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Abstract
In the derivation of error bounds, uniformly in the singular perturbation parameter ε, for finite
element methods (FEMs) applied to elliptic singularly perturbed linear reaction-diffusion
problems, the usual energy norm is unsatisfactory since it is essentially no stronger than
the L2 norm. Consequently various researchers have analysed errors in FEM solutions, uni-
formly in ε, using balanced norms whose H1 component is weighted correctly to maintain its
influence. But the derivation of energy and balanced-norm error bounds for FEM solutions of
singularly perturbed reaction-diffusion problems is confined almost entirely to steady-state
elliptic problems— little has been proved for time-dependent parabolic singularly perturbed
problems. The present paper addresses this gap in the literature: the backward Euler method
in time, combined with a bilinear FEM on a spatial Shishkin mesh, is applied to solve a
parabolic singularly perturbed reaction-diffusion problem, and energy-norm and balanced-
norm error estimates, which are uniform in the singular perturbation parameter ε, are derived
— these results are stronger than any previous results of the same type. Furthermore, numer-
ical experiments demonstrate the sharpness of our error bounds.

Keywords Energy norm · Balanced norm · Singularly perturbed · Reaction-diffusion ·
Parabolic

Mathematics Subject Classification 65M15 · 65M60

The research of Xiangyun Meng is supported in part by the Fundamental Research Funds for the Central
Universities under grant 2020RC101 and the National Natural Science Foundation of China under grants
12101039. The research of Martin Stynes is supported in part by the National Natural Science Foundation of
China under grants 12171025 and NSAF-U1930402.

B Martin Stynes
m.stynes@csrc.ac.cn

Xiangyun Meng
xymeng1@bjtu.edu.cn

1 School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, China

2 Applied and Computational Mathematics Division, Beijing Computational Science Research Center,
Beijing 100193, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-01931-7&domain=pdf
http://orcid.org/0000-0003-2085-7354


67 Page 2 of 14 Journal of Scientific Computing (2022) 92 :67

1 Introduction

The numerical solution of elliptic singularly perturbed linear reaction-diffusion problems by
finite elementmethods (FEMs) has been extensively researched; see [14, 20, 22]. In particular,
the FEM solution of such problems using Shishkin meshes on the unit square in R2 has been
well understood for some time; for example, an optimal-order energy-norm error analysis that
is uniform in the singular perturbation parameter ε is given in [16]. But although the energy
norm H1

e (an ε-weighted H1 norm — see Sect. 5) seems a natural choice for FEM error
analysis, it was pointed out in [13] that it is scaled incorrectly when the problem is singularly
perturbed: typically, its H1 component of the error is dominated by its L2 component, so an
energy-norm error bound is in practice only an L2 error bound.

As a consequence, in the last 10 years several papers (see [3, 7, 8, 13, 17–19] and their
references) have given more sophisticated FEM analyses for elliptic singularly perturbed
reaction-diffusion problems, deriving error bounds (uniformly in the singular perturbation
parameter) in balanced norms where each component (H1 and L2) of the error has the same
order of magnitude for typical solutions. (In Sect. 6 we shall define a balanced norm ‖ · ‖Bal
that fits the problem that we study here.)

Despite these successes with the elliptic singularly perturbed linear reaction-diffusion
problem, FEMenergy-norm analysis of the corresponding time-dependent parabolic problem
has lagged behind. To get a sense of the difficulty that arises in the parabolic problem, consider
the error analysis of a semidiscretisation of the classical heat equation ut −�u = f when it is
discretised only in space using a standard FEM. In [23,Theorem 1.2] the L∞(L2) error of this
method is analysed, and one sees easily that the same argument will work in the singularly
perturbed case ut −ε2�u = f , where 0 < ε � 1 (of course then one has to choose a suitable
spatial mesh, such as a Shishkin mesh, to obtain a satisfactory result). A related argument in
[23,Theorem 1.3] bounds the L∞(H1) error for the heat equation semidiscretisation— but if
one attempts to apply this argument to the singularly perturbed problem to obtain a bound in
H1
e , the final error estimate is unsatisfactory because it contains a multiplicative factor ε−1.
The only papers we know of that give H1

e error estimates for a FEM applied in space to
a singularly perturbed parabolic problem are [5, 10], who consider a convection-diffusion
problem. One can modify their analyses by setting the convection term equal to zero to
address the reaction-diffusion problem ut − ε2�u + bu = f , but the bound obtained is only
in L2(H1

e ) instead of the stronger L∞(H1
e ) norm. Moreover, as we pointed out earlier, the

ε-weighting in the H1
e norm is unbalanced (i.e., too strong) in the sense of Sect. 6. We do not

know of any L∞(H1
e ) norm error analysis for a FEM in space for this singularly perturbed

problem, nor are we aware of a balanced L p(H1) norm error bound for any p > 1. (Indeed,
the only balanced-norm result appears to be the balanced L1(H1) error bound in the preprint
[1], which appeared after our paper was submitted for publication, and which unlike our
paper uses a discontinuous Galerkin time discretisation.)

The current paper will fill both these gaps in the literature. It presents L∞(H1
e ) and

L∞(‖·‖Bal) error boundswhen a spatial FEM is used to solve a parabolic singularly perturbed
reaction-diffusion problem. The derivation of these error bounds requires, as one would
expect, the introduction of some novel techniques.

We shall consider a singularly perturbed parabolic PDE where the spatial domain� is the
unit square in R2. The corresponding steady-state problem has been extensively studied; see
[14, 20, 22]. Any typical solution of this class of parabolic problems exhibits boundary layers
on all sides of � at all positive times. To solve the problem numerically, we use a uniform
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mesh in time with backward Euler differencing, and in space a piecewise bilinear FEM on a
Shishkin mesh (as is usually done in the steady-state case).

The numericalmethod is not particularly original, but our error analysis of it is very new—
it differs substantially fromprevious error analyses of singularly perturbed parabolic reaction-
diffusion problems. For example, Lemmas 3.1 and 3.2 for the backward Euler scheme are
inspired by work on fractional-derivative parabolic problems; these inequalities have the
advantage of simplicity but their usefulness in a singularly perturbed context has not previ-
ously been recognised. In contrast, the analysis in [1] depends on much deeper results from
[6] for the discontinuous Galerkin time discretisation.

Our analysis leads to a L∞(H1
e ) error bound in Theorem 5.4, and a L∞(‖ · ‖Bal) error

bound in Theorem 6.4, both of which are novel — no analogous results have previously
appeared in the literature for any numerical method that uses a FEM in space to solve this
parabolic problem — and are of optimal order, as our numerical experiments will show.

The paper is structured as follows. In Sect. 2 we describe the singularly perturbed initial-
boundary value problem that we study and the boundary layer behaviour of typical solutions.
Some properties of the backward Euler scheme are derived in Sect. 3. The full numerical
method (backward Euler in time on a uniform temporal mesh; piecewise bilinear FEM in
space on a spatial Shishkin mesh) for solving our initial–boundary value problem is defined
in Sect. 4. The energy-norm and balanced-norm error analyses for this method are carried out
in Sects. 5 and 6 respectively. Finally, numerical experiments in Sect. 7 confirm the sharpness
of our theoretical results.

Notation.We use ‖ · ‖ and 〈·, ·〉 for the norm and inner product in L2(�), while ‖ · ‖k and
| · |k denote the Sobolev norm and seminorm on Hk(�) for k = 1, 2. The generic constant C
is independent of the singular perturbation parameter ε and of the mesh, so that throughout
our analysis any dependence on ε is stated explicitly.

2 Statement of the Problem

Consider the parabolic singularly perturbed problem

∂u

∂t
(x, t) − ε2�u(x, t) + b(x)u(x, t) = f (x, t) for (x, t) ∈ Q := � × (0, T ], (2.1)

where � = (0, 1)2 and T is a positive constant, with initial condition u(x, 0) = u0(x) for
x = (x1, x2) ∈ �, and boundary conditions u(x, t) = 0 for (x, t) ∈ ∂�× (0, T ]. We assume
that u0 ∈ C(�̄) where �̄ := [0, 1]2, with u0(x) = 0 for x ∈ ∂�. We also assume that f
and b are smooth functions (more precise hypotheses will be given later), and without loss of
generality we take b > β2 on �̄, where β > 0 is a constant — this can always be achieved
by a change of variable of the form u(x, t) = ektv(x, t) for some suitable constant k.

Error bounds for our numerical method will be derived in two distinct norms: the energy
norm of Sect. 5 and the balanced norm of Sect. 6. In these analyses, Sect. 6 requires more
regularity of the solution u than Sect. 5.

Set Q̄ := �̄ × [0, T ]. We use the Hölder spaces Cβ,β/2(Q̄), with β > 0, that are
standard in the analysis of parabolic PDEs. Let σ ∈ (0, 1) be arbitrary but fixed. From
[12,pp. 319, 320] (see also [2,Section 2] and [21,Section 5.2]), sufficient conditions for
u ∈ Ck+σ,(k+σ)/2(Q̄) with k = 5 (needed in Sect. 5) and k = 6 (needed in Sect. 6) are that
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f ∈ Ck−2+σ,(k−2+σ)/2(Q̄), b ∈ Ck−2+σ (�̄), and u0 ∈ Ck+σ (�̄), and that the following
compatibility conditions are satisfied: setting Lεw := −ε2�w + bw, for all x ∈ ∂� one has

u0(x) = 0, (2.2a)

− Lεu0(x) + f (x, 0) = 0, (2.2b)

(Lε)
2u0(x) − Lε f (x, 0) + ∂ f

∂t
(x, 0) = 0, (2.2c)

− (Lε)
3u0(x) + (Lε)

2 f (x, 0) − Lε

∂ f

∂t
(x, 0) + ∂2 f

∂t2
(x, 0) = 0, (2.2d)

where (2.2a)–(2.2c) are required when k = 5 and (2.2a)–(2.2d) are required when k = 6.
Then from [2,Section 2] and [21,Section 5.2], the solution u can be decomposed as u =

U + ∑4
i=1 vi + ∑4

i=1 wi , where U is a smooth component, the vi (i = 1, 2, 3, 4) are
edge boundary layer functions associated with the four sides of the unit square and the wi

(i = 1, 2, 3, 4) are corner layer terms. (This terminology is standard in this research area,
although the corner layers are located not at the corners of Q̄ but along the 4 line segments
(x1, x2, t)with (x1, x2) a corner of �̄ and 0 < t ≤ T ; a similar statement can be made for the
edge layers.) Furthermore, these components satisfy the following bounds for all (x, t) ∈ Q
and k1 + k2 + 2kt ≤ k: there exists a constant C > 0 such that

∣
∣
∣
∣
∣

∂k1+k2+ktU (x, t)

∂xk11 ∂xk22 ∂tkt

∣
∣
∣
∣
∣
≤ C, (2.3a)

∣
∣
∣
∣
∣

∂k1+k2+kt v1(x, t)

∂xk11 ∂xk22 ∂tkt

∣
∣
∣
∣
∣
≤ Cε−k1e−βx1/ε, (2.3b)

∣
∣
∣
∣
∣

∂k1+k2+kt w1(x, t)

∂xk11 ∂xk22 ∂tkt

∣
∣
∣
∣
∣
≤ Cε−k1−k2 min

{
e−βx1/ε, e−βx2/ε

}
, (2.3c)

with analogous bounds for the other layer terms.

3 Stability of the Backward Euler Scheme

Throughout the paper, we use the uniform temporal mesh {tm := mτ }Mm=0 where M is a
positive integer and τ = T /M . Let δt denote the standard backward Euler operator defined
by δt V m = (

Vm − Vm−1
)
/τ for each mesh function {Vm}Mm=0.

The following lemma is related to [11,Theorem 2.1], which is a stability result for a
discretisation of a Caputo fractional derivative.

Lemma 3.1 (i) Suppose that the mesh function {Vm}Mm=0 satisfies V
0 = 0 and |δt V m | ≤ K

for m = 1, 2, . . . , M, where K ≥ 0 is some quantity that is independent of m. Then
|Vm | ≤ Kmτ for m = 0, 1, ..., M.

(ii) The conclusion of part (i) still holds if the hypothesis |δt V m | ≤ K is replaced by δt |Vm | ≤
K.

Proof Part (i): For m = 1, ..., M , from |δt V m | ≤ K we get |Vm | ≤ ∣
∣Vm−1

∣
∣ + K τ . An easy

induction argument using V 0 = 0 then gives |Vm | ≤ Kmτ , as desired.
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Part (ii): Like [11,Theorem 2.1], define the mesh function {Wm}Mm=0 by W 0 = 0 and
δtWm = max {0, δt |Vm |} for m = 1, 2, . . . , M . Then 0 ≤ |Vm | ≤ Wm for all m since δt is
associated with an M-matrix, and the result follows from applying Part (i) to Wm . 
�

The backward Euler scheme also enjoys the following properties (a related inequality for
the L1 discretisation of the Caputo fractional derivative is proved in [9,Lemma 4.3]).

Lemma 3.2 Let vm ∈ L2(�) for m = 0, 1, . . . , M. Then

〈
δtv

m, vm
〉 ≥ (

δt
∥
∥vm

∥
∥
) ∥
∥vm

∥
∥ and

〈
δtv

m, vm
〉 ≥ 1

2
δt

(∥
∥vm

∥
∥2

)

for each m.

Proof The definition of δtv
m and a Cauchy-Schwarz inequality give

τ
〈
δtv

m, vm
〉 = 〈

vm − vm−1, vm
〉 ≥ ∥

∥vm
∥
∥2 − ∥

∥vm−1
∥
∥

∥
∥vm

∥
∥ = τ

(
δt

∥
∥vm

∥
∥
) ‖vm‖,

which proves the first inequality. For the second inequality, we have similarly

2τ
〈
δtv

m, vm
〉 ≥ 2

∥
∥vm

∥
∥2 − 2

∥
∥vm−1

∥
∥

∥
∥vm

∥
∥

≥ 2
∥
∥vm

∥
∥2 − ∥

∥vm−1
∥
∥2 − ∥

∥vm
∥
∥2 = τδt

(∥
∥vm

∥
∥2

)
.


�
In Sect. 5 the first inequality of Lemma 3.2 will be used to bound the L2(�) norm of the

error, while the second inequality will bound its H1(�) seminorm.

4 The Numerical Method

To discretise (2.1) we use the backward Euler scheme in time, and in space a bilinear FEM
on a Shishkin mesh (to deal with the boundary layers in the solution). We now define the
Shishkin mesh and the FEM space.

Let N be an even positive integer. Let λ be a mesh transition parameter that spec-
ifies where the piecewsise-uniform mesh changes from coarse to fine: it is defined by
λ = min

{
1/4, 2εβ−1 ln N

}
. Without loss of generality one can assume that ε is so small

that λ = 2εβ−1 ln N . Divide each of the intervals [0, λ] and [1 − λ, 1] into N/4 equidis-
tant subintervals and divide [λ, 1 − λ] into N/2 equidistant subintervals. This gives a 1D
Shishkin mesh that is coarse on [λ, 1 − λ] and fine elsewhere in [0, 1]. Then take a tensor
product of two 1D Shishkin meshes to construct the 2D Shishkin mesh on �; Fig. 1 displays
an example of this mesh for the case N = 8. (See [22] for further discussion of Shishkin
meshes.) Finally, let Vh0 ⊂ H1

0 (�) be the piecewise bilinear finite element space defined on
the Shishkin mesh �h .

For any suitable function g, set gm(x) = g(x, tm), ∂gm(x)/∂t = [∂g(x, t)/∂t]
∣
∣
t=tm

and

δt gm(x) = [
g(x, tm) − g(x, tm−1)

]
/τ .

Define the L2(�) projector Ph : L2(�) → Vh0 by 〈Phw, vh〉 = 〈w, vh〉 for all vh ∈ Vh0.
Clearly ‖Phw‖ ≤ ‖w‖ for all w ∈ L2(�).

Define the Ritz projector Rh : H1
0 (�) → Vh0 by

ε2 〈∇Rhv,∇wh〉 + 〈bRhv,wh〉 = ε2 〈∇v,∇wh〉 + 〈bv,wh〉
for all wh ∈ Vh0.
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Fig. 1 Shishkin mesh for
reaction-diffusion

� �

�

�

Define the discrete Laplacian �h : Vh0 → Vh0 by 〈�hvh, wh〉 = −〈∇vh,∇wh〉 for all
vh, wh ∈ Vh0.

Our numerical method for solving (2.1) is: form = 1, . . . , M , find umh := umh (·, tm) ∈ Vh0
satisfying

〈
δt u

m
h , vh

〉 + ε2
〈∇umh ,∇vh

〉 + 〈
bumh , vh

〉 = 〈
f m, vh

〉 ∀vh ∈ Vh0, (4.1)

with u0h := Rhu0. One can write (4.1) as
〈
δt u

m
h , vh

〉 − ε2
〈
�hu

m
h , vh

〉 + 〈
Ph

(
bumh

)
, vh

〉 = 〈
Ph f

m, vh
〉 ∀vh ∈ Vh0,

which is equivalent to

δt u
m
h − ε2�hu

m
h + Ph

(
bumh

) = Ph f
m, (4.2)

since each of these terms lies in Vh0.

5 Energy Norm Error Analysis

We begin our error analysis with some preliminary estimates involving Rh .
For i = 0, 1, 2, set

ρi (x, t) := ∂ i [Rhu(x, t) − u(x, t)]

∂t i
=

[

Rh

(
∂ i u

∂t i

)]

(x, t) − ∂ i u(x, t)

∂t i
(5.1)

since Rh acts only in the spatial variables. Also, set ρm
i (x) = ρi (x, tm).

Lemma 5.1 Assume that the derivative bounds (2.3) hold true for k = 4. Then there exist
constants C such that for i = 0, 1 and all t ∈ (0, T ], one has

ε |ρi (·, t)|1 + ‖ρi (·, t)‖ ≤ C
(
ε1/2N−1 ln N + N−2) (5.2)

and

ε1/2 |ρi (·, t)|1 + ‖ρi (·, t)‖ ≤ CN−1 ln N . (5.3)

If the derivative bounds (2.3) hold true for k = 6, then (5.2) and (5.3) are also true when
i = 2.
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Proof From its definition, Rhu(·, t) is the Galerkin solution of the steady-state problem got
by deleting ∂u/∂t from (2.1) and taking f = f (·, t). Hence in the case i = 0, one gets (5.2)
from an inspection of the proof of [16,Theorem 3.1], while (5.3) follows from the proof of
[7,Theorem 2.6]; note that both of these arguments use the bounds (2.3) only for k1 + k2 ≤ 2
and kt = 0.

The case i = 1 is proved in a similar way, replacing u by ∂u/∂t and using (5.1) and (2.3)
for k1 + k2 ≤ 2 and kt = 1; and if the derivative bounds (2.3) hold true for k = 6, then the
same argument applied to ∂2u/∂t2 with k1 + k2 ≤ 2 and kt = 2 proves the case i = 2. 
�

For m = 1, 2, . . . , M , set rm1 := (δt − ∂/∂t)Rhum .

Lemma 5.2 Assume that the derivative bounds (2.3) hold true for k = 5. Then there exists a
constant C such that

∥
∥rm1

∥
∥ + ε

∣
∣rm1

∣
∣
1 ≤ CM−1 for m = 1, ..., M.

Proof The definition of Rh implies that for t ∈ (0, T ] one has
‖(∂/∂t)2Rhu(·, t)‖ + ε|(∂/∂t)2Rhu(·, t)|1 = ‖Rh(∂/∂t)2u(·, t)‖ + ε|Rh(∂/∂t)2u(·, t)|1

≤ ‖(∂/∂t)2u(·, t)‖ + ε|(∂/∂t)2u(·, t)|1
≤ C,

where we used k = 5 in (2.3) to derive the final inequality. The result follows. 
�
Set emh := Rhum − umh and

rm := ρm
1 + rm1 = ∂

[Rhum − um
]

∂t
+ (δt − ∂/∂t)Rhu

m = δtRhu
m − ∂um

∂t
.

In the next lemma, we derive some preliminary bounds on emh (x).

Lemma 5.3 There exist constants C such that for m = 1, ..., M one has

max
m=1,...,M

∥
∥emh

∥
∥ ≤ C max

m=1,...,M
‖rm‖ (5.4)

and

ε max
m=1,...,M

∣
∣emh

∣
∣
1 ≤ C max

m=1,...,M
‖rm‖. (5.5)

Proof The definition of emh and (4.2) give

δt e
m
h − ε2�he

m
h + Ph

(
bemh

) = δtRhu
m − ε2�hRhu

m + Ph
(
bRhu

m) − Ph f
m . (5.6)

Take v = um in the definition of Rh , then recall the definitions of �h and Ph to get
〈−ε2�hRhu

m + Ph
(
bRhu

m)
, wh

〉 = 〈−ε2�um + bum, wh
〉

=
〈

−∂um

∂t
+ f m, wh

〉

using (2.1), for all wh ∈ Vh0. Thus −ε2�hRhum + Ph (bRhum) = Ph
(
− ∂um

∂t + f m
)
.

Hence (5.6) simplifies to

δt e
m
h − ε2�he

m
h + Ph

(
bemh

) = δtRhu
m − Ph

(
∂um

∂t

)

= Phr
m . (5.7)
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Invoking the first inequality of Lemma 3.2, we have
(
δt

∥
∥emh

∥
∥
) ∥
∥emh

∥
∥ ≤ 〈

δt e
m
h , emh

〉

≤ 〈
δt e

m
h , emh

〉 + ε2
〈∇emh ,∇emh

〉 + 〈
bemh , emh

〉

= 〈
δt e

m
h , emh

〉 − ε2
〈
�he

m
h , emh

〉 + 〈
Ph

(
bemh

)
, emh

〉

= 〈
Phr

m, emh
〉

≤ ‖Phrm‖ ‖emh ‖,
where we used (5.7). Thus, either ‖emh ‖ = 0 or δt

∥
∥emh

∥
∥ ≤ ‖Phrm‖ ≤ maxm=1,...,M ‖rm‖.

Now Lemma 3.1 yields (5.4), since one can start its inductive proof at each value of m for
which ‖emh ‖ = 0 (note that ‖e0h‖ = 0).

Invoking the second inequality of Lemma 3.2, we obtain

∥
∥δt e

m
h

∥
∥2 + 1

2
ε2δt

(∥
∥∇emh

∥
∥2

)
≤ 〈

δt e
m
h , δt e

m
h

〉 + ε2
〈∇emh , δt∇emh

〉

= 〈
δt e

m
h , δt e

m
h

〉 − ε2
〈
�he

m
h , δt e

m
h

〉

= 〈
Phr

m, δt e
m
h

〉 − 〈
Ph

(
bemh

)
, δt e

m
h

〉

≤ 1

2

(‖Phrm‖2 + ‖δt emh ‖2 + ‖Ph
(
bemh

) ‖2 + ‖δt emh ‖2) ,

where we again used (5.7). Hence

ε2δt

(∥
∥∇emh

∥
∥2

)
≤ ‖Phrm‖2 + ‖Ph

(
bemh

) ‖2

≤ C

(

max
m=1,...,M

‖rm‖
)2

,

by (5.4). Then Lemma 3.1 gives us
(
ε
∥
∥∇emh

∥
∥
)2 ≤ Cmτ

(

max
m=1,...,M

‖rm‖
)2

≤ C

(

max
m=1,...,M

‖rm‖
)2

,

which is (5.5). 
�
For any function w ∈ H1(�), define its energy norm ‖w‖1,e by

‖w‖1,e = {
ε2|w|21 + ‖w‖2}1/2

This norm was referred to as the H1
e norm in Sect. 1.

We now derive a L∞(H1
e ) error bound for our method.

Theorem 5.4 (Energy norm error bound) Assume that the derivative bounds (2.3) hold true
for k = 5. Then there exists a constant C such that the solution u of (2.1) and the solution umh
of (4.1) satisfy

max
m=1,...,M

‖um − umh ‖1,e ≤C
(
ε1/2N−1 ln N + N−2 + M−1) .

Proof By Lemma 5.3, Lemma 5.2, and (5.2), one has the energy norm error estimate

max
m=1,...,M

‖emh ‖1,e ≤ C max
m=1,...,M

‖rm‖

≤ C

(

max
m=1,...,M

‖ρm
1 ‖ + max

m=1,...,M
‖rm1 ‖

)

≤ C
(
ε1/2N−1 ln N + N−2 + M−1) .
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But u − umh = emh − ρm
0 , so we can combine the above estimate and the bound (5.2) of

Lemma 5.1 for ρm
0 to finish the proof. 
�

6 Balanced Norm Error Analysis

In this section we use the derivative bounds (2.3) with k = 6.
As we pointed out in Sect. 1, the energy norm of Sect. 5 is weaker than it looks — for

solutions of typical singularly perturbed problems, it is dominated by its L2 component. Thus
we now derive an error bound in a balanced norm where the ε-dependent weighting of the
H1 component is such that the H1 and L2 components of the error have similar orders of
magnitude. This result will be proved under the additional assumption that the reaction term
coefficient b is a positive constant.

Remark 6.1 To extend our balanced-norm analysis analysis to variable b(x) seems not to
be straightforward, essentially because the L2(�) projector Ph is not H1(�)-stable on a
Shishkin mesh (this follows from [4,p.527]).

First, we sharpen the result of Lemma 5.2 under a stronger hypothesis on the derivative
bounds (2.3).

Lemma 6.2 Assume that the derivative bounds (2.3) hold true for k = 6. Then
∥
∥rm1

∥
∥ + ε1/2

∣
∣rm1

∣
∣
1 ≤ CM−1 for m = 1, ..., M .

Proof From (2.3) with k = 6, one sees that ‖(∂/∂t)2u(·, t)‖ + ε1/2|(∂/∂t)2u(·, t)|1 ≤ C for
all t ∈ (0, T ]. This inequality, Lemma 5.1 with i = 2, and a triangle inequality yield the
desired result. 
�
Lemma 6.3 There exists a constant C such that

max
m=1,...,M

∣
∣emh

∣
∣
1 ≤ C

(

max
m=1,...,M

|Phρm
1 |1 + ε−1/2M−1

)

. (6.1)

Proof From Lemma 3.2 and b constant it follows that
[
δt

∥
∥∇emh

∥
∥
] ∥
∥∇emh

∥
∥ ≤ 〈

δt∇emh ,∇emh
〉

≤ 〈
δt e

m
h ,−�he

m
h

〉 − ε2
〈
�he

m
h ,−�he

m
h

〉 + 〈
b∇emh ,∇emh

〉

= 〈
δt e

m
h ,−�he

m
h

〉 − ε2
〈
�he

m
h ,−�he

m
h

〉 + 〈
bemh ,−�he

m
h

〉

= 〈
Phr

m,−�he
m
h

〉

≤ ‖∇Phr
m‖ ‖∇emh ‖,

where we used (5.7). If ‖∇emh ‖ = 0 we are done; thus we assume that ‖∇emh ‖ �= 0 and
deduce that

δt
∣
∣emh

∣
∣
1 ≤ |Phrm |1 ≤ |Phρm

1 |1 + |Phrm1 |1 ≤ max
m=1,...,M

|Phρm
1 |1 + Cε−1/2M−1,

by Lemma 6.2 and Phrm1 = rm1 . Now an appeal to Lemma 3.1 gives (6.1). 
�
From the discussion in [13] and the bounds (2.3), one sees that the norm

‖w‖Bal := {
ε|w|21 + ‖w‖2}1/2 ∀w ∈ H1(�)
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defines a balanced norm for the class of problems that we are studying. The next result is
an error bound for our numerical method in L∞(‖ · ‖Bal). Note that, unlike Theorem 5.4,
the bound does not contain a factor that vanishes as ε → 0 (for fixed N ); this is precisely
because of the balanced nature of the result.

Theorem 6.4 (Balanced norm error bound)Assume that the derivative bounds (2.3) hold true
for k = 6. Recall that u is the solution of (2.1) and umh is the solution of (4.1). Then there
exists a constant C such that

max
m=1,...,M

‖um − umh ‖Bal ≤ C
(
N−1 (ln N )3/2 + M−1) .

Proof From (5.1) we have
∣
∣Phρ

m
1 (·)∣∣1 = ∣

∣Rh
[
∂um(·)/∂t] − Ph

[
∂um(·)/∂t]∣∣1

≤ ∣
∣Rh

[
∂um(·)/∂t] − [

∂um(·)/∂t]∣∣1 + ∣
∣
[
∂um(·)/∂t] − Ph

[
∂um(·)/∂t]∣∣1

≤ ∣
∣ρm

1

∣
∣
1 + Cε−1/2N−1 (ln N )3/2 , (6.2)

by [19,(13)] applied to the function ∂u/∂t , since the spatial derivative bounds for ∂u/∂t
in (2.3) are the same as for the elliptic problem studied in [19].

Observe that ‖w‖Bal is equivalent to ε1/2 |w|1+‖w‖ for allw ∈ H1(�). Then Lemma 6.3
and inequality (5.4) in Lemma 5.3 yield

max
m=1,...,M

‖emh ‖Bal ≤ Cε1/2
(

max
m=1,...,M

|Phρm
1 |1 + ε−1/2M−1

)

+ max
m=1,...,M

‖rm‖

≤ C

(

max
m=1,...,M

ε1/2|Phρm
1 |1 + M−1

)

+ max
m=1,...,M

‖ρm
1 ‖ + max

m=1,...,M
‖rm1 ‖,

since rm = ρm
1 + rm1 . Hence

max
m=1,...,M

‖emh ‖Bal ≤ C
(
N−1 (ln N )3/2 + M−1)

by (6.2), inequality (5.3) of Lemma 5.1, and Lemma 5.2. As um −umh = emh −ρm
0 , the desired

result now follows from Lemma 5.1 and a triangle inequality. 
�

7 Numerical Results

Our numerical experiments will use the same test problem as [15,Example 1]. That is, we
take b = 1 and T = 1, and choose the exact solution

u(x, y, t) = (1 − e−t )

(

cos
πx

2
− e−x/ε − e−1/ε

1 − e−1/ε

)(

1 − y − e−y/ε − e−1/ε

1 − e−1/ε

)

.

Then f is chosen so that (2.1) is satisfied, and we take u0(x, y) = u(x, y, 0) ≡ 0. The
derivatives of u have exactly the form of the bounds (2.3), so it is a valid solution on which
to test our theory. Unlike in (2.1), the function f depends on ε, but in a harmless way— one
can verify easily that our error analysis is unaffected by this deviation from the form of (2.1).

Numerical errors will be measured in the energy norm and balanced norm that were used
in Theorems 5.4 and 6.4 respectively to bound the error in the computed solution.
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Table 1 Energy-norm errors and convergence rates

N=16,M=64 N=32,M=182 N=64,M=512 N=128,M=1449

ε = 10−2 2.0165e-2 1.1860e-2 6.7278e-3 3.7619e-3

0.7657 0.8179 0.8386

ε = 10−4 2.8471e-3 1.4632e-3 7.7322e-4 4.1436e-4

0.9603 0.9201 0.8999

ε = 10−6 1.3766e-3 5.2163e-4 2.0915e-4 8.7790e-5

1.4000 1.3184 1.2524

ε = 10−8 1.2389e-3 4.3190e-4 1.5442e-4 5.5691e-5

1.5203 1.4837 1.4714

Table 2 Balanced-norm errors and convergence rates

N=16,M=64 N=32,M=182 N=64,M=512 N=128,M=1449

ε = 10−2 1.5443e-1 9.9505e-2 6.0290e-2 3.5223e-2

0.6341 0.7228 0.7754

ε = 10−4 1.5308e-1 9.9575e-2 6.0744e-2 3.5642e-2

0.6204 0.7130 0.7691

ε = 10−6 1.5300e-1 9.9543e-2 6.0736e-2 3.5642e-2

0.6201 0.7127 0.7689

ε = 10−8 1.5300e-1 9.9543e-2 6.0736e-2 3.5642e-2

0.6201 0.7127 0.7689

We concentrate first on the spatial error, since this iswhere the effect of the boundary layers
is felt. In Tables 1 (energy-norm errors) and 2 (balanced-norm errors) we take (N , M) =
(16, 64), (32, 182), (64, 512), (128, 1449), i.e., M ≈ N 3/2 in each case, so that the spatial
component of the error should dominate the total error. To see the rates of convergence more
easily, we graph these energy-norm and balanced-norm errors in Figs. 2 and 3 respectively,
where we take ε = 10−2 so that each figure encompasses the regimes N � ε−1, N ≈
ε−1, N � ε−1.

Theorem 5.4 predicts an energy-norm error of O(ε1/2N−1 ln N + N−3/2); Table 1 and
Fig. 2 agree with this. In particular, in Fig. 2 where ε = 10−2, the convergence of the energy-
norm error is O(N−1 ln N ), while when ε = 10−8 � N−1 in Table 1, then the energy-norm
error is O(N−3/2).

Theorem 6.4 predicts balanced-norm errors that are O(N−1(ln N )3/2), and this agrees
with the numerical results in Table 2 and Fig. 3 (these errors may be O(N−1 ln N ), which is
slightly better). Note that for each fixed N in Table 2 the balanced-norm errors are essentially
independent of ε when ε is small, as our theory predicts.

Of course the errors in the balanced norm are larger than those in the energy norm; compare
Tables 1 and 2.

Next,we consider the temporal error by taking (N , M) = (16, 8), (32, 14), (64, 23), (128,
39), i.e., M ≈ N 3/4, so that the temporal error dominates the total error. Now Theorems 5.4
and 6.4 predict both the energy-norm error and balanced-norm error to be O(N−3/4). Tables 3
and 4 evidently agree with this prediction.
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Fig. 2 log-log graph of the
energy-norm error when
ε = 10−2
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N-1 (ln N)

N-1

energy norm error

Fig. 3 log-log graph of the
balanced-norm error when
ε = 10−2
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N-1 (ln N)3/2

N-1 (ln N)

N-1

balanced norm error

Table 3 Energy-norm errors and convergence rates

N=16,M=8 N=32,M=14 N=64,M=23 N=128,M=39

ε = 10−2 2.4863e-2 1.5139e-2 9.1139e-3 5.3379e-3

0.7157 0.7321 0.7717

ε = 10−4 1.0458e-2 6.2024e-3 3.8125e-3 2.2607e-3

0.7537 0.7020 0.7539

ε = 10−6 9.0854e-3 5.3094e-3 3.2677e-3 1.9407e-3

0.7749 0.7002 0.7516

ε = 10−8 8.9491e-3 5.2203e-3 3.2131e-3 1.9087e-3

0.7776 0.7001 0.7513
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Table 4 Balanced-norm errors and convergence rates

N=16,M=8 N=32,M=14 N=64,M=23 N=128,M=39

ε = 10−2 1.5867e-1 1.0267e-1 6.2686e-2 3.6835e-2

0.6280 0.7118 0.7670

ε = 10−4 1.6017e-1 1.0418e-1 6.3796e-2 3.7530e-2

0.6204 0.7076 0.7653

ε = 10−6 1.6019e-1 1.0420e-1 6.3807e-2 3.7537e-2

0.6203 0.7076 0.7653

ε = 10−8 1.6019e-1 1.0420e-1 6.3807e-2 3.7537e-2

0.6203 0.7076 0.7653

Acknowledgements We are grateful to two unknown reviewers who provided several perceptive and helpful
comments that guided us in improving the clarity of the paper.

Funding The research of Xiangyun Meng is supported in part by the National Natural Science Foundation of
China under grant 12101039 and by the Fundamental Research Funds for the Central Universities under grant
2020RC101. The research of Martin Stynes is supported in part by the National Natural Science Foundation
of China under grants 12171025 and NSAF-U1930402.

Availability of data andmaterials Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Brdar, M., Franz, S., Ludwig, L., Roos, H.-G.: A time dependent singularly perturbed problem with shift
in space, (2022). arXiv:2202.01601

2. Bujanda, B., Clavero, C., Gracia, J.L., Jorge, J.C.: A high order uniformly convergent alternating direction
scheme for time dependent reaction-diffusion singularly perturbed problems. Numer. Math. 107(1), 1–25
(2007)

3. Cai, Z., Ku, J.: A dual finite element method for a singularly perturbed reaction-diffusion problem. SIAM
J. Numer. Anal. 58(3), 1654–1673 (2020)

4. Crouzeix, M., Thomée, V.: The stability in L p and W 1
p of the L2-projection onto finite element function

spaces. Math. Comp. 48(178), 521–532 (1987)
5. Dolejší, V., Roos, H.: BDF-FEM for parabolic singularly perturbed problems with exponential layers on

layers-adapted meshes in space. Neural Parallel Sci. Comput. 18(2), 221–235 (2010)
6. Franz, S., Matthies, G.: A unified framework for time-dependent singularly perturbed problems with

discontinuous Galerkin methods in time. Math. Comp. 87(313), 2113–2132 (2018)
7. Franz, S., Roos, H.-G.: Error estimates in balanced norms of finite element methods for higher order

reaction-diffusion problems. Int. J. Numer. Anal. Model. 17(4), 532–542 (2020)
8. Heuer, N., Karkulik, M.: A robust DPG method for singularly perturbed reaction-diffusion problems.

SIAM J. Numer. Anal. 55(3), 1218–1242 (2017)
9. Huang, C., Stynes, M.: A direct discontinuous Galerkin method for a time-fractional diffusion equation

with a Robin boundary condition. Appl. Numer. Math. 135, 15–29 (2019)
10. Kaland, L., Roos, H.-G.: Parabolic singularly perturbed problems with exponential layers: robust dis-

cretizations using finite elements in space on Shishkin meshes. Int. J. Numer. Anal. Model. 7(3), 593–606
(2010)

123

http://arxiv.org/abs/2202.01601


67 Page 14 of 14 Journal of Scientific Computing (2022) 92 :67

11. Kopteva, N., Meng, X.: Error analysis for a fractional-derivative parabolic problem on quasi-graded
meshes using barrier functions. SIAM J. Numer. Anal. 58(2), 1217–1238 (2020)

12. Ladyzenskaja, O. A., Solonnikov, V. A., Ural’tseva, N. N. : Linear and quasilinear equations of parabolic
type. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence,
R.I., 1968. Translated from the Russian by S. Smith

13. Lin, R., Stynes, M.: A balanced finite element method for singularly perturbed reaction-diffusion prob-
lems. SIAM J. Numer. Anal. 50(5), 2729–2743 (2012)

14. Linß, T.: Layer-adapted meshes for reaction-convection-diffusion problems, volume 1985 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, (2010)

15. Linss, T.,Madden,N.:Analysis of an alternating directionmethod applied to singularly perturbed reaction-
diffusion problems. Int. J. Numer. Anal. Model. 7(3), 507–519 (2010)

16. Liu, F., Madden, N., Stynes, M., Zhou, A.: A two-scale sparse grid method for a singularly perturbed
reaction-diffusion problem in two dimensions. IMA J. Numer. Anal. 29(4), 986–1007 (2009)

17. Liu, X., Yang,M.: Error estimations in the balanced normof finite elementmethod onBakhvalov-Shishkin
triangular mesh for reaction-diffusion problems. Appl. Math. Lett. 123, 1075,237 (2022)

18. Madden, N., Stynes, M.: A weighted and balanced FEM for singularly perturbed reaction-diffusion
problems. Calcolo 58(2), 28,16 (2021)

19. Roos, H.-G., Schopf, M.: Convergence and stability in balanced norms of finite element methods on
Shishkin meshes for reaction-diffusion problems. ZAMMZ. Angew.Math. Mech. 95(6), 551–565 (2015)

20. Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential
equations, volume 24 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second
edition, Convection-diffusion-reaction and flow problems (2008)

21. Shishkin, G.I., Shishkina, L.P.: Difference methods for singular perturbation problems, Chapman &
Hall/CRCMonographs and Surveys in Pure and Applied Mathematics, vol. 140. CRC Press, Boca Raton,
FL (2009)

22. Stynes, M, Stynes, D.: Convection-diffusion problems, volume 196 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical
Sciences (AARMS), Halifax, NS, An introduction to their analysis and numerical solution (2018)

23. Thomée, V.: Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, second edition (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Balanced-Norm and Energy-Norm Error Analyses  for a Backward Euler/FEM Solving a Singularly Perturbed Parabolic Reaction-Diffusion Problem
	Abstract
	1 Introduction
	2 Statement of the Problem
	3 Stability of the Backward Euler Scheme
	4 The Numerical Method
	5 Energy Norm Error Analysis
	6 Balanced Norm Error Analysis
	7 Numerical Results
	Acknowledgements
	References




