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Abstract
In this paper, we formulate and analyse exponential integrations when applied to nonlin-
ear Schrödinger equations in a normal or highly oscillatory regime. A kind of exponential
integrators with energy preservation, optimal convergence and long time near conservations
of density, momentum and actions is formulated and analysed. To this end, we propose
continuous-stage exponential integrators and show that the integrators can exactly pre-
serve the energy of Hamiltonian systems. Three practical energy-preserving integrators are
presented. We establish that these integrators exhibit optimal convergence and have near
conservations of density, momentum and actions over long times. A numerical experiment
is carried out to support all the theoretical results presented in this paper. Some applications
of the integrators to other kinds of ordinary/partial differential equations are also discussed.

Keywords Schrödinger equations · Exponential integration · Energy-preserving methods ·
Optimal convergence · Modulated Fourier expansion · Long-time conservation

1 Introduction

The aim of this paper is to present the formulation and analysis of exponential integration
when applied to the nonlinear Schrödinger equation (NLS)with periodic boundary conditions
(see [16, 17])

⎧
⎨

⎩

iut (t, x) = −1

ε
�u(t, x) + λ|u(t, x)|2u(t, x), (t, x) ∈ [0, T ] × [−π, π]d ,

u(0, x) = u0(x), x ∈ [−π, π]d ,
(1.1)
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where λ is a positive or negative parameter which leads to focusing or defocusing NLS,
respectively. We note here that the methods and analysis presented in this paper are available
for these both cases of λ. The ε in (1.1) is a decisive parameter which determines the scaling
of the solution. In this paper, we consider two different regimes: the normal regime ε = 1
and the semiclassical regime 0 < ε � 1 which means that the solution u(t, x) is highly
oscillatory with respect to the time variable. More specifically, the operator eit�/ε is periodic
with respect to t and the (minimal) period is O(ε). Thus on any finite time interval, the
number of oscillations tends to infinity as the parameter ε tends to zero, which renders the
NLS highly oscillatory with respect to t for 0 < ε � 1. It is known that the solution of this
equation (1.1) exactly conserves the following energy

H [u, ū] = 1

2(2π)d

∫

[−π,π ]d

(1

ε
|∇u|2 + 1

2
λ|u|4

)
dx, (1.2)

where |·| denotes the Euclidean norm. Apart from this, the solution also has the conservations
of the momentum

K [u, ū] = i
1

(2π)d

∫

[−π,π ]d
(u∇ū − ū∇u)dx, (1.3)

and of the density or mass

m[u, ū] = i
1

(2π)d

∫

[−π,π ]d
|u|2dx . (1.4)

For the linear Schrödinger equation, its solution exactly conserves the actions

I j (u, ū) = 1

2

∣
∣u j

∣
∣2 , j ∈ Z

d , (1.5)

where u j is defined by u(t, x) = ∑

j∈Zd

u j (t)ei( j ·x) with j · x = j1x1 + · · · + jd xd . For

nonlinear equation (1.1), it has been shown that these actions are approximately conserved
over long times under conditions of small initial data and non-resonance (see [29, 30]). In
this paper, only cubic Schrödinger equation with x ∈ [−π, π]d is considered for brevity,
although all our ideas, algorithms and analysis can be easily extended to the solutions of
other NLS.

As is known, NLS often arises in a wide range of applications such as in fiber optics,
physics, quantum transport and other applied sciences, and we refer the reader to [23, 40,
43]. In order to effectively solve NLS, various numerical methods have been developed and
researched in recent decades. With regard to some related methods of this topic, we refer
the reader to exponential-type integrators (see, e.g. [5, 7, 8, 12, 14, 19, 21, 52]), splitting
methods (see, e.g. [1, 9, 17, 22, 30, 45, 50]), multi-symplectic methods (see, e.g. [5]), Fourier
integrators (see, e.g. [24, 42, 47]), waveform relaxation algorithms (see, e.g. [27]) and other
effective methods (see, e.g. [2, 3, 6, 31, 38, 41]).

In the last two decades, structure-preserving algorithms of Hamiltonian partial differential
equations (PDEs) have also been received much attention and we refer to [10, 35, 38, 58].
Amongst the typical subjects of structure-preserving algorithms are energy-preserving (EP)
schemes (see, e.g. [20, 26, 32, 39, 46, 49, 53, 54]). One important property of EP methods is
that they can exactly preserve the energy of the considered system. On the other hand, long-
time conservation properties of different methods when applied to Hamiltonian systems have
been researched in many research publications (see, e.g. [19, 25, 29, 30, 34, 35]). All the
long-time analyses can be achieved by using the technique of modulated Fourier expansions,
which was developed by Hairer and Lubich in [33].
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With regard to the existing researches on these two topics for Schrödinger equations, we
have comments as follows:

(a) Concerning EP methods for NLS, although the average vector field method (see [15])
and Hamiltonian Boundary Value Methods (see [11]) were considered, exponential EP
methods have not been studied well for Schrödinger equations in the literature. Recently,
the authors in [55] derived a kind of exponential collocation methods, but the energy
conservation only holds under some special conditions. Exponential structure-preserving
Runge-Kutta methods have been studied in [10] for first-order ODEs and the methods are
shown to exactly preserve conformal symplecticity and decay (or growth) rates in linear
and quadratic invariants. However, energy-preserving exponential Runge-Kutta methods
have not been considered there. Exponential EP integrators as well as their convergence
have not been established rigorously for NLS.

(b) For the long time analysis of numerical methods applied to NLS, there have also been
many publications, and we refer the reader to [19, 28–30]. Unfortunately, however, all
the methods described in these publications are not EP methods. Too little attention has
been paid to the long term analysis of EP methods in other qualitative aspects for solving
NLS in the literature.

The above facts motivate this paper and the main contributions will be made as follows:

(A) By using the idea of continuous-stage methods, we formulate a kind of exponential
integration. This formulation will provide novel energy-preserving methods and this
will be discussed in detail in Sect. 2.

(B) For the obtained EP methods, we analyze their optimal convergence for the first time.
We prove by using the averaging technique [17], that some schemes exhibit improved
error bounds for highly oscillatory NLS (Sect. 3).

(C) It is also shown that these EP integrators have near conservations of actions,momentum
and density over long times by using modulated Fourier expansions (Sect. 4).

After these steps, a novel kind of exponential integration with energy preservation, opti-
mal convergence and long time near conservations of actions, momentum and density is
obtained. All the theoretical results presented in this paper will be supported numerically by
a numerical experiment carried out in Sect. 5. The last section concerns some applications
of the integrators and some issues which will be studied further.

2 Energy-Preserving Exponential Integrators

In order to derive energy-preserving exponential integrators, we consider the simple but
classical way: Duhamel formulation of the equation and the discretization of the integral,
which has been used in many publications (see, e.g. [3, 8, 10, 12, 14, 19, 21, 36, 44, 47]).
Although this formulation is not new, the obtained methods will have some advantages and
we will make some important notes in Remark 1 below.

Rewrite the NLS (1.1) as

∂u

∂t
(t, x) = iAu(t, x) + f (u(t, x)), u(0, x) = u0(x), (2.1)
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where A is the differential operator defined by (Au)(t, x) = 1
ε
�u(t, x) and f (u) =

−iλ|u|2u. The Duhamel principle of this system gives

u(tn + h, x) = eihAu(tn, x) + h
∫ 1

0
e(1−ξ)ihA f (u(tn + ξh, x))dξ (2.2)

with the time stepsize h and tn = nh. Then we define the operator-argument functions ϕ j by

ϕ0(itA) := eitA, ϕ j (itA) :=
∫ 1

0
ei(1−ξ)tA ξ j−1

( j − 1)!dξ, j = 1, 2, . . . . (2.3)

We deal with the integral appearing in (2.2) by the idea of continuous-stage methods and
define the novel integrators as follows.

Definition 1 (Exponential time integrators.) For solving the NLS (1.1), a continuous-stage
exponential time integrator is defined for 0 ≤ τ ≤ 1 and n = 0, 1, . . . as follows:

un+τ (x) = Φτh(un(x)) := Cτ (V)un(x) + h
∫ 1

0
Aτ,σ (V) f (un+σ (x))dσ, (2.4)

where V = ihA, Cτ (V) and Aτ,σ (V) are bounded operator-argument functions and Cτ (V)

is required to satisfy Ccj (V) = ec jV for j = 0, 1, . . . , s with the fitting nodes c j and s ≥ 1.
It is required that c0 = 0 and cs = 1. The numerical solution after one time stepsize h is
obtained by letting τ = 1 in (2.4).

Remark 1 Although this exponential time integrator is formulated by the Duhamel formula-
tion and the discretization of the integral, which is a simple and classical way, it is important
to note that this scheme has the following advantages.

• At the first sight, for a p-th order exponential integrator, it will produce errors of order
O( h p

ε p

)
when it is used to solving (1.1) with a time step size h. However, for the scheme

(2.4) presented above, we will show that some obtained methods exhibit improved error

bounds such as O( h2
ε

)
or O( h3

ε2

)
.

• We have noticed that some novel methods with improved or uniform accuracy have been
presented (see, e.g. [3, 16, 17, 42, 47]). Thesemethods have good even better convergence
result than the methods given in this paper. However, it is noted that these methods do not
have energy, actions, momentum and density conservations. Based on the scheme (2.4),
we will obtain some exponential integrators with energy preservation and improved error
bounds. We will also show that this scheme (2.4) can provide methods with near conser-
vations of actions, momentum and density over long times. In other words, the scheme
(2.4) can produce some practical methods with three properties simultaneously: energy
preservation, improved error bounds and near conservations of actions, momentum and
density.

For the integrator (2.4), its energy conservation property is shown as follows.

Theorem 1 (Energy-preserving conditions.) Let K = h JM with M =
(A 0
0 A

)

and J =
(
0 −1
1 0

)

. If the coefficients of the scheme (2.4) satisfy

⎧
⎪⎨

⎪⎩

A0,σ (K) = 0,

(eK)ᵀMA1,τ (K)K + (C ′
τ (K))ᵀM = 0,

Kᵀ(A1,τ (K))ᵀMA1,σ (K)K + MA′
τ,σ (K)K + (MA′

σ,τ (K)K)ᵀ = 0,

(2.5)
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with C
′
τ (K) = d

dτ Cτ (K) and A′
τ,σ (K) = ∂

∂τ
Aτ,σ (K), then the integrator (2.4) exactly

preserves the energy (1.2), i.e., H [un+1, ūn+1] = H [un, ūn] for n = 0, 1, . . . .

Proof By letting u = p + iq, we rewrite the equation (1.1) as a infinite-dimensional real
Hamiltonian system

∂ y

∂t
= JMy + J∇yU (y) y0(x) =

(
Re(u0(x))
Im(u0(x))

)

, (2.6)

where y =
(
p
q

)

and U (y) = − λ
4 (p2 + q2)2. The energy of this system accordingly

becomes

H(p, q) = −1

2(2π)d

∫

Td

(
pAp + qAq − λ

2
(p2 + q2)2

)
dx . (2.7)

Our continuous-stage exponential integrator (2.4) applying to (2.6) gives

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yn+τ (x) = Cτ (K)yn(x) + h
∫ 1

0
Aτ,σ (K)g(Yn+σ (x))dσ, 0 ≤ τ ≤ 1,

yn+1(x) = eKyn(x) + h
∫ 1

0
A1,τ (K)g(Yn+τ (x))dτ,

(2.8)

where g(y) = J∇yU (y).
Inserting the numerical scheme (2.8) into (2.7) yields

H[yn+1] = −1

2(2π)d

∫

Td

{1

2
(yn)ᵀMyn + (yn)ᵀ(eK)ᵀM

∫ 1

0
A1,τ (K)Kg̃(Yn+τ )dτ

+ 1

2

∫ 1

0

(
A1,τ (K)Kg̃(Yn+τ )

)ᵀdτM
∫ 1

0
A1,τ (K)Kg̃(Yn+τ )dτ +U (yn+1)

}
dx,

(2.9)

where g̃ = M−1∇yU (y) andwe have used the result (eK)ᵀMeK = M (see [44]). It follows
from the first condition of (2.5) that Yn = yn and Yn+1 = yn+1. Then one arrives at

U (yn+1) −U (yn) =
∫ 1

0

(∇yU (Yn+τ )
)ᵀ
dY n+τ

=
∫ 1

0

(∇yU (Yn+τ )
)ᵀ
d
(
Cτ (K)yn + h

∫ 1

0
Aτ,σ (K)g(Yn+σ )dσ

)

= (yn)ᵀ
∫ 1

0
(C ′

τ (K))ᵀMg̃(Yn+τ )dτ +
∫ 1

0

∫ 1

0

(
g̃(Yn+τ )

)ᵀMA′
τ,σ (K)Kg̃(Yn+σ )dτdσ.
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Therefore, using the above results and the second condition of (2.5), we obtain

H[yn+1] − H[yn]

= −1

2(2π)d

∫

Td

1

2

∫ 1

0

∫ 1

0

(
g̃(Yn+τ )

)ᵀ{
(K)ᵀ(A1,τ (K))ᵀMA1,σ (K)K + 2MA′

τ,σ (K)K
}

g̃(Yn+σ )dτdσdx

= −1

2(2π)d

∫

Td

1

2

∫ 1

0

∫ 1

0

(
g̃(Yn+σ )

)ᵀ{
(K)ᵀ(A1,σ (K))ᵀMA1,τ (K)K + 2MA′

σ,τ (K)K
}

g̃(Yn+τ )dσdτdx

= −1

2(2π)d

∫

Td

1

2

∫ 1

0

∫ 1

0

(
g̃(Yn+τ )

)ᵀ{
(K)ᵀ(A1,τ (K))ᵀMA1,σ (K)K + (2MA′

σ,τ (K)K)ᵀ
}

g̃(Yn+σ )dτdσdx .

It is clear from the third equality of (2.5) that

2(H[yn+1] − H[yn]) = −1

2(2π)d

∫

Td

∫ 1

0

∫ 1

0

(
g̃(Yn+τ )

)ᵀ{
(K)ᵀ(A1,τ (K))ᵀMA1,σ (K)K

+ MA′
σ,τ (K)K + (MA′

σ,τ (K)K)ᵀ
}
g̃(Yn+σ )dτdσdx

=0.

The proof is completed. 	

In what follows, we present three practical energy-preserving algorithms based on the

scheme (2.4) and on the conditions (2.5) of energy preservation. The coefficients are obtained
by solving the conditions (2.5) and we omit the details of calculations for brevity.

Algorithm 1 (Energy-preserving algorithm 1.) For the integrator given in Definition 1, con-
sider s = 1 and define a practical method (2.4) with the coefficients

Cτ (V) = (1 − τ)I + τeV , Aτ,σ (V) = τϕ1(V).

We shall refer to this integrator by EP1.

Algorithm 2 (Energy-preserving algorithm 2.)We choose s = 2 and the coefficients of (2.4)
are given by

Cτ (V) = (τ−1)(τ−m)
m I + τ(τ−1)

m(m−1)e
mV + τ(m−τ)

m−1 eV , Aτ,σ (V) =
2∑

l=1

2∑

n=1
aln(V)τ lσ n−1,

where m is a parameter required that m �= 0, 1, and

a11(V) = 1+m
m(1−m)

ϕ1(mV) + m+1
m−1ϕ1(V) + 1

1−m ϕ1((1 − m)V),

a22(V) = 2
m(1−m)

(
ϕ1(mV) − ϕ1(V) + ϕ1((1 − m)V)

)
,

a21(V) = (1 + 1/m)ϕ1(V) − 1/mϕ1((1 − m)V) − a11(V),

a12(V) = −2/m(ϕ1(V) − ϕ1((1 − m)V)) − a22(V).

As an example of this method, we choose m = 1/2 and denoted it by EP2.

Algorithm 3 (Energy-preserving algorithm 3.) As another example, we choose s = 3 and

Cτ (V) =
3∑

k=0

lk(τ )eckV , Aτ,σ (V) =
3∑

l=1

3∑

n=1

aln(V)τ lσ n−1,

123



Journal of Scientific Computing (2022) 90 :93 Page 7 of 31 93

where l j (τ ) = ∏
k �= j

τ−ck
c j−ck

for j = 0, . . . , 3 and

a j j (V) = − (
c1C j0C j1ϕ1,c1 + c2C j0C j2ϕ1,c2 + (c2 − c1)C j1C j2ϕ1,c2−c1

+ C j0C j3ϕ1,1 + (1 − c1)C j1C j3ϕ1,1−c1

+ (1 − c2)C j2C j3ϕ1,1−c2

)
/ j, j = 1, 2, 3,

a j+1,1(V) = − (
c1C j1C00ϕ1,c1 + c2C j2C00ϕ1,c2 + (c2 − c1)C j2C01ϕ1,c2−c1

+ C j3C00ϕ1,1 + (1 − c1)C j3C01ϕ1,1−c1

+ (1 − c2)C j3C02ϕ1,1−c2

)
/ j, j = 1, 2,

a1, j+1(V) = − (
c1C j0C01ϕ1,c1 + c2C j0C02ϕ1,c2 + (c2 − c1)C j1C02ϕ1,c2−c1

+ C j0C03ϕ1,1 + (1 − c1)C j1C03ϕ1,1−c1

+ (1 − c2)C j2C03ϕ1,1−c2

)
/ j, j = 1, 2,

a32(V) = − (
c1C21C10ϕ1,c1 + c2C22C10ϕ1,c2 + (c2 − c1)C22C11ϕ1,c2−c1

+ C23C10ϕ1,1 + (1 − c1)C23C11ϕ1,1−c1 + (1 − c2)C23C12ϕ1,1−c2

)
,

a23(V) = − (
c1C20C11ϕ1,c1 + c2C20C12ϕ1,c2 + (c2 − c1)C21C12ϕ1,c2−c1

+ C20C13ϕ1,1 + (1 − c1)C21C13ϕ1,1−c1 + (1 − c2)C22C13ϕ1,1−c2

)
.

Here we choose c1 = 1/3, c2 = 1
18 (14 + (71 − 9

√
58)

1
3 + (71 + 9

√
58)

1
3 ) and use the

notations

ϕ1,1 = ϕ1(V), ϕ1,c1 = ϕ1(c1V), ϕ1,c2 = ϕ1(c2V),

ϕ1,1−c1 = ϕ1((1 − c1)V), ϕ1,1−c2 = ϕ1((1 − c2)V), ϕ1,c2−c1 = ϕ1((c2 − c1)V),

C00 = c1+c2+c1c2−c1c2
, C01 = c2

(−1+c1)c1(c1−c2)
, C02 = −c1

(c1−c2)(−1+c2)c2)
,

C10 = 2(1+c1+c2)
c1c2

, C11 = 2(1+c2)
(−c1+c21)(−c1+c2)

, C12 = 2(1+c1)
(c1−c2)(−1+c2)c2

,

C20 = −3
c1c2

, C21 = 3
(−1+c1)c1(c1−c2)

, C22 = −3
(c1−c2)(−1+c2)c2)

.

We shall refer to this semi-discrete integrator by EP3.

The presented three algorithms EP1-EP3 are obtained by considering the conditions (2.5)
of energy preservation and this shows that all of them are energy-preserving schemes. It
is noted that some more energy-preserving schemes can be derived from other value of s
and (2.5) and we omit them for brevity. The main observation of the paper is that some of
these energy-preserving algorithms show optimal error bound and good near conservations of
density, momentum and actions over long times. All of these observations will be illustrated
by numerical experiments in Sect. 5. The next two sections are respectively devoted to the
optimal convergence and long time conservations in density, momentum and actions.

3 Optimal Convergence

In this section, we analyze the convergence of the presented three schemes EP1-EP3.

3.1 Notations and Auxiliary Results

In this part, we present some auxiliary results which will be used in the analysis.
For the exact solution to (1.1), we require the following assumption.

123



93 Page 8 of 31 Journal of Scientific Computing (2022) 90 :93

Assumption 1 It is assumed that the initial value u0(x) is chosen in Hα with the sufficiently
large exponent α > 0. Then the exact solution to (1.1) is sufficiently regular.

In the analysis of convergence, we will reparametrize the time variable t as

κ := t/ε. (3.1)

By letting

w(κ, x) := u(t, x), (3.2)

it is obtained that

wκ(κ, x) = ∂

∂κ
u(t, x) = εut (t, x).

Thus in this section, we consider the following equivalent long-term NLS ([17])
{
iwκ(κ, x) = −�w(κ, x) + ελ|w(κ, x)|2w(κ, x), (κ, x) ∈ [0, T /ε] × [−π, π]d ,
w(0, x) = w0(x) := u0(x), x ∈ [−π, π]d , (3.3)

which helps to zoom-in to see the different scales between ε and time step, and to see the
averaging effect which will be used in the proof of the convergence. The solution of (3.3)
satisfies the following properties.

Theorem 2 (See [13].) For any ε > 0 and w0 ∈ Hα , there exists a constant T > 0 such
that, the long-term NLS (3.3) has a unique solution which satisfies

w ∈ C0([0, T /ε]; Hα)
⋂

C1([0, T /ε]; Hα−2)

and

‖w(κ, ·)‖Hα ≤ K
∥
∥w0

∥
∥
Hα for any κ ∈ [0, T /ε],

where α > d/2 + 2 and K > 1.

Proposition 1 (See [17].) Let f (w) = −iλ|w|2w and the following two estimates hold for
this function.

• For the function f (w) ∈ C∞ : Hα → Hα , there exists a constant M > 0 such that for
all (w, v) ∈ Hα × Hα , it has the estimates

‖ f (w)‖Hα ≤ M,
∥
∥ f ′(w)(v)

∥
∥
Hα ≤ M ‖v‖Hα .

Moreover, similar estimates for higher derivatives also hold. If α is changed into α−2 >

0, all the results are still true.
• The function has the Lipschitz estimate

‖ f (w) − f (v)‖Hβ ≤ L ‖u − v‖Hβ , (w, v) ∈ Hα−2 × Hα−2,

where β ∈ [0, α − 2] and L > 0 is a constant.

Proposition 2 (See [21].) Denote by ϕ a bounded function (bounded by C ≥ 0) from iR to
C and then the operator-argument function ϕ(itΔ) is bounded by

‖ϕ(itΔ)‖Hα↪→Hα ≤ C

for all t > 0 and α ≥ 0. For example, the estimate
∥
∥eitΔ

∥
∥
Hα↪→Hα = 1 holds.

123
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3.2 Main Result

We first note that for the long term NLS (3.3), the evolution operator eitΔ is periodic with
period T0 ([17]). For simplicity, it is assumed that T0 = 1 in this section since this can be
achieved by a simple rescaling of time. For simplicity of notations, we shall denote

A � B

for A ≤ CB with a generic constant C > 0 independent of n or the time step size or ε but
depends on T and the constants appeared in Theorem 2 and Propositions 1-2. We use the
abbreviation w(κ) instead of w(κ, x) for brevity. For solving the long term NLS (3.3), the
exponential time integrator becomes

wn+τ (x) = Φτδκ(wn(x)) := Cτ (W)wn(x) + εδκ

∫ 1

0
Aτ,σ (W) f (wn+σ (x))dσ, (3.4)

where 0 ≤ τ ≤ 1, δκ := κn+1 − κn is the time step size andW = iδκΔ. Then EP1-EP3 for
solving (3.3) can also be obtained by considering Algorithms 1–3, respectively. The optimal
convergence of these algorithms is given by the following theorem.

Theorem 3 (Optimal convergence of algorithms for the long term system.) There exists a
constant N0 > 0 independent of ε, such that for any time step δκ = T0

N with any integer
N ≥ N0, the EP1-EP3 for solving the long term system (3.3) have the following error bounds
for both regimes ε:

EP1 : ∥
∥(Φδκ)n(w0) − w(κn)

∥
∥
Hα−4 � δκ2,

EP2 : ∥
∥(Φδκ)n(w0) − w(κn)

∥
∥
Hα−6 � εδκ2 + δκ3,

EP3 : ∥
∥(Φδκ)n(w0) − w(κn)

∥
∥
Hα−8 � εδκ3 + δκ4,

(3.5)

where nδκ ≤ T
ε
. In this section, α is required to satisfy α > d/2 + 2 and further to make

the estimates be considered in non-negative Sobolev spaces. When ε = 1, the above results
of EP2 and EP3 can be given in the Hα−4-norm and Hα−6-norm, respectively.

Remark 2 Similarly to [17, 57], the time step δκ = T0
N with some integer N is only a

technique condition for rigorous proof and we only need δκ � 1 in practice, which will be
shown numerically in Sect. 5.

Before we present the proof of Theorem 3, some remarks are given here. By the relation
(3.2) and by directly comparing (2.4) and (3.4), it is clear that for h = εδκ and for all n ≥ 0,

u(tn, x) = w(κn, x), un(x) = wn(x).

Therefore, the convergence of EP1-EP3 in the original scaling (1.1) is equivalently presented
as follows.

Corollary 1 (Optimal convergence of algorithms for the original system.) For the methods
EP1-EP3 with a time step size h � ε applied to the original system (1.1), their error bounds
are given by

EP1 :
∥
∥
∥(Φ

h)n(u0) − u(tn)
∥
∥
∥
Hα−4

� h2

ε2
,

EP2 :
∥
∥
∥(Φ

h)n(u0) − u(tn)
∥
∥
∥
Hα−6

� h2

ε
+ h3

ε3
,

EP3 :
∥
∥
∥(Φ

h)n(u0) − u(tn)
∥
∥
∥
Hα−8

� h3

ε2
+ h4

ε4
,

(3.6)
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where nh ≤ T . The results of EP2 and EP3 can be respectively given in the Hα−4-norm and
Hα−6-norm when ε = 1.

3.3 Proof of Theorem 3

In the light of Proposition 2, it is obtained that the coefficients of integrators EP1-EP3 are
bounded as ‖Cκ (W)‖Hα↪→Hα ≤ 1 and

∥
∥Aτ,σ (W)

∥
∥
Hα↪→Hα ≤ CA, where the constant CA

is independent of ‖W‖Hα↪→Hα . For simplicity, the proof will be given only for EP2 because
with little modifications it can be adapted to EP1 and EP3. We begin with the local errors
and stability of EP2, whose proofs are given in the Appendix.

Lemma 1 (Local errors.) For the local errors

δn+τ := Φτδκ(w(κn)) − w(κn + τδκ), for 0 < τ < 1,

δn+1 := Φδκ(w(κn)) − w(κn+1),

there exits δ̂κ0 > 0 independent of ε such that for any 0 < δκ < δ̂κ0, the following bounds
hold for EP2

‖δn+τ‖Hα−2 � δκ, ‖δn+τ‖Hα−4 � δκ2, for 0 < τ < 1,

‖δn+1‖Hα−2 � εδκ2, ‖δn+1‖Hα−4 � εδκ3.

Lemma 2 (Stability.) Consider the abbreviations R = 2K
∥
∥w0

∥
∥
Hα , Hs

R = {w ∈
Hs, ‖w‖Hs ≤ R}. For the numerical solution Φτδκ of EP2 applied to v,w ∈ Hα−2

3R/4, there
exist ε0 > 0 and δκ0 > 0 independent of ε such that for any 0 < ε < ε0 and 0 < δκ < δκ0,
it holds that Φτδκ(v),Φτδκ (w) ∈ Hα−2

R and

‖Φτδκ(v) − Φτδκ(w)‖Hβ ≤ eετδκLCA‖v − w‖Hβ , 0 ≤ τ ≤ 1,

‖(Φδκ(v) − eiδκ�v) − (Φδκ(w) − eiδκ�w)‖Hβ ≤ εδκLCAe
ετδκLCA‖v − w‖Hβ ,

(3.7)

where β ∈ [0, α − 2].
We are now in a position to prove Theorem 3.

Proof Boundedness of the method. The stated local errors and stability imply
∥
∥(Φδκ)n(w0) − w(κn)

∥
∥
Hα−2

=
∥
∥
∥
∥
∥

n∑

l=1

(
(Φδκ)n−lΦδκ(w(κl−1)) − (Φδκ)n−l(w(κl))

)
∥
∥
∥
∥
∥
Hα−2

≤
n∑

l=1

eε(n−l)δκLCA

∥
∥
∥δ

l
∥
∥
∥
Hα−2

≤ Cεδκ2
n∑

l=1

eε(n−l)δκLCA ≤ C̃
eLTCA − 1

L
δκ.

Therefore, there exists δ̃κ0 > 0 independent of ε such that 0 < δκ < δ̃κ0, the time-discrete
solutions satisfy (Φδκ)n(w0) ∈ Hα−2

3R/4, where w(κn) ∈ Hα−2
R/2 has been used here. Using a

stability estimate with respect to the Hα−4-norm and considering the local error result in this
norm yields

∥
∥(Φδκ)n(w0) − w(κn)

∥
∥
Hα−4 ≤ C̃

eLTCA − 1

L
δκ2.
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Refined local error. For themethod (2.4), we expand the nonlinear function f atCξw(κn)

and then get

Φδκ(w(κn)) =eiδκ�w(κn) + εδκ

∫ 1

0
A1,ξ f (Cξw(κn))dξ

+ ε2δκ2
∫ 1

0

∫ 1

0
A1,ξ Aξ,σ f ′(Cξw(κn)) f (Φ

σδκ(w(κn)))dξdσ

+ ε3δκ3
∫ 1

0

∫ 1

0
(1 − ζ )A1,ξ f

′′(Cξw(κn)

+ ζεδκ

∫ 1

0
Aξ,σ f (Φσδκ(w(κn)))dσ

)

( ∫ 1

0
Aξ,σ f (Φσδκ(w(κn)))dσ

)2
dξdζ

=eiδκ�w(κn) + εδκ

∫ 1

0
A1,ξ f (Cξw(κn))dξ

+ ε2δκ2
∫ 1

0

∫ 1

0
A1,ξ Aξ,σ f ′(Cξw(κn)) f (Cσ w(κn))dξdσ + ε3δκ3ΞΦ,

with

ΞΦ =
∫ 1

0

∫ 1

0

∫ 1

0
A1,ξ Aξ,σ f ′(Cξw(κn)) f

′(Cσ w(κn) + ζ(Φσδκ(w(κn)) − Cσ w(κn))
)

( ∫ 1

0
Aσ,ς f (Φςδκ(w(κn)))dς

)
dζdξdσ

+
∫ 1

0

∫ 1

0
(1 − ζ )A1,ξ f

′′(Cξw(κn)

+ ζεδκ

∫ 1

0
Aξ,σ f (Φσδκ(w(κn)))dσ

)

( ∫ 1

0
Aξ,σ f (Φσδκ(w(κn)))dσ

)2
dξdζ.

For the exact solution (2.2), similarly we obtain its expansion as

w(κn+1) = eiδκ�w(κn) + εδκ

∫ 1

0
e(1−ξ)iδκ� f (eiξδκ�w(κn))dξ + ε3δκ3Ξw

+ ε2δκ2
∫ 1

0

∫ 1

0
ξe(1−ξ)iδκ� f ′(eiξδκ�w(κn))e

(1−σ)iξδκ� f (eiσδκ�w(κn))dξdσ,

123



93 Page 12 of 31 Journal of Scientific Computing (2022) 90 :93

with

Ξw =
∫ 1

0

∫ 1

0

∫ 1

0
e(1−ξ)iδκ�e(1−σ)ξ iδκ� f ′(eξ iδκ�w(κn)) f

′(eiσδκ�w(κn)

+ ζ(w(κn + σδκ − eiσδκ�w(κn))
)(

∫ 1

0
e(1−ς)iσδκ� f (w(κn + ςδκ))dς

)
dζdξdσ

+
∫ 1

0

∫ 1

0
(1 − ζ )e(1−ξ)iδκ� f ′′(eξ iδκ�w(κn)

+ ζεδκ

∫ 1

0
e(1−σ)iξδκ� f (w(κn + σδκ))dσ

)

( ∫ 1

0
e(1−σ)iξδκ� f (w(κn + σδκ))dσ

)2
dξdζ.

Then the local error δn+1 can be refined as

δn+1 = εδκΨ (κn) + ε2δκ2Υ (κn), (3.8)

where

Ψ (κn) =
∫ 1

0
A1,ξ f (Cξw(κn))dξ −

∫ 1

0
e(1−ξ)iδκ� f (eξ iδκ�w(κn))dξ,

Υ (κn) =
∫ 1

0

∫ 1

0
A1,ξ Aξ,σ f ′(Cξw(κn)) f (Cσ w(κn))dξdσ

−
∫ 1

0

∫ 1

0
ξe(1−ξ)iδκ� f ′(eξ iδκ�w(κn))e

(1−σ)ξ iδκ� f (eiσδκ�w(κn))dξdσ

+ εδκΞΦ − εδκΞw.

Concerning the previous local errors given in Lemma 1, one has

‖Ψ (κn)‖Hα−4 � δκ2, ‖Υ (κn)‖Hα−4 � δκ.

Refined convergence over one period. In this part, we consider convergence over one
period, that is nδκ = T0 = 1. For the global error

(Φδκ)n(w0) − w(κn) =
n∑

l=1

(
(Φδκ)n−lΦδκ(w(κl−1)) − (Φδκ)n−l(w(κl))

)
,

we introduce Θδκ
n−l := (Φδκ)n−l − ei(n−l)δκ� and then rewrite it as

(Φδκ)n(w0) − w(κn) =
n∑

l=1

ei(n−l)δκ�δl

︸ ︷︷ ︸
E1

+
n∑

l=1

(
Θδκ

n−l(Φ
δκ(w(κl−1))) − Θδκ

n−l(w(κl))
)

︸ ︷︷ ︸
E2

.
(3.9)
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For the part E2, we first estimate

∥
∥Θδκ

l v − Θδκ
l w

∥
∥
Hβ =

∥
∥
∥(Φ

δκ)lv − eilδκ�v − (Φδκ)lw + eilδκ�w

∥
∥
∥
Hβ

≤
l∑

k=1

∥
∥
∥Θ

δκ
1 (Φδκ)k−1v − Θδκ

1 (Φδκ)k−1w

∥
∥
∥
Hβ

≤ εδκLCAe
ετδκLCA

l∑

k=1

∥
∥
∥(Φ

δκ)k−1v − (Φδκ)k−1w

∥
∥
∥
Hβ

≤ εδκLCAe
ετδκLCA

l∑

k=1

eε(k−1)δκLCA ‖v − w‖Hβ

≤ εLCAT0e
εLCAT0 ‖v − w‖Hβ .

Then the following bound holds

‖E2‖Hα−4 ≤ εLCAT0e
εLCAT0

n∑

l=1

∥
∥
∥δ

l
∥
∥
∥
Hα−4

� ε2δκ2. (3.10)

For the part E1, we use the refined local error (3.8) and then have

E1 =
n∑

l=1

ei(n−l)δκ�εδκΨ (κl−1) +
n∑

l=1

ei(n−l)δκ�ε2δκ2Υ (κl−1). (3.11)

According to (3.9)-(3.11) and the following bound
∥
∥
∥
∥
∥

n∑

l=1

ei(n−l)δκ�ε2δκ2Υ (κl−1)

∥
∥
∥
∥
∥
Hα−4

≤ ε2δκ3
n∑

l=1

∥
∥
∥ei(n−l)δκ�

∥
∥
∥
Hα−4

� ε2δκ2,

the global error is bounded by

∥
∥(Φδκ)n(w0) − w(κn)

∥
∥
Hα−4 � εδκ

∥
∥
∥
∥
∥

n∑

l=1

ei(n−l)δκ�Ψ (κl−1)

∥
∥
∥
∥
∥
Hα−4

+ ε2δκ2. (3.12)

In what follows, we derive the optimal bound for εδκ
∥
∥
∑n

l=1 e
i(n−l)δκ�Ψ (κl−1)

∥
∥
Hα−4 ,

which satisfies

εδκ

∥
∥
∥
∥
∥

n∑

l=1

ei(n−l)δκ�Ψ (κl−1)

∥
∥
∥
∥
∥
Hα−4

� εδκ‖
n∑

l=1

ei(n−l)δκ�
∫ 1

0
A1,ξ f (Cξ e

i(l−1)δκ�w0)dξ

− ε

n∑

l=1

ei(n−l+1)δκ�
∫ δκ

0
e−iξ� f (eiξ�ei(l−1)δκ�w0)dξ‖Hα−4 + ε2δκ2

�
∥
∥
∥
∥
∥
εδκ

n∑

l=1

e−ilδκ�
∫ 1

0
A1,ξ f (Cξ e

i(l−1)δκ�w0)dξ − ε

∫ 1

0
e−iξ� f (eiξ�w0)dξ

∥
∥
∥
∥
∥
Hα−4

+ ε2δκ2.
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Here we used the result
∥
∥w(κl−1) − ei(l−1)δκ�w0

∥
∥
Hα−4 � ε. We first consider Fourier

expansion Fξ (w) = ∑
k∈Z ei2kπξ F̂k(w) of Fξ (w) := e−iξ� f (eiξ�w), which yields that

∫ 1
0 e−iξ� f (eiξ�w0)dξ = F̂0(w0). Then let

Glδκ (w) = e−ilδκ�
∫ 1

0
A1,ξ f (Cξ e

ilδκ�w)dξ

and the Fourier expansion of Glδκ (w) is given by Glδκ (w) = ∑
k∈Z ei2kπlδκ Ĝk(w). There-

fore, it is obtained that

εδκ

n∑

l=1

e−ilδκ�
∫ 1

0
A1,ξ f (Cξ e

i(l−1)δκ�w0)dξ

= εδκe−iδκ�
n−1∑

l=0

∑

k∈Z
ei2kπlδκ Ĝk(w)

= εe−iδκ� ∑

k∈Z

(1

n

n−1∑

l=0

ei2kπlδκ Ĝk(w)
)

= εe−iδκ� ∑

k∈Z
Ĝnk(w).

Based on the above results, it follows that

εδκ

∥
∥
∥
∥
∥

n∑

l=1

ei(n−l)δκ�Ψ (κl−1)

∥
∥
∥
∥
∥
Hα−6

� ε

∥
∥
∥F̂0(w0) − e−iδκ�Ĝ0(w)

∥
∥
∥
Hα−6

+ ε

∥
∥
∥
∥
∥

∑

k∈Z∗
Ĝnk(w)

∥
∥
∥
∥
∥
Hα−6

+ ε2δκ2

� ε

∥
∥
∥
∥

∫ 1

0
e−iξ� f (eiξ�w0)dξ −

∫ 1

0
e−iξ�[e−iδκ�

∫ 1

0
A1,ξ f (Cξ e

iξ�w0)dξ
]
dξ

∥
∥
∥
∥
Hα−6

+ εδκ3 + ε2δκ2 � εδκ3 + εδκ3 + ε2δκ2.

(3.13)

Here Lemma A.1 of [17] and the results A1,ξ and Cξ of EP2 are used to obtain the last two
inequalities, respectively. Finally, combining (3.12) with (3.13), we obtain the global error
over one period

∥
∥(Φδκ)n(w0) − w(κn)

∥
∥
Hα−6 � εδκ3 + ε2δκ2, nδκ = T0. (3.14)

Refined global error.
For nδκ ≤ T /ε, the global error of EP2 given in (3.5) can be derived by considering

(3.14) and by using the same way presented in Sect. 5 of [17].
The whole proof is complete. 	


Remark 3 It is noted that for EP1, the estimate of (3.13) is only εδκ2. Therefore, EP1 does
not have optimal convergence.

4 Long time Conservations in Actions, Momentum and Density

In this section, we turn back to the methods applied to the original system (1.1) and study
their long time conservations in actions, momentum and density.
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4.1 Preliminaries

In order to make the analysis be succinct, we choose λ = 1. For our integrator (2.4), spectral
semi-discretisation (see [18, 19, 29, 30, 48]) with the points xk = π

M k, k ∈ M is used in
space, whereM = {−M, . . . , M−1}d and 2M presents the number of internal discretisation
points in space. Then the fully discrete scheme of (2.4) is

un+τ = Cτ (V )un + h
∫ 1

0
Aτ,σ (V ) f (un+σ )dσ, 0 ≤ τ ≤ 1, (4.1)

where V = ihΩ , Ω = −diag((ω j ) j∈M) and f (u) = −iQ(|u|2 u)1. Here, ω j = 1
ε

| j |2 =
1
ε
( j21 + · · · + j2d ) for j = ( j1, . . . , jd) ∈ M are the eigenvalues of the linear part of (1.1)

after spectral semi-discretisation in space, and the notation Q(v) denotes the trigonometric
interpolation of a periodic function v = ∑

j∈Zd

v j ei( j ·x) in the collocation points, i.e., Q(v) =
∑

j∈M
( ∑

l∈Zd

v j+2Ml
)
ei( j ·x).

The following notations are needed in this section which have been used in [19, 29, 30].
For a sequence k = (k j ) j∈M of integers k j and the sequence ω = (ω j ) j∈M, denote

‖k‖ =
∑

j∈M
|k j |, k · ω =

∑

j∈M
k jω j , ωσ |k| = Π j∈Mω

σ |k j |
j

for a real σ . Denote by 〈 j〉 the unit coordinate vector (0, . . . , 0, 1, 0, . . . , 0)ᵀ with the only
entry 1 at the | j |-th position.

4.2 Result of Near-Conservation Properties

Theorem 4 (Long time near-conservations.) Consider the small initial data

∥
∥u0

∥
∥
Hs ≤ ε̃ � 1, for some s ≥ 0, (4.2)

and define the set

Rε̃,M,h =
{
( j, k) : j = j(k), k �= 〈 j〉,

∣
∣
∣
∣sin

(1

2
h(ω j − k · ω)

)
∣
∣
∣
∣ ≤ 1

2
ε̃1/2h, ‖k‖ ≤ 2N + 2

}
,

(4.3)

where j(k) := ∑

l∈M
kll mod 2M ∈ M = {−M, . . . , M −1}d . For the near-resonant indices

( j, k) in Rε̃,M,h, they are required such that

sup
( j,k)∈Rε̃,M,h

∣
∣ω j

∣
∣s− d+1

2

ω(s− d+1
2 )|k| ε̃

‖k‖+1 ≤ C̃ ε̃2N+4 (4.4)

1 We still use the notation f in this section without any confusion.
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with a constant C̃ independent of ε̃. For given N ≥ 1 and s ≥ d + 1, the numerical solution
un of EP1 has the following conservations of density, momentum and actions, respectively

|m[un, ūn] − m[u0, ū0]|
ε̃2

≤ C ε̃
3
2 ,

d∑

r=1

|Kr [un, ūn] − Kr [u0, ū0]|
ε̃2

≤ C ε̃
3
2 ,

∑

j∈M
|ω j |s |I j (un, ūn) − I j (u0, ū0)|

ε̃2
≤ C ε̃

3
2 ,

where 0 ≤ tn = nh ≤ ε̃−N and the constant C depends on C̃, max j∈M
{ 1∣
∣
∣cos( 12 hω j )

∣
∣
∣

}
,

N , s and the dimension d but is independent of n, the size of the initial value ε̃, the regime
of the solution ε, and the discretisation parameters M and h. Here Kr is referred to the
rth component of K . For the schemes EP1-EP2, if the midpoint rule is used to the integral
appearing in these methods, the above near conservations still hold.

Remark 4 We remark that the method EP3 does not have such near conservations and the
reason will be explained at the end of this section.

Remark 5 It is noted that the authors in [19, 28, 30] analysed the long-time behaviour of
exponential integrators, splitting integrators and split-step Fourier method for Schrödinger
equations. However, those methods cannot preserve the energy (2.7) exactly. We remark that
Theorem 4 shows that our energy-preserving integrators also have a near conservation of
actions, momentum and density over long times.

Remark 6 Although the actions are not the invariants of NLS, the schemes EP1-EP2 will
be shown to have long time near conservation of this quantity. This property is the same as
that of momentum and density. Moreover, in the proof of this theorem, the long-time near-
conservation of actions implies the long-time near-conservation of density and ofmomentum.
Therefore, the quantity of actions is considered and analysed in this paper. Besides, the results
of Theorem 4 cannot be extended for arbitrary initial date since large initial data case usually
leads to large bounds of the coefficient functions in the modulation Fourier expansion, which
prevents the derivation of long time near conservations.

4.3 The Proof of Theorem 4

The proof makes use of a modulated Fourier expansion [19, 29, 30, 54] in time of the
numerical solution. We will use the following expansion

ũ(t, x) =
∑

‖k‖≤K

zk(ε̃t, x)e−i(k·ω)t =
∑

‖k‖≤K

∑

j∈M
zkj (ε̃t)e

i( j ·x)e−i(k·ω)t
(4.5)

to describe the numerical solution un at time tn = nh after n time steps, where the functions
zk are termed the modulation functions which evolve on a slow time-scale τ̃ = ε̃t . Following
[19], these functions can be assumed to be single spatialwaves: zk(ε̃t, x) = zkj(k)(ε̃t)e

i( j(k)·x),
i.e., their Fourier coefficients zkj vanish for j �= j(k) with j(k) = ∑

l∈M
kll mod 2M ∈ M.

It is noted that as a standard approach to the study of long-time behavior of numerical
methods, modulated Fourier expansion is also used in the analysis of [19, 29, 30, 54, 56].
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However, in this paper, there are novel modifications adapted to our integrators, which come
from the implicitness of the integrator and the integral appearing in the integrator. We present
the main differences in the proof. For the similar derivations as those of [19, 29, 30], we skip
them in the analysis for brevity.

4.3.1 Modulation Equations

Lemma 3 (Modulation equations.) Define

Lk : = (Lk
2)

−1Lk
1,

Lk
1 : = e−i(k·ω)heε̃hD − 2 cos(hΩ) + ei(k·ω)he−ε̃hD,

Lk
2 : = ϕ1(ihΩ)e− 1

2 i(k·ω)he
1
2 ε̃hD − ϕ1(−ihΩ)e

1
2 i(k·ω)he− 1

2 ε̃hD,

where D is the differential operator (see [35]). The modulation equations for the coefficients
zkj appearing in (4.5) are given by

Lkzkj (ε̃t) = −ih
∑

k1+k2−k3=k

∫ 1

0
wk1

j(k1)(ε̃t, σ )wk2

j(k2)(ε̃t, σ )wk3
j(k3)

(ε̃t, σ )dσ, (4.6)

where

wk
j(k)(ε̃t, σ ) = Lk

3(σ )zkj(k)(ε̃t) (4.7)

with

Lk
3(σ ) := (1 − σ)e

1
2 i(k·ω)he− h

2 ε̃D + σe− 1
2 i(k·ω)he

h
2 ε̃D .

The initial condition for modulation equations is given by

u0j =
∑

k

zkj(k)(0). (4.8)

The proof of this lemma is given in the Appendix.

4.3.2 Some Skipped Points of the Proof

Then the following key points can be considered one by one.

• An iterative construction of the functions is achieved by considering reverse Picard iter-
ation.

• A more convenient rescaling is presented.
• The nonlinear terms are estimated and the size of the iterated modulation functions is

shown.
• The bound of the defect dk is derived.
• The size of the numerical solution and the difference of the numerical solution and its

modulated Fourier expansion are derived.

Wedonot present the details for these points since they can be derived by similar arguments
as in [19, 29, 30].
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4.3.3 Almost Invariants Close to the Actions

In what follows, we show an invariant of the modulation system and its relationship with
the actions.

Proposition 3 (Almost invariant.) There exits ε̃J〈 j〉(τ̃ ) such that

∑

j∈M

∣
∣ω j

∣
∣s
∣
∣
∣
∣
d

d τ̃
J〈 j〉(τ̃ )

∣
∣
∣
∣ ≤ Chε̃N+3,

where τ̃ ≤ 1 and C depends on max j∈M
{ 1∣
∣
∣cos( 12 hω j )

∣
∣
∣

}
. Moreover, it is true that

J〈 j〉(τ̃ ) = 1

2

∣
∣
∣z

〈 j〉
j (τ̃ )

∣
∣
∣
2 + O

(
hε̃2

)
.

Proof Let

U(w) =
∑

k1+k2−k3−k4=0

1

(2π)d

∫

[−π,π ]d

∫ 1

0
wk1wk2wk3wk4dσdx .

From the above analysis, we can write the defect formula dk as

L̃k zk = −ih
∑

k1+k2−k3=k

∫ 1

0
wk1

j(k1)w
k2

j(k2)w
k3
j(k3)

dσ + dk . (4.9)

Here we use L̃k to denote the truncation of the operator Lk after the ε̃N term. The trans-
formation wk → ei(k·μ)θwk for real sequences μ = (μl)l≥0 and θ ∈ R and the choice of
k = 〈 j〉 leaves U invariant

0 = h
d

dθ
|θ=0 U

(
(ei(〈 j〉·μ)θw〈 j〉)〈 j〉

)

= −4hRe
(∑

j

i(〈 j〉 · μ)w
〈 j〉
j

∑

k1+k2−k3=〈 j〉

∫ 1

0
wk1

j(k1)w
k2

j(k2)w
k3
j(k3)

dσ
)

= 4Re
(∑

j

(〈 j〉 · μ)w
〈 j〉
j

(
L̃〈 j〉z〈 j〉j − d〈 j〉

j

))

= 4Re
(∑

j

(〈 j〉 · μ)L〈 j〉
3 (σ )z〈 j〉j

(
L̃〈 j〉z〈 j〉j − d〈 j〉

j

))
.

Since the right-hand side is independent of σ , we choose σ = 1/2 in the following
analysis. With the above formula, we have

4Re
∑

j

(〈 j〉 · μ)L〈 j〉
3 (1/2)z〈 j〉j L̃〈 j〉z〈 j〉j = 4Re

∑

j

(〈 j〉 · μ)L〈 j〉
3 (1/2)z〈 j〉j d〈 j〉

j . (4.10)

By the expansions of L〈 j〉
3 (1/2) and L̃〈 j〉 and the “magic formulas" on p. 508 of [35], it is

known that the left-hand side of (4.10) is a total derivative of function ε̃Jμ(τ̃ ). Therefore
(4.10) is identical to

ε̃
d

d τ̃
Jμ = 4Re

∑

j

(〈 j〉 · μ)L〈 j〉
3 (1/2)z〈 j〉j d〈 j〉

j .
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Considering the special case of μ = sinc( 12 hω j )

cos( 12 hω j )
〈 j〉 and for the first result, it needs to prove

that

∑

j∈M

∣
∣ω j

∣
∣s

∣
∣
∣
∣
∣

sinc( 12hω j )

cos( 12hω j )

∣
∣
∣
∣
∣

∣
∣
∣
∣L

〈 j〉
3 (1/2)z〈 j〉j d〈 j〉

j

∣
∣
∣
∣ ≤ Chε̃N+4.

By the property of L3, we have

∑

j∈M

∣
∣ω j

∣
∣s

∣
∣
∣
∣
∣

sinc( 12hω j )

cos( 12hω j )

∣
∣
∣
∣
∣

∣
∣
∣
∣L

〈 j〉
3 (1/2)z〈 j〉j d〈 j〉

j

∣
∣
∣
∣ ≤ C

∑

j∈M

∣
∣ω j

∣
∣s
∣
∣
∣z

〈 j〉
j

∣
∣
∣

∣
∣
∣ḣ

〈 j〉
j

∣
∣
∣ .

Here we decompose dkj into four parts:
[
dkj

] = [
ekj + f kj + gkj + ḣkj

]
, where [ekj ] = 0 for

( j, k) ∈ Lε̃,M,h := {( j, k) : j = j(k), k �= 〈 j〉, ( j, k) /∈ Rε̃,M,h, ‖k‖ ≤ K }, [ f kj ] = 0 for

non-near resonant indices ( j, k) ∈ Rε̃,M,h , [ḣkj ] = 0 for k �= 〈 j〉, and [gkj ] = 0 for ‖k‖ ≤ K .

The size of ḣ(τ̃ ) can be estimated as follows. For all l ≥ 0 and for 0 ≤ τ̃ = ε̃t ≤ 1, it is

true that |||ḣ(τ̃ )|||s ≤ C ε̃
p+4
2 h, where |||z|||2s := ∑

j

∣
∣ω j

∣
∣s
(∑

k

∣
∣
∣zkj

∣
∣
∣
)2. Taking advantage of

Cauchy-Schwarz inequality, one gets

∑

j∈M

∣
∣ω j

∣
∣s

∣
∣
∣
∣
∣

sinc( 12hω j )

cos( 12hω j )

∣
∣
∣
∣
∣

∣
∣
∣
∣L

〈 j〉
3 (1/2)z〈 j〉j d〈 j〉

j

∣
∣
∣
∣

≤ C

√
√
√
√

∑

j∈M

( ∣
∣ω j

∣
∣
s
2
)2

∣
∣
∣z

〈 j〉
j

∣
∣
∣
2
√
√
√
√

∑

j∈M

( ∣
∣ω j

∣
∣
s
2
)2

∣
∣
∣ḣ

〈 j〉
j

∣
∣
∣
2

≤ C
√

ε̃2
√
h2ε̃ p+4 = Chε̃

p
2 +3 = Chε̃

L
2 +3.

The first statement is immediately obtained by considering L = 2N + 2.
Then, using the Taylor expansions of L〈 j〉

3 (1/2) and L〈 j〉 and the “magic formulas” on p.
508 of [35] gives the construction of J〈 j〉. 	


After obtaining the almost invariant, its relationship with the actions is derived below.

Proposition 4 (The relationship between the almost invariant and the actions.) It is true that
∑

j∈M

∣
∣ω j

∣
∣s
∣
∣J〈 j〉(τ̃ ) − I j (un, un)

∣
∣ ≤ C ε̃

7
2 , where τ̃ ≤ 1.

Proof This result can be obtained by following the proof of Proposition 6 given in [29]. 	


4.3.4 Near-Conservation of Density, Momentum and Actions

According to the analysis stated above, we consider the interface between the modulated
Fourier expansions and extend it from short to long time intervals in the same way used in
Sects. 4.10-4.11 of [19]. Then the near conservation of actions given in Theorem4 is obtained.
Meanwhile, it follows from the results presented in Sect. 6.4 of [30] and Sect. 4.11 of [19]
that the long-time near-conservation of actions implies the long-time near-conservation of
density and of momentum. Therefore, the other statements of Theorem 4 are proved.

This concludes the proof of Theorem 4 for the integrator EP1.
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Table 1 Properties of the methods

Methods Energy conservation Optimal convergence Near conservations

EP1
√ × (δκ2)

√

EP2
√ √

(εδκ2)
√

EP3
√ √

(εδκ3) ×

4.3.5 Proof for EP2

Consider the one-point quadrature formula with (c̃1, d̃1) and then the scheme of (4.1)
becomes

un+1 = eV un + hd̃1A1,c̃1(V ) f
(
Cc̃1(V )un + Ac̃1,c̃1(V )A−1

1,c̃1
(V )(un+1 − eV un)

)
. (4.11)

In terms of this formula, we can derive themodulation equations for themodulation functions

zkj as L
kzkj (ε̃t) = −ih

∑

k1+k2−k3=k
zk

1

j(k1)
(ε̃t)zk

2

j(k2)
(ε̃t)zk

3

j(k3)
(ε̃t) by defining

Lk : = (
Ac̃1,c̃1 A

−1
1,c̃1

(e−i(k·ω)heε̃hD − eihΩ) + Cc̃1

)−1
(e−i(k·ω)heε̃hD − eihΩ)(d̃1Bc̃1)

−1.

It can be seen that this formula has more concise expression than that of EP1. Then by
modifying the nonlinearity and concerning the property of Lk , the analysis given above can
be changed accordingly for EP2.

Remark 7 It is noted that the scheme (4.11) has been analysed in [19]. Under an assumption
on the coefficient functions of exponential integrator, long term conservations have been
derived there. However, for the coefficients Ac̃1,c̃1(V ) and A1,c̃1(V ) of EP2, they do not
satisfy that assumption required in [19]. Thus the part 4.2 of the proof given in [19] cannot
be used for EP2. Therefor we consider the above approach to proving the result. On the other
side, the operator Lk determined by EP3 does not have similar property as (6.1). Therefore,
there is no invariant of the modulation system and the near conservations are not true for
EP3.

5 Numerical Experiment

For the algorithms presented in this paper, their properties are summarized in Table 1. In
order to show their advantages, we choose the second-order explicit exponential integrator
which is termed pseudo steady-state approximation which was given in [51] (denoted by
EEI) and the fourth-order explicit exponential Runge–Kutta method which was given in [37]
(denoted by EEI4). Meanwhile, we present a mass-preserving (but not erengy-preserving)
exponential integrator

Un+τ (x) = Cτ (V)un(x) + h
∫ 1

0
Aτ,σ (V) f (Un+σ (x))dσ, 0 ≤ τ ≤ 1,

un+1(x) = eVun(x) + h
∫ 1

0
Bτ (V) f (Un+τ (x))dτ,

with the coefficientsCτ (V) = eτV , Bτ (V) = e(1−τ)V and Aτ,σ (V) = ( 12 +(τ −σ))e(τ−σ)V .
It is easy to check that this integrator is mass-preserving and we refer to it as MP. As a
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Fig. 1 The relative error of discrete energy ERR = |H [un ,ūn ]−H [u(0),ū(0)]|
|H [u(0),ū(0)]| against t = nh

numerical experiment, we consider the problem with d = 1 and λ = −2 and the pseu-
dospectral method with 64 points. In the practical computations, we apply the three-point
Gauss-Legendre’s rule to the integral in (2.4) and use a fixed-point iteration with the error tol-
erance 10−16 and the maximum number 100 for each iteration. In order to show the obtained
methods behave well for different initial and boundary conditions, we will use various con-
ditions in the experiment.

5.1 Energy conservation

The initial value is given by u0(x) = 0.5i + 0.025 cos(μx) and the periodic boundary
condition is u(t, 0) = u(t, L). We consider L = 4

√
2π and integrate this problem on

[0, 100] with h = 1/100 for different ε. The conservation of discretised energy is shown in
Fig. 1. From these results, it can be seen clearly that the EP integrators EP1-EP3 preserve
the energy with a very good accuracy, which supports the results of Theorem 1.

5.2 Convergence

For the convergence, in order to numerically test the results of Theorem 3, we apply the
methods to solve the long term problem (3.3) with the time stepsize δκ . Following [17], u0(x)
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is chosen as u0(x) = cos(x) + sin(x) and the boundary condition is u(t, 0) = u(t, 2π). The
long term NLS (3.3) is solved in [0, T /ε] with T = 1 and δκ = 1/2i for i = 1, . . . , 6.
The global errors of our methods measured in L2 and H1 for different ε are presented in
Fig. 2. For comparison, the errors of EEI and MP are also displayed in Fig. 2. It follows
that EP1 only has the global error O(δκ2) while EP2 has the error bound O(εδκ2) and EP3
shows O(εδκ3). This agrees with the results of Theorem 3. It seems here that EP3 has a
better convergence than O(εδκ3). But after presenting the errors for ε = 1 in Fig. 3, it can
be observed that EP3 still shows a third-order convergence. Moreover, it follows from the
results that MP behaves similarly to EP3 and its convergence can be derived by using the
same arguments presented in this paper.

5.3 Near-Conservations in Other Aspects

In order to show the near conservations in other aspects, small initial value is required.
Following [19, 30], we change the initial value into u0(x) = 0.1

( x
π

− 1
)3( x

π
+ 1

)2 + i ×
0.1

( x
π

− 1
)3( x

π
+ 1

)3 and consider the periodic boundary condition u(t,−π) = u(t, π).
The problem is solved on [0, 10000] with h = 1

100 and the relative errors of density and
momentum are shown in Figs. 4, 5, respectively 2 . It can be observed clearly from these
results that the density and momentum are conserved well by EP1-EP2 but not by EP3 over
long terms, which supports the results stated in Theorem 4.

Based on the numerical results, we can draw the following observations.

(1) The energy-preserving methods EP1-EP3 preserve the energy with a very good accuracy
for both regimes of ε, which is much better than the existed exponential integrators EEI,
EEI4 and MP (see Fig. 1).

(2) For the highly oscillatory regime, the integrators EP2-EP3 and MP show improved error
bounds while EP1 and EEI do not have the optimal convergence (see Fig. 2). For the
regime ε = 1, EP1-EP3 show the normal global errors (see Fig. 3).

(3) The MP method preserves the density and momentum well. The integrators EP1-EP2
have the long term near conservations in the density, momentum and action but the
methods EP3, EEI and EEI4 do not show such long time behaviour (see Figs. 4, 5).

6 Applications and Future Issues

This is a preliminary research on the long-time behaviour of energy-preserving exponential
integrators and it is noted that the algorithms can be extended to the numerical solutions of
the following equations (see Table 2) by replacing iA and f in (2.1) with the new ones.

We also note that there are some issues which can be further considered.

• The extensions of the methods as well as their analysis in this paper to the logarithmic
Schrödinger equation ([4]) and time-dependent Schrödinger equation in semiclassical
scaling ([43]) will be researched in future.

• The long term analysis of other kinds of energy-preserving integrators in other PDEs such
as Vlasov-Poisson system ([26, 46]) and Maxwell equations will also be considered.

• Another issue for future exploration is the analysis of parareal algorithms of Schrödinger
equations.

2 The methods show similar conservation of actions and we omit the corresponding numerical results for
brevity.
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Fig. 2 The global error err = (Φδκ )n(w0) − w(κn) of the long term problem (3.3) for n = 1
εδκ measured in

L2 (left) and H1 (right) against the stepsize
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Fig. 3 The global error err = (Φδκ )n(w0) − w(κn) of the long term problem (3.3) for n = 1
δκ measured in

L2 (left) and H1 (right) against the stepsize

Fig. 4 The relative error of density ERR = |m[un ,ūn ]−m[u(0),ū(0)]|
|m[u(0),ū(0)]| against t = nh
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Fig. 5 The relative error of momentum ERR = |K [un ,ūn ]−K [u(0),ū(0)]|
|K [u(0),ū(0)]| against t = nh

Table 2 Some systems which the presented methods can be applied

Systems Replace iA by New f

Hamiltonian system with
H(q, p) = 1

2 p
ᵀ p + 1

2q
ᵀΩq +U (q)

(
0 I

−Ω 0

) (
0

−∇U (q)

)

Wave equation utt − a2Δu = g(u)

(
0 I

−a2Δ 0

) (
0

g(u)

)

Damped Helmholtz-Duffing oscillator
q ′′ + 2υq ′ = −Aq − Bq2 − εq3

(
0 I
0 2υ

) (
0

−Aq − Bq2 − εq3

)

Charged-particle dynamics in a constant
magnetic field x ′′ = B̃x ′ + F(x)

(
0 I
0 B̃

) (
0

F(x)

)

First-order ODEs x ′ = 1
ε Ax + f (x) 1

ε A f (x)
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Appendix

Proof of Lemma 1 Firstly, according to the scheme (2.4), the Duhamel principle (2.2) and the
fact that

∥
∥
∥Cτ (W)w(κn) − eiτδκ�w(κn)

∥
∥
∥
Hα−2

� δκ,

it is clearly that ‖δn+τ‖Hα−2 � δκ. Then it follows from the Duhamel principle (2.2) that

w(κn + τδκ) = eiτδκ�w(κn) + ετδκϕ1(τW) f (w(κn))

+ ετ 2δκ2
∫ 1

0

∫ 1

0
ξe(1−ξ)iτδκ� f ′(w(κn + ζ ξτδκ))w′(κn + ζ ξτδκ)dζdξ.

For the integrator (2.4), we have

Φτδκ(w(κn)) =Cτ (W)w(κn) + εδκ

∫ 1

0
Aτ,σ (W)dσ f (w(κn)) + δκ2C1

+ εδκ2
∫ 1

0

∫ 1

0
σ Aτ,σ (W) f ′(w(κn + ζσδκ))w′(κn + ζσδκ)dζdσ

with ‖C1‖Hα−4 � 1, where we replace Φσδκ(w(κn)) by w(κn + σδκ) in the numeri-
cal scheme and the error brought by this is denoted by δκ2C1. The combination of the
above two equalities yields ‖δn+τ‖Hα−4 � δκ2 for 0 < τ < 1, where the inequality∥
∥
∥
∫ 1
0 Aτ,σ (W)dσ − τϕ1(τW)

∥
∥
∥
Hα−4

� δκ and the result of Lagrange interpolation have been

used.
Then by the same arguments given above and by noticing C1(W) = eiδκ�, the bound of

‖δn+1‖Hα−2 can be derived.
Finally, in the light of

w(κn+1) = eiδκ�w(κn) + εδκϕ1(W) f (w(κn)) + εδκ2ϕ2(W) f ′(w(κn))w
′(κn)

+ εδκ3
∫ 1

0

∫ 1

0
(1 − ζ )ξ2e(1−ξ)iδκ�( f ′′(w(κn + ζ ξδκ))(w′(κn + ζ ξδκ))2

+ f ′(w(κn + ζ ξδκ))w′′(κn + ζ ξδκ)
)
dζdξ,
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and

Φδκ(w(κn)) = eiδκ�w(κn) + εδκ

∫ 1

0
A1,σ (W)dσ f (w(κn))

+ εδκ2
∫ 1

0
σ A1,σ (W)dσ f ′(w(κn))w

′(κn) + εδκ3C2

+ εδκ3
∫ 1

0

∫ 1

0
(1 − ζ )σ 2A1,σ (W)

(
f ′′(w(κn + ζσδκ))(w′(κn + ζσδκ))2

+ f ′(w(κn + ζσδκ))w′′(κn + ζσδκ)
)
dζdσ,

with ‖C2‖Hα−4 � 1, we obtain the bound of ‖δn+1‖Hα−4 as follows

‖δn+1‖Hα−4 �
1∑

j=0

εδκ j+1
∥
∥
∥
∥ϕ j+1(W) −

∫ 1

0
A1,σ (W)

σ j

j ! dσ
∥
∥
∥
∥
Hα−4

+ εδκ3.

Using the results of A1,σ :
∥
∥
∥
∥

∫ 1

0
A1,σ (W)dσ − ϕ1(W)

∥
∥
∥
∥
Hα−4

� 0,

∥
∥
∥
∥

∫ 1

0
A1,σ (W)σdσ − ϕ2(W)

∥
∥
∥
∥
Hα−4

� δκ,

the last local error can be bounded. 	


Proof of Lemma 2 Employing the definition of the method, the isometry Cτ (W) and the
Lipschitz estimate of f , one gets

‖Φτδκ(v) − Φτδκ(w)‖Hβ ≤ ‖v − w‖Hβ + εLCA

∫ δκ

0
‖Φσ (v) − Φσ (w)‖Hβdσ,

as long as Φσ (v), Φσ (w) ∈ Hα−2
R for σ ∈ [0, δκ]. Considering τ = 1 and using the

Gronwall’s lemma yields

‖Φδκ(v) − Φδκ(w)‖Hβ ≤ eεδκLCA‖v − w‖Hβ ,

which gives the first statement of (3.7) by modifying δκ to τδκ . Setting in particular w = 0
implies Φτδκ(v) ∈ Hα−2

R under the condition that 0 < δκ < δκ0. It is also direct to have

‖(Φδκ(v) − eiδκ�v) − (Φδκ(w) − eiδκ�w)‖Hβ ≤ εδκLCA‖Φτδκ(v) − Φτδκ(w)‖Hβ .

The second result of (3.7) follows immediately from this inequality and the first statement.
	


Proof of Lemma 3 In order to derive the modulation equations for EP1, a new approach dif-
ferent from [19, 29, 30] is considered here. To this end, we define the operator Lk and it can
be expressed in Taylor expansions as follows:

L〈 j〉
j = 1

2
ε̃h2ω j csc

(1

2
hω j

)
D + 1

48
ε̃3h4ω j csc

(1

2
hω j

)
D3 + · · · ,

Lk = ihΩ csc
(1

2
hΩ

)
sin

(1

2
h(−Ω − (k · ω)I )

)

+ 1

2
ε̃h2Ω csc

(1

2
hΩ

)
cos

(1

2
h((k · ω)I + Ω)

)
D + · · · .

(6.1)

123



93 Page 28 of 31 Journal of Scientific Computing (2022) 90 :93

Moreover, for the operator Lk
3(σ ), we have

Lk
3(
1

2
) = cos

(h(k · ω)

2

) + 1

2
sin

(h(k · ω)

2

)
(ihε̃D) + · · · .

By using the symmetry of the EP1 integrator and
∫ 1

0
f ((1 − σ)un + σun−1)dσ =

∫ 1

0
f ((1 − σ)un−1 + σun)dσ,

we can rewrite the scheme of EP1 as 3

un+1 − 2 cos(hΩ)un + un−1

= h
[
ϕ1(V )

∫ 1

0
f ((1 − σ)un + σun+1)dσ − ϕ1(−V )

∫ 1

0
f ((1 − σ)un−1 + σun)dσ

]
.
(6.2)

For the term (1 − σ)un + σun+1, we look for a modulated Fourier expansion of the form

ũh(t + h

2
, x, σ ) =

∑

‖k‖≤K

wk
j(k)

(
ε̃(t + h

2
), σ

)
ei( j(k)·x)e−i(k·ω)(t+ h

2 ),

which leads to

wk
j(k)

(
ε̃(t + h

2
), σ

)
=Lk

3(σ )zkj(k)

(
ε̃(t + h

2
)
)
. (6.3)

Likwise, for (1 − σ)un−1 + σun , we have the following modulated Fourier expansion

ũh(t − h

2
, x, σ ) =

∑

‖k‖≤K

wk
j(k)

(
ε̃(t − h

2
), σ

)
ei( j(k)·x)e−i(k·ω)(t− h

2 ).

Inserting (4.5) and (6.3) into (6.2) yields

ũ(t + h, x) − 2 cos(hΩ)ũ(t, x) + ũ(t − h, x)

= h
[
ϕ1(V )

∫ 1

0
f
(
ũh(t + h

2
, x, σ )

)
dσ − ϕ1(−V )

∫ 1

0
f
(
ũh(t − h

2
, x, σ )

)
dσ

]
,

which can be expressed by operators as

(ϕ1(ihΩ)e
1
2 hD − ϕ1(−ihΩ)e− 1

2 hD)−1(ehD − 2 cos(hΩ) + e−hD)ũ(t, x)

= h
∫ 1

0
f (ũh(t, x, σ ))dσ.

(6.4)

On the other hand, we rewrite the nonlinearity f as:

f (u) = −i
∑

‖k‖≤K

∑

j(k)∈M

∑

k1+k2−k3=k

wk1
l1 wk2

l2 wk3
l3
ei( j(k)·x)e−i(k·ω)t ,

where j(k) = ( j(k1)+ j(k2)− j(k3)) mod 2M if k = k1 + k2 − k3. On the basis of this fact
and (6.4), considering the j th Fourier coefficient and comparing the coefficients of e−i(k·ω)t ,
the result of this lemma is obtained. 	

3 This form has been given in [44] for first-order ODEs.
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