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Abstract
An initial-boundary value problem of subdiffusion type is considered; the temporal com-
ponent of the differential operator has the form

∑�
i=1 qi (t) D

αi
t u(x, t), where the qi are

continuous functions, each Dαi
t is a Caputo derivative, and the αi lie in (0, 1]. Maxi-

mum/comparison principles for this problem are proved under weak hypotheses. A new
positivity result for the multinomial Mittag-Leffler function is derived. A posteriori error
bounds are obtained in L2(�) and L∞(�), where the spatial domain � lies in R

d with
d ∈ {1, 2, 3}. An adaptive algorithm based on this theory is tested extensively and shown to
yield accurate numerical solutions on the meshes generated by the algorithm.

Keywords Multiterm time-fractional · Variable coefficient · Subdiffusion · A posteriori
error analysis

Mathematics Subject Classification 65M15

1 Introduction

The numerical solution of fractional differential equations (FDEs) is currently the subject
of much research (see for example [11, 23]), since such equations model many physical
processes but their exact solution is generally impossible. Of course this is also true for
classical integer-order differential equations, where mesh-adaptive numerical methods based
on a posteriori error analyses have played a significant role for many years. Methods of this
type have very general usefulness since they require no knowledge of the properties of the
unknown solution to the problem. But for FDEs, there has been little progress in theory-
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based adaptive numerical methods; their development has been impeded by the absence of a
satisfactory a posteriori theory for their error analysis.

As it is often difficult to analyse the regularity and other fundamental properties of the
unknown solutions to FDEs, it can be impossible to give any rigorous a priori error analysis
of numerical methods for their solution. This makes it even more desirable to devise an a
posteriori error analysis that does not require any information about the unknown solution.

Recently a new and very promising a posteriori error estimation methodology for FDEs
appeared in [14], which considered initial-value and initial-boundary value time-fractional
subdiffusion problems whose differential equations contained a single temporal derivative of
fractional order. It is clearly desirable to extend this theory to time-fractional FDEs contain-
ing several fractional derivatives, as these offer more powerful modelling capabilities. Our
primary aim in the current paper is to develop the a posteriori theory for this extension and
to show experimentally that an adaptive algorithm based on our theory is able to compute
accurate numerical solutions to problems whose solutions have singularities (as is usually the
case with FDEs). It should be noted that these accurate solutions are computed on nonuni-
form meshes that are constructed automatically by the algorithm — the user does not have
to provide any special mesh, nor input any attributes of the unknown solution.

The relationship between our paper, which studies a multiterm fractional derivative oper-
ator, and [14], where only a single fractional derivative appears, is the following. Section 3
below points out similarities between Lemma 3.1, Theorem 3.2 and Corollary 3.3 and results
from [15]; but while Corollary 3.4 is analogous to the second bound in [14, Corollary 2.4], the
proof ofCorollary 3.4 ismuch deeper since it involves hypergeometric functionswhereas [14]
needed only elementary functions. Outside Sect. 3 there are significant differences between
our paper and [14]—seeTheorem2.5, Remark 2.6, Lemma 2.9, eq. (2.7); Lemma 2.11would
be trivial in the single-term case; the multinomial Mittag-Leffler function of Definition 2.7
that is needed for the multiterm case is less tractable than the more familiar two-parameter
Mittag-Leffler function that suffices for the single-term case— thus all of the rather technical
Appendix A is new.

The paper is structured as follows. Section 1.1 describes the multiterm time-fractional
initial-boundary value problem of subdiffusion type that will be studied. In Sect. 2, maxi-
mum/comparison principles and some of their consequences are derived for the associated
fractional initial-value problem; existence of a solution for that problem is also discussed. A
posteriori error bounds for L2(�), where the spatial domain � lies in Rd with d ∈ {1, 2, 3},
are established in Sect. 3. A variant of this theory in Sect. 4 gives a posteriori error bounds
in L∞(�). Then in Sect. 5 we perform extensive numerical experiments to demonstrate the
effectiveness and reliability of the theory of Sects. 3 and 4. Finally, an Appendix proves a new
positivity result for the multinomial Mittag-Leffler function, then uses it to give an alternative
version of a result from Sect. 2.

1.1 TheMultitermTime-fractional Subdiffusion Problem

We shall study the multiterm time-fractional subdiffusion problem

�∑

i=1

[
qi (t) D

αi
t u(x, t)

]+ Lu(x, t) = f (x, t) for (x, t) ∈ � × (0, T ], (1.1a)

with initial and boundary conditions

u(x, 0) = u0(x) for x ∈ �, u(x, t) = 0 for x ∈ ∂� and 0 < t ≤ T . (1.1b)
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Here � is a positive integer, the constants αi (for i = 1, 2, . . . , �) satisfy

0 < α� < . . . < α2 < α1 ≤ 1, (1.2)

while each qi ∈ C[0, T ] with
�∑

i=1

qi (t) > 0 and qi (t) ≥ 0, i = 1, . . . , �, for t ∈ [0, T ]. (1.3)

This problem is posed in a bounded Lipschitz domain � ⊂ R
d (where d ∈ {1, 2, 3}), and

involves a spatial linear second-order elliptic operator L. Each Caputo temporal fractional
derivative Dαi

t is defined [6] for 0 < αi < 1 and t > 0 by

Dαi
t u := J 1−αi

t (∂t u), J 1−αi
t y(·, t) := 1

�(1 − αi )

∫ t

0
(t − s)−αi y(·, s) ds, (1.4)

where �(·) is the Gamma function, and ∂s denotes the partial derivative in s. From
[6, Theorem 2.20 and Lemma 3.4] it follows that limα→1− Dα

t u(x, t) = ∂t u(x, t) for each
(x, t) ∈ � × (0, T ] when u(x, ·) ∈ C1[0, T ], so for α1 = 1 we take Dα1

t u = D1
t u := ∂t u.

Remark 1.1 One might wonder whether the presence of lower-order fractional derivatives in
the differential operator would invalidate the above presumption that u(x, ·) ∈ C1[0, T ] if
α1 = 1, but when α1 = 1 (and q1(t) > 0 for all t) and the data are continuous, in Lemma 2.11
we prove that the solution of the associated initial-value problem does lie in C1[0, T ]. See
also Remark 2.6, where it is shown that if α1 = 1 then at t = 0 the solution is better behaved
than if α1 < 1. Furthermore, in the case of constant coefficients qi , when α1 = 1 one can
deduce that the solution of the initial-value problem lies inC1[0, T ] from the explicit solution
given by Remark 2.10 and eq. (2.7), though we omit the details.

In the case where each qi is a positive constant and α1 < 1, existence of a solution to (1.1)
follows from [15, Theorems 2.1 and 2.2]. For the general case of variable qi satisfying (1.3),
one can show uniqueness of a solution to (1.1) by imitating the argument of [17, Theorem
4].

Theproblem (1.1)with constantqi was considered in [5, 15] and their references. Two-term
fractional differential equations (i.e., � = 2 in (1.3)) appear in [19] modelling anomalous
transport and in [22] modelling solute transport in aquifers. In [22, eq. (14)], the time-
fractional PDE

∂tC + βDα
t C − LC = 0 (1.5)

is used to model solute transport in aquifers, where C = C(x, t) denotes concentration and
α ∈ (0, 1). This is the particular case of our fractional PDE (1.1a) where � = 2, α1 = 1 and
α2 = α, with q1 = 1 and q2 = β > 0 so (1.3) is satisfied. The “fractal immobile capacity" β

in (1.5)may be time-dependent; for example in [22, Figure 4] the authors takeβ = 0.08d−0.67

where d is timemeasured in days. Thus it is of interest to consider time-dependent qi in (1.1).
Alternatively, to incorporate uncertainties in the data of the physical problem, one can

use a variably distributed-order subdiffusion problem like that of [26], where the distributed-
order fractional derivative is defined by D̃ρ

t u(x, t) = ∫ 1
0 ρ(α)Dα

t u(x, t) dα with ρ = ρ(α)

a probability density function. To handle this numerically one must apply a quadrature rule
to D̃ρ

t u, which can lead to a PDE such as (1.1a) that satisfies the hypothesis (1.3).
It appears that (1.1) with variable qi (t) has never been rigorously studied in the mathe-

matics literature. This variant, however, is of some interest since it is a simple (and hence
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attractive) alternative tomodelswith variable-fractional-order equations,which have received
a lot of attention in recent years (see [27] and its references).
Notation.Weuse the standard inner product 〈·, ·〉 and the norm ‖·‖ in the space L2(�), as well
as the standard spaces L∞(�), H1

0 (�), L∞(0, t; L2(�)), andW 1,∞(t ′, t ′′; L2(�)) (see [7,
Section 5.9.2] for the notation used for functions of x and t). The notation v+ := max{0, v}
is used for the positive part of a generic function v. For convenience we sometimes write

Dᾱ
t :=

�∑

i=1

qi (t)D
αi
t . (1.6)

2 Nonnegative Solutions of Certain Initial-Value Problems

Our a posteriori analysis will rely on the property that the solutions of certain multiterm
fractional initial-value problems are nonnegative; we derive this result in this section after
presenting a reformulation of the definition (1.4) of the fractional derivative Dαi

t y(·, t) that
can be applied to a more general class of functions.

For simplicity, in this section we write y(t) instead of y(x, t) since the dependence on x
is irrelevant here.

2.1 Function Regularity and Reformulated Caputo Derivative

In (1.4) one can integrate by parts to reformulate the definition of Dαi
t y(t) for αi < 1 as

�(1 − αi ) D
αi
t y(t) = t−αi [y(t) − y(0)] +

∫ t

0
αi (t − s)−αi−1 [y(t) − y(s)] ds (2.1)

for 0 < t ≤ T . This reformulation appeared already in [14, eq. (2.4)], and in, e.g., [4, Lemma
3.1], [10, Lemma 2.10], [16, Proof of Theorem 1], and [25, Theorem 5.2]. We will show that
it has the advantage that it permits the use of less smooth functions y than (1.4); this attribute
is needed, for example, to prove Lemma 3.1 below.

Recall that (2.1) was obtained from (1.4) by integration by parts. From the proof of the
integration by parts formula, one sees that this calculation is valid if for each t ′ ∈ [0, t)
the function ψ(t; ·) defined by ψ(t; s) := (t − s)−αi [y(s) − y(t)] is absolutely continuous

on [0, t ′] and satisfies limt ′→t− ψ(t; t ′) = 0, because one can integrate by parts
∫ t ′
0 (t −

s)−αi y′(s) ds, then take limt ′→t− .
For example, if y lies in the standard Hölder space Cβ [0, T ] for some β > αi , then this

derivation of (2.1) from (1.4) is valid; see [4, Lemma 3.1].
As in [14], we consider now amore general class of functions for which the definition (1.4)

is unsuitable but (2.1) can be used.
Let us assume that

y ∈ C[0, T ] ∩ W 1,∞(ε, t) for all ε, t satisfying 0 < ε < t ≤ T . (2.2)

The hypothesis that y ∈ W 1,∞(ε, t) is equivalent to assuming that y is Lipschitz continuous
on each interval [ε, t]; see [9, p.154]. If α1 = 1, then we strengthen (2.2) by assuming that
y ∈ C[0, T ] and y′ is a left-continuous function on (0, T ] that may have jump discontinuities;
see Sect. 2.2.

Fix t ∈ (0, T ]. The integral ∫ t/2
0 αi (t−s)−αi−1 [y(t) − y(s)] ds is defined and finite as its

integrand lies in C
[
0, 1

2 t
]
. For

∫ t
t/2αi (t − s)−αi−1 [y(t) − y(s)] ds, since y ∈ W 1,∞ ( 1

2 t, t
)
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one has |y(t) − y(s)| ≤ C(t − s) with a constant C that depends on t but is independent of
s, which implies that the integral exists and is finite. Thus for all y satisfying (2.2), we can
define Dαi

t y(t) by (2.1).
The next two remarks describe weakenings of the hypothesis (2.2) on the function y that

still allow us to define Dαi
t y(t) by (2.1).

Remark 2.1 One could replace y ∈ W 1,∞(ε, t) in (2.2) by y ∈ Cβ(ε, T ] for all ε, t satisfying
0 < ε < t ≤ T , where β is any constant satisfying αi < β ≤ 1 and Cβ(ε, T ] is a standard
Hölder space.

Remark 2.2 (initial discontinuity in y)Note that y ∈ W 1,∞(ε, t) for all ε, t satisfying0 < ε <

t ≤ T implies y ∈ C(0, T ]. In (2.2) one could replace the hypothesis that y ∈ C[0, T ] by an
assumption that y ∈ L∞(0, T ), and still work with (2.1). In particular we can replaceC[0, T ]
in (2.2) by an assumption that limt→0+ y(t) exists; this will be useful in the forthcoming error
analysis.

2.2 The Initial-Value Problem

Consider the initial-value problem

Dᾱ
t w(t) + λw(t) = v(t) for 0 < t ≤ T , w(0) = w0, (2.3)

where we assume that the parameter λ ≥ 0. (We shall use the notation u(x, t) for the solution
of (1.1) and w(t) for the solution of (2.3).)

In the next lemma we specify hypotheses allowing, for example, the possibility that w is
a piecewise polynomial. Given a function g that has a jump discontinuity at a finite number
of points in (0, T ) but is continuous otherwise on (0, T ], at any point of discontinuity τ we
take g(τ ) = limt→τ− g(t). That is, we regard g as left-continuous on (0, T ].
Lemma 2.3 (Comparison principle for the initial-value problem)Consider (2.3) where v ≥ 0
may have a finite number of jump discontinuities in (0, T ) and is left-continuous on (0, T ].
Suppose that w satisfies the regularity hypothesis (2.2). Define Dαi

t w by (2.1) if αi < 1. If
α1 = 1, suppose also that w′ may have jump discontinuities but is a left-continuous function
on (0, T ]. Assume that w0 ≥ 0. Then w(t) ≥ 0 for t ∈ [0, T ].
Proof Suppose that the result is false. Then since w ∈ C[0, T ] and w(0) ≥ 0, there exists
a point t0 ∈ (0, T ] such that w(t0) < 0 ≤ w(0) and w(t0) ≤ w(t) for all t ∈ [0, T ].
From (2.1) one sees immediately that each Dαi

t w(t0) < 0 if αi < 1, while if αi = 1 then
w′(t0) ≤ 0 (consider the interval [0, t0] and use the left-continuous property of w′(t) at t0).
Hence Dᾱ

t w(t0) + λw(t0) < 0 ≤ v(t0), so w cannot be a solution of (2.3). (The case where
qi (t0) = 0 for i = 2, 3, . . . , � is exceptional, as we then get only w′(t0) + λw(t0) ≤ 0; to
derive a contradiction, one can make a change of variable w̃(t) := e−μtw(t) for suitable μ

as in [12, Section 2] and consider the initial-value problem satisfied by w̃.) 
�
The following extension of Lemma 2.3 weakens the requirement thatw ∈ C[0, T ]. It will

be needed to deal with the discontinuous function E0 of Sect. 3.
Corollary 2.4 In Lemma 2.3, replace the hypothesis that w ∈ C[0, T ] by limt→0+ w(t) ≥ 0
exists. Then w(t) ≥ 0 for t ∈ (0, T ].
Proof Recalling Remark 2.2, one can use the same argument as for Lemma 2.3, with minor
modifications. 
�
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We now use Lemma 2.3 to derive a stronger bound on w. First, recall the well-known
two-parameter Mittag-Leffler function Eα,β(s) := ∑∞

k=0 s
k/�(αk + β).

Theorem 2.5 Consider (2.3), where v ∈ C[0, T ] with v ≥ 0 and w0 ≥ 0. Suppose that
w satisfies the regularity hypothesis (2.2). Define Dαi

t w by (2.1) if αi < 1. If α1 = 1, suppose
also that w ∈ C1(0, T ]. Set q

j
= mint∈[0,T ] q j (t) for j = 1, . . . , �. Then

w(t) ≥ w0 max
j=1,...,�

Eα j ,1(−λtα j /q
j
) for t ∈ [0, T ], (2.4)

where one sets Eα j ,1(−λtα j /q
j
) ≡ 0 if q

j
= 0.

Proof Fix j ∈ {1, . . . , �}. Define the barrier function Bj by q
j
D

α j
t B j (t) + λBj (t) = 0 for

0 < t ≤ T , Bj (0) = w0. Then Bj (t) = w0Eα j ,1(−λtα j /q
j
) by [10, Example 3.1]; this

function is completely monotonic [10, Theorem 3.5], which says in particular that Bj (t) ≥ 0
and B ′

j (t) ≤ 0. (In the case q
j
= 0 one takes Bj ≡ 0.) Consequently (w − Bj )(0) ≥ 0 and

(
Dᾱ
t + λ

)
(w − Bj )(t) = v(t) −

[
q j (t) − q

j

]
D

α j
t B j (t) −

∑

i �= j

qi D
αi
t B j (t) ≥ 0 for t > 0.

Lemma 2.3 now yieldsw(t) ≥ Bj (t) for all t ∈ [0, T ], which implies the desired result since
j ∈ {1, . . . , �} was arbitrary. 
�

In the case � = 1, constant q1 > 0, and v ≡ 0, the bound of the theorem is sharp.
In the conclusion (2.4) of Theorem 2.5, the value of j such that Eα j ,1(−λtα j /q

j
) is

the dominant term may change as t varies. This phenomenon is illustrated in Fig. 1, where
� = 3, w0 = λ = q

j
= 1 for each j , and α j ∈ {1, 0.7, 0.3}; one sees that Theorem 2.5

yieldsw(t) ≥ E1,1(−t) for 0 ≤ t < 0.7 (approx.) butw(t) ≥ E0.3,1(−t0.3) for 0.7 < t ≤ 2.
In the next remark we discuss the behaviour of w′(t) as t → 0+.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Fig. 1 Illustration of result of Theorem 2.5: graphs of Eα,1(−tα) for α = 1, 0.7, 0.3
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Remark 2.6 Assume the hypotheses of Theorem 2.5 and that v ∈ C1[0, T ]. Assume also
that q1(0) �= 0 and q1 ∈ C1[0, T ]; without loss of generality we can take q1(0) = 1. Set
φ(t) := tα1/�(1 + α1). Then

(
Dᾱ
t + λ

)
φ(t) = q1(t) +

�∑

i=2

qi (t)tα1−αi

�(1 + α1 − αi )
+ λtα1

�(1 + α1)
= 1 + O(tα1−α2),

so
(
Dᾱ
t + λ

) [1 − λφ(t)] = O(tα1−α2).
Let δ be a nonzero constant. Set w̃δ(t) := w0 [1−λφ(t)]+[v(0)+δ]φ(t). Then w̃δ(0) =

w0 and

(Dᾱ
t + λ) w̃δ(t) = O(tα1−α2) + [v(0) + δ] [1 + O(tα1−α2)

] = v(t) + δ + O(tα1−α2)

since v(t) = v(0) + O(t). Now choose δ to be a small positive constant. Then choose
ε > 0 such that for t ∈ (0, ε) one has |O(tα1−α2)| ≤ δ in the previous equation. Now the
comparison principle (Lemma 2.3) yields w̃−δ(t) ≤ w(t) ≤ w̃δ(t) for 0 ≤ t ≤ ε. That is,

[v(0) − λw0 − δ]φ(t) ≤ w(t) − w0 ≤ [v(0) − λw0 + δ]φ(t) for 0 ≤ t ≤ ε.

Hence (w(t) − w(0))/t ≈ [v(0) − λw0]φ(t) as t → 0, and assuming that v(0) �= λw0, one
has (w(t) − w(0))/t = O(tα1−1) as t → 0.

Thus, when α1 < 1 we expect that w′(t) → −∞ as t → 0+, but if α1 = 1, then the
behaviour of the solution is quite different: we expect thatw′(t) remains bounded as t → 0+.
This behaviour when α1 = 1 concurs with the existence result for (2.3) that we shall prove
rigorously in Lemma 2.11.

Notation. From Lemma 2.3 it follows that any solution of (2.3) is unique. We shall use the

notation
(
Dᾱ
t + λ

)−1
v for this unique solution when the initial condition w0 = 0.

When the qi are positive constants, then the solution of (2.3) exists and can be written in
an explicit form; this will be seen in Sect. 2.3. For the general case of variable qi (t), existence
of the solution to (2.3) seems reasonable but it does remain an open question; nevertheless,
almost all of our analysis does not require this existence result — the only exception is
Corollary 3.5.

2.3 Solution of (2.3) for Constant-Coefficient D
¯̨
t

Throughout Sect. 2.3, let all qi in (1.6) be positive constants. Without loss of generality, we
assume that q1 = 1.

Then the structure of the solution of (2.3) is intimately related to the followingmultinomial
Mittag-Leffer function,which is a generalisationof the two-parameterMittag-Leffler function
Eα,β(s).

Definition 2.7 [15, 18] Let β0 ∈ (0, 2). For j = 1, . . . , �, let 0 < β j ≤ 1, s j ∈ R and
k j ∈ N0. Then the multinomial Mittag-Leffler function is defined by

E(β1,...,β�),β0(s1, . . . , s�) :=
∞∑

k=0

∑

k1+···+k�=k

(k; k1, . . . , k�)
∏�

j=1 s
k j
j

�(β0 +∑�
j=1 β j k j )

, (2.5)
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where the multinomial coefficient

(k; k1, . . . , k�) := k!
k1! · · · k�! with k =

�∑

j=1

k j .

Remark 2.8 The symmetry ofDefinition 2.7 implies that the value of E(β1,...,β�),β0(s1, . . . , s�)
remains unaltered if we perform any permutation of (β1, . . . , β�), provided that we also per-
form the same permutation of (s1, . . . , s�). In particular one has E(β1,...,β�),β0(s1, . . . , s�) =
E(β�,...,β1),β0(s�, . . . , s1).

We shall also use the more succinct notation of [2, eq.(2.4))]:

F(μ1,μ2,...,μm ),β (t; a1, a2, . . . , am ) := tβ−1E(μ1,μ2,...,μm ),β (−a1t
μ1 , −a2t

μ2 , . . . , −amt
μm )

(2.6)

for t > 0, any positive integer m, β ∈ (−∞, 2), 0 < μ j < 1 for each j , and any real
constants a1, . . . , am .

Lemma 2.9 Suppose that 0 ≤ μm < · · · < μ1 ≤ β ≤ 1 and a j > 0 for j = 1, . . . ,m. Then
E(μ1,μ2,...,μm ),β(−a1tμ1 ,−a2tμ2 , . . . ,−amtμm ) ≥ 0 for all t > 0.

Proof Taking δ = 1 in [2, Theorem3.2] shows that t �→ F(μ1,μ2,...,μm ),β(t; a1, a2, . . . , am) is
a completely monotone function, which implies thatF(μ1,μ2,...,μm ),β(t; a1, a2, . . . , am) ≥ 0.
The desired result now follows from (2.6). 
�

If w0 = 0, then [18, Theorem 4.1] gives the solution of (2.3) as

w(t) =
(
Dᾱ
t + λ

)−1
v

=
∫ t

s=0
sα1−1E(α1−α2,α1−α3,...,α1−α�,α1),α1 (−q2s

α1−α2 ,−q3s
α1−α3 , . . . , −q�s

α1−α� ,−λsα1 )

v(t − s) ds

=
∫ t

s=0
sα1−1E(α1,α1−α�,...,α1−α3,α1−α2),α1 (−λsα1 , −q�s

α1−α� , . . . , −q3s
α1−α3 , −q2s

α1−α2 )

v(t − s) ds

=
∫ t

s=0
F(α1,α1−α�,...,α1−α3,α1−α2),α1 (s; λ, q�, . . . , q3, q2) v(t − s) ds, (2.7)

where we used Remark 2.8 and (2.6). The formula (2.7) is the multiterm generalisation of
[14, eq.(2.1)].

Remark 2.10 It is easy to see that
(
Dᾱ
t + λ

) [1] = λ. Hence if w0 �= 0, then the initial-value
problem (2.3), with positive constant coefficients qi , has the unique solution

w(t) = w0 +
(
Dᾱ
t + λ

)−1
[v(t) − λw0] for t ∈ [0, T ].

Furthermore, an explicit solution representation for
(
Dᾱ
t + λ

)−1 [v − λw0] is provided
by (2.7) with v(t − s) replaced by v(t − s) − λw0.
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2.4 The Special Case˛1 = 1 and q1(t) > 0

In this subsection we consider the special case where α1 = 1 and q1(t) > 0 for all t ∈ [0, T ].
In this setting we are able to prove existence of a solution w to the variable-coefficient
initial-value problem (2.3) , and moreover this solution lies in C1[0, T ].
Lemma 2.11 Assume that α1 = 1 and q1(t) > 0 for all t ∈ [0, T ], with v, qi ∈ C[0, T ] for
all i . Then the initial-value problem (2.3) has a solution w ∈ C1[0, T ], and this solution is
unique.

Proof Lemma 2.3 implies that any solution of (2.3) is unique. To show existence of a solution
we assume without loss of generality that q1(t) ≡ 1 for t ∈ [0, T ], since one can divide (2.3)
by q1(t). Set φ(t) = w′(t). Using the definition (1.4), write (2.3) as

φ(t) +
�∑

i=2

∫ t

0
(t − s)−αi qi (t)φ(s) ds + λ

∫ t

0
φ(s) ds = v(t) − λw0 for t ∈ [0, T ].(2.8)

This is a Volterra integral equation of the second kind in the unknown function φ. Observe
first that any solution of (2.8) in C[0, T ] must be unique, because two distinct solutions
φ1, φ2 would yield two distinct solutions wi (t) := w0 + ∫ t

0 φi (s) ds (i = 1, 2) of (2.3). It is
well known (see, e.g., [3, Appendix A.2.2]) that each of the operators

φ(t) �→
∫ t

0
(t − s)−αi qi (t)φ(s) ds and φ(t) �→

∫ t

0
φ(s) ds

is a compact operator from the Banach space (C[0, T ], ‖ · ‖∞) to itself, and a finite sum
of compact operators is also a compact operator, and we saw already that any solution
of (2.8) is unique; thus we can apply the Fredholm Alternative Theorem [3, TheoremA.2.17]
to conclude that (2.8) has a solution φ ∈ C[0, T ]. Hence (2.3) has the solution w(t) :=
w0 + ∫ t

0 φ(s) ds, and this solution clearly lies in C1[0, T ]. 
�

3 L2(Ä) a Posteriori Error Estimates

Letuh be our approximate solution.Weassume throughout our analysis thatuh(·, 0) = u(·, 0)
on � and uh(x, t) = u(x, t) for x ∈ ∂� and t > 0. For the case uh(·, 0) �= u(·, 0), see
[14, Corollary 2.5].

Lemma 3.1 Suppose that r(·, 0) = 0 and r ∈ L∞(0, T ; L2(�)) ∩ W 1,∞(ε, T ; L2(�)) for
each ε ∈ (0, T ], Then

〈
�∑

i=1

qi (t) D
αi
t r(·, t), r(·, t)

〉

≥
(

�∑

i=1

qi (t) D
αi
t ‖r(·, t)‖

)

‖r(·, t)‖ for t > 0.

Proof One can use the same proof as for [14, Lemma 2.8], based on the reformulation (2.1)
and recalling Remark 2.2. 
�

Define the residual

Rh(x, t) :=
(

�∑

i=1

qi (t) D
αi
t + L

)

uh(x, t) − f (x, t) for all (x, t) ∈ � × (0, T ].
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Theorem 3.2 In (1.1a) assume that 〈Lr , r〉 ≥ λ‖r‖2 for all r ∈ H1
0 (�), where λ ≥ 0 is

some constant. Suppose that a unique solution u of (1.1) and its approximation uh are in
C([0, T ]; L2(�)) ∩ W 1,∞(ε, T ; L2(�)) for each ε ∈ (0, T ], and also in H1

0 (�) for each
t > 0. Suppose also that

‖Rh(·, t)‖ ≤
(

�∑

i=1

qi (t)D
αi
t + λ

)

E(t) ∀ t > 0 (3.1)

for some barrier function E that satisfies the regularity condition (2.2), with moreover E(t) ≥
0 ∀ t ≥ 0. Then ‖(uh − u)(·, t)‖ ≤ E(t) ∀ t ≥ 0.

Proof (This is similar to the proof of [14, Theorem 2.2 and Corollary 2.3].)
Set e := uh − u, so e(·, 0) = 0, e(x, t) = 0 for x ∈ ∂�, and

(
Dᾱ
t + L) e(·, t) = Rh(·, t)

for t > 0. Multiply this equation by e(·, t) then integrate over �; invoking Lemma 3.1 and
〈Lv, v〉 ≥ λ‖v‖2, we get

(Dᾱ
t + λ)‖e(·, t)‖ ≤ ‖Rh(·, t)‖ for t > 0. (3.2)

Combining this with our hypothesis (3.1), one has (Dᾱ
t + λ)(E − ‖e(·, t)‖) ≥ 0. Now an

application of Lemma 2.3 yields ‖(uh − u)(·, t)‖ ≤ E(t) ∀ t ≥ 0. 
�
In Theorem 3.2, one can replace the condition E ∈ C[0, T ] of (2.2) by limt→0+ E(t) ≥ 0

exists; see Remark 2.2 and Corollary 2.4.
Note that the proof of Theorem 3.2 did not require existence of a solution of (2.3), which

we have proved only for the constant-coefficient case of Sect. 2.3 and the case α1 = 1 and
q1(t) > 0 of Sect. 2.4.

The next corollary presents a possible choice of E(t) to use in (3.1).

Corollary 3.3 Assume the hypotheses of Theorem 3.2. Then the error e = uh − u satisfies

‖(uh − u)(·, t)‖ ≤ sup
0<s≤t

{‖Rh(·, s)‖
R0(s)

}

, where R0(t) := λ +
�∑

i= j

qi (t) t
−αi /�(1 − αi )

(3.3)

where j = 1 if α1 < 1 and j = 2 if α1 = 1.

Proof (The proof is similar to part of the proof of [14, Corollary 2.4].)
Set κ = sup0<s≤t {‖Rh(·, s)‖/R0(s)}. If κ = ∞ the result is trivial, so assume that

0 ≤ κ ∈ R. Define the barrier function E0(t) by E0(t) := 1 for t > 0 and E0(0) := 0. Note
that E0 satisfies the conditions of Theorem 3.2. From (2.1) (see also [14, Remark 2.9]) one
has Dαi

t E0(t) = t−αi /�(1−αi ) for t > 0 if αi < 1, while Dα1
t E0(t) = 0 for t > 0 if α1 = 1,

so
(
Dᾱ
t + λ

)
κE0(t) = κR0(t) in all cases. Thus we can apply Theorem 3.2 with E = κE0

to finish the proof. 
�
We shall present a second possible choice of E(t) after we list some properties of the

hypergeometric function 2F1(αi ,−β ; α1 ; s) that is discussed in [1, Section 15] and [20].
Set β := 1 − α1. Then d

ds

(
s−β

2F1(αi ,−β ; α1 ; s)) = −βs−β−1
2F1(αi ,−β ; −β ; s)

[1, Section 15.2.4] [20, item 15.5.4], while by [1, Section 15.1.8] [20, item 15.4.6] one gets
2F1(αi ,−β ; −β ; s) = (1 − s)−αi . Hence

d

ds

(
s−β

2F1(αi ,−β ; α1 ; s)
)

= −β s−β−1(1 − s)−αi . (3.4)
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Furthermore,

2F1(αi ,−β ; α1 ; 1) = �(α1)�(1 − αi )

�(α1 − αi )
(3.5)

by [1, Section 15.1.20][20, item 15.4.20].

Corollary 3.4 Assume the hypotheses of Theorem 3.2 and that α1 < 1. Then the error e =
uh − u satisfies

‖(uh − u)(·, t)‖ ≤ tα1−1 sup
0<s≤t

{‖Rh(·, s)‖
R1(s)

}

, (3.6)

where

R1(t) := λE1(t) + τ−β
�∑

i=1

qi (t) t−αi

�(1 − αi )

[
1 − ρi (τ̂ )

]
, ρi (s) := 0 for s ≥ 1,

ρi (s) := 2F1(αi ,−β ; α1 ; s) − �(α1)�(1−αi )
�(α1−αi )

sβ ≤ (1 − s)1−αi < 1 for s ∈ (0, 1), (3.7)

with β := 1−α1, τ̂ := τ/t and E1(t) := (max{τ, t})α1−1 for t > 0, E1(0) := 0. Here τ > 0
is an arbitrary user-chosen parameter.

Furthermore, in (3.6) one can replace tα1−1 by E1(t) if desired.
Proof Set κ = sup0<s≤t {‖Rh(·, s)‖/R1(s)}. If κ = ∞ the result is trivial, so assume that
0 ≤ κ ∈ R. Observe that E1(t) = τ−βE0(t) − (τ−β − t−β)+, where E0 was defined in
the proof of Corollary 3.3. From (2.1) one has Dαi

t E0(t) = t−αi /�(1 − αi ) for t > 0 and
i = 1, . . . , �, so for t ≤ τ (i.e., τ̂ ≥ 1) we get

(
Dᾱ
t + λ

)
κE1(t) = κR1(t) since in R1 one

has ρi (τ̂ ) = 0 for all i .
For t > τ , since ∂s(τ

−β − s−β)+ = −∂s(s−β) = βs−β−1, for i = 1, 2, . . . , � we have

�(1 − αi ) D
αi
t E1(t) = τ−β t−αi − β

∫ t

τ

s−β−1(t − s)−αi ds

= τ−β t−αi − βt−β−αi

∫ 1

τ̂

ŝ−β−1(1 − ŝ)−αi dŝ

= τ−β t−αi − t−β−αi
(
τ̂−β ρi (τ̂ )

)
,

from (3.4) and (3.7). But t−β−αi τ̂−β = τ−β t−αi , so �(1 − αi ) D
αi
t E1(t) = τ−β t−αi [1 −

ρi (τ̂ )]. Hence, (Dᾱ
t + λ

)
κE1(t) ≥ κR1(t) for t > τ .

For the bound on ρi in (3.7), the above argument shows that

τ̂−β ρi (τ̂ ) = β

∫ 1

τ̂

ŝ−β−1(1 − ŝ)−αi dŝ

≤ β(1 − τ̂ )α1−αi

∫ 1

τ̂

ŝ−β−1(1 − ŝ)−α1 dŝ

= (1 − τ̂ )α1−αi
(
τ̂−β(1 − τ̂ )1−α1

)
= τ̂−β (1 − τ̂ )αi ,

where we also used (1 − ŝ)−αi /(1 − ŝ)−α1 ≤ (1 − τ̂ )α1−αi as α1 ≥ αi . Hence, ρi (τ̂ ) ≤
(1 − τ̂ )αi , as desired.

We can now apply Theorem 3.2 with E = κE1 to obtain the bound

‖(uh − u)(·, t)‖ ≤ E1(t) sup
0<s≤t

{‖Rh(·, s)‖
R1(s)

}

;
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then E1(t) ≤ tα1−1 completes the proof. 
�
One could extend the proof of Corollary 3.4 to include the case α = 1, but in this case the

result becomes the same as that of Corollary 3.3.
Note that (3.7) for i = 1 simplifies to ρ1(s) = (

(1 − s)+
)1−α1 because of [1, Section

15.1.8] [20, item 15.4.6] and {�(α1 − αi )}−1 = 0.
Finally, we give a general result that relates ‖(uh − u)(·, t)‖ to ‖Rh(·, t)‖ without involv-

ing any barrier function — but this result, unlike Corollaries 3.3 and 3.4, depends on the

assumption that
(
Dᾱ
t + λ

)−1 ‖Rh(·, t)‖ exists.

Corollary 3.5 Assume the hypotheses of Theorem 3.2. Recall the definition of
(
Dᾱ
t + λ

)−1
in

Sect. 2. If
(
Dᾱ
t + λ

)−1 ‖Rh(·, t)‖ exists, then

‖(uh − u)(·, t)‖ ≤
(

�∑

i=1

qi (t)D
αi
t + λ

)−1

‖Rh(·, t)‖ for t > 0. (3.8)

Proof Set E(t) := (Dᾱ
t + λ)−1‖Rh(·, t)‖. Then E(0) = 0 and (Dᾱ

t + λ)E(t) = ‖Rh(·, t)‖
imply E(t) ≥ 0 by Lemma 2.3. Thus we can invoke Theorem 3.2 to get (3.8). 
�

4 L∞(Ä) a Posteriori Error Estimates

Throughout Sect. 4, let Lu := ∑d
k=1

{
ak(x) ∂2xku + bk(x) ∂xku

} + c(x) u in (1.1), with suf-
ficiently smooth coefficients {ak}, {bk} and c in C(�̄). Assume also that for each k one has
ak > 0 in �̄, and that c ≥ λ ≥ 0.

The condition 〈Lv, v〉 ≥ λ‖v‖2 is not required in this section.

Lemma 4.1 (Comparison principle for the initial-boundary value problem) Suppose that

�∑

i=1

[
qi (t) D

αi
t v(x, t)

]+ Lv(x, t) ≥ 0 for (x, t) ∈ � × (0, T ], (4.1)

where v(·, t) ∈ C2(�) for each t > 0, and for each x ∈ � we have v(x, ·) ∈ W 1,∞(ε, t)
for all ε, t satisfying 0 < ε < t ≤ T , and limt→0+ v(x, t) ≥ 0 exists. In (4.1) define
Dαi
t v(x, ·) for each x ∈ � by (2.1) if αi < 1. If α1 = 1, suppose also that vt (x, ·) (for each

x ∈ �) may have jump discontinuities but is a left-continuous function on (0, T ]. Assume
that v(x, 0) ≥ 0 for x ∈ � and that v(x, t) ≥ 0 for x ∈ ∂� and 0 ≤ t ≤ T . Then v(x, t) ≥ 0
for all (x, t) ∈ � × (0, T ].
Proof Imitate the argument of Corollary 2.4, with the extra detail that Lv(x0, t0) ≤ 0 at any
point (x0, t0) ∈ � × (0, T ] where v(x, t) attains a negative minimum. 
�

A result similar to Lemma 4.1 is proved in [17, Theorem 2] under the stronger hypothesis
that v(x, ·) ∈ C1(0, T ] ∩ W 1,1(0, T ) for each x ∈ �. See also [4, Lemma 3.1].

Theorem 4.2 Assume that a unique solution u of (1.1) and its approximation uh each satisfy
the regularity hypotheses imposed on v in Lemma 4.1. Then the error bounds of Theorem 3.2
and Corollaries 3.5, 3.3 and 3.4 remain true with ‖ · ‖ = ‖ · ‖L2(�) replaced by ‖ · ‖L∞(�).

123



Journal of Scientific Computing (2022) 92 :73 Page 13 of 23 73

Proof Note that LE(t) = cE(t) ≥ λE(t) for t > 0. Consider first Theorem 3.2, whose
hypothesis now becomes ‖Rh(·, t)‖L∞(�) ≤ (Dᾱ

t + λ)E(t) for t > 0. But (Dᾱ
t + λ)E(t) ≤

(Dᾱ
t +L)E(t) and Rh(x, t) = (Dᾱ

t +L)(uh−u)(x, t), so we have |(Dᾱ
t +L)(uh−u)(x, t)| ≤

(Dᾱ
t +L)E(t) for x ∈ � and t > 0. Thus one can invoke Lemma 4.1 to get |(uh −u)(x, t)| ≤

E(t) on � × [0, T ], i.e., Theorem 3.2 is valid in the L∞(�) setting.
We can now deduce L∞(�) variants of the other results. To get the newCorollary 3.5, take

E(t) := (Dα
t + λ)−1‖Rh(·, t)‖L∞(�) in the new Theorem 3.2. For the new Corollaries 3.3

and 3.4, use their old proofs with ‖Rh‖ replaced by ‖Rh‖L∞(�) and appeal to the new
Theorem 3.2. 
�

5 Application to the L1Method. Numerical Experiments

In this section we examine in detail the practical application of our a posteriori analysis to
the well-known L1 discretisation of each fractional derivative Dαi

t . Other discretisations will
be discussed in a future paper [8].

Given an arbitrary temporal mesh {t j }Mj=0 on [0, T ], let {u j
h}Mj=0 be the semi-discrete

approximation for (1.1) obtained using the popular L1 method [23]. Then its standard
Lagrange piecewise-linear-in-time interpolant uh , defined on �̄ × [0, T ], satisfies

( �∑

i=1

qi (t j ) D
αi
t + L

)
uh(x, t j ) = f (x, t j ) for x ∈ �, j = 1 . . . , M, (5.1)

subject to u0h := u0 and uh = 0 on ∂�. In the case of α1 = 1, the term Dα1
t uh(x, t j ) =

[uh(x, t j )− uh(x, t j−1)]/(t j − t j−1), which corresponds to ∂t uh treated as a left-continuous
function in time.

First, consider the case α1 < 1. For the residual of uh one immediately gets Rh(·, t j ) = 0
for j ≥ 1, i.e., the residual is a non-symmetric bubble on each (t j−1, t j ) for j > 1. Hence,
for the piecewise-linear interpolant RI

h of Rh one has RI
h = 0 for t ≥ t1, and, more generally,

RI
h = [Lu0 − f (·, 0)](1 − t/t1)+ for t > 0 (where we used Rh(·, 0) = Lu0 − f (·, 0)

because Dαi
t u0h(·, 0) = 0). Finally, note that Rh − RI

h = (Dᾱ
t uh − f ) − (Dᾱ

t uh − f )I since
(Luh)I = Luh . In other words, one can compute Rh by sampling, using parallel/vector
evaluations, without a direct application of L to {u j

h}.
Next, consider the case α1 = 1. Then Dα1

t uh = ∂t uh is piecewise constant in time, and
it is convenient to treat it as a left-continuous function, viz., ∂t uh = δ

j
t uh := [uh(·, t j ) −

uh(·, t j−1)]/(t j −t j−1) is constant in time on each time interval (t j−1, t j ]. As before, one gets
Rh(·, t j ) = 0 for j ≥ 1, so RI

h = [Lu0 − f (·, 0)](1− t/t1)+ for t > 0— but Rh is no longer
continuous in time. (To be precise, Rh −q1(t) ∂t uh is continuous on [0, T ], assuming that u0
is smooth; a modification for the case when Lu0 /∈ L2(�) is discussed in [14, Remark 2.7].)
Nevertheless, we can still employ Rh − RI

h = (Dᾱ
t uh − f ) − (Dᾱ

t uh − f )I , but one needs
to be more careful when evaluating the component (q1∂t uh)I of (Dᾱ

t )I : on each (t j−1, t j ]
with j > 1, one gets

(q1∂t uh)
I = q I

1 δ
j
t uh − q1(t j−1)

[
δ
j
t uh − δ

j−1
t uh

] t j − t

t j − t j−1

(to check this formula, observe that it is linear in time and equals q1(t j ) δ
j
t uh at t j and

q1(t j−1) δ
j−1
t uh at t j−1). On [0, t1], i.e., when j = 1, the situation is simpler as uh is

continuous in time, so (q1 ∂t uh)I = q I
1 δ1t uh , so one can still employ the above formula after
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u0
h := u0; t0 := 0; t1 := min{τ∗, T}; m := 0;

while tm < T
m := m + 1; flag := 0;
while tm − tm−1 > τ∗∗

compute um
h using (5.1)

if Rh(·, t) TOL · Rp(t) ∀ t ∈ (tm−1, tm)
if tm = T

M := m; break
elseif tm < T

ũm
h := um

h ; t̃m := tm;
tm := min{tm−1 + Q(tm − tm−1), T}; flag := 1;

end
else

if flag = 0
tm := tm−1 + (tm − tm−1)/Q;

else
um
h := ũm

h ; tm := t̃m;
tm+1 := min{tm + (tm − tm−1), T}; break

end
end

end
end

Fig. 2 Adaptive algorithm

setting δ0t uh := δ1t uh . Thus, even when α1 = 1, one can still compute Rh by sampling, using

parallel/vector evaluations, without a direct application of L to {u j
h}.

Finally, for completeness we include in Fig. 2 a description of the adaptive algorithm of
[14], to aid the reader’s understanding of the numerical results that follow. This algorithm is
motivated by (3.3) and (3.6); it constructs a temporalmesh such that ‖Rh(·, t)‖ ≤ TOL·Rp(t)
for p = 0, 1, with Q := 1.1, τ∗∗ := 0 and τ∗ := 5t1 inR1. (Experiments with larger values
of Q and a discussion of implementation of the algorithm are given in [8].) Note that the
computation of the mesh in the algorithm is one-dimensional in nature and is independent of
the number of spatial dimensions in (1.1), since it is based on the scalar quantity ‖Rh(·, t)‖.

5.1 Numerical Results with˛1 < 1

We start our numerical experiments with three initial-value problems of the form (2.3) to
illustrate orders of convergence, since time discretisation is the main focus of our paper. A
subdiffusion test problem of the form (1.1) (i.e., containing spatial and temporal derivatives)
will then be considered.

Aswell as results computed onour adaptivemesh, someof thefigures compare the adaptive
mesh itself with the (M + 1)-point graded mesh tk := T (k/M)r for k = 0, 1, . . . , M that is
often used in conjunction with the L1 scheme (see [23]). Here r ≥ 1 is a user-chosen mesh
grading parameter and it is known [13, 24] that when � = 1 the choice r = (2− α)/α yields
the optimal mesh grading for the problem (1.1); we make an analogous choice of r in our
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Fig. 3 Adaptive algorithm with R0(t) for Example 5.1: loglog graphs of max[0,T ] |e(t)| on the adaptive

mesh and the corresponding TOL, for α = 0.4 (left) and α = 0.9 (centre). Right: loglog graphs of {t j }Mj=0
as a function of j/M for our adaptive mesh and the standard graded mesh with r = (2 − α)/α, α = 0.4,
TOL = 10−3, M = 51
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Fig. 4 Adaptive algorithm with R1(t) for Example 5.1: |e(1)| on the adaptive mesh and the corresponding
TOL, for α = 0.4 (left) and α = 0.7 (centre). Right: log-log graph of the pointwise error |e(t j )| on the adaptive
mesh and TOL · tα−1 for α = 0.4, TOL = 10−5, M = 346

experiments. We shall see that the adaptive mesh constructed by our algorithm — without
using any information about the exact solution and without any guidance from the user —
is remarkably similar to the optimal graded mesh. Of course this holds great promise for the
performance of the algorithm in problems where no a priori analysis of the exact solution
(and therefore no optimal a priori mesh) is available.

To begin, we present three initial-value examples to demonstrate that an adaptive approach
based on our a posteriori analysis works well in widely-differing regimes.

Example 5.1 Consider (1.1) without spatial derivatives, with L := 1, T = 1, and � = 2, and

α1 = α, α2 = 2
3α, q1(t) = 1

2e
−t/5, q2(t) = 1 − q1(t), u(0) = 0, f (t) ≡ 1,

(5.2)

where α ∈ (0, 1). In this example one has q1(t) > 0 and q2(t) > 0 for all t . The unknown
exact solution is replaced by a reference solution (computed on a considerably finer mesh).
See Figs. 3 and 4 for errors in the computed solutions and the meshes generated.

Example 5.2 We modify Example 5.1 by resetting

q1(t) := cos2(π t) for t < 1
2 , q1(t) := 0 for t ≥ 1

2 , q2(t) := 1 − q1(t),

while retaining u(0) = 0 and f (t) ≡ 1. Now the coefficient of the highest-order derivative
vanishes for t ≥ 1/2. Loglog graphs of reference solutions indicate that the solution to
this problem has an initial singularity of type tα1 (compare the constant-coefficient analysis
of Sect. 2.3) and remains smooth away from t = 0. See Fig. 5 for errors in the computed
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Fig. 5 Adaptive algorithm withR0(t) for Example 5.2: loglog graphs of max[0,T ] |e(t)| on the adaptive mesh
and the corresponding TOL for α = 0.4 (left) and α = 0.8 (centre). Right: Change f to f (t) = cos(5t2);
loglog graphs of {t j }Mj=0 as a function of j/M for our adaptive mesh and the standard graded mesh with

r = (2 − α)/α for α = 0.6, TOL = 10−3, M = 139
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Fig. 6 Adaptive algorithm withR0(t) for Example 5.3: loglog graphs of max[0,T ] |e(t)| on the adaptive mesh

and the corresponding TOL for α = 0.4 (left) and α = 0.8 (centre). Right: loglog graphs of {t j }Mj=0 as a
function of j/M for our adaptive mesh and the standard graded mesh with r = (2 − α2)/α2, α = α1 = 0.6,
TOL = 10−3, M = 54

solutions and themesh generated.We also display (see rightmost figure) themeshes generated
when f (t) = cos(5t2) to show that the algorithm continues to perform well when f changes
rapidly.

Example 5.3 We modify Example 5.1 by resetting

q1(t) := 0 for t < 1
2 , q1(t) := cos2(π t) for t ≥ 1

2 , q2(t) := 1 − q1(t).

Here the situation is opposite to that of Example 5.2: the coefficient of the highest-order
derivative vanishes for t < 1/2. Loglog graphs of reference solutions indicate that the solution
to this problem has an initial singularity of type tα2 (one could show this analytically by an
extension of Remark 2.6) and remains smooth away from t = 0. See Fig. 6 for errors in the
computed solutions and the mesh generated.

Example 5.4 Now we consider the subdiffusion analogue (1.1) of (5.2): retain the values of
α1, α2, q1, q2 and set

u0(x) = sin(x2/π), � = (0, π), λ = 1, L = − d2

dx2
, f ≡ 1.

Note that the initial data u0 has only limited compatibility with the other data at the corner
(π, 0) of the space-time domain. Nevertheless the algorithm performs satisfactorily. (Related
examples where either the exact solution is known, or the initial condition is piecewise linear,
were tested in [14].) See Fig. 7 for errors in the computed solutions.
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Fig. 7 Example 5.4 adaptive algorithm results: (left) for R1(t) with α = 0.4, showing ‖e(1)‖ and TOL;
for R0(t) with α = 0.4 (centre) and α = 0.8 (right), maxt j∈(0,T ] ‖e(t j )‖ on the adaptive mesh and the
corresponding TOL

5.2 Numerical Results with˛1 = 1

Example 5.5 Consider the IVP (2.3) with α1 = 1, λ = 1 and

q1(t) := c1e
−5t cos2(π t) for t < 1

2 , q1(t) := 0 for t ≥ 1
2 , q2(t) := 1 − q1(t),

f (t) := 1 + 1
2 erf(20(1 − t)).

See Fig. 8 for results for c1 = 1 and Fig. 9 for those for c1 = 1
2 . When c1 = 1, the solution

has no initial singularity and we used the exponential barrier function E(t) := 1−exp(−10t)
since it gives better results in this case. For c1 = 1

2 one has q2(0) > 0, so we employed E0
and hence R0 as in the earlier examples for α1 < 1.

Note: when evaluating R(t) :=
(∑�

i=1 qi (t)D
αi
t + λ

)
E(t) in (3.1), Dα1

t E = E ′(t) is

computed explicitly, while Dα2
t E is computed using quadrature.

In the next example we return to our subdiffusion problem (1.1).

Example 5.6 Take q1, q2 and f as in Example 5.5, with c1 = 1
2 , while L, u0, � and λ = 1

are taken from Example 5.4. Now we choose the temporal grid a priori to be uniform. Once
the computed solution is obtained, we compute the residual ‖Rh(·, t)‖ on a finer mesh, with
15 equidistant additional points between any consecutive time layers.

Assuming that there exists a solution E of
(∑�

i=1 qi (t) D
αi
t + λ

)
E = ‖Rh(·, t)‖, inequal-

ity (3.8) gives an upper bound for the error, viz., ‖(uh − u)(·, t)‖ ≤ E . In practice, one finds
a numerical approximation Eh of E on the above fine grid.
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Fig. 8 Adaptive algorithm with R(t) generated by E = 1 − exp(−10t) for Example 5.5 with α1 = 1 and
c1 = 1: loglog graphs of max[0,T ] |e(t)| on the adaptive mesh and the corresponding TOL for α2 = 0.3 (left)
and α2 = 0.8 (centre). Right: computed solutions for this test problem obtained using TOL = 10−2
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Fig. 9 Adaptive algorithm with R0(t) for Example 5.5 with α1 = 1 and c1 = 1
2 : loglog graphs of

max[0,T ] |e(t)| on the adaptive mesh and the corresponding TOL for α2 = 0.3 (left) and α2 = 0.8 (cen-
tre). Right: computed solutions for this test problem obtained using TOL = 10−2
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Fig. 10 A posteriori error estimation on the uniform temporal mesh for Example 5.6 with α1 = 1 and c1 = 1
2 :

loglog graphs of max[0,T ] ‖e(t j )‖ and the corresponding estimator maxt j∈[0,T ] Eh(t j ) for α2 = 0.3 (left)
and α2 = 0.8 (centre). Right: pointwise-in-time error ‖e(t j )‖ and pointwise estimator Eh(t j ) for α2 = 0.8,
M = 32

It is important to note that the computed solution uh is a numerical approximation of
the fractional subdiffusion problem with spatial derivatives, while the computation of Eh ,
although the latter is computed on a much finer temporal grid, is inexpensive, as E(t) is a
solution of an initial-value problem without spatial derivatives.

See Fig. 10 for results.

The numerical results in this section demonstrate that, for many different types of data,
our algorithm based on the L1 scheme automatically adapts the given initial mesh to compute
accurate numerical solutions. It gives excellent results for problems whose solutions have
a weak singularity at t = 0, without requiring the user to choose a suitable mesh — while
if the mesh is prescribed a priori, it can estimate the error in the solution computed on this
mesh (see Fig. 10). It is equally good in cases where this weak singularity is absent.
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A A Variant of Lemma 2.3

In this appendix we shall prove a result (Lemma A.3) that complements Lemma 2.3. This is
done by using an explicit complex contour integral formula to derive a positivity property of
the multinomial Mittag-Leffler function (Lemma A.2) that appears to be new.

Our argument starts with the following elementary result.

Lemma A.1 Let m and n be nonnegative integers with m < n. Set S(s) = ∑n
j=0 k j s

γ j for
s ∈ [0,∞), where 0 = γ0 < γ1 < · · · < γn ≤ 1 and k j > 0 for 0 ≤ j ≤ m, k j < 0 for
m < j ≤ n. Then the equation S(s) = 0 has a unique solution s0 ∈ (0,∞), with S(s) > 0
for 0 ≤ s < s0 and S(s) < 0 for s0 < s < ∞.

Proof If t ∈ (0,∞), then

S′(t) =
n∑

j=1

k jγ j t
γ j−1 =

m∑

j=1

k jγ j t
γ j−1 −

n∑

j=m+1

|k j |γ j t
γ j−1

≤ γm+1t
−1

m∑

j=1

k j t
γ j − γm+1t

−1
n∑

j=m+1

|k j |tγ j

= γm+1t
−1

n∑

j=1

k j t
γ j

< γm+1t
−1

n∑

j=0

k j t
γ j = γm+1t

−1S(t).

Hence

S(t) ≤ 0 implies S′(t) < 0. (A.1)

One has S(0) = k0 > 0. As s → ∞, the term knsγn in S(s) will dominate; it follows that
S(s) < 0 for all sufficiently large s. Hence S(s) = 0 has at least one solution s0 in (0,∞).

From (A.1) it follows that S′(s0) < 0, so S(s) < 0 on some interval (s0, s0 + δ). Now
(A.1) ensures that S can never reach a minimum on (s0,∞), which implies that S(s) < 0 for
s ∈ (s0,∞). Thus s0 is the unique solution of S(s) = 0. 
�

We now prove a new positivity property of the multinomial Mittag-Leffler function that
is related to Lemma 2.9; this proof is in the spirit of classical analyses of Mittag-Leffler
functions. The argument used is partly based on [21, pp.215–216], where a similar result was
obtained for the simpler case of the two-parameter Mittag-Leffler function Eα,β(t).

Lemma A.2 Assume that 1 < β < 1 + α1 and λ > 0. Then

Ẽ(t) := E(α1,α1−α�,...,α1−α3,α1−α2),β(−λtα1 ,−q�t
α1−α� , . . . ,−q3t

α1−α3 ,−q2t
α1−α2) > 0

for all t > 0.

Proof For each t > 0, by Remark 2.8 and [18, eq.(47)] we have

Ẽ(t) = E(α1−α2,α1−α3,...,α1−α�,α1),β(−q2t
α1−α2 ,−q3t

α1−α3 , . . . ,−q�t
α1−α� ,−λtα1)

= t1−β

2π i

∫

γ (Rm ,−π,π)

eζ tζ α1−β

ζ α1 +∑�
j=2 q jζ

α j + λ
dζ,
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where r := max
{
1,
(
λ +∑

q j
)1/(α1−α2)

}
, and γ (R, θ1, θ2) (for R ≥ 0 and −π ≤ θ1 ≤

θ2 ≤ π) denotes the complex-plane Hankel contour that comprises the ray arg ζ = θ1 with
|ζ | ≥ R, the arc |ζ | = R with θ1 ≤ arg ζ ≤ θ2, and the ray arg ζ = θ2 with |ζ | ≥ R, and the
contour is traversed in the direction of increasing arg ζ .

The substitution w = ζ α1 gives

Ẽ(t) = t1−β

2α1π i

∫

γ (rα1 ,−α1π,α1π)

w(1−β)/α1 exp
(
tw1/α1

)

w +∑�
j=2 q jw

α j /α1 + λ
dw (A.2)

Observe that if w ∈ γ (rα1 ,−α1π, α1π), then | argw| ≤ α1π independently of r ; hence
∣
∣
∣
∣
∣
∣
arg

⎛

⎝w +
�∑

j=2

q jw
α j /α1

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ max{α1π, α2π, . . . , α�π} = α1π < π,

so (recall that λ > 0) the denominator of the integrand will not vanish if we change the value
of r in the contour, and consequently the value of the integral will not change (by Cauchy’s
integral theorem). Furthermore, we can permit r → 0 because β < 1 + α1 ensures that
the integral remains finite. Thus we can replace the contour γ (rα1 ,−α1π, α1π) in (A.2) by
γ (0,−α1π, α1π).

Next, set w = se±iα1π along the ray argw = ±α1π (choose same sign). This yields

Ẽ(t) = t1−β

2α1π i

[∫ 0

∞
s(1−β)/α1e−i(1−β)π exp

(
ts1/α1e−iπ

)
e−iα1π

se−iα1π +∑�
j=2 q j sα j /α1e−iα jπ + λ

+
∫ ∞

0

s(1−β)/α1ei(1−β)π exp
(
ts1/α1eiπ

)
eiα1π

seiα1π +∑�
j=2 q j sα j /α1eiα jπ + λ

]

ds

= t1−β

2α1π i

∫ ∞

0
s(1−β)/α1 exp

(−ts1/α1
)
[
eiβπ

s + ξ
− e−iβπ

s + ξ̄

]

ds, (A.3)

where ξ := ∑�
j=2 q j sα j /α1ei(α1−α j )π + λeiα1π and ξ̄ is its complex conjugate. Now

eiβπ

s + ξ
− e−iβπ

s + ξ̄
= s(eiβπ − e−iβπ ) + ξ̄eiβπ − ξe−iβπ

s2 + ξ2

= 2is sin βπ + 2i�(ξ̄eiβπ )

s2 + ξ2
= 2iv(s)

s2 + ξ2
,

where v(s) := s sin βπ +∑�
j=2 q j sα j /α1 sin(β −α1 +α j )π +λ sin(β −α1)π . Hence (A.3)

becomes

Ẽ(t) = t1−β

α1π
I (t), where I (t) :=

∫ ∞

0
s(1−β)/α1 exp

(−ts1/α1
) v(s)

s2 + ξ2
ds. (A.4)

Note that v(s) has exactly the same structure as S(s) in LemmaA.1, since 0 < α j/α1 < 1,
1 < β < 1 + α1 and λ > 0. Thus there exists s0 > 0 such that v(s) > 0 for 0 < s < s0 and
v(s) < 0 for s > s0. From Definition 2.7 we get Ẽ(0) = 1/�(β) > 0. By continuity we can
choose t0 > 0 such that Ẽ(t) > 0 on (0, t0], which implies I (t0) > 0. That is, recalling the
properties of s0,

∫ s0

0
s(1−β)/α1 exp

(−t0s
1/α1

) v(s)

s2 + ξ2
ds >

∫ ∞

s0
s(1−β)/α1 exp

(−t0s
1/α1

) |v(s)|
s2 + ξ2

ds. (A.5)
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Then for any t > t0, using (A.5) we get

∫ s0

0
s(1−β)/α1 exp

(−ts1/α1
) v(s)

s2 + ξ2
ds

≥ exp
(
−(t − t0)s

1/α1
0

) ∫ s0

0
s(1−β)/α1 exp

(−t0s
1/α1

) v(s)

s2 + ξ2
ds

> exp
(
−(t − t0)s

1/α1
0

) ∫ ∞

s0
s(1−β)/α1 exp

(−t0s
1/α1

) |v(s)|
s2 + ξ2

ds

≥
∫ ∞

s0
s(1−β)/α1 exp

(−ts1/α1
) |v(s)|
s2 + ξ2

ds.

Now move the integral
∫∞
s0

. . . to the left-hand side; this gives I (t) > 0. Hence Ẽ(t) > 0
for t > t0 and we are done. 
�

We can now prove our variant of Lemma 2.3.

Lemma A.3 Consider the homogeneous version of the initial-value problem (2.3):

Dᾱ
t y(t) + λy(t) = 0 for 0 < t ≤ T , y(0) = 1, (A.6)

where the qi are constants and λ ≥ 0. Then this problem has a solution y, with y(t) ≥ 0 for
t ∈ [0, T ].

Proof If λ = 0 then y(t) ≡ 1 is the unique solution of (A.6) by [18, Theorem 4.1]. Thus we
can assume that λ > 0. From [17, Theorem 6] the solution of (A.6) is

y(t) = 1 − λtα1 E(α1,α1−α2,α1−α3,...,α1−α�),1+α1 (−λtα1 , −q2t
α1−α2 , −q3t

α1−α3 , . . . , −q�t
α1−α� ).

But [15, Lemma 3.1] states that for m ≥ 1 one has

1

�(β0)
+

m∑

j=1

z j E(β1,...,βm ),β0+β j (z1, . . . , zm) = E(β1,...,βm ),β0(z1, . . . , zm)

for 0 < β0 < 2 and 0 < β j < 1 ( j = 1, . . . ,m) and any z j ∈ R. In particular this implies
that

1 − λtα1 E(α1,α1−α2,α1−α3,...,α1−α�),1+α1 (−λtα1 , −q2t
α1−α2 , −q3t

α1−α3 , . . . , −q�t
α1−α� )

−
�∑

j=2

q j t
α1−α j E(α1,α1−α2,α1−α3,...,α1−α�),1+α1−α j (−λtα1 , −q2t

α1−α2 , −q3t
α1−α3 , . . . , −q�t

α1−α� )

= E(α1,α1−α2,α1−α3,...,α1−α�),1(−λtα1 , −q2t
α1−α2 , −q3t

α1−α3 , . . . , −q�t
α1−α� )
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Hence, using Remark 2.8, we get

y(t) =
�∑

j=2

q j t
α1−α j E(α1,α1−α2,α1−α3,...,α1−α�),1+α1−α j (−λtα1 ,−q2t

α1−α2 ,−q3t
α1−α3 , . . . , −q�t

α1−α� )

+ E(α1,α1−α2,α1−α3,...,α1−α�),1(−λtα1 ,−q2t
α1−α2 ,−q3t

α1−α3 , . . . , −q�t
α1−α� )

=
�∑

j=2

q j t
α1−α j E(α1,α1−α�,...,α1−α3,α1−α2),1+α1−α j (−λtα1 ,−q�t

α1−α� , . . . , −q3t
α1−α3 ,−q2t

α1−α2 )

+ E(α1,α1−α�,...,α1−α3,α1−α2),1(−λtα1 ,−q�t
α1−α� , . . . , −q3t

α1−α3 ,−q2t
α1−α2 )

=
�∑

j=2

q jF(α1,α1−α�,...,α1−α3,α1−α2),1+α1−α j (t; λ, q�, . . . , q3, q2)

+ F(α1,α1−α�,...,α1−α3,α1−α2),1(t; λ, q�, . . . , q3, q2).

The result now follows by applying Lemma A.2 to the term F(... ),1 and Lemma 2.9 to each
term F(... ),1+α1−α j . 
�
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