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Abstract
We introduce novel adaptive methods to approximate moments of solutions of partial differ-
ential Equations (PDEs) with uncertain parametric inputs. A typical problem in Uncertainty
Quantification is the approximation of the expected values of quantities of interest of the solu-
tion, which requires the efficient numerical approximation of high-dimensional integrals. We
perform this task by a class of deterministic quasi-Monte Carlo integration rules derived from
Polynomial lattices, that allows to control a-posteriori the integration error without querying
the governing PDE and does not incur the curse of dimensionality. Based on an abstract
formulation of adaptive finite element methods (AFEM) for deterministic problems, we infer
convergence of the combined adaptive algorithms in the parameter and physical space. We
propose a selection of examples of PDEs admissible for these algorithms. Finally, we present
numerical evidence of convergence for a model diffusion PDE.

Keywords High-dimensional quadrature · quasi-Monte Carlo · Adaptivity · Finite element
methods · Curse of dimensionality

Mathematics Subject Classification 65C05 · 65N30 · 65N50

1 Introduction

The study of problems governed by parametric Partial Differential Equations (PDEs) has seen
a steady development in recent years with an eye to applications to computational sciences
and engineering. The general common methodology is to treat the parametric equation as
a family of equations with given data and to query a possibly large number of them, by
well-known solvers.

In the spirit of Uncertainty Quantification (UQ), we aim at the approximation of low-order
moments of a linear goal functional G ∈ V ∗ (also called quantity of interest or observable)
of the solution u : U → V of a parametric PDE.We are particularly interested in the case of a
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large number s of parameters, all independent uniformly distributed on the interval [− 1
2 ,

1
2 ].

Moments of u are then expressed as high-dimensional integrals with respect to the Lebesgue
measure μ on U := [− 1

2 ,
1
2 ]s , which is a probability measure. In particular, we consider

problems of the form: given s ∈ N and k = 1, 2, 3, . . . find

I (Gk(u)) =
∫
U
Gk(u( y)) dμ( y), (1)

where, for all y ∈ U , u( y) ∈ V solves a linear variational problem

a y(u( y), w) = l y(w) ∀w ∈ W , (2)

with smooth dependence on the parameters y = (y1, . . . , ys).
As an example, our general framework includes a diffusion equationmodeling the Darcy’s

flow in uncertain porous media

− div(a(x, y)∇u(x, y)) = f (x) x ∈ D, u(·, y)∣∣
∂D
= 0, (3)

on a bounded domain D. The PDE (3) has been used in several works as a model problem
to develop deterministic UQ techniques [3, 8, 14, 16, 18, 31]. A more computationally
challenging (and less studied) parametric PDE arises from linear elasticity, where the Young
modulus E(x, y) is uncertain

{
− div

(
E(x, y)
2(1+ν)

[∇u(x, y)+ (∇u(x, y))�]
)
+∇ p(x, y) = f (x),

div(u(x, y))+ c−1 p(x, y)/E(x, y) = 0,
x ∈ D (4)

with suitable boundary conditions, see (42) and the constant c := ν
(1+ν)(1−2ν)

is only depen-

dent on the Poisson ratio ν. For nearly incompressible materials (i.e. ν ≈ 1
2 ), a suitable mixed

formulation inspired from [29] will be used to avoid the so-called locking effect, while keep-
ing a smooth parametric dependence. We address these PDEs more in detail in Sect. 3.6
below, in the case of affine dependence on y of the data a(·, y) or E(·, y).

For the computation of (1), deterministic quasi-Monte Carlo (QMC) integration is proven
to outperform standard Monte Carlo sampling: suitable assumptions on the regularity of the
parameter to solution map u : U → V are known to grant dimension independent and higher
order decay of the quadrature error, for deterministic QMC rules derived from Polynomial
lattices, comprising Interlaced Polynomial lattices [12, 23, 24] and Extrapolated Polynomial
lattices (EPL) [10, 11].

Moreover, EPL rules allow for an easily computable a-posteriori error estimator, that is
known to be asymptotically exact and free of the curse of dimensionality [10]. We remark
that other a-posteriori estimation techniques were developed for Sobol’ points and Rank-1
Lattices in [27, 28], but the analysis there provides no dimension robust asymptotic exactness.

For deterministic PDEs, quasi-optimality of Adaptive Finite Element Methods (AFEM)
has been extensively studied, we refer to [6] for classical results on elliptic diffusion PDEs
and to [5, 17, 21] and the references therein for more recent developments towards an abstract
analysis. When including uncertainty in the underlying PDE, in order to maintain the compu-
tational cost to a minimum, it is crucial to estimate the error for the parametric solution and in
particular to determine adaptively a finite sampling set P contained inU and a suitable Finite
Element space of the PDE, such that a given error tolerance is met a-posteriori. Existing
approaches involve adaptive stochastic Galerkin, studied in [2, 15, 16] and more recently
adaptive collocation methods on sparse grids [14, 18]. We extend these results to sampling
based on QMC rules, while leveraging the aforementioned abstract AFEM framework of the
Axioms of adaptivity [5].
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The purpose of this work is to introduce a family of adaptive algorithms, to approximate
solutions of many-query problems, based on deterministic QMC sampling on the parame-
ter box U . Our contribution is to provide convergence results of these algorithms, without
incurring in the curse of dimensionality, in a generic framework comprising several common
PDE problems, where the parametric error estimator is independent of the underlying PDE.
We employ parametric error estimators that only depend on the computed discrete solution
uT : U → VT (where VT is a finite dimensional space), while its computation is independent
of a) the specific discretization space VT , b) the Eq. (2) satisfied by u and c) the PDE solver
used. Moreover, we pay particular attention to modularity of the algorithm, i.e. we break the
overall computation into smaller parts, each with its requirements, in order to be able to reuse
existing implementations. In fact, any other adaptive and reliable discretization can be used
in place of AFEM in Algorithms 2 and 3 below.

To summarize, we leverage recent progress in QMC – in particular EPL rules – and
established AFEM results to obtain adaptive, deterministic, reliable and non-intrusive com-
putational strategies for UQ, that are free of the curse of dimensionality.

The structure of the paper is as follows: in Sect. 2 we introduce the problem and we sum-
marize the relevant notation and results from quasi-Monte Carlo integration with Polynomial
lattice rules and convergence of AFEM. Sect. 3 is devoted to the description and proof of
convergence of 3 different adaptive procedures; for each of them, we show that it is possible
to include goal oriented adaptivity as described in [3, 17]. Additionally, we indicate a few
examples of problems that can be solved with our method. In Sect. 4 we present numerical
experiments for a model PDE with random diffusion. Additional material, including a brief
introduction to Polynomial lattices and a theoretical analysis the computational cost, is given
in the Appendix.

2 Preliminaries

In this section we formulate the problem and illustrate our working assumptions. Let V ,W
be reflexive Banach spaces of functions defined on a Lipschitz domain D ⊂ R

d , d ∈ {2, 3}.
For y ∈ U , let a y : V×W → R be a bilinear form and l y ∈ W ∗,W ∗ denoting the topological
dual of W .

In order to ensure that the linear PDE (2) is well-posed we shall impose the following,
[4].

Assumption 2.1 The data a y, l y satisfy uniform, with respect to y ∈ U , inf-sup conditions

inf
0 
=v∈V sup

0 
=w∈W
a y(v,w)

‖v‖V ‖w‖W ≥ λ > 0

inf
0 
=w∈W sup

0 
=v∈V
a y(v,w)

‖v‖V ‖w‖W ≥ λ > 0
(5)

and continuity

a y(v,w) ≤ � ‖v‖V ‖w‖W , ∀v ∈ V , w ∈ W , (6)

for some 0 < λ < � < ∞ independent of y. Moreover, we assume, for some 0 < Cl <∞
sup
y∈U

∥∥l y∥∥W ∗ ≤ Cl. (7)
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Under Assumption 2.1, we have the following a-priori estimate

sup
y∈U

‖u( y)‖V ≤
Cl

λ
. (8)

Let G ∈ V ∗ be the sought Quantity of Interest. Then, given a small tolerance ε > 0, we want
to compute a Q ∈ R such that ∣∣∣I (Gk(u))− Q

∣∣∣ ≈ ε.

It is clear that we have multiple sources of error to take into consideration. First, we have
the quadrature error in approximating the expectation by sampling with quasi-Monte Carlo
rules. Second, we include the discretization error as the solution u( y) comes from a PDE
problem and we cannot expect in general to recover it exactly.

Additionally, one could consider dimension truncation error, that arises in the treatment
of countably many parameters by means of a quadrature rule over a finite dimensional set
U , [22]. We exclude this error from the analysis and we assume that the dimension s ∈ N is
finite throughout the rest of the discussion.

2.1 Quasi-Monte Carlo a Posteriori Error Estimation

In order to determine a stopping criterion for the QMC–AFEM algorithms below, we use
the asymptotically exact a-posteriori estimator from [10, Section 4] derived from the so-
called Polynomial lattices Pm of cardinality 2m , m ∈ N. In Appendix A, we recall briefly
the construction of Pm used here. QMC integration rules are sample averages that employ
deterministic sampling sets, in our case Pm

Q2m (F) := 1

2m
∑
y∈Pm

F( y).

The fundamental result from QMC theory that we will need to overcome the curse of
dimensionality is the next Proposition 2.1, first proved in [10, 11]. In particular, we consider
infinitely differentiable integrands F := Gk(u), satisfying certain bounds on the derivatives
uniformly in y ∈ U and in the parametric dimension s ∈ N, aswe specify next. To this end,we
fix some notation: consider a multiindex ν = (ν j ) j∈N ∈ N

N

0 with finite support supp(ν) :=∣∣{ j : ν j > 0
}∣∣ < ∞. We write ν! := ∏

j∈supp(ν) ν j !, and denote the partial derivatives

∂ν
y := ∂

ν1
y1 ∂

ν2
y2 · · · . We also write, for a real valued sequence β, βν :=∏ j∈supp(ν) β

ν j
j .

Then, we require derivative bounds of the form

sup
y∈U

∥∥∥∂ν
yu( y)

∥∥∥
V
≤ C(|ν|!)1+κβν ∀ν ∈ N

N

0 , supp(ν) <∞, (9)

for some κ ≥ 0,C > 0,β independent of ν, s and β ∈ 	p(N) for some p ∈ (0, 1
2+κ

).
Alternatively, we can assume bounds of the form

sup
y∈U

∥∥∥∂ν
yu( y)

∥∥∥
V
≤ Cν!βν ∀ν ∈ N

N

0 , supp(ν) <∞, (10)

where β ∈ 	p(N), p ∈ (0, 1).

Proposition 2.1 Assume that (10) is satisfied for some β ∈ 	p(N) for all p > 1
2 , or that

(9) holds with β ∈ 	p(N) for some 0 < p < 1
2+κ

. Then, for F := Gk(u) a sequence of
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Polynomial lattice rules (Q2m )m∈N can be constructed so that

|I (F)− Q2m (F)| ≤ C2−m (11)

for a constant C independent of m, s. Moreover,

I (F)− Q2m (F) = Q2m (F)− Q2m−1(F)+O
(
2−2m+δ

)
as m →∞ (12)

for all δ > 0, with the hidden constant in O(·) independent of s,m but dependent on δ.

Proof In the case k = 1, (11) follows combining the derivative bounds (9), (10) and the
quadrature error estimate [11, Equation (3.1)], while (12) is [10, Theorem 4.1]. The case
k > 1 is shown analogously, using the derivative bounds in Sect. 3.5 below. ��

We denote the QMC a-posteriori error estimator by

E2m (F) := Q2m (F)− Q2m−1(F). (13)

For completeness, we mention a criterion to verify (9) in Appendix B, for the special
case of bilinear forms a y with affine dependence on the parameters. However, the parametric
regularity bound (9) can be verified with alternative methods, also for non-affine parametric
operators, based on holomorphic extensions of a y for complex parameters y ∈ Ũ ⊆ C

s ,
U ⊆ Ũ . For more details we refer to [13]. On the other hand, (10) can also be verified in
some situations [23]. In what follows, we will assume that Assumption 2.1 and either (9) or
(10) are available for the parametric solution map u : U → V .

2.2 Modules of AFEM

Wementioned that discretization error occurs in the solution of (2), for any instance of y ∈ U .
In this section we precise our discretization method of choice.

We restrict ourselves to polyhedral Lipschitz domains D ⊂ R
d , d ∈ {2, 3}. A mesh T on

D is defined as a finite collection of compact sets T ∈ T , |T | > 0 such that
⋃

T∈T T = D and
|T ∩ T ′| = 0, for all T , T ′ ∈ T with T 
= T ′. We assume availability of finite-dimensional
spaces VT ⊂ V ,WT ⊂ W linked to a mesh T on D with dim(VT ) = dim(WT ) and such
that the following stable discrete inf-sup condition hold: for λ̃ > 0 independent of T ∈ T

and y ∈ U ,

inf
0 
=v∈VT

sup
0 
=w∈WT

a y(v,w)

‖v‖V ‖w‖W ≥ λ̃ > 0,

inf
0 
=w∈WT

sup
0 
=v∈VT

a y(v,w)

‖v‖V ‖w‖W ≥ λ̃ > 0.
(14)

Then, uT ( y) ∈ VT denotes the unique solution of the problem

a y(uT ( y), w) = l y(w) ∀w ∈ WT , (15)

corresponding to (2). We will often use the shorthand notation T ≤ T ′, meaning that the
mesh T ′ can be obtained from another mesh T by possibly multiple applications of the
module REFINE, as described in Assumption 2.2 below. Further, we fix an initial mesh T0
of D and we denote by T := {T : T0 ≤ T } the set of admissible refinements of the initial
mesh T0.
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Algorithm 1 AFEM
Input: a, l, tol,T0
Output: uT ,T
1: T ← T0
2: while True do
3: uT ← SOLVE(a, l,T )

4:
{
ηT (T )

}← ESTIMATE(uT )

5: if
∑

η2T (T ) ≤ tol2 then
6: return uT ,T
7: end if
8: M← MARK(

{
ηT (T )

}
)

9: T ← REFINE(T ,M)

10: end while

The well-established Adaptive FEM algorithm, see Algorithm 1, is composed of the four
modules SOLVE, ESTIMATE, MARK and REFINE, plus a stopping criterion determined
by a given tolerance tol.

The parameter dependent error indicators {η y,T (T )}T∈T , are computable values that
approximate the local FEM error ‖u( y)

∣∣
T
− uT ( y)

∣∣
T
‖V corresponding to each cell T ∈ T :

these are used to determine which cells to refine, to drive the global error to 0. Following
the description in [21], we state the abstract assumptions for Algorithm 1 to ensure error
convergence of AFEM, pointwise for all y ∈ U .

Assumption 2.2 AFEM modules for parametric problems:

• For given y ∈ U and uT ( y) ∈ VT , ESTIMATE computes positive real numbers{
η y,T (T )

}
T∈T , called indicators. We assume that the indicators satisfy, for all T , T ′

with T0 ≤ T ≤ T ′ the stability over non-refined elements

( ∑
T∈T ∩T ′

η2y,T ′(T )

) 1
2

≤
( ∑
T∈T ∩T ′

η2y,T (T )

) 1
2

+ S(‖uT ′( y)− uT ( y)‖V ), (16)

and reduction over refined elements∑
T∈T ′\T

η2y,T ′(T ) ≤ qred
∑

T∈T \T ′
η2y,T (T )+ R(‖uT ′( y)− uT ( y)‖V ), (17)

where qred ∈ (0, 1) and the functions S, R : [0,∞) → [0,∞) are continuous at 0
with S(0) = R(0) = 0 and monotocally increasing. We assume that S(·), R(·), qred are
independent of y ∈ U . Furthermore, we assume reliability: there exists a constant c∗ > 0
such that ∀ T ∈ T,∀ y ∈ U

‖u( y)− uT ( y)‖V ≤ c∗
(∑
T∈T

η2y,T (T )

) 1
2

. (18)

• Themarking procedureMARK selects, based on a set of indicators
{
η y,T (T )

}
computed

in the previous step, a subset M ⊂ T of cells that will be refined. We assume that there
exists a function M : [0,∞) → [0,∞) continuous at 0 with M(0) = 0 such that

max
T∈T \M η y,T (T ) ≤ M

⎛
⎝
(∑
T∈M

η2y,T (T )

) 1
2
⎞
⎠ . (19)
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• TheREFINEmodule, for a givenmesh T and a set ofmarked elementsM ⊆ T , produces
a newmesh T ′ such that T ′ ∩M = ∅. We assume that parents are union of their children,
that is T = ⋃{T ′ ∈ T ′ : T ′ ⊆ T

}
for all T ∈ T . We stress that M ⊆ T \T ′, that is

REFINE can in principle refine more than the marked set. To simplify the presentation,
we further assume conformity VT ⊆ VT ′ ⊂ V for all T ≤ T ′, T , T ′ ∈ T.

• For the module SOLVE, we assume that the Galerkin solution uT ( y) of (15) can be
recovered exactly for every y ∈ U , which entails exact integration and linear algebra.

We stress that the availability of c∗ (18) depends implicitly on the set T, and hence on
the REFINE module. In practice, usually c∗ depends on λ,� from (5),(6) and on the shape
regularity of a mesh T , and hence it is often required that REFINE does not generate strongly
anisotropicmeshes, i.e.T is uniformly shape-regular. TypicalMARK strategies, as theDörfler
criterion, are known to satisfy (19), see e.g. [21].

Let (uT	( y)( y))	∈N, T	 := T	( y) be the sequence of approximations produced by the
AFEM loop with T	+1( y) = REFINE(T	( y),M	( y)),M	( y) = MARK(

{
η y,T	( y)(T )

}
) ⊆

T	( y) for all 	 ∈ N; then, as a corollary of [21, Theorem 3.1] we get the following pointwise
convergence result.

Lemma 2.2 Consider a problem of the form (2) satisfying Assumption 2.1. LetAFEM satisfy
(14) and Assumption 2.2. Then, for all y ∈ U and all initial meshes T ∈ T, it returns in
finite time T ( y) and uT ( y)( y) such that∥∥u( y)− uT ( y)( y)

∥∥
V ≤ c∗tol, (20)

for a constant c∗ > 0 independent of tol, y and T ∈ T.

Proof From [32], for all y there exists u∞( y) ∈ V such that∥∥u∞( y)− uT	( y)( y)
∥∥
V → 0 as 	 →∞. (21)

Hence, the result follows from [21, Theorem 3.1] and reliability (18). ��

3 QMC–AFEMAlgorithms

3.1 A First Convergence Result

In this section we present a first combined QMC–AFEM algorithm, that outputs an approx-
imation of I (Gk(u)) for a given tolerance ε. For simplicity, we consider the case k = 1 in
(1) and postpone the case k > 1. Algorithm 2 is in fact not efficient for implementation, but
it illustrates effectively the key ideas.

First of all, we observe that E2m can be fully evaluated bymeans of quantities Q2m , Q2m−1
that have already been computed, when we loop over m. In other words, when adding more
QMC points we reuse part of the work done previously so that the cost to compute E2m

is negligible. A second crucial observation is that each call of the Algorithm 1 results (in
principle) in a different mesh T ( y) ≥ T0, starting from a common coarse mesh T0. In
particular, G(uT ( y)( y)) may not be even continuous with respect to y ∈ U , and hence
in general Proposition 2.1 is not applicable for G(uT (·)(·)) regardless of the discretization
scheme.

Proposition 3.1 Let T0 ∈ T. Assume that G ∈ V ∗, that u satisfies either (9) or (10) for a
sequence β as in Proposition 2.1 and that ∀ y ∈ U and any tolerance tol > 0,AFEM returns
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Algorithm 2 QMC–AFEM
Input: [ y �→ a y], [ y �→ l y],G, ε,T0
Output: Approximation of I (G(u)) within tolerance ∝ ε

1: m ← 1
2: while True do
3: Generate lattice Pm
4: for y ∈ Pm do
5: uT ( y)( y)← AFEM(a y, l y, εF ,T0) � Algorithm 1
6: Evaluate G(uT ( y)( y))
7: end for
8: if m ≥ 2 and

∣∣E2m (G(uT ))
∣∣ ≤ εQ then

9: return Q2m (G(uT ))

10: end if
11: m ← m + 1
12: end while

in finite time uT ( y)( y) such that (20) holds for a constant c∗ independent of tol. Then, for
any ε > 0, there exist choices εQ and εF := tol, with ε−1εF , ε−1εQ independent of ε, such
that

1. Algorithm 2 stops in finite time and
2. it produces an approximation of I (G(u)) within tolerance c∗ε +O

(
2−2m+δ

)
, with con-

stant hidden in O(·) independent of s.
Proof Let εF be the tolerance for AFEM. To prove the first item it is sufficient to show that,
for any εQ > 2c∗ ‖G‖V ∗ εF there exists m sufficiently large such that |E2m (G(uT ))| ≤ εQ .
By linearity of G,

|E2m (G(uT ))| ≤ |E2m (G(u − uT ))| + |E2m (G(u))|
≤ 2 max

y∈Pm−1∪Pm
G(u − uT ( y))( y)+ |E2m (G(u))|

≤ 2c∗ ‖G‖V ∗ εF + |E2m (G(u))|.
Proposition 2.1 also implies that |E2m (G(u))| → 0 as m →∞ and hence the claim.

Now we show the second item: we separate the error due to the Finite Element discretiza-
tion from the QMC integration error as follows

|I (G(u))− Q2m (G(uT ))| ≤ |Q2m (G(u − uT ))| + |I (G(u))− Q2m (G(u))|.
For the FEM error we have

|Q2m (G(u − uT ))| ≤ max
y∈Pm

|G(u( y)− uT ( y))| ≤ c∗ ‖G‖V ∗ εF . (22)

For the QMC error we apply Proposition 2.1 to get for all δ > 0

|I (G(u))− Q2m (G(u))| ≤ (|E2m (G(uT ))| + 2c∗ ‖G‖V ∗ εF
)+O

(
2−2m+δ

)
≤ (εQ + 2c∗ ‖G‖V ∗ εF

)+O
(
2−2m+δ

)
.

Hence, for given ε we can choose εF := ε
6‖G‖V∗ and εQ := 2

5c
∗ε > 2c∗ ‖G‖V ∗ εF and

obtain

|I (G(u))− Q2m (G(uT ))| ≤ (εQ + 3c∗ ‖G‖V ∗ εF
)+O

(
2−2m+δ

)
≤ c∗ε +O

(
2−2m+δ

)
. (23)

��
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We remark that a sharp value for the reliability constant c∗ is usually not known but (poten-
tially pessimistic) upper bounds exist. The size of c∗ can be controlled for structured meshes
and refinement by bisection in spatial dimension d = 2.

Algorithm 2 entails a decoupling of the QMC sampling with a AFEM solver. In practice,
this implies that an adaptive software can be integrated into such algorithm in a non-intrusive
manner, provided that the reliability (20) is satisfied for somevariational spaceV andG ∈ V ∗.
This feature can be advantageous in many situations, especially when a solver is complex to
implement. However, it presents two main computational difficulties:

• Algorithm 2 recomputes amesh T ≥ T0 for the domain D, for eachQMC sample y ∈ Pm
as well as for all iterations over m, which for complex geometries is an expensive step.

• Imposing the same AFEM threshold (20) for all QMC points can be unnecessary since
we are primarily interested in the average over the parameter space.

In what follows we propose two alternative algorithms that improve upon Algorithm 2
under these aspects. The first is a modification of Algorithm 2, that recycles part of the
computation from previous iterations over m.

Algorithm 3 ismotivated by the following heuristics. If there exists ametric dβ : U×U →
[0,∞) and a Lipschitz constant L > 0 satisfying

max(
∥∥uT ( y)− uT ( y′)

∥∥
V ,
∥∥u( y)− u( y′)

∥∥
V ) ≤ Ldβ( y, y′)

∀ y, y′ ∈ U , ∀ T ∈ T, (24)

then ∥∥u( y)− uT ( y′)( y)
∥∥
V ≤ 2Ldβ( y, y′)+ ∥∥u( y′)− uT ( y′)( y

′)
∥∥
V

≤ 2Ldβ( y, y′)+ c∗εF .

In particular, for a small distance of the parameters we have a good chance to meet the AFEM
tolerance by just one call of the SOLVE module, starting from the mesh T ( y′).

Algorithm 3 QMC–AFEM (v2)
Input: [ y �→ a y], [ y �→ l y],G, ε,T0, q
Output: Approximation of I (G(u)) within tolerance ∝ ε

1: m ← 1; generate P1
2: T ( y′)← T0 ∀ y′ ∈ P1
3: while True do
4: for y ∈ Pm do
5: if m > 1 then
6: y′ ← argmin

{
dβ ( y, z) : z ∈ Pmin(m−1,q)

}
7: end if
8: uT ( y)( y),T ( y)← AFEM(a y, l y, εF ,T ( y′)) � Algorithm 1
9: Evaluate G(uT ( y)( y))
10: end for
11: if m ≥ 2 and

∣∣Ebm (G(uT ))
∣∣ ≤ εQ then

12: return Q2m (G(uT ))

13: end if
14: m ← m + 1
15: Generate lattice Pm
16: end while

Following verbatim the proof of Proposition 3.1, we get convergence Algorithm 3. The
parameter q ∈ N in line 6 regulates how much information from previous iterations we use.
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Adiscussion of possible choices q = q(ε) depending on the tolerance is given in Appendix C
below.

Proposition 3.2 Let T0 ∈ T. Assume that G ∈ V ∗, that u satisfies either (9) or (10) for a
sequence β as in Proposition 2.1 and that ∀ y ∈ U, ∀ T ∈ T and any tolerance tol, AFEM,
starting from the initial mesh T , returns in finite time a mesh T ( y) ≥ T and uT ( y)( y) such
that (20) holds for a constant c∗ independent of tol and T . Then, for any ε, there exist choices
εQ and εF := tol, with ε−1εF , ε−1εQ independent of ε such that

1. Algorithm 3 stops in finite time and
2. it produces an approximation of I (G(u)) within tolerance c∗ε +O

(
2−2m+δ

)
, with con-

stant hidden in O(·) independent of s.

3.2 Goal Oriented AFEM – Part 1

For the convergence of Algorithms 2 and 3, we assumed (20). This assumption alone does not
yield optimal convergence rate of the AFEM module; as a consequence, the Finite Element
error is overestimated and the spatial domain D could be overrefined in the algorithms. Nev-
ertheless, we only require a reliable upper bound for the difference |G(u( y))− G(uT ( y))|,
that in many situations converges to 0 faster than ‖u( y)− uT ( y)‖V as we refine T , by an
Aubin-Nitsche duality argument.

Let T ∈ T, y ∈ U , then we define z( y) ∈ W as the unique solution of the dual problem

a y(v, z( y)) = G(v) ∀v ∈ V . (25)

Then, for all wT ∈ WT ,

|G(u( y))− G(uT ( y))| = ∣∣a y(u( y), z( y))− a y(uT ( y), z( y))
∣∣

= ∣∣a y(u( y)− uT ( y), z( y)− wT )
∣∣

≤ � ‖u( y)− uT ( y)‖V ‖z( y)− wT ‖W . (26)

When the goal functional G ∈ V ∗ has additional regularity, i.e. it belongs to a suitable
subspace H ⊆ V ∗, then for hT := maxT∈T diam(T )

lim
hT→0

inf
wT ∈VT

‖z( y)− wT ‖W = 0. (27)

However, in general AFEM produces non quasi-uniform meshes. Hence we can exploit
regularity of G as follows: we pick wT := zT ( y) ∈ WT the FE solution of

a y(v, zT ( y)) = G(v) ∀v ∈ VT (28)

and define reliable indicators
{
ζ y,T (T )

}
T∈T such that, for a constant c∗∗ > 0 independent

of y, T ∈ T,

‖z( y)− zT ( y)‖W ≤ c∗∗
(∑
T∈T

ζ 2
y,T (T )

) 1
2

. (29)

Similarly to η y,T (T ), each indicator ζ y,T (T ) has the purpose of estimating the local error
of the dual FEM problem ‖z( y)∣∣

T
− zT ( y)

∣∣
T
‖V . Combining (26) and (29) we can use the

following a-posteriori estimator as termination criterion for AFEM, in Algorithms 2 and 3

|G(u( y))− G(uT ( y))| �
(∑
T∈T

η2y,T (T )
∑
T∈T

ζ 2
y,T (T )

) 1
2

≤ εF . (30)
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Furthermore, as shown in [17], suitable marking strategies driven by both indicators
η y,T , ζ y,T yield optimal convergence of the resulting goal oriented AFEM (or goAFEM)
algorithm, provided that the axioms of adaptivity (A1-A4 in [5]) hold for the indicators
η y,T (T ), ζ y,T (T ). If in Algorithms 2 and 3, we replace AFEM by goAFEM, then the results
of Propositions 3.1 and 3.2 remain valid. As a side advantage, we do not need to include
‖G‖V ∗ to the FEM tolerance εF .

Remark 3.3 Note that to use (30) we must solve numerically (28) for each sample y ∈
Pm,m = 1, 2, . . ., until the tolerance is met. However, the stiffness matrix of the dual
problem coincides with the transpose of the stiffness matrix of the primal, thus the additional
work for the solution of (28) includes only the construction of the load vector corresponding
to G (independent of y) and one linear solver per sample – in particular it is independent of
the parametric dimension s ∈ N.

Remark 3.4 The axioms of adaptivity [5, (A1)–(A2)] are analogous to (16) and (17), while [5,
(A4)] is a discrete version of (18). Quasi-orthogonality [5, (A3)] holds trivially for symmetric
bilinear forms a y, y ∈ U , although here we do not assume symmetry and we must verify it
on a case by case basis, so to obtain optimal convergence of goAFEM.

3.3 Indicator Averaging

Next, we design an iterative algorithm that refines the mesh or increases the number of
samples at each step. Conversely to the previous algorithms, at any given time we employ
only one mesh of the domain D for all y ∈ U . In this case, we will assume a-priori uniform
convergence, slightly stronger than the a-priori convergence in (21).

Assumption 3.1 Denote by (uT	
( y))	∈N0 the sequence of approximations produced byAlgo-

rithm 4 with T	+1 = REFINE(T	,M	), M	 = MARK(
{
ηT	

(T )
}
) ⊆ T	 for all 	 ∈ N0. We

assume that there exists u∞ ∈ C0(U , V ) such that∥∥u∞ − uT	

∥∥
L∞(U ,V )

→ 0 as 	 →∞. (31)

Theorem 3.5 Let T0 ∈ T. Assume that G ∈ V ∗, and that ∀T ∈ T u, uT satisfy either
(9) or (10) for a sequence β as in Proposition 2.1. Impose that the AFEM modules satisfy
Assumption2.2andAssumption3.1. Then, for all ε > 0 there exist εF , εQ,with ε−1εF , ε−1εQ
independent of ε, such that

1. Algorithm 4 stops in finite time and
2. it produces an approximation of I (G(u)) within tolerance c∗ε +O

(
b−2m+δ

)
, with con-

stant hidden in O(·) independent of s.

Proof Fixm ∈ N. For ameshT on D define ηT (T ) :=
(

1
2m
∑

y∈Pm η2y,T (T )
) 1

2
the quadratic

mean over y ∈ Pm of the local indicators. Since
{
η y,T (T )

}
T satisfy (17) for all y ∈ Pm , and

all T0 ≤ T ≤ T ′, we get
∑

T∈T ′\T
η2T ′(T ) ≤ qred

∑
T∈T \T ′

η2T (T )+ 1

2m
∑
y∈Pm

R(‖uT ′( y)− uT ( y)‖V )

≤ qred
∑

T∈T \T ′
η2T (T )+ R(‖uT ′ − uT ‖L∞(U ,V ))
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Algorithm 4 AQMC-FEM
Input: [ y �→ a y], [ y �→ l y],G, ε,T0
Output: Approximation of I (G(u)) within tolerance ∝ ε

1: m ← 2; generate P1, P2
2: T ← T0
3: while True do
4: for y ∈ Pm do
5: uT ( y) ← SOLVE(a y, l y,T )

6:
{
η y,T (T )

}← ESTIMATE(uT ( y))
7: Evaluate G(uT ( y))
8: end for
9: η2T (T )← 1

2m
∑

y∈Pm η2y,T (T )

10: if
√∑

T∈T η2T (T ) > εF then

11: T ← REFINE(T ,MARK(
{
ηT (T )

}
))

12: else
13: if Q2m−1 (G(uT )) was not computed for the current T then
14: for y ∈ Pm−1 do
15: uT ( y)← SOLVE(a y, l y,T )

16: Evaluate G(uT ( y))
17: end for
18: end if
19: if

∣∣E2m (G(uT ))
∣∣ ≤ εQ then

20: return Q2m (G(uT ))

21: end if
22: m ← m + 1
23: Generate lattice Pm
24: end if
25: end while

as R is increasing and uT ′ , uT are continuous. Hence, also ηT (T ) has the reduction property
(17), but with respect to the L∞(U , V )-norm. Similarly, from (16), monotonicity of S and
Jensen inequality

∑
T∈T ∩T ′

η2T ′(T ) ≤
∑

T∈T ∩T ′
η2T (T )+ 1

2m
∑
y∈Pm

S(‖uT ′( y)− uT ( y)‖V )2

+ 1

2m
∑
y∈Pm

2S(‖uT ′( y)− uT ( y)‖V )

( ∑
T∈T ∩T ′

η2y,T (T )

) 1
2

≤
∑

T∈T ∩T ′
η2T (T )+ S(‖uT ′ − uT ‖L∞(U ,V ))

2

+ 2S(‖uT ′ − uT ‖L∞(U ,V ))

( ∑
T∈T ∩T ′

η2T (T )

) 1
2

.

Taking square roots on both sides, we obtain that ηT (T ) has the stability property (16) with
respect to the L∞(U , V )-norm. Note that the modules MARK,REFINE are independent of
y ∈ U and we assumed a-priori convergence in (31) in the same norm; therefore, from the
proof [21, Theorem 3.1], for the sequence of meshes (T	)	∈N0 constructed by

T	+1 = REFINE(T	,MARK({ηT	
(T )}))
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we obtain, ∑
T∈T	

η2T	
(T )→ 0 as 	 →∞.

Thus for allm ∈ N, any FEM tolerance εF is met in finite time. Since uT satisfies (9) or (10)
for all T ∈ T (conversely to Algorithms 2 and 3, here there is only one mesh T at a time, used
for all points y ∈ Pm ∪ Pm−1), Proposition 2.1 implies that E2m (G(uT )) → 0 as m →∞,
showing that Algorithm 4 stops in finite time. The error bound follows as in Proposition 3.1:
denote by T (m) := T	(m),m ∈ N the mesh that meets the FEM error tolerance for the lattice
Pm , i.e.

1

2m
∑

T∈T (m)

∑
y∈Pm

η2y,T (m) (T ) ≤ ε2F . (32)

For all δ > 0,∣∣I (G(u))− Q2m (G(uT (m) ))
∣∣ ≤∣∣Q2m (G(u − uT (m) ))

∣∣+ ∣∣E2m (G(u − uT (m) ))
∣∣

+ ∣∣E2m (G(uT (m) ))
∣∣+O

(
2−2m+δ

)
.

Jensen inequality and (18) give

∣∣Q2m (G(u − uT (m) ))
∣∣ ≤ ‖G‖V ∗ 1

2m
∑
y∈Pm

∥∥u( y)− uT (m) ( y)
∥∥
V ≤ c∗ ‖G‖V ∗ εF . (33)

Note that, since T (m−1) ≤ T (m) as we never coarsenmeshes, Galerkin orthogonality implies,
for C(λ̃,�) = 1+ �

λ̃

1

2m−1
∑

y∈Pm−1

∥∥u( y)− uT (m) ( y)
∥∥
V ≤ C(λ̃,�)

2m−1
∑

y∈Pm−1

∥∥u( y)− uT (m−1) ( y)
∥∥
V

≤ C(λ̃,�)c∗εF ,

whence ∣∣E2m (G(u − uT (m) ))
∣∣ ≤ (1+ C(λ̃,�)

)
c∗ ‖G‖V ∗ εF . (34)

The stopping criterion gives
∣∣E2m (G(uT (m) ))

∣∣ ≤ εQ so that

∣∣I (G(u))− Q2m (G(uT (m) ))
∣∣ ≤ (2+ C(λ̃,�)

)
c∗ ‖G‖V ∗ εF + εQ +O

(
2−2m+δ

)

and it is sufficient to pick εF := ε

2(2+C(λ̃,�))‖G‖V∗ , εQ :=
c∗ε
2 to get the claim. ��

3.4 Goal Oriented AFEM – Part 2

We now include a goal oriented adaptivity approach in Algorithm 4. Given the estimator

average ϕT (T ) :=
(

1
2m
∑

y∈Pm ϕ2
y,T (T )

) 1
2
, ϕ ∈ {η, ζ }, we define the following indicators

from [1]

ρ2
T (T ) := η2T (T )

∑
T ′∈T

ζ 2
T (T ′)+ ζ 2

T (T )
∑
T ′∈T

η2T (T ′).
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Proposition 3.6 Let {T	}	∈N0 be a sequence ofmeshes producedwith the indicatorsρT	
(T ) by

amarking and refinement strategy as in Assumption 2.2. Let K0 := max y∈U (η2y,T0
+ζ 2

y,T0
) <

∞. Assume that both estimatorsη y,T , ζ y,T for the primal and dual problems satisfy reliability
(18), and (29) and the properties (16), (17) for T ∈ T. Then

ηT	
ζT	

=
⎛
⎝∑

T∈T	

ζ 2
T	

(T )

⎞
⎠

1
2
⎛
⎝∑

T∈T	

η2T	
(T )

⎞
⎠

1
2

→ 0, as 	→∞.

Proof Due to (14), we have quasi-optimality of the primal and dual problems

‖u( y)− uT ( y)‖V ≤ C(λ̃,�) inf
vT ∈VT

‖u( y)− vT ‖V
‖z( y)− zT ( y)‖W ≤ C(λ̃,�) inf

wT ∈WT
‖z( y)− wT ‖W ,

for all T ∈ T. Hence, we get from [5, Lemma 3.6], quasi-monotonicity of the estimators:
there exists C > 0 independent of y ∈ U , T ∈ T such that

∑
T∈T

ϕ2
y,T (T ) ≤ C

∑
T∈T

ϕ2
y,T0

(T ) < CK0 with ϕ ∈ {η, ζ }. (35)

The axioms (16) and (17) for the indicators ρT (T ) are verified as in Theorem 3.5, and using
that K0 < ∞. Therefore we conclude with [21, Theorem 3.1] the claim,

∑
T∈T	

ρ2
T	

(T ) =
2η2T	

ζ 2
T	
→ 0 as 	→∞. ��

As termination criterion for the spatial refinement we impose

1

2m
∑
y∈Pm

|G(u( y))− G(uT ( y))| �
(∑
T∈T

ζ 2
T (T )

) 1
2
(∑
T∈T

η2T (T )

) 1
2

≤ εF . (36)

Convergence of a goal oriented adaptive QMC-FEM Algorithm follows replacing (33) with
the latter equation.

3.5 Higher Moments and Lipschitz Goal Functionals

Although we confined the analysis to linear G ∈ V ∗, inspection of the proofs reveals that the
results of the previous sections carry over to sufficiently smooth functionals Ĝ : V → R. In
particular, instead of the expectation of G(u) we can obtain higher moments setting Ĝ = Gk

for some k ∈ N, G ∈ V ∗. The additional steps required in the proofs read as follows. First,
from (8) and a local Lipschitz estimate for Gk we can bound the FEM error in (22), (33) as

∣∣∣Gk(u( y))− Gk(uT ( y))
∣∣∣ = |G(u( y))− G(uT ( y))|

∣∣∣∣∣
k−1∑
i=0

Gk−i−1(u( y))Gi (uT ( y))

∣∣∣∣∣
� |G(u( y))− G(uT ( y))|
≤ ‖G‖V ∗ ‖u( y)− uT ( y)‖V .

Note that for k = 1 the last inequality was sufficient.Moreover, the first inequality also allows
to recover the goal oriented stopping criteria (30) and (36). Second, parametric regularity
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required in Proposition 2.1 follows from the multivariate product rule: for k = 2 and the
assumption (9)

∣∣∣∂ν
yG

2(u( y))
∣∣∣ =

∣∣∣∣∣
∑
μ≤ν

(
ν

μ

)
∂μ
y G(u( y))∂ν−μ

y G(u( y))

∣∣∣∣∣
≤ ‖G‖2V ∗ (|ν|!)1+κ (21+κβ)ν,

which is again of the form (9). Here we used the bound
∑

μ≤ν

(
ν
μ

)|μ|!|ν − μ|! ≤ 2|ν||ν|!.
Note that β ∈ 	p(N) ⇐⇒ 21+κβ ∈ 	p(N); therefore Proposition 2.1 applies for the same
choice of p, which in turn does not change depending on k. The case of assumption (10)
follows the same steps, while regularity for higher k > 2 can be treated iterating the product
rule.

Hence, the computation of higher moments is covered and the error is only changed by a
constant dependent on k, ‖G‖V ∗ ,Cl and λ.

3.6 Examples

In the present section we illustrate the framework in a selection of model problems.

Parametric diffusionWe consider a parametric stationary diffusion equation: given y ∈ U ,
find u(·, y) such that (3) holds, where a(·, y) ∈ W 1,∞(D) and f ∈ L2(D). We select an
affine-parametric diffusion coefficient: for

{
ψ j
}
j∈N0

∈ W 1,∞(D),

a(x, y) = ψ0(x)+
s∑

j=1
y jψ j (x). (37)

Assume that the ψ0 > ψ0,min a.e. in D for a constant ψ0,min > 0 and the sequence β given

by β j = ‖ψ j‖L∞(D)

ψ0,min
, j ≥ 1 satisfies ‖β‖	1(N) :=

∑
j≥1 β j < 2 and β ∈ 	p(N), for some

p ∈ (0, 1
2 ). The weak formulation of Eq. (3) reads, for all y ∈ U find u(·, y) ∈ V := H1

0 (D)

such that

a y(u(·, y), v) :=
∫
D
a(·, y)∇u(·, y) · ∇v =

∫
D

f v =: l y(v) ∀v ∈ V . (38)

This model problem satisfies (2.1) and the derivative bound (9) with κ = 0, follows from [8]
or Theorem B.1. AFEM can be performed (with quasi-optimal convergence) for example by
first order Lagrangian elements, standard residual indicators, Dörfler marking and refinement
by newest vertex bisection, as derived in [6].

For completeness we verify Lipschitz continuity (24) for the model problem: denote
u( y) = u(·, y) ∈ V , then affine parametric structure of a(·, y) gives

ψ0,min

(
1− ‖β‖	1(N)

2

)∥∥u( y)− u( y′)
∥∥2
V ≤ a y(u( y)− u( y′), u( y)− u( y′))

= 〈 f , u( y)− u( y′)
〉− a y(u( y′), u( y)− u( y′))

= 〈 f , u( y)− u( y′)
〉− a y′(u( y′), u( y)− u( y′))

+
∑
j≥1

(y′j − y j )
∫
D

ψ j∇u( y′)∇(u( y)−u( y′)).
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The first two terms cancel since f is independent of y ∈ U . Furthermore,
∣∣∣∣∣∣
∑
j≥1

(y′j − y j )
∫
D

ψ j∇u( y′)∇(u( y)− u( y′))

∣∣∣∣∣∣
≤ ψ0,min

∥∥u( y)− u( y′)
∥∥
V ‖u( y)‖V

∑
j≥1

∣∣∣y′j − y j
∣∣∣β j .

Therefore defining dβ( y, y′) :=∑ j≥1
∣∣∣y′j − y j

∣∣∣β j and L := 4

ψ0,min

(
2−‖β‖

	1(N)

)2 ‖ f ‖V ∗ we
have the claim. The same steps hold for a FE solution uT ( y), for any T ∈ T. This also
implies Assumption 3.1 due to compactness of U .

Shape Uncertainty Quantification for the Poisson equation. Consider the following
domain uncertainty problem from [26]: define a family of domains {D( y) : y ∈ U } con-
tained in a hold-all domain D :=⋃ D( y). Given a reference Lipschitz polyhedron D̂ ⊂ R

d

d ∈ {2, 3}, we assume that the family is parametrized by a C2(D̂) diffeomorphism
� : D̂ ×U → D by the relations D( y) := �(D̂, y) and

�(x, y) = x +
s∑

j=1
y jψ j (x), x ∈ D̂, y ∈ U (39)

for functions
{
ψ j
}
j∈N ⊂ W 1,∞(D) satisfying β ∈ 	p(N), p ∈ (0, 1

2 ) with β j :=∥∥ψ j
∥∥
W 1,∞(D̂)

. For all y ∈ U , let u(·, y) ∈ H1
0 (D( y)) solve the Poisson equation, given

a source f ∈ C∞(D) analytic (as in [26, Lemma 5]),

−�u(x, y) = f (x) x ∈ D( y), u
∣∣
∂D( y)

= 0. (40)

This problem can be recast by a change of variables to the reference domain: for V = W =
H1
0 (D̂) and for any y ∈ U , we seek û(·, y) := u(·, y) ◦� ∈ V such that (2) holds with

ly(ŵ) :=
∫
D̂

f ◦�(x, y)ŵ(x) det(J (x, y)) dx,

a y(v̂, ŵ) :=
∫
D̂
A(x, y)∇v̂(x) · ∇ŵ(x) dx,

(41)

where A(x, y) := (J�(x, y)J (x, y))−1 det(J (x, y)) and J (x, y) := ∇x�(x, y) is the Jaco-
bian matrix of �. In [26, Theorem 5], the authors provided a derivative bound in the form
(9), κ = 0, for û. The AFEM modules are analogous to the previous example (but here with
parametric matrix-valued diffusion coefficient); the applicability of Algorithms 2 and 4 is
straightforward.

Linear elasticity of nearly incompressible materials. Robust approximation of linear elas-
ticity in the incompressible limit, (that is Poisson ratio ν ∈ (0, 1

2 ) approaching
1
2 ), was studied

in [29, 30] by the following three-field-formulation. Let E(x, y) = e0(x)+∑s
j=1 y j e j (x) ∈

L∞(D) be the (affine-parametric) Young modulus, with 0 < e0,min < e0(x) < e0,max

a.e., for constants e0,min, e0,max. Define ε(v) := 1
2 [∇v + (∇v)�] the strain tensor (for a

vector field v : D → R
d ) and f ∈ L2(D)d . Assume that the boundary conditions are of

mixed type Dirichlet-Neumann given respectively on �D, �N , both of positive length, with
�D ∪ �N = ∂D, �D ∩ �N = ∅. Introducing the extra variable p̃(x, y) = p(x, y)/E(x, y),
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where p(x, y) is the (parameter-dependent) Herrmann pressure, we can write the linear
elasticity equations as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− div
(
E(x, y)
(1+ν)

ε(u(x, y))
)
+ ∇ p(x, y) = f (x) x ∈ D, y ∈ U

div(u(x, y))+ c−1 p̃(x, y) = 0 x ∈ D, y ∈ U

c−1 p(x, y)− c−1E(x, y) p̃(x, y) = 0 x ∈ D, y ∈ U

u(x, y) = 0 x ∈ �D, y ∈ U(
E(x, y)
1+ν

ε(u(x, y))− p(x, y)I
)
n(x) = 0 x ∈ �N , y ∈ U

(42)

for the absolute constant c = c(ν) := ν
(1+ν)(1−2ν)

only dependent on ν ∈ (0, 1
2 ). The weak

formulation is: for all y ∈ U , find (u(·, y), p(·, y), p̃(·, y)) ∈ V := W := H1
�D

(D)d ×
L2(D)× L2(D) such that (2) holds for the bilinear form

a y((v, g, g̃), (w, q, q̃)) =
∫
D

E(·, y)
1+ ν

ε(v) : ε(w)−
∫
D
gdivw −

∫
D
qdivv − c−1

∫
D
g̃ q

−c−1
∫
D
g q̃ + c−1

∫
D
E(·, y)g̃ q̃ ∀(v, g, g̃), (w, q, q̃) ∈ V (43)

and ly((w, q, q̃)) = ∫D f w. We equip V with the norm (related to [30, Equation (2.21)], but
without integrating out the parameter space)

‖(w, q, q̃)‖2V :=
1

1+ ν
‖∇w‖2L2(D)

+ (1+ ν + c−1) ‖q‖2L2(D)
+ c−1 ‖q̃‖2L2(D)

. (44)

The main motivation to introduce the three-field formulation is that E only appears in the
numerator, and it is in particular affine-parametric.We thus verify the criteria of TheoremB.1.
The nominal operator A0 : V → V ∗, induced by a0 is linear and boundedly invertible by

[30, Theorem 2.4], with norm
∥∥∥A−10

∥∥∥ ≤ K0(1+ν)1/2

e0,min
, for a constant K0 > 0 dependent on D

and ‖e0‖L∞(D). Moreover, the fluctuations
{
A j
}
j in the notation of Theorem B.1 satisfy, for

all triples (v, g, g̃), (w, q, q̃) ∈ V

〈
A j (v, g, g̃), (w, q, q̃)

〉 = 1

1+ ν

∫
D
e jε(v) : ε(w)+ c−1

∫
D
e j g̃q̃

≤ ∥∥e j∥∥L∞(D)
‖(v, g, g̃)‖V ‖(w, q, q̃)‖V , (45)

that is
∥∥A j

∥∥ ≤ ∥∥e j∥∥L∞(D)
. Therefore, to obtain (9) we assume ‖β‖	1(N) < 2,β ∈ 	p(N)

for some p ∈ (0, 1
2 ), where

β j := K0(1+ ν)1/2

e0,min

∥∥e j∥∥L∞(D)
. (46)

With these choices, this formulation fits Assumption 2.1 by [30, Lemma 2.3] and Theo-
remB.1; hence the problem is well-posed and (9) holds with p < 1

2 . Lipschitz continuity (24)
follows as in the first example. Any converging AFEM solver (not necessarily conforming)
for (42) ensures that Algorithms 2, 3 are applicable. In particular, the reliability and efficiency
of [29, Theorem5.1] (appliedwith� = {0}, in the notation there, i.e. for a deterministic equa-
tion) and suitable inf-sup stable discretization spaces as VT := (Q2(T ))d ×Q1(T )×Q1(T )

satisfying in (14) give, for all y ∈ U , an AFEM algorithm based on hierarchical spatial
refinement. Here,Q2(T ) denotes the space of continuous piecewise biquadratic functions on
T and Q1(T ) the continuous piecewise bilinear functions, on quadrilatelar meshes.
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4 Numerical Experiments

We consider the model problem (3) on a polygon D ⊆ R
2, for the solution of (15) we

employ Lagrangian P1-FEM on regular triangulations T ∈ T of D. AFEM is driven by the
residual indicators from, e.g. [35, Section 1.4] and the Dörfler MARK strategy with marking
parameter θ ∈ (0, 1), where larger θ corresponds to more aggressive refinement. In all the
computations, we select θ = 0.25. The REFINE module is the Newest Vertex Bisection as
from the MATLAB implementation in [19], that gives uniform shape regularity of T. We run
on a machine equipped with Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz (OctaCore)
and MATLAB R2019a.

4.1 Convex Domain

As a first example we select an affine-parametric diffusion, (3), (37) with ψ0 ≡ 1 and for
j ≥ 1,

ψ j (x) := 1

(k2j,1 + k2j,2)
ξ
sin(k j,1πx1) sin(k j,2πx2), (47)

where the pairs (k j,1, k j,2) ∈ N
2 are defined by the ordering of N2 such that for j ∈ N,

k2j,1 + k2j,2 ≤ k2j+1,1 + k2j+1,2, and the ordering is arbitrary when equality holds. With this

choiceβ j ∼ j−ξ , that isβ ∈ 	p(N), p > 1
ξ
. Let D = (0, 1)2, f (x) = e−|x |2 , s = 32, ξ = 2.1

and goal functional G(v) = 4
∫
(0, 12 )2

v. In this case we expect the mesh to be approximately
uniformly refined by AFEM, starting from a structured mesh T0 with 128 elements, since
u(·, y) ∈ H2(D) for all y ∈ U , due to convexity of the domain and smoothness of the data.
We also use the stopping criteria (30), (36) for the FEMerror exploiting symmetry of the stiff-
ness matrix – see Remark 3.3 – thus avoiding excessive spatial refinement. We compare the
algorithms in Fig. 1, for various tolerances εF = εQ . For convenience of the reader, we com-
pute a reference value with |T | ≈ 105 many P2 (i.e. quadratic) elements obtained by uniform
refinement of T0 and |Pm | = 2m ,m = 8 samples, obtaining I (G(u)) ≈ 0.024411631814585.

Since we observe that the cost of computing dβ( y, y′) := ∑ j≥1
∣∣∣y′j − y j

∣∣∣β j is negligible,

we formally set q = ∞ in Algorithm 3. As predicted, they all produce outputs well within
the tolerance ε = 2εF . We also observe that, for the finest tolerance (εF = 10−5), all 3
algorithms produce meshes with ≈ 2 · 105 degrees of freedom and they stop at m = 7, that
is 128 samples are sufficient to meet the tolerance. In terms of computing time, Algorithm 2
lags behind the other 2 algorithms, which in turn offer comparable performance. The rates
in Fig. 1 (right) are estimated excluding the coarsest tolerance (εF = 10−3).

4.2 L-shape Domain

We again pick the affine parametric diffusion in sin expansion of (47). Let D =
(−1, 1)2\[0, 1) × (−1, 0], f (x) = e−2|x+(1,0)|2 be a localized source at (−1, 0). Assume
homogeneousNeumann boundary conditions at�N = {1}×(0, 1)∪(0, 1]×{0} and homoge-
neous Dirichlet at �D = ∂D\�N . As Goal functional we pick G(v) = ∫D∩B1/2 v, where Br
denotes the ball centered at the origin with radius r > 0. Again we choose s = 32, ξ = 2.1.
We start from a uniform mesh T0 with |T0| = 192. The evolution of the QMC and FEM error
estimators run by AQMC-FEM for εF = εQ = 5 · 10−6 are displayed in Fig. 2. Note that
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Fig. 1 Errors committed by the 3 different algorithms for varying tolerances (left). Runtimes (in seconds)
averaged over 2 runs and estimated rate (right)
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Fig. 2 Mesh produced by AQMC-FEM for εF = εQ = 10−3 (left) and decay of FEM and QMC estimators

(asterisk and square, respectively) against W (m, 	), for εF = εQ = TOL := 5 · 10−6 (right)

no QMC estimator is computed until the FEM tolerance is reached for m = 2. We measure
the computational effort of each iteration of the algorithm AQMC-FEM (indexed by a pair
(m, 	) ∈ N

2, corresponding to QMC and FEM refinement level, respectively) by

W (m, 	) = |Pm ||T	|. (48)

This is proportional to the cost of the iteration (m, 	) of the SOLVE module, assuming that
s is fixed and that a FEM solver that performs linearly with respect to |T	| is available. We
also show the mesh generated by AQMC-FEM for εF = εQ = 10−3; as expected, it is
strongly graded near the source and towards the corner of the domain, where a singularity of
the solution occurs.

5 Conclusions

We have presented a family of adaptive discretization methods that combine FEM error
estimation in the spatial domain and deterministic Polynomial lattice rules in the parameter
boxU = [− 1

2 ,
1
2 ]s .We recalled possible criteria to verify convergence of the AFEM iteration

and to enable QMC a-posteriori estimation. The convergence of the parametric estimator is
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free of the curse of dimensionality, allowing for arbitrary s ∈ N, also in practical examples,
under the assumption of quantified decay of the derivatives (10) or (9). Moreover, we stress
that the parametric error is estimated without resorting to the specific problem formulation.
These are the main features that improve upon existing methods based on stochastic Galerkin
or sparse grids [2, 14, 18, 29].

Thus, we expect our algorithms to be applicable in a wide range of problems, including,
but not restricted to, those in the framework of Sect. 2, provided that a converging AFEM
algorithm is available for the corresponding non-parametric equation. In particular, we men-
tion parabolic equations (cp. a posteriori indicators in [35, Chapter 6]) and certain non-linear
PDEs meeting the criteria exposed in [7], stationary Stokes (cp. [5, Section 6.2-6.3]) and
Navier-Stokes (cp. [35, Chapter 5]) equations on uncertain domains [9] and elliptic eigen-
value problems [25], [5, Section 10.3].
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Appendix

A Polynomial Lattices

Polynomial lattices are a class of QMCpoint sets, first introduced in [33]. Here we present the
definition used in the numerical experiments. Fixm ∈ N and b = 2 and denote byZ2 := {0, 1
(mod 2)} the field with 2 elements; let Z2[x],Z2((x)) be respectively the polynomials and
formal Laurent series with coefficients in Z2. We define

vm : Z2((x)) → [0, 1) with vm

( ∞∑
i=−∞

ξi x
−i
)
:=

m∑
i=1

ξi2
−i . (49)

For n ∈ N with (unique) binary expansion n =∑"log2(n)#
i=0 ni2i , ni ∈ Z2, we write n(x) :=∑"log2(n)#

i=0 ni xi ∈ Z2[x]. Given an irreducible polynomial p(x) ∈ Z2[x] of degree m and
q(x) = (q1(x), . . . , qs(x)) ∈ (Z2[x])s componentwise of degree atmostm−1, aPolynomial
lattice on U is defined as the set Pm(q(x), p(x)) = {

y0, . . . , y2m−1
} ⊂ U , where for
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n = 0, . . . , 2m − 1

yn :=
(

vm

(
q1(x)n(x)

p(x)

)
, . . . , vm

(
qs(x)n(x)

p(x)

))
− 1

2
, (50)

i.e. the cardinality |Pm(q(x), p(x))| = 2m .
For fixed m ∈ N, it remains to construct suitable polynomials p(x), q1(x), . . . , qs(x)

that satisfy Proposition 2.1. If u satisfies either (10) or (9), the sequence β is given as
input to a Component-By-Component (CBC) construction of the generating vector q(x) =
(q1(x), . . . , qs(x)) of a Polynomial lattice rule. Specifically, we operate inductively (over the
parametric dimension s̄ = 1, . . . , s) a minimization of (a computable bound for) the worst
case quadrature error. Furthermore, the computation of the minimum can be accelerated
employing Fast Fourier transform, resulting in a computational cost O(sm2m) for product
weights, (that is, if (10) holds) and O

(
2m(s2 + sm)

)
for SPOD weights (in case (9) holds).

We refer to [11] for a detailed analysis of the (Fast) CBC algorithm for product weights, and
to [10] for the case of weights of SPOD type used here. To simplify the notation, we omit the
explicit dependence of Pm(q(x), p(x)) on q(x), p(x) and write Pm , to denote Polynomial
lattices constructed by a CBC algorithm for given weights.

B Regularity of Affine-Parametric Operators

We give a criterion to verify (9) for linear operators, with affine-parametric coefficients. Here
L(V ,W ) denotes the space of linear operators A : V → W equipped with the usual norm.

Theorem B.1 Let V ,W be reflexiveBanach spaces and A y ∈ L(V ,W ∗) be affine parametric,
that is there exist a family of linear operators

{
A j
}
j=0,...,s ⊂ L(V ,W ∗) such that A0 is

boundedly invertible and

A y = A0 +
s∑

j=1
y j A j in W ∗. (51)

Assume that β̃ = (β̃ j ) ∈ 	p(N), p ∈ (0, 1] defined by β̃ j :=
∥∥∥A−10 A j

∥∥∥
L(V ,V )

satisfies

∑
j≥1

β̃ j < 2. (52)

Moreover, for a sequence βl ∈ 	p(N) assume that l y ∈ C∞(U ,W ∗) and

sup
y∈U

∥∥∥∂ν
y l y

∥∥∥
W ∗ ≤ Cl|ν|!βν

l , ∀ν ∈ N
N

0 , supp(ν) < ∞. (53)

Then, A y is boundedly invertible for all y ∈ U and (9) holds with κ = 0, C =
C ′Cl

∥∥∥A−10

∥∥∥
L(W ∗,V )

and β := βl + C ′β̃ with C ′ = 2
2−∑ j≥1 β̃ j

. If l = l y is independent

of y, the same estimate holds with β := C ′β̃.

Proof The proof follows the same arguments of [8, Theorem 4.3], see also [34]. ��
For affine parametric bilinear forms a y, we can define A y ∈ L(V ,W ∗) by A yv := a y(v, ·) ∈
W ∗ for all v ∈ V . Hence, it is sufficient to verify (52) and (53) to obtain our working
Assumptions 2.1 and (9).
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C Computational Cost

We analyze the computation cost under the assumption that we have available SOLVE and
ESTIMATE modules for the Galerkin formulation (15) that run in O(s|T |) operations. On
the other hand, we assume that MARK and REFINE have cost O(|T |).

Fix a tolerance ε > 0 and consider Algorithm 2. Let N	 := max y∈Pm |T	( y)|, where T	( y)
is the mesh obtained after 	 iterations of AFEM for a sample y. From Proposition 3.1, we
have ε ∼ εF independent ofm, that justifies imposing N	 independent ofm: then the number
of operations required is

Work(QMC–AFEM) = O

⎛
⎜⎜⎜⎜⎝

M(ε)∑
m=1

2m

⎛
⎜⎜⎜⎜⎝ s2 + sm︸ ︷︷ ︸

CBC construction (SPOD weights)

+ s
	(ε)∑
	=0

N	

︸ ︷︷ ︸
AFEM

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= O

⎛
⎝s22M(ε)+1 + sM(ε)2M(ε)+1 + s2M(ε)+1

	(ε)∑
	=0

N	

⎞
⎠ .

Here, M(ε), 	(ε) := 	(m, ε) ∈ N are the maximum number of iterations in the (outer) QMC
and (inner) AFEM loop, respectively. In the last step we used

∑M(ε)
m=1 m2m ∼ M(ε)2M(ε)+1.

For spaces VT of piecewise polynomials, we have N	(ε) ∼ ε−d/t for some t > 0, which
is typically determined by the polynomial degree and the spatial regularity of the data (see
e.g. [6]). Moreover, due to Proposition 2.1 we have

2M(ε) ∼ ε−1. (54)

Similarly, in the case of Algorithm 3 we get, with 	(0, ε) := 0,

Work(QMC–AFEMv2)

= O

⎛
⎜⎜⎜⎜⎜⎝

M(ε)∑
m=1

2m

⎛
⎜⎜⎜⎜⎜⎝

s2 + sm︸ ︷︷ ︸
CBC construction (SPOD weights)

+ s
	(m,ε)∑

	=	(m−1,ε)
N	

︸ ︷︷ ︸
AFEM solver

+ s2min(m−1,q)︸ ︷︷ ︸
argmin dβ

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= O

⎛
⎝s22M(ε)+1 + sM(ε)2M(ε)+1 + 2s

	(ε)∑
	=0

N	 + s2M(ε)+1N	(ε) + s2M(ε)+1+min(M(ε),q)

⎞
⎠ .

If we set q > M(ε), the asymptotic cost increases quadratically with respect to 2M(ε), and
the argmin computation dominates the cost. Therefore, such choice is only possible when
the metric dβ is cheap to compute. Another possibility is imposing q such that 2q ∼ N	(ε),
so that the dominating contribution to the computational cost is due to the AFEM solver.

We finally turn to Algorithm 4. The mesh that meets the FEM tolerance for Pm is denoted
by T (m) := T	(m,ε) (cf. (32)). Hence we get

Work(AQMC–FEM) = O

⎛
⎜⎜⎜⎜⎜⎝

M(ε)∑
m=1

2m

⎛
⎜⎜⎜⎜⎜⎝

s2 + sm︸ ︷︷ ︸
CBC construction (SPOD weights)

+ s
	(m,ε)∑

	=	(m−1,ε)
N	

︸ ︷︷ ︸
SOLVE,ESTIMATE

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠
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+O

⎛
⎜⎜⎝

M(ε)∑
m=1

2m−1
(
1+ sN	(m,ε)

χ{T (m) 
=T (m−1)}
)

︸ ︷︷ ︸
QMC estimator

+
	(M(ε),ε)∑

	=0
N	︸︷︷︸

MARK,REFINE

⎞
⎟⎟⎠ ,

where χ A denotes the indicator function of a set A. We observe that the extra cost, due to
the condition of Algorithm 4 line 13, is asymptotically lower than the cost for SOLVE and
ESTIMATE. Thus we conclude

Work(AQMC–FEM) = O

⎛
⎝s22M(ε)+1 + sM(ε)2M(ε)+1 + (1+ 2s)

	(ε)∑
	=0

N	 + s2M(ε)+1N	(ε)

⎞
⎠ .

Remark C.1 When
∑	(ε)

	=0 N	 ∼ N	(ε), i.e. the cost of the adaptive loop is dominated by the
last iteration (cf. [20]), all three algorithms require (asymptotically) the same computational
effort O

(
s2ε−1 + sε−1−d/t

)
.

Remark C.2 In addition to the assumptions of Proposition 2.1, if we impose that β ∈ 	p(N)

for 0 < p < 1
α
, for some α ∈ N, α ≥ 2, it is possible to employ higher-order QMC

integration of order α [10, 12], and a-posteriori QMC error estimation up to order α−1 [10].
Thus, after slight modifications to the algorithms, (54) improves to 2M(ε) ∼ ε−1/(α−1).
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