponds to
R = −1. The terms u̇ ± τ in boundary condition (22) correspond to characteristic variables
propagating in the ∓n directions, respectively; recall that the unit normal n is included in
traction definition (17). This implies that the boundary condition takes the form of express-
ing the incoming characteristic as a reflection of the outgoing characteristic. Since (22) is
completely equivalent to (16b) the continuous energy estimate of Lemma 1 still holds.

In the semidiscrete scheme that follows it will be useful to define

w = u̇ − τ and q = u̇ + τ, (24)

with w being the outward and q the inward propagating characteristic variables. We reiterate
that for the continuous problem, the boundary conditions specified in terms of α and R are
completely equivalent. That said, the two different perspectives on the boundary conditions
will lead to discretizations with differing numerical properties.

3.1.2 Semidiscrete Problem

Using the SBP finite difference operators defined in Sect. 2, a family of SBP-SAT semidis-
cretizations for governing Eq. (16) is

ü = D11u +
∑

k∈{0,N }

(

H−1ek
(

τ ∗
k − nkbTk u

)

− nkH−1bk
(

u∗
k − uk

))

, (25)

123

17 Page 8 of 39 Journal of Scientific Computing (2022) 93 :17

where n0 = −1 and nN = 1 are the outward pointing normals at the boundary points. Addi-
tionally, τ ∗

k and u∗
k with k ∈ {0, N } are yet-to-be-defined numerical fluxes that penalize the

boundary derivative and displacement toward values that satisfy a range of desired boundary
conditions. For example a Neumann condition−∂1u = 0 at x = 0 can be imposed bymaking
the choices

τ ∗
0 = 0, (26a)

u∗
0 = u0. (26b)

We will illustrate however, that the numerical fluxes can be chosen to impose the boundary
conditions using either the non-characteristic (16b) or characteristic (22) formulations, which
though equivalent in the continuous setting, do not lead to the same numerical scheme.

The semidiscrete version of solution energy (19) is

E = 1

2

(

u̇T Hu̇ + uT A11u
)

+ 1

2γ

∑

k∈{0,N }

(

τ 2k −
(

bTk u
)2
)

, (27)

with τk being the following approximation of traction:

τk = nkbTk u + γ
(

u∗
k − uk

)

, (28)

where γ ≥ 0 is a penalty parameter. The following theorem characterizes energy (27):

Theorem 1 Energy (27) is a seminorm for all u and u∗
k if γ is positive and sufficiently large.

Proof The borrowing lemma from [1, Lemma 1] states that

uT A11u ≥
∑

k∈{0,N }

(

θ
(

dTk u
)2 + ζ

(

ΔT
k u
)2
)

. (29)

Here, parameters θ > 0 and ζ > 0 depend on the specific SBP operator but are independent
of the grid spacing; see Table 3.

The operator dTk u for k ∈ {0, N } is an approximation of the boundary derivative and
ΔT

k = bTk − dTk ; the specific form of dTk does not matter for the one-dimensional analysis
but is critical in the multi-dimensional case.2

Expanding the difference term in energy (27) and rewriting in terms of ΔT
k and dTk yields

τ 2k −
(

bTk u
)2 = 2γ nkδkdTk u + 2γ nkδkΔ

T
k u + γ 2δ2k , (30)

where we have defined δk = u∗
k − uk for k ∈ {0, N }. Putting these results together and

completing the square gives

uT A11u + 1

γ

∑

k∈{0,N }

(

τ 2k −
(

bTk u
)2
)

≥
∑

k∈{0,N }

(

θ

(

nkdTk u + 1

θ
δk

)2

+ ζ

(

nkΔ
T
k u + 1

ζ
δk

)2

+
(

γ − 1

θ
− 1

ζ

)

δ2k

)

.

(31)

2 An alternative borrowing lemma is given in Virta andMattsson [28], and though this lemma yields a slightly
better bound on the penalty parameter γ in one-dimensional, Almquist and Dunham [1] have shown that the
bound is significantly worse in multiple dimensions.

123

Journal of Scientific Computing (2022) 93 :17 Page 9 of 39 17

Choosing γ so that

γ ≥ 1

θ
+ 1

ζ
, (32)

leads to the estimate

uT A11u + 1

γ

∑

k∈{0,N }

(

τ 2k −
(

bTk u
)2
)

≥ 0, (33)

for all u and u∗ since θ > 0 and ζ > 0. The theorem then follows because H is positive
definite.
�
Corollary 1 Semidiscretization (25) satisfies

Ė =
∑

k∈{0,N }

(

u̇∗
kτ

∗
k − (u̇k − u̇∗

k

) (

τk − τ ∗
k

))

, (34)

where E is defined by (27).

Proof Follows directly by taking the time derivative of energy (27), substituting semidis-
cretization (25), and applying SBP property (3).
�

3.1.3 Semidiscrete Problem: Non-Characteristic Boundary Treatment

If the numerical fluxes in semidiscretization (25) are defined to impose boundary conditions
in the non-characteristic form (16b), namely,

τ ∗
k = −αu̇k, (35a)

u∗
k = uk, (35b)

then the numerical scheme is equivalent to that of Virta and Mattsson [28]. In this case, the
definition of u∗ implies that the terms with γ drop out from energy (27) and the penalty
parameter has no impact on the scheme. Neumann boundary conditions can be imposed by
setting α = 0 in (35), however it becomes clear that the imposition of Dirichlet boundary
conditions (α → ∞) is problematic with this formulation.

Theorem 2 Semidiscretization (25) with numerical fluxes (35) satisfies Ė ≤ 0 where E is
defined by (27).

Proof Substituting numerical fluxes (35) into energy rate (34) leads to

Ė = −
∑

k∈{0,N }
α
(

u̇∗
k

)2 ≤ 0 (36)

since α ≥ 0.
�

3.1.4 Semidiscrete Problem: Characteristic Boundary Treatment

The numerical fluxes in semidiscretization (25) can instead be chosen to impose the character-
istic boundary condition (22), giving rise to a different numerical discretization that defined
by non-characteristic numerical flux (35). The basic idea of the characteristic method is to
mimic the upwinding procedure used inmethods for first order hyperbolic equations. Namely,

123

17 Page 10 of 39 Journal of Scientific Computing (2022) 93 :17

we seek to modify the incoming characteristic variable while preserving to outgoing charac-
teristic variable. To do this, we introduce an equation for u̇∗

k which tracks the time evolution
of the numerical flux.

The characteristic-based numerical fluxes are defined as

u̇∗
k = q∗

k + w∗
k

2
, (37a)

τ ∗
k = q∗

k − w∗
k

2
, (37b)

where the characteristic variables are defined so that the outgoing characteristic is preserved
and the incoming characteristic satisfies the boundary condition:

w∗
k = u̇k − τk, (38a)

q∗
k = R w∗

k (38b)

for any −1 ≤ R ≤ 1. Importantly the characteristic numerical flux u∗
k must be tracked as an

independent variable in the solution process. To illustrate the characteristic approach, both
Neumann and Dirichlet conditions can be enforced in a straightforward manner by choosing
either R = 1 or R = −1, respectively, in (38). For R = −1, for example, solving (37)
and (38) for the numerical fluxes yields the specific choices

u∗
k = 0, (39a)

τ ∗
k = τk − u̇k, (39b)

corresponding to Dirichlet boundary conditions.

Theorem 3 Semidiscretization (25) with numerical fluxes (37) satisfies Ė ≤ 0 where E is
defined by (27).

Proof By definition, τ ∗
k and u̇∗

k satisfy the boundary condition:

τ ∗
k = −1 − R

2
w∗
k = −

(
1 − R

1 + R

)(
1 + R

2

)

w∗
k = −α

(
w∗
k + q∗

k

2

)

= −αu̇∗
k , (40)

where we have used numerical flux definitions (37) and (38) along with the relationship (23)
between α and R.

If the grid based incoming characteristic is defined as

qk = u̇k + τk, (41)

then it follows that

u̇k − u̇∗
k = τk − τ ∗

k = qk − q∗
k

2
. (42)

Using (40) and (42) in energy rate (34) gives

Ė = −
∑

k∈{0,N }

(

α
(

u̇∗
k

)2 +
(

qk − q∗
k

)2

4

)

≤ 0 (43)

since α ≥ 0.
�

123

Journal of Scientific Computing (2022) 93 :17 Page 11 of 39 17

3.1.5 Numerical Results

In order to integrate semidiscretization (25) in time one can either use methods designed for
second order ODEs, such as those proposed in Duru et al. [7], or transform the equations
into a first order system of ODEs and use first order time integration technology such as
Runge-Kutta methods. In this latter approach, the auxiliary variable v = u̇ is introduced and
semidiscretization (25) becomes

v̇ = D11u +
∑

k∈{0,N }

(

H−1ek
(

τ ∗
k − nkbTk u

)

+ H−1bk
(

u∗
k − uk

))

, (44a)

u̇ = v; (44b)

in the case of the characteristic numerical flux (37) additional ODEs are required to track u∗
k

for k ∈ {0, N }. System of ODEs (44) can be written more compactly as
⎡

⎢
⎢
⎣

v̇

u̇
u̇∗
0

u̇∗
N

⎤

⎥
⎥
⎦

= G

⎡

⎢
⎢
⎣

v

u
u̇∗
0

u̇∗
N

⎤

⎥
⎥
⎦

,

[

v̇

u̇

]

= Ḡ
[

v

u

]

, (45a)

where linear operator G corresponds to the characteristic numerical flux (37) and Ḡ non-
characteristic numerical flux (35). For each method, the time step size is controlled by the
eigenvalue spectrum of the corresponding linear operator.

Figure 1a–c compare the eigenvalue spectra of the operators with R = 0.99, 0, and
−0.99 (or equivalently α = 1/99, 1, and 199) using a grid with N = 50 and the SBP
operatorswith fourth order interior accuracy fromMattsson [16]. Themarkers+ represent the
characteristic numerical flux and × the non-characteristic numerical flux. As α increases the
spectrum associated with the non-characteristic methods has a large magnitude negative real
eigenvalue, which will severely restrict the time step, i.e., the scheme can become arbitrarily
stiff. On the other hand, the spectrum associated with the characteristic numerical flux is
well behaved in all cases. To further explore this, in Fig. 1d the maximum magnitude real
component of the eigenvalue spectra is given as a function of R (or α). As can be seen the
maximum magnitude real eigenvalue of the non-characteristic methods grows rapidly for
R < 0 (or α > 1) and is more uniform for the characteristic method.

We now considering the accuracy of both the non-characteristic and characteristic
schemes. In this test we consider the initial condition

u0(x) = sin(2πx)6, (46a)

u̇0(x) = 0, (46b)

which for times t ∈ [0, 1] and reflection coefficients R ∈ [−1, 1] has the analytic solution

u(x, t) = ū0(x − t) + ū0(x + t) + R (ū0(2 − x − t) + ū0(−x + t))

2
,

ū0(x) =
{

u0(x), 0 ≤ x ≤ 1,

0, otherwise.

(47)

The L2-convergence can be seen in Fig. 2 at time t = 0.9 for R = 0.99, 0, and −0.99; the
L2-error in the solution is defined as

‖Δu‖H =
√

ΔuT HΔu, (48)

123

17 Page 12 of 39 Journal of Scientific Computing (2022) 93 :17

(a) (b)

(c) (d)

Fig. 1 Comparison of the eigenvalue spectra for the proposed characteristic and non-characteristic [28] treat-
ment of boundary conditions for various values of reflection coefficient R. In all cases the domain is [0, 1]
with grid spacing 1/50 and SBP interior accuracy of 2p = 4. The non-characteristic method is indicated by
red × and the characteristic method with blue + (Color figure online)

with Δu being the pointwise difference between the numerical and exact solutions. In the
figure, the interior accuracy of the SBP scheme is denoted by 2p and all the operators
are from Mattsson [16]. The spatial resolutions used in the test are N = 17 × 2r with
r = 0, 1, 2, 3, 4, 5 and time integration is performed using matrix exponentiation. As can
be seen, both the non-characteristic and characteristic methods converge at similar rates. For
the characteristic method with 2p = 6 the overall error constant is higher, though this can be
improved by increasing the penalty parameter (not shown) at the cost of increased stiffness.

3.2 Nonlinear Interface

3.2.1 Continuous Problem

We now consider an interface at x = 0 on which the traction acting on the interface is related
to the jump in particle velocity across the interface. To do this, we consider the domain

123

Journal of Scientific Computing (2022) 93 :17 Page 13 of 39 17

(a)

(b) (c)

Fig. 2 L2-convergence comparison of the characteristic (+ markers) and non-characteristic (× markers)
treatment of boundary conditions with various values of the reflection coefficient R. The red, blue, and green
curves correspond to SBP interior orders 2, 4, and 6, respectively (Color figure online)

Ω = [−1, 1] and modify wave Eq. (16) to be

ü = ∂21u, x ∈ Ω, t ∈ [0, T], (49a)

τ = −αu̇, x ∈ {−1, 1}, t ∈ [0, T], (49b)
{

τ+ = −τ−

τ− = F
(

u̇+ − u̇−) , x = 0, t ∈ [0, T]. (49c)

In interface condition (49c) the superscript ± denotes the solution on the two-sides of the
interface with u̇− being the particle velocity as x → 0− and u̇+ the particle velocities as
x → 0+. The tractions τ± are defined with normals that point out of the respective sides of
the interface, i.e., τ± = ∓∂1u±. The nonlinear interface function F is assumed to be odd
and take the same sign as its argument:

V F(V) ≥ 0 and F(−V) = −F(V). (50)

Defining the solution energy,

E = 1

2

∫ 1

−1

(

u̇2 + (∂1u)2
)

, (51)

leads to the following energy estimate and thus well-posedness:

Lemma 2 Governing Eqs (49) with energy (51) satisfies Ė ≤ 0.

123

17 Page 14 of 39 Journal of Scientific Computing (2022) 93 :17

Proof Taking the time derivative of energy (51), using scalar wave Eq. (49a), and simplifying
with integration by parts yields

Ė =
∫ 1

−1

(

u̇
(

∂21u
)+ (∂1u) (∂1u̇)

) = u̇ ∂1u
∣
∣
0−
−1 + u̇ ∂1u

∣
∣
1
0+ . (52)

Applying the definition of traction (17), boundary conditions (49b), and interface condi-
tions (49c) leads to

Ė = −αu̇2
∣
∣
1 − αu̇2

∣
∣
0 − (u̇+ − u̇−) F

(

u̇+ − u̇−) ≤ 0, (53)

since α ≥ 0 and V F(V) ≥ 0.
�

3.2.2 Characteristic Nonlinear Interface Condition

As was done with boundary conditions in Sect. 3.1.1, it will be useful for the discretization to
rewrite nonlinear interface condition (49c) in terms of the characteristic variables propagating
into and out of the interface. Namely we let w± be the characteristic variables propagating
into and q± out of the two sides of interface:

w± = u̇± + τ± and q± = u̇± − τ±. (54)

We then define the nonlinear functionsQ±(w−, w+) so that the characteristic-defined inter-
face particle velocities and tractions,

u̇± = Q± + w±

2
, (55a)

τ± = Q± − w±

2
, (55b)

satisfy nonlinear interface condition (49c). For a general F there is no closed form expression
of Q±, but existence can be guaranteed by the implicit function theorem if F ′(V) > 0 [11,
Proposition 1]; AppendixD show how determiningQ± can be reduced to a scalar root finding
problem.

3.2.3 Discrete Problem

The interface problem is discretized with two blocks each with N + 1 grid points. The grid
solution on [−1, 0] is u− and the grid solution on [0, 1] is u+. With this a semidiscretization
in each block is then

ü± = D11u± +
∑

k∈{0,N }

(

H−1ek
(

τ±∗
k − nkbTk u

±)− nkH−1bk
(

u±∗
k − u±

k

))

, (56)

where n0 = −1 and nN = 1 are the outward pointing normals at the block edges. As in
Sect. 3.1, the terms τ±∗

k and u±∗
k are yet-to-be-defined numerical fluxes which can either be

set in a non-characteristic or characteristic manner.
In each block we define the energy in the solution as

E± = 1

2

((

u̇±)T Hu̇± + (u±)T A11u±)

+ 1

2γ

∑

k∈{0,N }

(
(

τ±
k

)2 −
(

bTk u
±)2
)

.
(57)

123

Journal of Scientific Computing (2022) 93 :17 Page 15 of 39 17

with traction τ±
k being as defined (28) for a penalty parameter γ . The energy in the whole

domain is then
E = E− + E+, (58)

and the following theorem guarantees that E is a seminorm of the solution.

Theorem 4 Energy (58) is a seminorm for all u± and u±∗
k if γ is positive and sufficiently

large.

Proof Since the block energy (57) is of the same form as (27) the result follows directly from
Theorem 1.
�
Corollary 2 Semidiscretization (56) satisfies

Ė = BT + I T (59)

where E is defined by (58) with the boundary term BT and interface term I T being

BT = u̇−∗
0 τ−∗

0 − (u̇−
0 − u̇−∗

0

) (

τ−
0 − τ−∗

0

)

+ u̇+∗
N τ+∗

N − (u̇+
N − u̇+∗

N

) (

τ+
N − τ+∗

N

)

, (60)

I T = u̇−∗
N τ−∗

N − (u̇−
N − u̇−∗

N

) (

τ−
N − τ−∗

N

)

+ u̇+∗
0 τ+∗

0 − (u̇+
0 − u̇+∗

0

) (

τ+
0 − τ+∗

0

)

. (61)

Proof Follows directly by taking the time derivative of energy (58), substituting semidis-
cretization (56), and applying SBP property (3).
�

As shown in Sect. 3.1, if boundary conditions are enforced with either the non-
characteristic (35) or characteristic (37) numerical fluxes then BT ≤ 0. All that remains
to be shown is how the numerical fluxes for the interface can be defined so that I T ≤ 0,
and as with the boundaries we will show how this can be done in a non-characteristic and
characteristic manner.

3.2.4 Non-Characteristic Interface Treatment

In Duru et al. [7] it was proposed to set the numerical fluxes for the interface as

τ−∗
0 = −τ+∗

N = F
(

u̇+
0 − u̇−

N

)

, (62a)

u−∗
0 = u−

0 , (62b)

u+∗
N = u+

N . (62c)

This leads to the following energy estimate for the interface:

Theorem 5 Non-characteristic numerical flux (62) leads to the energy dissipation I T ≤ 0
where I T is defined by (61).

Proof Substituting numerical flux (62) into (61) gives

I T = u̇−∗
N τ−∗

N + u̇+∗
0 τ+∗

0 = − (u̇+∗
0 − u̇−∗

N

)

F
(

u̇+∗
0 − u̇−∗

N

)

, (63)

and the result follows since V F(V) ≥ 0.
�

123

17 Page 16 of 39 Journal of Scientific Computing (2022) 93 :17

3.2.5 Characteristic Interface Treatment

The characteristic numerical interface fluxes are defined as

u̇−∗
N = q−∗

N + w−∗
N

2
, u̇+∗

0 = q+∗
0 + w+∗

0

2
, (64a)

τ−∗
N = q−∗

N − w−∗
N

2
, τ+∗

0 = q+∗
0 − w+∗

0

2
, (64b)

where the characteristic variables are

w−∗
N = u̇−

N − τ−
N

2
, w+∗

0 = u̇+
0 − τ+

0

2
, (65a)

q−∗
N = Q− (w−∗

N , w+∗
0

)

, q+∗
0 = Q+ (w−∗

N , w+∗
0

) ; (65b)

see Sect. 3.2.2. As with the case of characteristic treatment of boundary conditions, the
numerical fluxes u−∗

N and u+∗
0 must be tracked as variables during the solution process. The

following theorem guarantees energy stability of the characteristic interface treatment:

Theorem 6 Characteristic numerical flux (64) leads to the energy dissipation I T ≤ 0 where
I T is defined by (61).

Proof By definition, characteristic numerical flux (64) satisfies the nonlinear interface con-
dition:

τ−∗
N = −τ+∗

0 = F
(

u̇+∗
0 − u̇−∗

N

)

. (66)

With this, we then have that

u̇−∗
N τ−∗

N + u̇+∗
0 τ+∗

0 = − (u̇+∗
0 − u̇−∗

N

)

F
(

u̇+∗
0 − u̇−∗

N

) ≤ 0, (67)

since V F(V) ≥ 0. Defining the grid based interface outgoing characteristic variables

q−
N = u̇−

N + τ−
N

2
, q+

0 = u̇+
0 + τ+

0

2
, (68a)

it follows from characteristic numerical flux (64) that

u̇−
N − u̇−∗

N = τ−
N − τ−∗

N = q−
N − q−∗

N

2
, (69a)

u̇+
0 − u̇+∗

0 = τ+
0 − τ+∗

0 = q+
0 − q+∗

0

2
. (69b)

Using relations (67) and (69) in interface term (61) gives

I T = − (u̇+∗
0 − u̇−∗

N

)

F
(

u̇+∗
0 − u̇−∗

N

)−
(

q−
N − q−∗

N

)2

4
−
(

q+
0 − q+∗

0

)2

4
≤ 0. (70)

�

3.2.6 Numerical Results

In order to assess the stiffness and accuracy of the non-characteristic and characteristic
interface treatment, we use the nonlinear interface function

F(V) = β arcsinh (V) , (71)

123

Journal of Scientific Computing (2022) 93 :17 Page 17 of 39 17

Table 1 Stable Courant κ for the
characteristic and
non-characteristic interface
treatment for increasing values of
β and various SBP operator with
interior accuracy 2p

β characteristic non-characteristic

2p = 2 2p = 4 2p = 6 2p = 2 2p = 4 2p = 6

32 1/2 1/2 1/4 1/32 1/64 1/64

64 1/2 1/2 1/4 1/64 1/128 1/128

128 1/2 1/2 1/4 1/128 1/256 1/256

where the parameter β > 0 will vary in the experiment. The outer boundary conditions are
Neumann and enforced using the non-characteristic method. The initial condition is taken as

u0(x) = exp

(

−
(
x − μ

σ

)2
)

, (72a)

u̇0(x) = 2(x − μ)

σ 2 u0(x), (72b)

with μ = −1/2 and σ = 1/15. These initial conditions lead to a pulse centered at x = μ

moving to the right. The exact solution for displacement is

u(x, t) =
{

u0(x − t) + ψ− (t + x) , x < 0,

u0(x + t) + ψ+ (t − x) , x > 0.
(73)

The functions ψ± are a result of the wave propagating out of the interface, and are defined
as

ψ±(T) = 1

2

{

0, T ≤ 0
∫ T
0 Q± (w−

0 (t) , w+
0 (t)

)

dt, T > 0,
(74)

with the characteristic variables propagating into the interface being

w±
0 (t) = u̇0 (±t) ± u′

0 (±t) ; (75)

the integral in (74) must be solved numerically since Q± does not have a closed form.
Time stepping is done by converting semidiscretization (56) into a first order system and

using the low-storage, fourth order Runge-Kutta scheme of [5, (5,4) 2N -Storage RK scheme,
solution 3]. The time step size is selected to be of the form

Δt = κ h, (76)

where κ is a Courant number chosen so that the simulation is stable and accurate. The L2-error
in the solution is

‖Δu‖H =
√
(

Δu−)T HΔu− + (Δu+)T HΔu+, (77)

with Δu± being the pointwise difference between the numerical and exact solutions on the
two sides of the interface. To find a suitable value of κ we start with an initial value of κ = 1
and this is successively halved until the simulation is stable and accurate.

Table 1 gives the Courant κ determined for each SBP order and β pair. As can be seen the
Courant number for the characteristic method is purely a function of the SBP operator and
for the non-characteristic the time step size scales inversely with β.

Figure 3 shows the convergence results for the solution at time t = 1 for the non-
characteristic and characteristic methods. The spatial resolutions used in the test are N =

123

17 Page 18 of 39 Journal of Scientific Computing (2022) 93 :17

(a)

(b) (c)

Fig. 3 L2-convergence comparison of the characteristic (+ markers) and non-characteristic (× markers)
treatment of the nonlinear interface condition for various values of the strength parameter β. The red, blue,
and green curves correspond to SBP interior orders 2, 4, and 6, respectively (Color figure online)

17 × 2r with r = 0, 1, 2, 3, 4, 5. In the figure SBP interior orders 2p = 2, 4, and 6 are used
and the nonlinear strength parameters as β = 32, 64, and 128. As can be seen both methods
converge similarly at the expected rates.

4 Multi-Dimensional Model Problem

4.1 Continuous Problem

Let Ω ⊂ R
d be a bounded domain with boundary ∂Ω . The boundary is split into two

distinct parts: a Dirichlet boundary ∂ΩD and a characteristic boundary ∂ΩC . Additionally,
let ΓI ⊂ R

d−1 be a set of interfaces in the domain. Unless otherwise noted summation over
repeated subscripts is implied, e.g., uivi = ∑d

i=1 uivi , uii = ∑d
i=1 uii , and uiCi jv j =

∑d
i=1
∑d

j=1 uiCi jv j .
As a model problem we consider the scalar second-order, anisotropic wave equation for

displacement u:

ρü = ∂iCi j∂ j u, x ∈ Ω, t ∈ [0, T], (78a)

u = gD, x ∈ ∂ΩD, t ∈ [0, T], (78b)

Zu̇ + τ = R(Zu̇ − τ) + gC , x ∈ ∂ΩC , t ∈ [0, T], (78c)
{

τ− = −τ+,

τ± = F(V±),
x ∈ ΓI , t ∈ [0, T]. (78d)

123

Journal of Scientific Computing (2022) 93 :17 Page 19 of 39 17

Here, the densityρ > 0 and the components of the stiffnessmatrixCi j are taken to be spatially
varying. The stiffness matrix is assumed to be symmetric positive definite: Ci j = C ji and
viCi jv j ≥ 0 with equality only when vi = 0 for all i . At interfaces and boundaries the
traction τ is

τ = niCi j∂ j u, (79)

where the vector ni is the outward unit normal to boundary. On ∂ΩC the reflection coefficient
satisfies −1 ≤ R ≤ 1 where the shear impedance Z > 0 is defined by Z2 = ρniCi j n j .
On the interface ΓI , relationship (78d) specifies force balance and a nonlinear conditions,
respectively. The normal vector is defined so that n−

i points away from the minus side and n+
i

points away from the plus side with n+
i = −n−

i . The superscripts on the material parameters
denote which side of the interface the material parameters are evaluated on. We define the
jump in u̇ across the interface by

V± = u̇∓ − u̇±. (80)

Physically, The nonlinear function F(V) is the frictional strength of the interface and is
assumed to satisfy V F(V) ≥ 0. Force balance and V+ = −V− imply that F(V+) =
−F(V−).

4.2 Domain Decomposition

LetB(Ω)be a partitioning ofΩ ⊂ R
d into Nb non-overlapping, curvilinear blocks (quadrilat-

erals when d = 2 and hexahedronswhen d = 3). For each B ∈ B(Ω) there is a diffeomorphic
mapping xB between B and the reference block B̂ = [0, 1]d such that xB(ξ) ∈ B for all
ξ ∈ B̂; the reference block is the same as the reference domain discussed in Sect. 2.2 and
the same face numbering is used. We use the notation ∂̂i to denote the partial derivative with
respect to ξi . The Jacobian determinant is denoted as J B . For example with d = 2

J B =
(

∂̂1x
B
1

) (

∂̂2x
B
2

)

−
(

∂̂1x
B
2

) (

∂̂2x
B
1

)

. (81)

Note that typically the metric terms are computed by first computing ∂̂l x Bi and then metric
identities are employed to calculate ∂ jξ

B
m ; see, for example, Kopriva [10].

Each block B ∈ B(Ω) has 2d faces, and we let ∂B f for f = 1, 2, . . . , 2d be the faces in
physical space and ∂ B̂ f be the faces in the reference space. We assume that each face B f

corresponds to either a Dirichlet boundary, characteristic boundary, nonlinear interface, or
a purely computational interface (i.e., an artificial interface introduced in the partitioning of
Ω). We let nB f

i denote the outward pointing normal to face f of block B in physical space

and n̂B f

i ≡ n̂ f
i denote the same outward pointing normal in the reference space; see also (13).

The relationship between ni and n̂i is

SB f

J nB f

i = J B
(

∂iξ
B
k

)

n̂ f
k , (82)

where the surface Jacobian SB f

J is the normalization factor so that nB f

i is a unit vector. Given

the face numbering convention and properties of the reference unit norm n̂ f
i , the surface

Jacobian with d = 2 is

(

SB f

J

)2 =
(

J B
)2
(

∂iξ
B⌈
f
2

⌉

)(

∂iξ
B⌈
f
2

⌉

)

(no summation over f). (83)

123

17 Page 20 of 39 Journal of Scientific Computing (2022) 93 :17

Before writing down the transformed governing equations, it is useful to define a few
metric term scaled quantities. For each B ∈ B(Ω) we define the transformed density and
stiffness matrix as

ρ̂ = Jρ, (84a)

Ĉi j = J (∂lξi)Clm
(

∂mξ j
) ; (84b)

in this equation, and those that follow, unless needed the superscript B denoting the block
number is suppressed. Similarly, on face ∂B f the shear impedance and traction are defined
as

(

Ẑ f
)2 = ρ̂n̂ f

i Ĉi j n̂
f
j =

(

S f
J Z

f
)2

, (85a)

τ̂ f = n̂ f
i Ĉi j ∂̂ j u = S f

J τ f ; (85b)

unless needed for clarity, the superscript B f is reduced to f . Finally, the scaled boundary
data and interface function are

ĝ f
C = S f

J gC , (86a)

F̂(V) = S f
J F(V). (86b)

With these, for each B ∈ B(Ω) governing Eq. (78) become

ρ̂ü = ∂̂i Ĉi j ∂̂ j u, ξ ∈ [0, 1]d , t ∈ [0, T]. (87a)

For each face ∂B f the boundary and interface condition are

u = g f
D, if ∂B f ∩ ∂ΩD �= ∅, (87b)

Ẑ f u̇ f + τ̂ f = R f
(

Ẑ f u̇ f − τ̂ f
)

+ ĝ f
C , if ∂B f ∩ ∂ΩC �= ∅, (87c)

{

τ̂ f − = −τ̂ f +

τ̂ f ± = F̂
(

V f ±)
,

if ∂B f ∩ ΓI �= ∅, (87d)

{

τ̂ f − = −τ̂ f +
,

u̇ f − = u̇ f +
,

otherwise. (87e)

where V f ± = u̇ f ∓ − u̇ f ±
. Here the notation f ± denotes the two sides of the interface

with f − denoting the interior value and f + denoting the exterior (neighboring block) value.
Namely, let face ∂B f of block B ∈ B(Ω) be connected to block C ∈ B(Ω) along face

∂C f ′
, then ∂B f − = ∂B f and ∂B f + = ∂C f ′

. By definition S f +
J = S f −

J and n̂ f +
i = −n̂ f −

i .
Interface conditions (87e) are not present in the original governing Eq. (78), and are added
to account for continuity of the solution across computational block interfaces.

4.3 Characteristic Variables

As in the one-dimensional case, it is useful to introduce the characteristic variables

q̂ f = Ẑ f u̇ f + τ̂ f , (88a)

ŵ f = Ẑ f u̇ f − τ̂ f , (88b)

123

Journal of Scientific Computing (2022) 93 :17 Page 21 of 39 17

where q̂ f and ŵ f propagate out of and into the block face f , respectively; recall that τ̂ f

includes the outward normal. As before, the displacement and traction can be recovered from
the characteristic variables:

u̇ f = q̂ f + ŵ f

2Ẑ f
, (89a)

τ̂ f = q̂ f − ŵ f

2
. (89b)

With this, the characteristic boundary condition (87c) can be written as

q̂ f = R f ŵ f + ĝ f
C . (90)

Interface conditions (87d) and (87e) can both be rewritten in terms of the characteristic
variables:

q̂ f ± = Q̂ f ± (
ŵ f ±

, ŵ f ∓)
, (91)

where the superscript f ± denote the variable on either side of the interface. For computational
interface (87e), Q̂ f ±

is a linear function:

Q̂ f ± (
ŵ f ±

, ŵ f ∓) = 2Ẑ f ±
ŵ f ∓ + (Ẑ f ± − Ẑ f ∓

)ŵ f ±

Ẑ f + + Ẑ f − ; (92)

when Ẑ f + = Ẑ f −
this reduces to transmission of the characteristic variable across the

interface: Q̂ f ± (
ŵ f ±

, ŵ f ∓) = ŵ f ∓
.

As discussed in one-dimension, for nonlinear interface condition (87d), in general there
is no closed form expression for Q̂±. As shown in Appendix D, for a given u̇ f ±

and τ̂ f ±

the function Q̂± can be found to be consistent with the interface condition by solving the
nonlinear system

u̇ f ± = Q̂ f ± + ŵ f ±

2Ẑ f ± , (93a)

τ̂ f ± = Q̂ f ± − ŵ f ±

2
= F̂

(

V f ±)
. (93b)

4.4 Energy Analysis

To guide the development of the numerical scheme, we now develop an energy estimate for
governing Eq. (87a). We define a seminorm E(u) and then show that Ė(u(·, t)) ≤ 0 when
g f
D = ĝ f

C = 0 for all t > 0; with non-zero boundary data energy growth due to the boundary
conditions must be allowed.

For the transformed system (87), the energy in block B ∈ B(Ω) is

EB = 1

2

∫

B̂

(

ρ̂u̇2 +
(

∂̂i u
)

Ĉi j

(

∂̂ j u
))

; (94)

this is valid seminormof u, namely EB ≥ 0 for all u, because the stiffnessmatrix is symmetric
positive definite. The total energy in the domain is then

E =
∑

B∈B(Ω)

EB . (95)

123

17 Page 22 of 39 Journal of Scientific Computing (2022) 93 :17

Lemma 3 Governing Eq. (87) with energy (95) satisfy Ė ≤ 0 if g f
D = ĝ f

C = 0.

Proof Taking the time derivative of block energy (94), substituting in governing Eq. (87a),
and applying the divergence theorem gives

Ė B =
2d
∑

f =1

∫

∂ B̂ f
u̇ f τ̂ f . (96)

If face f is a Dirichlet boundary then applying boundary condition (87b) with g f
D = 0

gives
∫

∂ B̂ f
u̇ f τ̂ f =

∫

∂ B̂ f
g f
D τ̂ f = 0. (97)

Similarly, if face f is a characteristic boundary, applying physical to characteristic variable
transformation (89) and using characteristic boundary condition (90) gives

∫

∂ B̂ f
u̇ f τ̂ f = −

∫

∂ B̂ f

1

4Ẑ

(

1 + R f
) (

1 − R f
)

ŵ2

= −
∫

∂ B̂ f

1

4Ẑ

(

1 −
(

R f
)2
)(

ŵ f
)2 ≤ 0,

(98)

since −1 ≤ R f ≤ 1.
If face f is an interface, adding both contributions gives

∫

∂ B̂ f
u̇ f −

τ̂ f − +
∫

∂ B̂ f
u̇ f +

τ̂ f + = −
∫

∂ B̂ f

(

u̇ f + − u̇ f −)
τ̂ f − = −

∫

∂ B̂ f
V f −

τ̂ f −
, (99)

where we have used that τ̂ f + = −τ̂ f −
by (87e) and (87d).

For the case of computational interface condition (87e) the particle velocity is continuous,
thus V f − = 0 and the interface leads to a zero rate of change in energy.

When the interface is governed by nonlinear interface condition (87d) we have that

∫

∂ B̂ f
u̇ f −

τ̂ f − +
∫

∂ B̂ f
u̇ f +

τ̂ f + = −
∫

∂ B̂ f
V f −

F̂
(

V f −) ≤ 0, (100)

by the condition that V F̂(V) ≥ 0.
�

5 Multi-Block Semidiscretization

A single block semidiscretization of (87) with weak enforcement of boundary conditions is

ρ̃ ¨̃u = D̃
(Ĉi j)

i j ũ +
2d
∑

f =1

H̃
−1
(

L̄
f
)T

H f
(

τ̂
∗ f − n f

i Ĉ
f
i j B̄

f
j ũ
)

−
2d
∑

f =1

H̃
−1
(

B̄
f
j

)T
n f
i Ĉ

f
i jH

f
(

u∗ f − L̄
f
ũ
)

.

(101)

123

Journal of Scientific Computing (2022) 93 :17 Page 23 of 39 17

which after multiplying by H̃ and applying the multidimensional SBP property (15) gives a
form that is more convenient for analysis:

ρ̃ H̃ ¨̃u = − Ã
(Ĉi j)

i j ũ +
2d
∑

f =1

(

L̄
f
)T

H f τ̂
∗ f

−
2d
∑

f =1

(

B̄
f
j

)T
n f
i Ĉ

f
i jH

f
(

u∗ f − u f
)

.

(102)

Here we have defined
u f = L̄

f
ũ, (103)

and ρ̃ is a diagonal matrix of density ρ evaluated at the grid points. The numerical flux vectors
τ̂

∗ f and u∗ f , which depend on the specific boundary or interface condition, are discussed in
detail below.

We define the energy in the domain as

E =
∑

B∈B(Ω)

E B , (104)

where the energy in block B is

E B = 1

2
˙̃uT H̃ ρ̃ u̇ + 1

2
ũT Ã

(Ĉi j)

i j ũ

+ 1

2

2d
∑

f =1

((

τ̂
f
)T (

X f
)−1

H f
(

τ̂
f
)

−
(

T̂
f)T (

X f
)−1

H f
(

T̂
f)
)

.

(105)

Here we have defined the diagonal matrix

X f = n f
i n

f
j Ĉ

f
i jΓ

f , (106)

whereΓ f is a diagonal penalty parameter matrix the entries of whichmust be sufficient large;
a lower bound for Γ f is given by (149a). Additionally we define the block face tractions

T̂
f = n f

i Ĉ
f
i j B̄

f
j ũ, (107a)

τ̂
f = T̂

f + X f
(

u∗ f − L̄
f
ũ
)

. (107b)

Essentially, discrete energy (105) is a direct discretization of continuous energy (94) with an
additional penalty on the faces for the mismatch between two alternative approximations of
the traction τ̂ f (85b).

The discrete energy satisfies the following theorem; proof in Appendix B.

Theorem 7 Energy (105) is a seminorm of the solution if Γ f is positive and sufficiently large.

Corollary 3 For each block B ∈ B(Ω), the energy rate of change is

Ė B =
2d
∑

f =1

Ė f , (108)

with the energy face rate of change being

Ė f =
(

τ̂
∗ f
)T

H f u̇ f +
(

τ̂
f
)T

H f
(

u̇∗ f − u̇ f
)

. (109)

123

17 Page 24 of 39 Journal of Scientific Computing (2022) 93 :17

Proof For a single block, taking the time derivative of block energy (105) and using dis-
cretization (102) gives

Ė f =
(

τ̂
f
)T (

X f
)−1

H f
(

˙̂τ f
)

−
(

T̂
)T (

X f
)−1

H f
(˙̂T
)

+
(

τ̂
∗ f
)T

H f u̇ f −
(

u∗ f − u f
)T

H f ˙̂T .

(110)

Using the definition of τ̂ f (107b) the rate of change of face energy simplifies to face rate (109).

�

Discrete face energy rate (109) is of the same form as the continuous counterpart (96),
namely a boundary integral of the particle velocity times the traction at the boundary. Stability
is now reduced to showing that if a face f is on a physical boundary that Ė f ≤ 0 and if on a
block interface that Ė f − + Ė f + ≤ 0.

In the remainder of this section numerical fluxes are given for characteristic boundary
conditions aswell as the characteristic treatment of computational and nonlinear interfaces. In
AppendixC the typical SBP-SATnumerical fluxes forDirichlet,Neumann, andCharacteristic
boundary conditions as well as computational interfaces are given, e.g., those from Virta and
Mattsson [28] with the improved Dirichlet penalty parameter of Almquist and Dunham [1].
The standard approaches specify u∗ directly, i.e., they do not require an additional block face
variable be integrated in time.

5.1 Characteristic Boundary Conditions

When block face f corresponds to a characteristic boundary (90)we choose values of τ̂∗ f and
u̇∗ f which preserves the outgoing characteristic variable while also satisfying the boundary
condition:

Ẑ
f
u̇∗ f − τ̂

∗ f = Ẑ
f
u̇ f − τ̂

f
,

Ẑ
f
u̇∗ f + τ̂

∗ f = R f
(

Ẑ
f
u̇∗ f − τ̂

∗ f
)

+ ĝ f
C ; (111a)

Solving these equations for the numerical fluxes gives

u̇∗ f = I + R f

2

(

u̇ f −
(

Ẑ
f)−1

τ̂
f
)

+ 1

2

(

Ẑ
f)−1

ĝ f
C , (112a)

τ̂
∗ f = − I − R f

2

(

Ẑ
f
u̇ f − τ̂

f
)

+ 1

2
ĝ f
C . (112b)

As in the one-dimensional formulation, numerical flux u∗ f must be stored along the face and
integrated in time.

Using the characteristic boundary treatment (112) with gc = 0 in face energy rate of
change (109) gives

Ė f = −
(

u̇ f
)T I − R f

2
Ẑ

f
H f u̇ f −

(

τ̂
f
)T I + R f

2

(

Ẑ
f)−1

H f τ̂
f
. (113)

Since the reflection coefficient satisfies −1 ≤ R ≤ 1, the boundary treatment is energy
stable: Ė f ≤ 0.

123

Journal of Scientific Computing (2022) 93 :17 Page 25 of 39 17

5.2 Characteristic Interface

For characteristic interfaces, computational or nonlinear, the aim is to define the numerical
fluxes to satisfy the interface condition in a way that preserves the characteristic variables
propagating into the interface.As noted in Sect. 4.2, the nonlinear and computational interface

conditions can be enforced using the functions Q̂ f ±
(91). Thus we define τ̂

∗ f ±
and u̇∗ f ±

so
that they satisfy

ŵ
∗ f ± = Ẑ

f ±
u̇ f ± − τ̂

f ± = Ẑ
f ±
u̇∗ f ± − τ̂

∗ f ±
, (114a)

q̂∗ f ± = Q̂ f ± (
ŵ

∗ f ±
, ŵ

∗ f ∓) = Ẑ
f ±
u̇∗ f ± + τ̂

∗ f ±
. (114b)

Solving for the numerical fluxes then gives

u̇∗ f ± = 1

2

(

Ẑ
f ±)−1 (

q̂∗ f ± + ŵ
∗ f ±)

, (115a)

τ̂
∗ f ± = 1

2

(

q̂∗ f ± − ŵ
∗ f ±)

. (115b)

Since τ̂
∗ f ±

and u̇∗ f ±
satisfy the interface conditions, it follows that for a computational

interface:

τ̂
∗ f − = −τ̂

∗ f +
, (116a)

u̇∗ f − = u̇∗ f +
, (116b)

and for the nonlinear interface:

τ̂
∗ f − = −τ̂

∗ f +
, (117a)

τ̂
∗ f ± = F̂

(

V ∗ f ±)
, (117b)

where V ∗ f ± = u̇∗ f ∓ −u̇∗ f ±
. Since it is required that V F̂(V) ≥ 0, for both the computational

and nonlinear interface treatment

(

τ̂
∗ f ±)T

V ∗ f ± ≥ 0; (118)

in the computational interface V ∗ f ± = 0.
In order to analyze the interface treatment, it is useful to define the grid based characteristic

variables

q̂ f ± = Ẑ
f ±
u̇ f ± + τ̂

f ±
, (119)

so that we can write

u̇ f ± = 1

2

(

Ẑ
f ±)−1 (

q̂ f ± + w∗ f ±)
, (120a)

τ̂
f ± = 1

2

(

q̂ f ± − w∗ f ±) ; (120b)

123

17 Page 26 of 39 Journal of Scientific Computing (2022) 93 :17

identical expressions can be written for the numerical fluxes q̂∗ f ±
, u̇∗ f ±

, and τ̂
∗ f ±

. Using
these in the face energy rate of change (109) gives

Ė f ± =
(

τ̂
∗ f ±)T

H f u̇∗ f ± −
(

τ̂
∗ f ± − τ̂

f ±)T
H f
(

u̇∗ f ± − u̇ f ±)

=
(

τ̂
∗ f ±)T

H f u̇∗ f ± − 1

4

(

q̂∗ f ± − q̂ f ±)T
(

Ẑ
f ±)−1

H f
(

q̂∗ f ± − q̂ f ±)
.

(121)

Adding the two sides of an interface together yields

Ė f − + Ė f + = −
(

τ̂
∗ f −)T

H f V ∗ f −

− 1

4

(

q̂∗ f − − q̂ f −)T
(

Ẑ
f −)−1

H f
(

q̂∗ f − − q̂ f −)

− 1

4

(

q̂∗ f + − q̂ f +)T
(

Ẑ
f +)−1

H f
(

q̂∗ f + − q̂ f +)
.

(122)

Here we have used that τ̂
∗ f + = −τ̂

∗ f −
. Energy stability results since this face energy rate

of change is non-positive due to the positivity result of (118) and the fact that the second and
third terms are in quadratic form.

6 Two-Dimensional Numerical Experiments

To test semidiscrete scheme (102) we introduce a velocity variable ṽ = ˙̃u and write the
method as a first order system of equations:

u̇ =ṽ, (123a)

v̇ =ρ̃−1 D̃
(Ĉi j)

i j ũ +
2d
∑

f =1

ρ̃−1 H̃
−1
(

L̄
f
)T

H f
(

τ̂
∗ f − n f

i Ĉ
f
i j B̄

f
j ũ
)

−
2d
∑

f =1

ρ̃−1 H̃
−1
(

B̄
f
j

)T
n f
i Ĉ

f
i jH

f
(

u∗ f − L̄
f
ũ
)

; (123b)

as needed, additional variables are also introduced to track the numerical fluxes. The error is
measured using the discrete L2-norm

‖Δũ‖H =
√
√
√
√

Nb∑

b=1

(

ΔũB
)T

J̃
B
H̃

B
ΔũB , (124)

where Δũ is the difference between the numerical and analytic solution evaluated at the grid
points. In all cases the penalty parameter is chosen to be at the stability limit, i.e., the equality
condition of (149a).

We consider the two-dimensional square domain Ω = [−2, 2]2. Inside of Ω we define
the unit circle ΓI = {(x1, x2)|x21 + x22 = 1} to partition the domain into a closed unit disk
Ω1 = {(x1, x2)|x21 + x22 ≤ 1} and the remainder Ω2 = cl(Ω \ Ω1). The interface ΓI is
governed by the nonlinear condition

τ± = β arcsinh
(

V±)+ g±
τ , (125)

123

Journal of Scientific Computing (2022) 93 :17 Page 27 of 39 17

Fig. 4 Two-dimensional domain
used for numerical results in
Sect. 6. The thick green line is the
interface between the two
subdomains Ω1 and Ω2. The thin
black lines show the finite
difference block interfaces (Color
figure online)

where β > 0 and g±
τ is a time and space dependent forcing function; around V = 0 with

g±
τ = 0 the linearization of the interface condition is τ± = βV . The right and left boundaries

of Ω are taken to be Dirichlet, the top and bottom boundaries Neumann; the Dirichlet and
Neumann boundary conditions are enforced using the standard approach described in the
Appendix C. As shown in Fig. 4, the domain is decomposed into 56 finite difference blocks
and the all interfaces, nonlinear and computational, are enforced using the characteristic
approach described in Sect. 5.2 through the introduction of the auxiliary variable u∗ f on
each interface. Given the unstructured connectivity of the blocks it is necessary to use the
same (N + 1) × (N + 1) grid of points in each block; we refer to N as the block size. Time
stepping is performed using the low-storage, fourth order Runge-Kutta scheme of [5, (5,4)
2N -Storage RK scheme, solution 3].

In order to assess the stiffness and accuracy of the scheme in two spatial dimensions we
use the method of manufactured solutions (MMS) [25]. In particular, we assume an analytic
solution and compute the necessary boundary, interface, and volume data. The manufactured
solution is taken to be

u(x1, x2, t) =
{

sin(t) e
1+e

(

2 − e−r2
)

r sin(θ), (x1, x2) ∈ Ω1,

sin(t)
(

(r − 1)2 cos(θ) + (r − 1) sin(θ)
)

, (x1, x2) ∈ Ω2,
(126)

where r2 = x21 + x22 and θ = atan2(x2, x1). The boundary, interface, and forcing data are
found by using assumed solution (126) in governingEq. (78). In order to avoid order reduction
with time dependent data, we found it necessary to define the Dirichlet boundary data by
integrating ġD using the Runge-Kutta method. Solution (126) satisfies force balance along
ΓI , i.e., continuity of traction τ , and the interface data g±

τ is used to enforce the assumed
solution. In the MMS test the material properties are ρ = 1 and Ci j = δi j , with δi j being the
kroneckor delta; after the mesh warping the effective material parameters Ĉi j are spatially
varying.

To compare the stiffness of the standard and characteristic nonlinear interface treatmentwe
vary the nonlinear interface parameter β and decrease the time step size until the simulation
is stable for a fixed block size N = 48. For a non-stiff method, the time step size should be
on the order of the effective grid spacing for all β > 0. In particular, we define the time step
size to be

Δt = κ h̄, (127)

where κ is the Courant number and a non-stiff scheme should have κ ∼ 1; since the material
properties are taken to be unity the wave speed in this problem is 1. The effective grid spacing

123

17 Page 28 of 39 Journal of Scientific Computing (2022) 93 :17

Table 2 Stable Courant κ for the characteristic and non-characteristic methods for increasing values of β

using the SBP operator with interior accuracy 2p = 6

β characteristic non-characteristic

κ ‖Δũ‖H with κ (with 2κ) κ ‖Δũ‖H with κ (with 2κ)

1 1/2 1.39 × 10−9 (1.64 × 1010) 1/2 1.23 × 10−9 (1.64 × 1010)

4 1/2 1.39 × 10−9 (1.64 × 1010) 1/2 1.24 × 10−9 (1.64 × 1010)

16 1/2 1.39 × 10−9 (1.64 × 1010) 1/23 1.28 × 10−9 (1.90 × 10−2)

64 1/2 1.39 × 10−9 (1.64 × 1010) 1/25 1.34 × 10−9 (2.51 × 10−2)

128 1/2 1.39 × 10−9 (1.64 × 1010) 1/26 1.36 × 10−9 (2.62 × 10−2)

Shown also are the L2-errors for the stable Courant number κ and the unstable Courant number 2κ . As seen,
the characteristic method time step is independent of β and the non-characteristic method requires a Courant
that scales inversely with β

Fig. 5 Convergence results for
MMS solution (126) with
β = 128 using SBP interior
orders 2p = 2, 4, 6 with the
characteristic nonlinear interface
treatment. The value of
h̄0 ≈ 0.019 corresponds to block
size N = 17

h̄ is defined as

h̄ = min(h̄1, h̄2), h̄r = 1

N

√
(

∂̂r x1
)2 +

(

∂̂r x2
)2

. (128)

Table 2 gives the Courant number κ required for stability of the two methods with various
values of β using SBP interior order 2p = 6. Here the value of κ was repeatedly halved until
the error in the simulation at time t = 0.1 no longer decreased dramatically. To demonstrate
that the stable Courant κ is close to its maximum value, Table 2 also reports the L2-error with
a time step defined by κ and 2κ , and as can be seen the former time step leads to an accurate
simulation and the latter an inaccurate one. As can be seen the characteristic method requires
a similar time step for all values of the parameter β whereas the non-characteristic method
requires a significantly reduced time step as β increases. Though not shown, results with SBP
interior orders 2p = 2 and 2p = 4 are similar; for 2p = 2 the characteristic method can use
a Courant of κ = 1 for all values of β as can the non-characteristic method with β = 1.

To investigate the convergence of the two-dimensional, characteristic method we now
run the same MMS solution (126) to time t f = 1 using β = 128 with different levels of
refinement and a fixed Courant number κ = 1/2. Figure 5 shows the convergence of the
scheme using mesh levels N = 17×2r where r = 0, 1, 2, 3. As can be seen the convergence
order is similar to the one-dimensional case.

As a final test, we explore the self-convergence and energy dissipation properties of the
characteristic method with variable material properties and no body or boundary data. The
same two-dimensional spatial domain is used, but now the material parameters are taken to
be

ρ = 1, (129a)

123

Journal of Scientific Computing (2022) 93 :17 Page 29 of 39 17

(a) (b) (c)

(d) (e) (f)
Fig. 6 Variable material parameters Ci j and displacement field u snap shots with block size N = 136 with
the mesh show in Fig. 4. The colormap for the displacement field is saturated to show features at later times
and the green curve indicates the location of the nonlinear interface (Color figure online)

C11 = cos(θ)2 + 1

2
sin(θ)2, (129b)

C12 = −1

2
cos(θ) sin(θ), (129c)

C22 = sin(θ)2 + 1

2
cos(θ)2, (129d)

where the angle θ = π
4 (2 − x1) (2 − x2); colormaps of the material parameters are shown

in Fig. 6. The Courant number κ = 1/2 is used for all the simulations and the material
parameters lead to a maximum wave speed of 1, i.e., maximum eigenvalue of the matrix
defined by Ci j/ρ. The initial displacement is taken to be the product of two off-center
Gaussians

u0 = exp

(

− (x1 − μ1)
2

2σ1
− (x2 − μ2)

2

2σ2

)

, (130)

where μ1 = 0.1, μ2 = 0.2, σ1 = 0.0025, and σ2 = 0.005, and the initial velocity is u̇0 = 0.
A nonlinear parameter β = 1 is used in order to highlight the effect of the nonlinear interface
condition; larger values of β lead to a more continuous solution across the interface since
the sliding velocity V will be lower. Snapshots of the displacement field at various times are
shown in Fig. 6 for the block size N = 136 = 17× 8 and SBP interior order 2p = 6. As can
be seen in the figure, there is a discontinuity in the displacement across the interface as well
as reflected waves.

For the self-convergence study we run the simulation until time t = 3 using Nr =
17×2r with r = 1, 2, 3. The error is estimated by taking the difference between neighboring

123

17 Page 30 of 39 Journal of Scientific Computing (2022) 93 :17

(a) (b)

Fig. 7 Normalized dissipated energy for a computational and nonlinear interface ΓI with energy is computed
discretely using (104) and positive values indicating dissipation

resolutions, and the rate is estimated by

rate = log2(‖Δ1‖H1) − log2(‖Δ2‖H2), (131)

where Δr is the difference between the solutions using Nr and Nr+1 and Hr indicates that
the norm is taken with respect to the metrics defined by Nr . With this, we get an estimate
convergence rate for this problem of 4.4 using the SBP operators with interior accuracy
2p = 6.

Using same material properties and initial condition, Fig. 7 show the dissipated energy
whenΓI is taken to be a computational interface and a nonlinear interface with β = 1; energy
is measured using the discrete energy norm (104). In both cases the energy decreases in time
as the theory predicts. In the case of the computational interface the dissipation is purely
numerical, and as the results show the dissipation decreases as the resolution increases.
In the case of the nonlinear interface the amount of energy dissipated is larger since the
continuous formulation supports energy dissipation on interface ΓI .

7 Concluding Remarks

We have developed a characteristic based method for handling boundary and interface con-
ditions with SBP finite difference methods for the second order, scalar wave equation. The
key idea of the method is the introduction of an additional unknown on the block boundaries
which evolves in time and acts as local Dirichlet data for the block. The rate of change of the
boundary unknown is defined in an upwind fashion that modifies the incoming characteristic
variable, which is similar to the technique previously used to remove stiffness for the wave
equation in first order form with nonlinear interfaces [11].

The main benefit of the scheme is that, when compared with the standard approach [7,
28], the scheme is non-stiff for all characteristic boundary conditions and a class of nonlinear
interface conditions that can be written in characteristic form; we note that at the continuous
level the equation we consider are the same as Duru et al. [7] and that our schemes only differ
at the discrete level. One benefit of this approach is that it enables the use of a wider class of
time stepping methods for earthquake rupture problems with nonlinear interfaces.

The energymethodwas used to show that the proposed scheme is stable. Numerical exper-
iments showed that the proposed scheme is non-stiff, confirmed the stability results, and also
demonstrated the accuracy of the scheme. The analysis presented is dimension independent,

123

Journal of Scientific Computing (2022) 93 :17 Page 31 of 39 17

thus the results equally apply to three dimensions. That said, the penalty parameter scales
with d , and thus there may be more restrictive time step in three dimensions; see (149a).

One area for future work includes more general wave equations, such as linear elasticity.
In this case, there will be multiple displacement and characteristic variables. One important
question to consider is whether auxiliary interface variables are required for all components
or only a subset. The work Almquist and Dunham [2] will be relevant to these exstensions,
particularly if one is willing to be restricted to fully-compatible SBP operators.

One of the disadvantages of the traditional SBP finite difference formulations is that the
mesh must be conforming across block interfaces. Computationally, this means that some
regions of the domainwill havefinermesh resolution than the physics dictateswhich increases
the computational cost through both increased overhead per time step and reduced time steps
size. These limitations have lead to a recent interest in SBP-SATmethods for non-conforming
interfaces [12, 17, 29]. Though we see no obvious reason that the methods presented here
would not extend to the non-conforming interface case, it remains for this to be rigorously
demonstrated.

Acknowledgements We thank the two anonymous reviewers whose insightful feedback substantially
improved the paper.

Appendix A Definition of Two-Dimensional SBP Operators

As an example of how to construct multidimensional SBP operators, we consider the two
dimensional SBP finite difference operators.We describe the operators on the reference block
B̂ = [0, 1]×[0, 1], where faces 1 and 2 are the right and left faces with faces 3 and 4 being the
top and bottom faces, respectively. For simplicity we let the domain B̂ be discretized with an
(N+1)×(N+1) grid points with the grid nodes located at {ξ}kl = (kh, lh) for 0 ≤ k, l ≤ N
with h = 1/N . The projection of u onto the grid is denoted ũ, where

{

ũ
}

kl ≈ u(kh, lh) and
is stored as a vector with with ξ1 being the fastest index; see (8). With this, the volume norm
matrix can be written as

H̃ = H ⊗ H . (132)

We define the face restriction operators as

L̄
1 = I ⊗ eT0 , L̄

2 = I ⊗ eTN , L̄
3 = eT0 ⊗ I, L̄

4 = eT0 ⊗ I, (133)

where the I is the (N + 1) × (N + 1) identity matrix. More generally the restriction to a
single grid line in the ξ1 and ξ2 directions, respectively, are

L̄l: = eTl ⊗ I, L̄:l = I ⊗ eTl . (134)

In order to construct Ã
(C)

i i , no summation over i , we construct individual one-dimensional
second derivative matrices for each grid line with varying coefficients C and place them in
the correct block; expanding a single second derivative matrix with the tensor product and
the identity matrix only works in the constant coefficient case. To do this it is useful to define
C̃ as the projection of C onto the grid with the coefficients along the individual grid lines
being

C :l = diag(C0l , . . . ,CNl), Ck: = diag(Ck0, . . . ,CkN). (135)

123

17 Page 32 of 39 Journal of Scientific Computing (2022) 93 :17

The second derivative operators are the sum of the operators along each grid line

Ã
(C)

11 = (H ⊗ I)

[
N
∑

l=0

L̄
T
:l A

(C:l)
11 L̄:l

]

, Ã
(C)

22 = (I ⊗ H)

[
N
∑

k=0

L̄
T
k:A

(Ck:)
11 L̄k:

]

, (136a)

and a tensor product is used for the mixed derivative operators

Ã
(C)

12 = (I ⊗ QT)C̃(Q ⊗ I), Ã
(C)

21 = (QT ⊗ I)C̃(I ⊗ Q). (136b)

The boundary derivatives parallel to a face are given by the first derivative operator D1

and those perpendicular with the boundary derivative operators from the SBP definition 2:

B̄
1
1 = I ⊗ bT0 , B̄

1
2 = D1 ⊗ eT0 , (137a)

B̄
2
1 = I ⊗ bTN , B̄

2
2 = D1 ⊗ eTN , (137b)

B̃
3
1 = eT0 ⊗ D1, B̃

3
2 = bT0 ⊗ I, (137c)

B̃
4
1 = eTN ⊗ D1, B̃

4
2 = bTN ⊗ I . (137d)

Appendix B Proof of Theorem 7

To show that energy (105) is positive we need the following definition from [16, Definition
2.4]:

Ã
(c)
i j = D̃

T
i C̃ H̃ D̃ j + R̃

(c)
i j . (138)

The remainder matrix R̃
(c)
i j is symmetric positive semidefinite if the coefficient c is always

positive; the remainder matrix is zero when i �= j . The remainder matrix can be further
decomposed using the borrowing lemma from [1, Lemma 1]:

R̃
(c)
i i = S̃

(c)
i i +

2i
∑

f =2i−1

ζ f
(

Δ̄
f
i

)T
H f C f ,minΔ̄

f
i (no summation over i). (139)

Here the matrix S̃
(c)
i i (no summation over i) is a positive semidefinite and the matrix Δ̄

f
i =

B̄
f
i − D̄

f
i is the difference between the boundary derivative matrix from D̃i i (no summation

over i) and the first derivative matrix D̃i at the boundary. Each element of the diagonal matrix
C f ,min is the minimum value of c in the mb points orthogonal to the boundary where mb

depends on the order of accuracy of the SBP operator. The positive constant ζ f = h f
⊥ζ̄

where h f
⊥ is the grid spacing orthogonal to the face and ζ̄ is a constant which depends on the

SBP operator. The (mb, ζ̄) values used for the operators in this paper are given in Table 3;
see [1, Table 1].

Table 3 Borrowing parameters
and SBP norm H matrix corner
value for used operators [1,
Table 1]

SBP interior order 2p θ̄ ζ̄ mb

2 1/2 1.0 2

4 17/48 0.5776 4

6 13649/43200 0.3697 7

123

Journal of Scientific Computing (2022) 93 :17 Page 33 of 39 17

Since H̃ is diagonal and positive, it is clear that for any face f

ṽT H̃ ṽ ≥ θ f
(

L̄
f
ṽi

)T
H f L̄

f
ṽ j = θ f

(

ṽ
f
i

)T
H f ṽ

f
j , (140)

where θ f is the value of the {H}00 where H is the norm matrix orthogonal to the face. It
then follows that

ṽT H̃ ṽ ≥
2d
∑

f =1

θ f

d

(

ṽ f
)T

H f ṽ f , (141)

where the factor of 1/d is needed to avoid over counting corners and, when d = 3, edges.
Since the coefficient matrix Ci j is positive definite, this can be extended to included the
variable coefficients:

ṽTi
˜̂C i j H̃ ṽ j ≥

2d
∑

f =1

θ f

d

(

ṽ
f
i

)T
Ĉ

f
i jH

f ṽ
f
j . (142)

We now turn to considering the discrete block energy (105). The first term satisfies

1

2
u̇ T H̃ ρ̃ u̇ ≥ 0, (143)

because it is in quadratic form and H̃ and ρ̃ are diagonal, positive matrices. The remaining
terms will be shown to combine in a manner that is also positive semidefinite.

Combing relations (138), (139), and (142) we have that

ũT Ã
(Ĉi j)

i j ũ ≥
2d
∑

f =1

θ f

d

(

D̄
f
i ũ
)T

Ĉ
f
i jH

f D̄
f
j ũ

+
d
∑

k=1

⎛

⎝

2k
∑

f =2k−1

ζ f
(

Δ̄
f
k ũ
)T

H f Ĉ
f ,min
kk Δ̄

f
k ũ

⎞

⎠ .

(144)

We now considering the face term of the discrete block energy (105). Defining δ
f
u = u∗ f −u f

and using the definition of τ̂
f and T̂

f
in (107) gives

(

τ̂
f
)T (

X f
)−1

H f
(

τ̂
f
)

−
(

T̂
)T (

X f
)−1

H f
(

T̂
)

= 2
(

T̂
)T

H f δ
f
u +

(

δ
f
u

)T
X f H f δ

f
u .

(145)

It is useful to note that T̂ can be rewritten using Δ̄
f
k as

T̂
f = n̂ f

i Ĉ
f
i j B̄

f
j ũ = n̂ f

i Ĉ
f
i j D̄

f
j ũ + n̂ f

k Ĉ
f
kkΔ̄

f
k ũ, k =

⌈
f

2

⌉

; (146)

this follows because only when f ∈ (2 j, 2 j − 1) is B̄
f
j �= D̄

f
j . Using this along with the

definition of X f in (106) leads to,
(

τ̂
f
)T (

X f
)−1

H f
(

τ̂
f
)

−
(

T̂
)T (

X f
)−1

H f
(

T̂
)

= 2n̂ f
i

(

D̄
f
j ũ
)T

H f Ĉ
f
i jδ

f
u + n̂ f

i n̂
f
j

(

δ
f
u

)T
Ĉ

f
i jΓ

f H f δ
f
u + 2n̂ f

k

(

Δ̄
f
k ũ
)T

H f Ĉ
f
kkδ

f
u ,

(147)

where k =
⌈

f
2

⌉

.

123

17 Page 34 of 39 Journal of Scientific Computing (2022) 93 :17

Returning to the remaining terms of block energy (105), we use (144) and (147) to write

ũT Ã
(Ci j)

i j ũ +
2d
∑

f =1

((

τ̂
f
)T (

X f
)−1

H f
(

τ̂
f
)

−
(

T̂
)T (

X f
)−1

H f
(

T̂
))

≥
2d
∑

f =1

(
θ f

d

(

D̄
f
i ũ
)T

Ĉ
f
i jH

f D̄
f
j ũ + 2

(

D̄
f
j ũ
)T

Ĉ
f
i jH

f n̂ f
i δ

f
u

)

+
d
∑

k=1

2k
∑

f =2k−1

(

ζ f
(

Δ̄
f
k ũ
)T

Ĉ
f ,min
kk H f Δ̄

f
k ũ + 2

(

Δ̄
f
k ũ
)T

Ĉ
f
kkH

f n̂ f
k δ

f
u

)

+
2d
∑

f =1

(

δ
f
u

)T
n̂ f
i Ĉ

f
i jΓ

f H f n̂ f
j δ

f
u .

(148)

If we choose

Γ f ≥ d

θ f
I + 1

ζ f
P f , (149a)

P f = Ĉ
f
kk

(

Ĉ
f ,min
kk

)−1
, k =

⌈
f

2

⌉

, (149b)

then we have that

2d
∑

f =1

(

δ
f
u

)T
n̂ f
i Ĉ

f
i jΓ

f H f n̂ f
j δ

f
u

≥
2d
∑

f =1

d

θ f

(

δ
f
u

)T
n̂ f
i Ĉ

f
i jH

f n̂ f
j δ

f
u +

2d
∑

f =1

1

ζ f

(

δ
f
u

)T
n̂ f
i Ĉ

f
i j P

f H f n̂ f
j δ

f
u

=
2d
∑

f =1

d

θ f

(

δ
f
u

)T
n̂ f
i Ĉ

f
i jH

f n̂ f
j δ

f
u +

d
∑

k=1

2k
∑

f =2k−1

1

ζ f

(

δ
f
u

)T
Ĉ

f
kk P

f H f δ
f
u

=
2d
∑

f =1

d

θ f

(

δ
f
u

)T
n̂ f
i Ĉ

f
i jH

f n̂ f
j δ

f
u +

d
∑

k=1

2k
∑

f =2k−1

1

ζ f

(

P f δ
f
u

)T
Ĉ

f ,min
kk H f P f δ

f
u ,

(150)

where we have used that n̂ f
i Ĉ

f
i j n̂

f
j = Ĉ

f
kk with k =

⌈
f
2

⌉

(no summation over k). Though a

similar transformation could be used on the first summation it is not needed and complicates

123

Journal of Scientific Computing (2022) 93 :17 Page 35 of 39 17

the analysis that follows. Returning to (148) then gives with (150)

ũT Ã
(Ci j)

i j ũ +
2d
∑

f =1

((

τ̂
f
)T (

X f
)−1

H f
(

τ̂
f
)

−
(

T̂
)T (

X f
)−1

H f
(

T̂
))

≥
2d
∑

f =1

(
θ f

d

(

D̄
f
i ũ
)T

Ĉ
f
i jH

f D̄
f
j ũ + 2

(

D̄
f
j ũ
)T

Ĉ
f
i jH

f n̂ f
i δ

f
u

)

+
2d
∑

f =1

d

θ f

(

δ
f
u

)T
n̂ f
i Ĉ

f
i jH

f n̂ f
j δ

f
u

+
d
∑

k=1

2k
∑

f =2k−1

(

ζ f
(

Δ̄
f
k ũ
)T

Ĉ
f ,min
kk H f Δ̄

f
k ũ + 2

(

Δ̄
f
k ũ
)T

Ĉ
f
kkH

f n̂ f
k δ

f
u

)

+
d
∑

k=1

2k
∑

f =2k−1

1

ζ f

(

P f δ
f
u

)T
Ĉ

f ,min
kk H f P f δ

f
u

=
2d
∑

f =1

θ f

d

(

D̄
f
i ũ + d

θ f
n̂ f
i δ

f
u

)T

Ĉ
f
i jH

f
(

D̄
f
j ũ + d

θ f
n̂ f
j δ

f
u

)

+
d
∑

k=1

2k
∑

f =2k−1

ζ f
(

Δ̄
f
k ũ + 1

ζ f
n̂ f
k P

f δ
f
u

)T

Ĉ
f ,min
kk H f

(

Δ̄
f
k ũ + 1

ζ f
n̂ f
k P

f δ
f
u

)

,

(151)

where we have used that Ĉ
f
kk = n̂ f

k Ĉ
f
kk n̂

t
k (no summation over k) and Ĉ

f ,min
kk P f = C f

kk
(no summation over k). Since this expression is in quadratic form, it is non-negative and the
when combine with (143) shows that the block energy (105) is non-negative.

Appendix C Non-Characteristic Boundary and Interface Treatment

The standard approach for SBP-SAT for Dirichlet (78b), and characteristic boundaries (78c)
as well as computational and nonlinear interfaces from Virta and Mattsson [28] and Duru et
al. [7] are presented in the notation of this paper; Neumann boundary treatment is the same
as the characteristic boundary treat with R = 1.

C.1 Dirichlet Boundary Conditions

When block face f is on a Dirichlet boundary (87b) then the numerical fluxes are chosen to
be

u∗ f = gD, (152a)

τ̂
∗ f = τ̂

f ; (152b)

Using these numerical fluxes, the face energy rate of change (109) is

Ė f =
(

τ̂
f
)T

H f u̇ f +
(

τ̂
f
)T

H f
(

ġ f
D − u̇ f

)

=
(

τ̂
f
)T

H f ġ f
D, (153)

which with gD = 0 gives Ė f = 0 and does not lead to energy growth.

123

17 Page 36 of 39 Journal of Scientific Computing (2022) 93 :17

C.2 Characteristic (and Neumann) Boundary Conditions

In order to define the standard treatment of characteristic boundary conditions (78c), it is
useful to solve (78c) for τ :

τ = −αu̇ + νgC , (154)

with α = −Z(1 − R)/(R + 1) ≤ 0 and ν = 1/(R + 1). We note again that the Neumann
boundary condition is attained when R = 1 in which case α = 0 and ν = 1. With this, if
block face f is on a characteristic boundary then the numerical fluxes are chosen to be

u∗ f = u f , (155a)

τ̂
∗ f = −α̂

f u̇ f + ν̂
f gC , (155b)

where the parameters α̂ and ν̂ are diagonal matrices of S f
J α and S f

J ν evaluated at each point
on face f . Using these numerical fluxes in (109) give

Ė f = −
(

u̇ f
)T

α̂H f u̇ f +
(

g f
C

)T
ν̂H f u̇ f . (156)

With gC = 0 we then have that Ė f ≤ 0 and there is no energy growth due to the characteristic
boundary treatment; equality is obtained in the Neumann case.

C.3 Computational Interface

For computational interfaces (e.g., interfaces between blocks in the domains that have been
introduced to mesh to either a material interface and/or needed in the mesh generation)
continuity of displacement and traction need to be enforced. That is, across the interface it
is required that

u− = u+,

n−
i C

−
i j ∂ j u

− = −n+
i C

+
i j ∂ j u

+.
(157)

Here the superscript ± denotes the value on either side of the interface with the unit
normal n± is taken to be outward to each side of the interface, i.e., n− = −n+. The standard
approach to enforcing this is to choose the numerical flux to be the average of the values on
the two sides of the interface,

u∗ f − = 1

2

(

u f − + u f +)
,

τ̂
∗ f − = 1

2

(

τ̂
f − − τ̂

f +) ;
(158)

the minus sign in τ̂
∗ f −

is due to the unit normals being equal and opposite. Here the two
blocks connected across the interface are B± through faces f ±.

The face energy rate of change (109) for computational interfaces is then

Ė f ± = 1

2

(

τ̂
f ± − τ̂

f ∓)T
H f u̇ f ± + 1

2

(

τ̂
f ±)T

H f
(

u̇ f ∓ − u̇ f ±)

= − 1

2

(

τ̂
f ∓)T

H f u̇ f ± + 1

2

(

τ̂
f ±)T

H f u̇ f ∓
.

(159)

Adding the two sides of the interface together gives

Ė f = Ė f + + Ė f − = 0, (160)

123

Journal of Scientific Computing (2022) 93 :17 Page 37 of 39 17

and energy stability results.

C.4 Nonlinear Interface Condition

The approach Duru et al. [7] for nonlinear interfaces is to define the sliding velocity V± f

directly from the particle velocities on the grid and then the traction τ f is defined directly
from the nonlinear function so the numerical fluxes are

u∗ f ± = u f ±
,

τ̂
∗ f ± = F̂

(

V f ±)
, V f ± =

(

u̇ f ∓ − u̇ f ±)
.

(161)

The face energy rate of change (109) for a nonlinear interface is then

Ė f ± =
(

F̂
(

V f ±))T
H f u̇ f ±

. (162)

Adding the two sides of the interface together gives

Ė f = Ė f + + Ė f − =
(

F̂
(

V f +))T
H f u̇ f + +

(

F̂
(

V f −))T
H f u̇ f −

=
(

F̂
(

V f +))T
H f u̇ f + −

(

F̂
(

V f +))T
H f u̇ f −

= −
(

F̂
(

V f +))T
H f V f +

≤ 0,

(163)

where we have used that V f − = −V f +
and the fact that V F̂(V) ≥ 0.

Appendix D Nonlinear Interface Root Finding Problem

In general, evaluatingQ± for a nonlinear condition τ± = F
(

V±) requires solving a nonlin-
ear root finding problem. In particular, using the characteristic variables w± a root finding
problem for V± is solved after which Q± can be determined.

Recall that force balance, τ− = −τ+, and the fact that V− = −V+ implies that τ− =
−F

(

V+). Using this we can compute the Z± weighted-average

Z−τ+ − Z+τ−

Z+ + Z− = F
(

V+) . (164)

Expressing τ± in terms of Q± and w±, see (93b), then gives

Z−Q+ − Z−w+ − Z+Q− + Z+w−

2(Z+ + Z−)
= F

(

V+) . (165)

The sliding velocity V+ can be written in terms of the characteristic variables using (93a):

V+ = u̇− − u̇+ = Q− + w−

2Z− − Q+ + w+

2Z+

= Z+Q− + Z+w− − Z−Q+ − Z−w+

2Z−Z+ . (166)

123

17 Page 38 of 39 Journal of Scientific Computing (2022) 93 :17

Using this, we can rewrite (165) as

Z+Z−

(Z+ + Z−)
V+ + Z+w− − Z−w+

(Z+ + Z−)
= F

(

V+) . (167)

This expression can be more compactly written by defining

τ+
l = Z+w− − Z−w+

(Z+ + Z−)
, (168)

which depends only on the characteristic variables propagating into the interface and is the
traction that would result if the interface were a computational interface; seen by using (92)
in (93b). We can now write the final form of the root finding problem as

ηV+ + τ+
l = F

(

V+) , (169)

where η = Z+Z−/(Z+ + Z−) is known as the radiation damping coefficient. Once this
nonlinear system is solved for V+ all other quantities can be determined using (93). When
numerically solving (169) it is useful to realize that sgn

(

V+) = sgn
(

τ+
l

)

and that the root
can be bracketed:

∣
∣V+∣∣ ∈ [0, F−1

(

τ+
l

)]

.

References

1. Almquist, M., Dunham, E.M.: Non-stiff boundary and interface penalties for narrow-stencil finite differ-
ence approximations of the laplacian on curvilinear multiblock grids. J. of Comput. Phys. 408, 109–294
(2020). https://doi.org/10.1016/j.jcp.2020.109294

2. Almquist, M., Dunham, E.M.: Elastic wave propagation in anisotropic solids using energy-stable finite
differences with weakly enforced boundary and interface conditions. J. of Comput. Phys. 424, 109–842
(2021). https://doi.org/10.1016/j.jcp.2020.109842

3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing.
SIAM review 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

4. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference
schemes solving hyperbolic systems: Methodology and application to high-order compact schemes. J. of
Comput. Phys. 111(2), 220–236 (1994). https://doi.org/10.1006/jcph.1994.1057

5. Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge-Kutta schemes. Tech. Rep. NASA TM-
109112, National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (1994)

6. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary
spatial accuracy. J. of Comput. Phys. 148(2), 341–365 (1999). https://doi.org/10.1006/jcph.1998.6114

7. Duru, K., Allison, K.L., Rivet,M., Dunham, E.M.: Dynamic rupture and earthquake sequence simulations
using the wave equation in second-order form. Geophys. J. Int. 219(2), 796–815 (2019). https://doi.org/
10.1093/gji/ggz319

8. Erickson, B.A., Jiang, J., Barall, M., Lapusta, N., Dunham, E.M., Harris, R., Abrahams, L.S., Allison,
K.L., Ampuero, J.P., Barbot, S., Cattania, C., Elbanna, A., Fialko, Y., Idini, B., Kozdon, J.E., Lambert,
V., Liu, Y., Luo, Y., Ma, X., Mckay, M.B., Segall, P., Shi, P., van den Ende, M., Wei, M.: The community
code verification exercise for simulating sequences of earthquakes and aseismic slip (seas). Seismol. Res.
Lett. 91, 874–890 (2020). https://doi.org/10.1785/0220190248

9. Hicken, J.E., Zingg, D.W.: Summation-by-parts operators and high-order quadrature. J. of Comput. and
Appl. Math. 237(1), 111–125 (2013). https://doi.org/10.1016/j.cam.2012.07.015

10. Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J.
of Sci. Comput. 26(3), 301–327 (2006). https://doi.org/10.1007/s10915-005-9070-8

11. Kozdon, J.E., Dunham, E.M., Nordström, J.: Interaction of waves with frictional interfaces using
summation-by-parts difference operators: Weak enforcement of nonlinear boundary conditions. J. of
Sci. Comput. 50(2), 341–367 (2012). https://doi.org/10.1007/s10915-011-9485-3

12. Kozdon, J.E., Wilcox, L.C.: Stable coupling of nonconforming, high-order finite difference methods.
SIAM J. on Sci. Comput. 38(2), A923–A952 (2016). https://doi.org/10.1137/15M1022823

13. Kreiss, H., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus
24(3), 199–215 (1972). https://doi.org/10.1111/j.2153-3490.1972.tb01547.x

123

https://doi.org/10.1016/j.jcp.2020.109294
https://doi.org/10.1016/j.jcp.2020.109842
https://doi.org/10.1137/141000671
https://doi.org/10.1006/jcph.1994.1057
https://doi.org/10.1006/jcph.1998.6114
https://doi.org/10.1093/gji/ggz319
https://doi.org/10.1093/gji/ggz319
https://doi.org/10.1785/0220190248
https://doi.org/10.1016/j.cam.2012.07.015
https://doi.org/10.1007/s10915-005-9070-8
https://doi.org/10.1007/s10915-011-9485-3
https://doi.org/10.1137/15M1022823
https://doi.org/10.1111/j.2153-3490.1972.tb01547.x

Journal of Scientific Computing (2022) 93 :17 Page 39 of 39 17

14. Kreiss, H., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential
equations. In: Mathematical aspects of finite elements in partial differential equations; Proceedings of the
Symposium, pp. 195–212. Madison, WI (1974). https://doi.org/10.1016/b978-0-12-208350-1.50012-1

15. Kreiss, H., Scherer, G.: On the existence of energy estimates for difference approximations for hyperbolic
systems. Tech. rep., Department of Scientific Computing, Uppsala University (1977)

16. Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives
with variable coefficients. Journal of Scientific Computing 51(3), 650–682 (2012). https://doi.org/10.
1007/s10915-011-9525-z

17. Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock
finite difference methods. SIAM J. on Sci. Comput. 32(4), 2298–2320 (2010). https://doi.org/10.1137/
090750068

18. Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave-propagation in discontinuous media. J. of
Comput. Phys. 227(19), 8753–8767 (2008). https://doi.org/10.1016/j.jcp.2008.06.023

19. Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equation on second-order
form. J. of Sci. Comput. 41(3), 366–383 (2009). https://doi.org/10.1007/s10915-009-9305-1

20. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second
derivatives. J. of Comput. Phys. 199(2), 503–540 (2004). https://doi.org/10.1016/j.jcp.2004.03.001

21. Mattsson, K., Parisi, F.: Stable and accurate second-order formulation of the shifted wave equation.
Commun. in Comput. Phys. 7(1), 103 (2010). https://doi.org/10.4208/cicp.2009.08.135

22. Nordström, J.: A roadmap to well posed and stable problems in computational physics. J. of Sci. Comput.
71(1), 365–385 (2017). https://doi.org/10.1007/s10915-016-0303-9

23. Olsson, P.: Summation by parts, projections, and stability. I. Math. of Comput. 64(211), 1035–1065
(1995). https://doi.org/10.2307/2153482

24. Olsson, P.: Summation by parts, projections, and stability. II. Math. of Comput. 64(212), 1473–1493
(1995). https://doi.org/10.2307/2153366

25. Roache, P.: Verification and validation in computational science and engineering, 1st edn. Hermosa
Publishers, Albuquerque, NM (1998)

26. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. of Comput. Phys. 110(1),
47–67 (1994). https://doi.org/10.1006/jcph.1994.1005

27. Strand, B.: Summation by parts for finite difference approximations for d/dx . J. of Comput. Phys. 110(1),
47–67 (1994). https://doi.org/10.1006/jcph.1994.1005

28. Virta, K., Mattsson, K.: Acoustic wave propagation in complicated geometries and heterogeneous media.
J. of Sci. Comput. 61(1), 90–118 (2014). https://doi.org/10.1007/s10915-014-9817-1

29. Wang, S., Virta, K., Kreiss, G.: High order finite difference methods for the wave equation with non-
conforming grid interfaces. J. of Sci. Comput. 68(3), 1002–1028 (2016). https://doi.org/10.1007/s10915-
016-0165-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

https://doi.org/10.1016/b978-0-12-208350-1.50012-1
https://doi.org/10.1007/s10915-011-9525-z
https://doi.org/10.1007/s10915-011-9525-z
https://doi.org/10.1137/090750068
https://doi.org/10.1137/090750068
https://doi.org/10.1016/j.jcp.2008.06.023
https://doi.org/10.1007/s10915-009-9305-1
https://doi.org/10.1016/j.jcp.2004.03.001
https://doi.org/10.4208/cicp.2009.08.135
https://doi.org/10.1007/s10915-016-0303-9
https://doi.org/10.2307/2153482
https://doi.org/10.2307/2153366
https://doi.org/10.1006/jcph.1994.1005
https://doi.org/10.1006/jcph.1994.1005
https://doi.org/10.1007/s10915-014-9817-1
https://doi.org/10.1007/s10915-016-0165-1
https://doi.org/10.1007/s10915-016-0165-1

	A Non-Stiff Summation-By-Parts Finite Difference Method for the Scalar Wave Equation in Second Order Form: Characteristic Boundary Conditions and Nonlinear Interfaces
	Abstract
	1 Introduction
	2 Summation-By-Parts Operators
	2.1 One Dimensional SBP Operators
	2.2 Multidimensional SBP Operators

	3 One-Dimensional Example
	3.1 Boundary Treatment
	3.1.1 Continuous Problem
	3.1.2 Semidiscrete Problem
	3.1.3 Semidiscrete Problem: Non-Characteristic Boundary Treatment
	3.1.4 Semidiscrete Problem: Characteristic Boundary Treatment
	3.1.5 Numerical Results

	3.2 Nonlinear Interface
	3.2.1 Continuous Problem
	3.2.2 Characteristic Nonlinear Interface Condition
	3.2.3 Discrete Problem
	3.2.4 Non-Characteristic Interface Treatment
	3.2.5 Characteristic Interface Treatment
	3.2.6 Numerical Results

	4 Multi-Dimensional Model Problem
	4.1 Continuous Problem
	4.2 Domain Decomposition
	4.3 Characteristic Variables
	4.4 Energy Analysis

	5 Multi-Block Semidiscretization
	5.1 Characteristic Boundary Conditions
	5.2 Characteristic Interface

	6 Two-Dimensional Numerical Experiments
	7 Concluding Remarks
	Acknowledgements
	Appendix A Definition of Two-Dimensional SBP Operators
	Appendix B Proof of Theorem 7
	Appendix C Non-Characteristic Boundary and Interface Treatment
	C.1 Dirichlet Boundary Conditions
	C.2 Characteristic (and Neumann) Boundary Conditions
	C.3 Computational Interface
	C.4 Nonlinear Interface Condition

	Appendix D Nonlinear Interface Root Finding Problem
	References

