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Abstract
In this paper, we propose an efficient and robust two-grid preconditioner for the linear elas-
ticity equation with high contrasts. To tackle the challenges imposed by multiple scales and
high-contrast, a coarse space (to form the coarse preconditioner) is constructed via a carefully
designed spectral problem within the framework of the GMsFEM (Generalized Multiscale
Finite Element Method). The dimension of coarse space can be adaptively controlled by a
predefined eigenvalue tolerance. We also consider linear elasticity problems with stochastic
coefficients and an efficient preconditioner with parameter-independent multiscale basis is
proposed. The logarithm of Young’s modulus is decomposed using a truncated Karhunen–
Loève expansion, and some sample parameters are used to generate the multiscale basis.
Numerical results of both 2D and 3D examples demonstrate that our proposed precondi-
tioner is robust with respect to the contrast of the material and highly efficient for large-scale
elasticity problems.

Keywords Two-grid preconditioner · High-contrast · Linear elasticity ·
Parameterized inputs · Spectral coarse space

1 Introduction

Many materials and processes in nature and engineering are highly heterogeneous with fea-
tures varying at a wide range of length scales. For example, subsurface flow in heterogeneous
porous media, heat conduction in composite materials, and seismic metamaterial may have
high-contrast properties, e.g., the Young’s modulus of foamed plate is about 1.6 × 105Pa,
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while for steel it is about 2.07×1011Pa [39]. Formodelswithmultiple scale and high contrast,
manymodel reduction techniques such as upscaling [18, 32, 35] andmultiscalemethods [5–7,
10, 11, 14, 36] are proposed to alleviate the computational burden. The upscaled solutions or
the multiscale solutions are obtained with less computational cost at the compromise of accu-
racy. However, in some cases where small features are important information, it is necessary
to solve the fine-scale problem. For example, in topology optimization [1, 38], the resolution
of designs depends heavily on the discretization of the design domain, and fine discretiza-
tion, which can representing small design features, is required. However, fine discretization
also leads to large system of linear equations especially for large 3D problems where direct
solve is either impossible or prohibitively expensive. Therefore, efficient iterative solution
algorithms and scalable implementations are necessary. The number of iterations of iterative
methods, e.g. domain decomposition methods, usually depends on the contrast in the media
that is contained in each coarse-grid block. In many cases, it is impossible to separate the
high- and low-stiffness regions into different coarse-grid blocks, and the high-contrast will
result in a great number of iterations required by domain decomposition solvers.

It is well-known that appropriate preconditioning techniques usually yield fast conver-
gence speed. Therefore, to solve large sparse linear systems efficiently, the key ingredient is
the construction of powerful preconditioners with cheap computational cost. In this paper, we
aim to design an effective and robust(independent of the contrast) two-grid preconditioner to
get the fine-scale solution iteratively, for linear elasticity problems with high contrast. There
is a vast literature on the topic of preconditioners for elliptic problems based on multigrid
procedure or domain decomposition method [2, 9, 13, 13, 19–21, 27, 28, 37]. We mention a
few here that aim at problems with multiple scale and high contrast. In [2], a two-level mortar
domain decomposition preconditioner for heterogeneous elliptic problems with polynomial
coarse space is developed, which is not very sensitive to the high contrast of the medium. In
[37], the authors introduce a two-grid preconditioner for heterogeneous elliptic problems by
using amultiscale coarse space constructed fromGMsFEM,whose convergence performance
is independent of the high-contrast.

The focus here is to design a two-grid multiscale preconditioners for linear elasticity
problems with high contrast. The classical multigrid or multi-level domain decomposition
preconditioners [16, 23–25, 29] fail to yield satisfactory results for high-contrast problems.
It is shown in [5, 7, 8, 16, 26], the condition number of estimates for the traditional domain
decomposition case depend on the contrast if the high stiffness regions are not aligned with
the coarse grid decomposition. In [4], the authors utilize the linear MsFEM basis for the
construction of robust coarse spaces in the context of two-level overlapping domain decom-
position preconditioners, and their numerical experiments show uniform convergence rates
independent of the contrast in Young’s modulus within the heterogeneous material, under the
assumption that the material jumps are isolated, that is they occur only in the interior of the
coarse grid elements. In [38], a robust multiscale preconditioner based on two-level domain
decomposition techniques is proposed, where carefully designed local eigenvalue problems
are used to form the coarse space. For large scale problems, two-level method relies heavily
on the parallelization to have good performance, however, in some practical applications
such as parameter estimation, one needs to solve a large number of elasticity problems with
similar media properties simultaneously. Thus a huge number of CPU cores may needed
to perform parallelization to handle multi-parameter inputs and apply local preconditioners
for fast simulations. In this work, we use more efficient multigrid techniques, two-grid in
particular, instead of Schwarz method to accelerate the iterative steps.

Our two-grid preconditioner consists of two major components: a smoother and a coarse
level preconditioner. Jacobi iteration is used as smoother. The coarse preconditioner needs
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to offer a good approximation to the kernel of the elasticity operator. Moreover, it should
contain all the eigenmodes corresponding to the eigenvalues related to the contrast. In view
of this, the Generalized Multiscale Finite Element Method (GMsFEM) [15] is used, where
carefully designed spectral problems are solved locally to ensure the desired performance.
The GMsFEMprovides a systematic way to construct coarse space that can capture the major
complicated features of the material. The main steps of GMsFEM can be summarized as:
a rich snapshot space is constructed first, e.g., all possible fine-grid functions or harmonic
extensions; next an enriched multiscale space is obtained from the snapshot space by select-
ing the eigenvectors of carefully designed local spectral problems corresponding to small
eigenvalues. The dimension of the coarse space can be controlled by a pre-defined eigen-
value tolerance. We compare the efficiency and robustness of two-grid preconditioners that
use standard polynomial space and classical multiscale space with our proposed precondi-
tioner. The online stage of our two-grid preconditioner has impressive performance even if no
parallelization is adopted and thus suitable for multi-parameter problems. Several 2D and 3D
numerical experiments are presented, which demonstrate that the proposed preconditioner
has smaller condition number and need much less iterations, thus fast convergence speed.

Wealso adapt the proposed two-gridmultiscale preconditioner to linear elasticity problems
with parameterized inputs. It is often impossible to know the exact material properties,
therefore physical parameters are introduced into the models. To solve the parameterized
equations in a rapid and reliable way, some research based on the reduce basis method [30,
33] has been done. However, to our best knowledge, there is few existing work dealing
with parameterized linear elasticity problems with high contrasts. To this end, we aim to
extend the two-gridmultiscale preconditioner to linear elasticity problemswith parameterized
inputs. The major challenge comes from the construction of multiscale coarse space since
the multiscale basis functions usually depend on the parameters, which adversely affects the
computation efficiency. In order to get parameter-independent multiscale basis functions,
we first construct snapshot space based on a set of samples in the parameter space. Then
the mean of the parameter is used in local spectral problems to form the multiscale basis
functions. In this way, we do not need to recompute multiscale basis functions for a given
new parameter, which can greatly improve computational efficiency, especially in situations
where many queries or real-time response are required, such as engineering optimization
and adaptive design or parameter estimation. Both 2D and 3D numerical experiments are
carried out to show fast convergence independent of the contrast in Young’s modulus within
the heterogeneous material.

The rest of the paper is organized as follows. In Sect. 2 we introduce some preliminar-
ies, including the mathematical formulation of linear elasticity problems, weak form and
grids discretization. In Sect. 3, the construction of adaptive multiscale coarse space for both
parameter-dependent and parameter-independent cases following the GMsFEM is discussed.
Section 4 is devoted to describing the two-grid preconditioner method using the multiscale
coarse space. In Sect. 5, we present some representative 2D and 3D numerical examples or
both parameter-dependent and parameter-independent cases to demonstrate that our proposed
preconditioners are efficient and their convergence is independent of the contrast. Finally,
we draw a conclusion in the last section.
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2 Preliminaries

In this paper, we design a two-grid multiscale preconditioner for the following steady state
elasticity equation [12, 34] in heterogeneous material

∂σi j (u)

∂x j
= fi (x) in D, 1 ≤ i, j ≤ d, (1)

or with physical parameters

∂σi j (u; μ̂)

∂x j
= fi (x) in D, 1 ≤ i, j ≤ d. (2)

Here σi j (u; μ̂) = ci jkl(x; μ̂)εkl(u) (throughout this paper summation over repeated indices
means Einstein Summation)represent stresses, ci jkl(x; μ̂) is the elastic tensor, which contains
multiscale scales and high-contrast, and μ̂ ∈ � ⊂ R

p is the parameter. Let D ⊂ R
d (d= 2 or

3) be a bounded domain representing the elastic body of interest, and let u = (u1, . . . , ud)
be the displacement field. The strain tensor ε(u) = (εi j (u))1≤i, j≤d is defined by

ε(u) = 1

2
(∇u + ∇uT ),

where ∇u = (
∂ui
∂x j

)1≤i, j≤d . In the component form, we have

εi j (u) = 1

2

( ∂ui
∂x j

+ ∂u j

∂xi

)
, 1 ≤ i, j ≤ d. (3)

In this paper, we assume the material is isotropic. Thus, the stress tensor σ(u) =
(σi j (u))1≤i, j≤d is related to the strain tensor ε(u) in the following way

σ = 2μ(μ̂)ε + λ(μ̂)∇ · u I ,

where λ > 0 and μ > 0 are the Lamé constants: λ = νE(x;μ̂)
(1+ν)(1−2ν)

, μ = E(x;μ̂)
2(1+ν)

, here
E is the Young’s modulus and ν is the Poisson ratio. We assume that λ and μ have highly
heterogeneous spatial variationswith high contrasts introduced byYoung’smodulus E . Given
a forcing term f = ( f1, . . . , fd), the displacement field u satisfies the following

− ∇ · σ = f , in D (4)

For simplicity, we will consider the homogeneous Dirichlet boundary condition u = 0 on
∂D.

To derive the weak formulation of problem (2)(can be similarly done for problem (1)), we
introduce the following functional space

V = {v ∈ ((H1(D))d |v = 0 on ∂D}.
Multiplying (2) with a test function v ∈ V , integrating over D, using the divergence theorem
and applying the boundary condition, we get the following weak formulation in compact
notation:

a(u, v; μ̂) = ( f , v), ∀v ∈ V , (5)

where

a(u, v; μ̂) =
∫

D

(
2μ(μ̂)ε(u) : ε(v) + λ(μ̂)∇ · u ∇ · v

)
dx, ( f , v) =

∫

D
f · v dx (6)
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Fig. 1 Fine grid T h , denoted by gray lines, and coarse grid T H , denoted by black lines. A coarse node i and
its coarse neighborhood ωi (in orange), consisting of coarse blocks K 1

i , K 2
i , K 3

i , K 4
i (Color figure online)

and

ε(u) : ε(v) =
d∑

i, j=1

εi j (u)εi j (v), f · v =
d∑

i=1

fivi . (7)

Let T h be a fine-grid discretization of D which will be introduced later in this section,
and V h ⊂ V be a finite element space defined on the fine grid T h . The fine-grid solution uh
can be obtained as

a(uh, vh; μ̂) = ( f , vh), ∀vh ∈ V h . (8)

Let ψ1, . . . , ψn be a basis for V h . We assume uh = ∑n
i=1 uiψi , uh = (u1, . . . , un)T . Then

we can write the above system in matrix form:

Ahuh = Fh (9)

where Ah ∈ Rn×n is a symmetric positive definite matrix with

Ah(i, j) = a(ψi , ψ j ; μ̂), i, j = 1, . . . , n

and

Fh(i) = ( f , ψi ), i = 1, . . . , n.

Next we introduce the notions of coarse and fine grids which are used to construct the
multiscale basis functions. Let T H be a usual conforming partition of the domain D where
H > 0. We call T H the coarse grid and H the coarse mesh size. Elements of T H are called
coarse grid blocks. The set of all coarse grid nodes is denoted by SH . We also use NS to
denote the number of coarse grid nodes, N to denote the number of coarse grid blocks. In
addition, we let T h be a conforming refinement of the partition T H . We call T h the fine grid
and h > 0 is the fine mesh size. We remark that the use of the conforming refinement is only
to simplify the discussion of the methodology and is not a restriction of the method. For an
internal coarse node i , define its coarse neighborhood as the union of the coarse blocks that
sharing the coarse node i . See Fig. 1 in 2D for illustration.
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3 Construction of Multiscale Space

In this section, we discuss the construction of multiscale space, for parameter independent
and parameter dependent cases respectively. The appropriate choice of the coarse space
plays a key role in developing effective two-grid preconditioners. Here we follow the idea
of GMsFEM [11, 15], which provides a systematic way to construct an enriched coarse
space that can capture the major complicated features of the material. The computational
procedure can be split into two steps: the construction of snapshot space and generation of a
low-dimensional offline space from the snapshot space by solving local spectral problems.
We note that all the basis functions are constructed locally.

3.1 Parameter Independent Case

We begin with the construction of local snapshot spaces. Let ωi be a coarse neighborhood,
i = 1, 2, . . . , NS . The local snapshot space for ωi is chosen as

V i,snap = V h(ωi ),

where V h(ωi ) is the restriction of the conforming space V h onto ωi . Therefore, V i,snap

contains all possible fine scale functions defined on ωi . There are other methods for forming
local snapshot spaces, for example, harmonic extensions. More details can be found in [11].
We write

V i,snap = span{ψ i,snap
k , k = 1, 2, . . . , Mi,snap},

where Mi,snap is the number of basis functions in V i,snap.
Next, to get the local offline spaces V i,off, we perform a dimension reduction on the above

snapshot spaces via spectral decomposition. Specifically, we seek the subspace V i,off such
that for each ψ ∈ V i,snap, there exists ψ0 ∈ V i,off, such that

aoffi (ψ − ψ0, ψ − ψ0) ≤ δsoffi (ψ − ψ0, ψ − ψ0) (10)

for some given error tolerance δ, where aoffi (·, ·) and soffi (·, ·) are auxiliary bilinear forms.
In computations, problem (10) involves solving an eigenvalue problem and selecting basis
functions according to some smallest eigenvalues. To formulate the eigenvalue problem
according to (10), we first need a partition of unity function χi for the coarse neighborhood
ωi . One choice of a partition of unity function is the coarse grid hat functions �i , that is,
the piecewise bi-linear function on the coarse grid having value 1 at the coarse vertex xi
and value 0 at all other coarse vertices. The other choice is the multiscale partition of unity
function, which is defined in the following way. Let K j be a coarse grid block having the
vertex xi . Then we consider

−∇ · σ(ζi ) = 0, in K j

ζi = (�i , 0)
T , on ∂K j .

(11)

Then we define the multiscale partition of unity as χi = (ζi )1. The values of χi on other
coarse grid blocks are defined similarly.

We define the eigenvalue problem as (see [11]): find (ξ, u) ∈ R × V i,snap such that

aoffi (u, v) = ξsoffi (u, v) ∀v ∈ V i,snap (12)
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with

aoffi (u, v) =
∫

ωi

(
2με(u) : ε(v) + λ∇ · u ∇ · v

)
dx

soffi (u, v) =
∫

ωi

κ̃u · v dx

where ξ denotes the eigenvalue and

κ̃ =
NS∑
i=1

(λ + 2μ)|∇χi |2. (13)

We let (φl , ξl) , l = 1, 2, . . . , Mi,snap be the eigenfunctions and the corresponding eigen-
values of (12). According to the analysis for the elliptic equation [15] and for the acoustic
wave equation [22], it is adequate to choose only a few of the eigenfunctions as the basis
functions. The criterion for choosing eigenfunctions is to select those representing most of
the energy in the eigenfunctions. That is, the sum of the inverse of the selected eigenval-
ues

∑Li
i=1 ξ−1

i should be a large portion of the sum of the inverse of all the eigenvalues∑Mi,snap

i=1 ξ−1
i . Assume that

ξ1 ≤ ξ2 ≤ · · · ≤ ξMi,snap .

According to a pre-defined eigenvalue tolerance, the first Li eigenfunctions will be selected
to construct the local offline space. In specific, we define an offline basis function as

ψ
i,off
l =

Mi,snap∑
k=1

φlkψ
i,snap
k , l = 1, 2, . . . , Li , (14)

where φlk is the k-th component of the eigen-vector φl . The local offline space is then defined
as

V i,off = span{χiψ
i,off
l , l = 1, 2, . . . , Li }.

Next, we define the global offline space as

V off = span{V i,off, i = 1, 2, . . . , NS}.
V off is the space that will be used in the coarse preconditioner.

3.2 Parameter Dependent Case

For this case, different from the parameter-independent case, we first construct local snapshot
spaces by solving local spectral problems for a set of sample parameters. For each coarse
neighborhood ωi , i = 1, 2, . . . , NS , we select a set of random parameters {μ̂1, . . . , μ̂ki },
and denote �i = {μ̂1, . . . , μ̂ki }. For each μ̂ j ∈ �i , j = 1, . . . , ki , we solve a spectral
problem to get the snapshot basis functions. Then combine all these basis functions and
remove their dependency to form the local snapshot space V i,snap. Specifically, we solve the
following spectral problem in V h(ωi ) with homogeneous Neumann boundary conditions:
find (ξ snap, u) ∈ R × V h(ωi ) such that

asnapi (u, v; μ̂ j ) = ξ snapssnapi (u, v; μ̂ j ) ∀v ∈ V h(ωi ) (15)
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with

asnapi (u, v; μ̂ j ) =
∫

ωi

(
2με(u) : ε(v) + λ∇ · u ∇ · v

)
dx

ssnapi (u, v; μ̂ j ) =
∫

ωi

κ̃u · v dx

where ξ snap denotes the eigenvalue and

κ̃ =
NS∑
i=1

(λ + 2μ)|∇χi |2. (16)

Notice that the eigenfunctions are represented on the fine grid by the basis functions in V h ,
i.e., the functions in V h(ωi ). We write

V h(ωi ) = span{ψ i
k, k = 1, 2, . . . , Mi },

where Mi is the number of basis functions in V h(ωi ).
We let (φ j

l , ξ
j
l ) , l = 1, 2, . . . , Mi be the eigenfunctions and the corresponding eigenvalues

of (15). Assume the eigenvalues are arranged in the following descending order

ξ1 ≥ ξ2 ≥ · · · ≥ ξMi .

According to a pre-defined eigenvalue tolerance, the first lsnapi eigenfunctions will be selected

to construct the local snapshot basis functions ψ
i,snap
j,l , l = 1, 2, . . . , lsnapi . Using the eigen-

functions, we define an snapshot function as

ψ
i,snap
j,l =

Mi∑
k=1

φ
j
lkψ

i
k, l = 1, 2, . . . , lsnapi (17)

where φ
j
lk is the k-th component of the eigen-vector φ

j
l . After solving a spectral problem for

each μ̂ j ∈ �i , j = 1, . . . , ki , we put all the snapshot functions together:

{ψ i,snap
j,l =

Mi∑
k=1

φ
j
lkψ

i
k, l = 1, 2, . . . , lsnapi , j = 1, 2, . . . , ki , } (18)

These functions are not necessarily linearly-independent, therefore, we apply principal
orthogonal decomposition (POD) to eliminate their dependency. After this procedure, and
using a single index, we define the local snapshot space as

V i,snap = span{ψ i,snap
l , l = 1, 2, . . . , Lsnap

i }.
The global snapshot space is further defined as

Vsnap = ⊕NS
i=1V

i,snap.

Next, we describe the formation of the offline space. At the offline stage, we perform a
dimension reduction in the snapshot space by using an auxiliary spectral problem, whose
bilinear forms are independent of the parameter. Therefore, there is no need to reconstruct
the offline space for each μ̂ value. Specifically, we solve the following spectral problem with
homogeneous Neumann boundary conditions: find (ξoff, u) ∈ R × V i,snap such that

aoffi (u, v; ¯̂μ) = ξoffsoffi (u, v; ¯̂μ) ∀v ∈ V i,snap (19)
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with

aoffi (u, v; ¯̂μ) =
∫

ωi

(
2μ( ¯̂μ)ε(u) : ε(v) + λ( ¯̂μ)∇ · u ∇ · v

)
dx

soffi (u, v; ¯̂μ) =
∫

ωi

˜̄κu · v dx

where ξoff denotes the eigenvalue, ¯̂μ is the average of the parameter μ̂, and

˜̄κ =
NS∑
i=1

(λ( ¯̂μ) + 2μ( ¯̂μ))|∇χi |2. (20)

The rest derivation of the offline space V off is the same as in the last section, therefore we
omit the details here. We note that, for any μ̂ in the online stage, the online space is fixed,
chosen as V off. Next, we present the two-grid preconditioner using the multiscale space to
design the coarse preconditioner.

4 Construction of a Two-Grid Preconditioner

In this section, we address the construction of an effective and robust two-grid preconditioner
by utilizing theGMsFEMcoarse space. The preconditioned conjugate gradient(PCG)method
is used to solve iteratively the fine-scale linear system Eq. (8).

The two-grid preconditioner consists of two parts, i.e., a smoother and a coarse precon-
ditioner to exchange global information. For the smoother, we use Jacobi iteration which
is easy to implement and efficient. The construction of coarse preconditioner is done in
the following standard way: we first project the residual from the last step onto the coarse
space, then a coarse problem with the residual as source is solved whose solution is projected
back to the fine-grid. In matrix form, suppose y is the input of the preconditioner, the coarse
preconditioner M can also be written as:

My = RT
H A−1

H RH y (21)

where RT
H : V off → V h is the standard interpolation from the coarse space to the fine space,

RH is the restriction operator from the fine space to the coarse space, y is the residual from
the last step and AH = RH Ah RT

H .

The implementation of the two-grid preconditioner involves some Jacobi iterations and
solving a coarse problem in each l-th PCG iteration. Specifically, the following three steps
are performed:

Step 1 Do n1 times pre-Jacobi smoothing iterations:

x = x + αD−1(Fh − Ahx),

where D = diag(a11, a22, . . . , ann), a11, a22, . . . , ann are elements on the diagonal
of matrix Ah and α is a fixed parameter.

Step 2 Do one coarse correction :

x = x + M(Fh − Ahx),

Step 3 Do n2 times post-Jacobi smoothing iterations:

x = x + αD−1(Fh − Ahx),
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We perform LU decomposition to solve the coarse problem since its size is in general
small, iterative scheme can also be applied [17]. Our main goal is to reduce the number
of iterations in the PCG iterative procedure. The appropriate choice of the coarse space
plays a key role in developing effective two-grid preconditioner. Here the multiscale space
following the GMsFEM is applied as the coarse space, while using usual coarse space such
as standard polynomials space usually fails to provide satisfactory performance for highly
heterogeneous material. The condition number of the resulting preconditioned matrix with
adaptive spectral coarse space and the number PCG iterations are both independent of the
contrast. The computational efficiency of the preconditioner depends on the dimension of
the coarse space, and the parameters α, n1, n2.

5 Numerical Results

In this section, we present some representative numerical experiments to demonstrate the
performance of our proposed preconditioner for both deterministic and parameter-dependent
cases.

5.1 Deterministic Case

For the deterministic case, we report two 2D examples and one 3D example. The Young’s
modulus E(x) for the three examples are presented in Fig. 2. In all simulations reported
below, we define D = [0, 1]d , d = 2, 3, f = 1 and the Poisson ratio is 0.2. We discretize
D into 16 × 16 equal sized coarse grid blocks, and each coarse block is further divided
into 16 × 16 fine grid blocks. For the 3D model, we consider two set discretizations: one is
64 × 64 × 64 fine-grid elements with 8 × 8 × 8 equal sized coarse grid blocks, the other
is 128 × 128 × 128 fine grid blocks with 16 × 16 × 16 coarse grid blocks. All numerical
experiments are carried out on a workstation with Intel Xeon E5-2687W v4 (48 cores).

The coarse preconditioner plays vital role for the success of the two-grid preconditioner,
using usual coarse space such as MsFEM usually fails for highly heterogeneous media. To
compare the performance of a number of preconditioners with different coarse space, we
implement two-grid preconditioners with the following coarse spaces: Q1 polynomial space;
multiscale basis functions with linear boundary conditions(MsFEM); multiscale basis func-
tions based on GMsFEM with tolerance 0.25, denote as GMsFEM(0.25), and multiscale
basis functions based on GMsFEM with tolerance 0.5, denote as GMsFEM(0.5). The com-
parison of these methods is done in terms of the number of PCG iterations until convergence,
condition number of the resulting preconditioned matrix, and CPU time for computation.
One goal here is to study the performance of two-grid preconditioners with different coarse
spaces, thereforewe fix the number of smoothing steps here. 10 pre-Jacobi and 10 post-Jacobi
smoothing iterations are applied. We note that other smoothers like Gauss Seidel iteration
can be used as well. The preconditioned system is solved using PCG with a tolerance of
10−7, and the initial guess is GMsFEM solution with the adaptive coarse space.

Our main goal is to test the robustness of our method (robustness refers to the sensitivity of
the convergence performance to the ratio of highest to the lowest stiffness of thematerial). For
example 1 in Fig. 2a, the Young modulus E = 1 GPa in the blue region, and the values of E
are varied within red regions to test the robustness of our method. A number of shot channels,
isolated inclusions and a long channel are observed in this example.We test different orders of
the contrast in numerical experiments: 104, 106, 108, , The corresponding results are shown

123



Journal of Scientific Computing (2022) 92 :21 Page 11 of 22 21

(a) (b)

(c)

Fig. 2 Test models: the Young’s modulus E(x)

in Table 1, in which “dim” is the dimension of coarse matrix AH , “iter” is the number of
PCG iterations until the pre-defined relative residual threshold is reached, “cond” represents
the condition number of the resulting preconditioned matrix. The same notations are used
in the rest of the tables. The dimension of the algebraic system we aim to solve is 130, 050.
We can see that for the coarse space based on GMsFEM(last two columns), the number of
iterations until convergence of the PCG stay almost the same, and the condition number
remain bounded as the contrast increases. On the contrary, when Q1 space or the standard
multiscale space are used, both the number of iterations increase as the contrast increases, the
condition number is linearly dependent on the contrast. The tolerance for selectingmultiscale
basis functions in the offline stage is set as 0.25 and 0.5, corresponding results are given in
the last two columns. The dimension of the coarse space is slightly larger than the former
case, while convergence performances are almost the same. Figure 3 displays the solution of
model 1 with our preconditioner, we can see the distortion of the displacement field caused
by the high contrast of the material properties.

The second example is also in 2D. We consider the Young’s modulus depicted in Fig. 2b.
Both vertical and horizontal channels and isolated inclusions are included in this example.
We set E = 1 GPa in the blue region, and vary the values of E within red regions to
test the robustness of our method. As in the last example, we test two-grid preconditioners
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Table 1 Example 1 with E(x) depicted in Fig. 2a, H = 1/16, h = 1/256, dimension of the fine-scale system
is 130, 050, dimension of coarse space, number of iterations until convergence and condition number with
different coarse spaces, different values of contrast

Contrast Q1 MsFEM GMsFEM(0.25) GMsFEM(0.5)

Iter (cond) Dim Iter (cond) Dim Iter (cond) Dim Iter (cond) Dim

104 416 (6.29e+3) 882 373 (4.61e+3) 882 19 (6.06e+0) 1690 19 (6.09e+0) 1796

106 1365 (6.24e+5) 882 983 (4.60e+5) 882 21 (6.76e+0) 1702 20 (6.77e+0) 1796

108 3081 (6.24e+7) 882 1733 (4.60e+7) 882 21 (6.43e+0) 1702 21 (6.45e+0) 1800

(a) (b)

Fig. 3 Solution for model 1

with several coarse spaces. We also test different orders for the contrast in the numerical
experiments: 104, 106, 108, corresponding results are shown in Table 2. We observe similar
results: for the coarse space based on GMsFEM(last two columns), the number of iterations
until convergence of the PCG stay almost the same, and the condition number remain bounded
as the contrast increases. On the contrary, when Q1 space or the standard multiscale space
are used, the number of iterations and condition numbers increase linearly as the contrast
increases. Figure 4 shows the displacement field obtained with our preconditioner.

Finally, we test a 3D example with the Young modulus depicted in Fig. 2c. As in previous
examples, E = 1 GPa in the blank region, and the values of E are varied within red regions.
We consider two set discretizations. One is 64×64×64 fine-grid elementswith 8×8×8 equal
sized coarse grid blocks. The dimension of the corresponding fine-scale algebraic system we
need to solve is 750, 141. Numerical results for this case are shown in Table 3. In the table,
“Tsetup(s)” is the CPU time for computing the multiscale basis functions, assembling the
coarse matrix AH and perform the LU decomposition to the coarse matrix, and “Tsolve(s)” is
the CPU time for PCG iterations. We observe that the dimension of the coarse space based
on GMsFEM is about three times of the other two coarse spaces, and it takes more setup
time for preconditioners with GMsFEM coarse space, about ten times in this case, since
the computation of multiscale basis functions following GMsFEM is more complicated.
However, as contrast increases from 104 to 108, the CPU time for PCG iterations increases
significantly for the first two coarse spaces, e.g., for MsFEM coarse space, solving is 157.6 s
when the contrast is 104 and solving time increases to 3027.6 s with contrast equals 108. On
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(a) (b)

Fig. 4 Solution for model 2

Table 2 Example 2 with E(x) depicted in Fig. 2b, H = 1/16, h = 1/256, dimension of the fine-scale system
is 130, 050, dimension of coarse space, number of iterations until convergence and condition number for
different coarse spaces, different values of contrast

Contrast Q1 MsFEM GMsFEM(0.25) GMsFEM(0.5)

Iter (cond) Dim Iter (cond) Dim Iter (cond) Dim Iter (cond) Dim

104 417 (6.31e+3) 882 364 (5.39e+3) 882 20 (8.12e+0) 1642 18 (7.66e+0) 1728

106 1500 (6.26e+5) 882 1078 (5.39e+5) 882 19 (6.45e+0) 1645 19 (5.82e+0) 1728

108 3999 (6.26e+7) 882 1946 (5.35e+7) 882 20 (6.49e+0) 1645 19 (5.81e+0) 1728

the contrary, the number of iterations, condition number and CPU time for PCG iterations
stay almost the same (and small) for GMsFEM coarse space as contrast increases. Figure 5
exhibits the displacement field obtained with our preconditioner, again we can observe the
discontinuity due to the heterogeneous material.

The other partition for the 3D example is 128×128×128 fine grid blockswith 16×16×16
coarse grid blocks. The dimension of the corresponding fine-scale algebraic system we need
to solve is 6, 145, 149. Numerical results for this case are shown in Table 4. Compared with
the last partition, the number of coarse and fine grid blocks both increase by eight times,
and the dimension of coarse spaces increase approximately by six times e.g., in the last row
of Table 3, the dimension for GMsFEM(0.5) is 6,672, while in the last row of Table 4, the
dimension for GMsFEM(0.5) is 36,275. Asmore coarse blocks are used,more local problems
are solved to construct multiscale basis functions, therefore the CPU time for computing the
multiscale basis functions and assembling the coarse matrix “Tsetup(s)” increases. The same
convergence performance is observed as in the last example, that two-grid preconditioners
with GMsFEM coarse space converge independent of the contrast of the material.

5.2 Parameter-Dependent Case

In this section, we present both 2D and 3D numerical examples to demonstrate the perfor-
mance of the proposed two-grid preconditioner for solving the parameterized linear elasticity
problems with high contrasts.
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(a) (b)

(c)

Fig. 5 Solution for model 3

We consider a logarithmic random field for the Young’s modulus, Y = ln(E(x; μ̂)).
Assume Y is a second-order Gaussian random field, characterized by a two point (for 2D)
symmetric and positive-definite covariance function CY :

CY (x1, y1; x2, y2) = σ 2
Y exp

(
−|x1 − x2|2

2l2x
− |y1 − y2|2

2l2y

)
, (22)

or a three point (for 3D) covariance function CY :

CY (x1, y1; x2, y2; z1, z2) = σ 2
Y exp

(
−|x1 − x2|2

2l2x
− |y1 − y2|2

2l2y
− |z1 − z2|2

2l2z

)
, (23)

where (xi , yi ), i = 1, . . . , d is the spatial coordinate of a point, σ 2
Y and li denote the variance

of the stochastic field Y and correlation length in the i th spatial dimension, respectively.
Using the truncated Karhunen-Loève expansion (KLE) [31], the random field Y can be

numerically generated as:

Y (x; μ̂) = E[Y (x)] +
∞∑
i=1

√
λiξi (μ̂)ei (x) (24)
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Table 3 Example 3 with E(x) depicted in Fig. 2c, H = 1/8, h = 1/64, dimension of the fine-scale system
is 750, 141, dimension of coarse space, number of iterations until convergence and condition number for
different coarse spaces, different values of contrast

Contrast Coarse space Dim Iter Cond Tsetup(s) Tsolve(s)

104 Q1 2187 352 2.78e+3 18.6 175.3

MsFEM 2187 307 2.52e+3 20.3 157.6

GMsFEM(0.25) 6204 18 5.57e+0 229.3 10.0

GMsFEM(0.5) 6651 16 4.77e+0 234.5 10.1

106 Q1 2187 2110 2.74e+5 18.1 1091.1

MsFEM 2187 1993 2.50e+5 21.2 1042.7

GMsFEM(0.25) 6270 18 5.49e+0 239.2 10.2

GMsFEM(0.5) 6672 18 5.27e+0 237.2 10.3

108 Q1 2187 5205 2.69e+7 19.3 2708.4

MsFEM 2187 5793 2.46e+7 20.8 3027.6

GMsFEM(0.25) 6270 20 5.58e+0 237.6 11.8

GMsFEM(0.5) 6672 17 5.30e+0 239.1 10.1

Table 4 Example 3 with E(x) depicted in Fig. 2c, H = 1/16, h = 1/128, dimension of the fine-scale system
is 6, 145, 149, dimension of coarse space, number of iterations until convergence and condition number with
different coarse spaces, different values of contrast

Contrast Coarse space Dim Iter Cond Tsetup(s) Tsolve(s)

104 Q1 14,739 363 3.29e+3 165.9 1505.6

MsFEM 14,739 291 2.31e+3 188.2 1261.3

GMsFEM(0.25) 34,901 16 4.56e+0 2760.0 148.3

GMsFEM(0.5) 36,269 13 3.28e+0 2773.2 120.8

106 Q1 14,739 2272 3.28e+5 167.5 10701.8

MsFEM 14,739 1810 2.30e+5 190.1 12766.5

GMsFEM(0.25) 34,910 16 4.54e+0 2636.0 142.0

GMsFEM(0.5) 36,275 13 3.28e+0 2665.4 124.3

108 Q1 14,739 7458 3.22e+7 164.3 35458.2

MsFEM 14,739 7140 2.30e+7 191.3 36260.5

GMsFEM(0.25) 34,910 16 4.54e+0 2813.9 144.9

GMsFEM(0.5) 36,275 13 3.28e+0 2875.9 123.6

where ξi (μ̂) are mutually uncorrelated random variables with unit variance and zero mean,
λi and ei are the eigenvalues and eigenfunctions of the covariance function CY , respectively.
Then, the KL expansion is truncated after NK terms, i.e.,

Y (x; μ̂) ≈ E[Y (x)] +
NK∑
i=1

√
λiξi (μ̂)ei (x) (25)
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For the covariance functions defined in (22) and (23), their eigenvalues decay at a rate
asymptotic to O(1/N 2

k ) and O(1/N 3
k ), respectively [3, 40], therefore it is reasonable to do

the truncation. In all the following examples, we use 100 terms in the KL expansion, i.e.,
NK = 100. For simplicity, 10 random parameter samples are used to form snapshots, and
contrast is set as 106. The tolerance for selectingmultiscale basis functions in the offline stage
is 0.25. To test that the multiscale basis functions are independent of a given parameter, we
randomly select 1024 parameter samples from the parameter space, and for every parameter,
we solve Eq. (8) by using the proposed two-grid preconditioner with the coarse space fixed
as V off in Sect. 3.2.

For 2D examples, the domain D is partitioned into 64 × 64 fine-grid elements
with 8 × 8 coarse-grid blocks, and we consider the following six different param-
eter settings for the covariance function (σ 2

Y , lx , ly) =: 1:(1, 0.5, 0.5), 2:(2, 0.5, 0.5),
3:(1, 0.05, 0.05),4:(2, 0.05, 0.05), 5:(1, 0.01, 0.01), 6:(2, 0.01, 0.01). In the first 2D exam-
ple, the expectation E[Y (x)] in Eq. (25) is depicted as E1 in Fig. 2a. Figure 6 presents the
condition number and number of iterations until convergence versus 1024 randomly chosen
parameter samples, corresponding to the above defined six different parameter settings for
the covariance function. For example, in Fig. 6a, the variance σ 2

Y = 1, correlation lengths
lx = 0.5 and ly = 0.5; in Fig. 6b, correlation lengths are fixed as lx = 0.5 and ly = 0.5, and
we increase the variance σ 2

Y to 2. Similarly, in the second row in Fig. 6, correlation lengths
are fixed as lx = 0.05 and ly = 0.05, and we vary the variance from 1 to 2. In general, the
performance of the two-grid preconditioner for each Young’s modulus realization depends
on the perturbation from the mean Young’s modulus, therefore depends on the variance σ 2

Y
which affects the magnitude of the perturbations from the mean Young’s modulus field. We
observe in every row of Fig. 6, more perturbations in the blue and red line can be seen in
the right figure than the left figure, as the variance for the right figure is bigger than the left
figure. It also can be seen that for each of the 1024 randomly chosen parameter samples,
the condition number is bounded, and the number of iterations is less than 35. We note that
for a given new parameter, despite multiscale basis is reused, the proposed preconditioner is
robust and efficient.

In the second 2D example, E[Y (x)] in Eq. (25) is depicted as E2 in Fig. 2b. Figure 7
presents the condition number and number of iterations until convergence versus1024 ran-
domly chosen parameter samples corresponding to the above defined six different parameters
settings for the covariance function. Similar results can be observed as the last example.

For the 3D example, E[Y (x)] in Eq. (25) is depicted as E3 in Fig. 2c. 64×64×64 fine grid
with 8× 8× 8 coarse grid is used. We also consider six different parameters settings for the
covariance function (σ 2

Y , lx , ly, lz) := 1:(1, 0.5, 0.5, 0.5),2:(2, 0.5, 0.5, 0.5),3:(1, 0.05, 0.05,
0.05), 4:(2, 0.05, 0.05, 0.05),5:(1, 0.01, 0.01, 0.01),6:(2, 0.01, 0.01, 0.01).The condition
number and number of iterations until convergence versus 1024 randomly chosen param-
eter samples corresponding to the above defined six different parameters settings for the
covariance function are shown in Fig. 8. It also can be seen that for each of the 1024 ran-
domly chosen parameter samples, the preconditioner is effective, with condition number
bounded and the number of iterations being less than 25.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Condition number and number of iterations for 1024 parameter samples for different variance and
correlation lengths, 2D example with E1
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Condition number and number of iterations for 1024 parameter samples for different variance and
correlation lengths, 2D example with E2
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Condition number and number of iterations for 1024 parameter samples for different variance and
correlation lengths, 3D example with E3
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6 Conclusions

In this paper, we propose a two-grid preconditioner for linear elasticity problems with high
contrasts. As the coarse-level preconditioner plays key role in designing effective and robust
two-grid preconditioners, an enriched coarsemultiscale space constructed from theGMsFEM
is used. Themultiscale space consists of basis functions that can capture themultiscale feature
of the material. Efficient Jacobi iterative technique is used as the smoother. Several 2D and
3D numerical experiments are presented to show that our preconditioner is robust in terms of
contrast. By comparing to other preconditioners that incorporate Q1 and the standardMsFEM
space in coarse preconditioner, we demonstrate that our preconditioner is more efficient
and robust. Moreover, we adapt the proposed two-grid multiscale preconditioner to linear
elasticity problems with parameterized inputs. The preconditioner reuses the multiscale basis
functions, therefore we do not need to recompute multiscale basis functions for a given new
parameter, yielding a very efficient algorithm, which is admired in those contexts requiring
many queries, such as engineering optimization and adaptive design. Numerical experiments
show that the proposed preconditioner can yield fast convergence independent of the contrast.
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31. Loève. M.: Probability theory(4th ed). Springer Berlin Heidelberg, (1977)
32. Margenov, S., Vutov, Yavor: Parallel MIC(0) Preconditioning for Numerical Upscaling of Anisotropic

Linear Elastic Materials. Springer, Berlin Heidelberg (2010)
33. Milani, R., Quarteroni, A., Rozza, Gianluigi: Reduced basis method for linear elasticity problems with

many parameters. Comput. Methods Appl. Mech. Eng. 197(51–52), 4812–4829 (2008)
34. Muskhelishvili, N.I.: SomeBasic Problems of theMathematical Theory of Elasticity. PhD thesis, Springer

Netherlands, (2009
35. Wu, X., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discret. Contin. Dyn. Syst.

Ser. B 2(2), 185–204 (2002)
36. Yang, Y., Chung, E.T., Shubin, Fu.: An enriched multiscale mortar space for high contrast flow problems.

Commun. Comput. Phys. 23, 476–499 (2018)
37. Yang, Y., Fu, S., Chung, Eric T.: A two-grid preconditioner with an adaptive coarse space for flow

simulations in highly heterogeneous media. J. Comput. Phys. 39(1), 1–13 (2019)
38. Zambrano,M., Serrano, S., Lazarov, B.S., Galvis, J.: Fast multiscale contrast independent preconditioners

for linear elastic topology optimization problems. J. Comput. Appl. Math. 389, 113366 (2021)

123



21 Page 22 of 22 Journal of Scientific Computing (2022) 92 :21

39. Zeng, Y., Yang, X., Deng, K., Peng, P., Yang, H., Muzamil, M., Qiujiao, Du.: A broadband seismic
metamaterial plate with simple structure and easy realization. J. Appl. Phys. 125(22), 224901 (2019)

40. Zhang, D., Lu, Z.: An efficient, high-order perturbation approach for flow in random porous media via
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